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Abstract

In this work, we evaluate the adaptability of
neural agents towards assumed partner behav-
iors in a collaborative reference game. In this
game, success is achieved when a knowledge-
able guide can verbally lead a follower to the se-
lection of a specific puzzle piece among several
distractors. We frame this language ground-
ing and coordination task as a reinforcement
learning problem and measure to which extent
a common reinforcement training algorithm
(PPO) is able to produce neural agents (the
guides) that perform well with various heuristic
follower behaviors that vary along the dimen-
sions of confidence and autonomy. We exper-
iment with a learning signal that in addition
to the goal condition also respects an assumed
communicative effort. Our results indicate that
this novel ingredient leads to communicative
strategies that are less verbose (staying silent
in some of the steps) and that with respect to
that the guide’s strategies indeed adapt to the
partner’s level of confidence and autonomy.

1 Introduction

Sometimes we feel like we could continue another
person’s sentence. This happens in particular with
people we know well or we often interact with.
A common phrase coined to this phenomenon is
that “people are on the same wavelength”. Indeed
Davidesco et al. (2023) found that brain activities
somewhat synchronize between teachers and stu-
dents during lessons. Even more surprising, syn-
chronicity becomes a good predictor of the learning
success of the students. A psycho-linguistic study
by Clark and Wilkes-Gibbs (1986) observed the
language use of collaborative partners during an
ongoing goal-oriented interaction: They (implic-
itly) agree on newly introduced noun phrases and a
common strategy to achieve the goal together. Inter-
estingly, the number of used words drastically de-
creases during the collaboration. The participants

Figure 1: An exemplary interaction between a guide and
a follower who controls the gripper (the black dot). The
guide observes the scene v0 and refers to a piece initially
with l0. The follower has only a partial view p0 (the
grey box) and might go wrong. The guide can provide
further information based on the follower’s actions until
a piece is selected at time step T . The guide should
learn that fewer utterances are necessary with a more
autonomous and confident follower.

strive towards reduced individual efforts while the
number of successful outcomes stays high. We see
that human-human interaction is characterized by
synchronicity (adaption) and the reduction of indi-
vidual efforts. Still, the modelling of changing be-
haviors (or different others) remains an open prob-
lem “due to the essentially unconstrained nature
of what other agents may do” (Albrecht and Stone,
2018). Are neural agents capable of adapting to
their interactants and converge to useful strategies
when the partner’s behavior becomes apparent only
during an ongoing interaction itself?

In this work, we frame a collaborative language
coordination and grounding task (see Figure 1)
as a reinforcement learning problem (Sutton and
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Barto, 2018) and evaluate, if and to which extent
a common training algorithm Proximal Policy Op-
timization (PPO) (Schulman et al., 2017) is able
to produce neural agents that perform well with a
variety of partner behaviors. To study how learning
agents potentially adapt to an assumed partner’s
behavior, we propose a challenging vision and lan-
guage grounding task where two players have to
coordinate on the selection of a puzzle piece (a Pen-
tomino, a shape of five adjacent squares; Golomb
(1996)) among several distractors while (i) the ac-
tual target piece is only known to one of them (the
guide), and (ii) only the other can perform the se-
lection (the follower).

The main idea is that we assume an ongoing in-
teraction in which the follower’s behavior changes.
After some time the follower should become more
autonomous and more confident in choosing ac-
tions and executing its own plan (as pointed out by
Clark and Wilkes-Gibbs (1986)). But instead of
treating this as a multi-agent setting directly, we
follow Yang et al. (2022) with the notion of as-
signing different agents to different sub-tasks and
learn a policy for each of the controllable follower
behaviors (the sub-tasks) separately. The resulting
policies represent a guide’s communicative strategy
at certain points in time of the assumed ongoing
interaction.

Our expectations on the learned communicative
strategies of the guide are that in the beginning
(with a less autonomous, less confident follower)
more is to be said. Later on, with a more au-
tonomous and confident follower, the guide learns
that it “does not need to say anything” to be suc-
cessful and consequently reduces its effort. Our
contributions are as follows1:

• We propose a challenging RL environment: a
reference game in which a neural agent (the
guide) has to learn communication strategies
that are successful and reduce an assumed
effort, and

• contribute a plausible follower policy (the
training partner) that is variable on two di-
mensions: confidence and autonomy, and

• present strong baseline guide policies for this
difficult cooperative reference game that are
indeed able to balance out episode success
and their individual effort by learning to stay
silent.

1Source code is publicly available at: https://github.
com/clp-research/different-follower-behaviors

2 Related Work

Vision and language navigation. The use of nat-
ural language to guide an instruction following
agent has been heavily studied for the vision and
language navigation task (Gu et al., 2022; Nguyen
et al., 2019; Nguyen and Daumé III, 2019; Fried
et al., 2018; Thomason et al., 2019). For example,
Nguyen and Daumé III (2019) train an instruction
giver (IG) on a pre-collected dataset of instructions.
The follower is then allowed to ask the IG for more
information during task execution. Although the
setting is very similar, but in our work the guide has
to learn when to provide more information to the
follower. In our setting, the language back-channel
for the follower is cut, so the players must use the
vision signal in their coordination and the guide’s
must monitor the follower’s behavior.

Natural language goals in RL. Using natural
language to describe the goal state in an RL prob-
lem has become a common theme (Chevalier-
Boisvert et al., 2019; Gao et al., 2022; Padmaku-
mar et al., 2022; Pashevich et al., 2021; Suhr and
Artzi, 2023). This research direction is interesting
because it could allow humans to interact more eas-
ily with learned agents. There is work that shows
that intermediate language inputs are a valuable
signal in task-oriented visual environments (Co-
Reyes et al., 2019; Mu et al., 2022). Indeed Huang
et al. (2023) found that natural language can “pro-
vide a gradient” towards the goal state. But they
also point out the “brittleness” of these signals be-
cause the language input might align badly with
sub-trajectories. A key challenge here is the vari-
ability of expressions in language that can be pro-
duced and understood in the defined action space.
Even in relatively simple environments, there might
arise an overwhelming amount of situations for an
agent to handle (Chevalier-Boisvert et al., 2019).
We weaken the action space exploration problem
by using ideas from natural language understanding
(Moon et al., 2020; E et al., 2019) and let the guide
produce language actions in a well-defined reduced
“intent space”. These intents are then verbalized
(using templates; which could be a conditioned pre-
trained language model) and given to the follower.

Interactive sub-goal generation in RL. Sun
et al. (2023) use a pre-trained large language model
to generate possible plans (in the form of source
code) for the completion of a task. The learning
process is extended with a mechanism that allows
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Figure 2: The general information and decision-making flow of the reference game. The guide observes vt which
contains the full scene in pixel space and additionally the gripper position (4th-channel) and target piece (5th-
channel). Given this, the guide chooses an intent action at that gets verbalized into a template-based sentence lt.
Then, the follower receives the utterance lt, the gripper coordinate gt and a symbolic representation of a partial view
of the scene pt. The hand-crafted policy updates the plan accordingly based on its given representation of the world.
Finally, the follower’s next planned action (or wait) is performed with a certain chance defined by the attached
confidence. The process repeats until a piece is taken or time runs out.

the model to learn the refinement of single actions
or an entire plan respectively. Indeed neural agents
perform better when they self-predict sub-goals to
be achieved (with an intrinsic reward) instead of
reaching for the final goal immediately (Jurgenson
and Tamar, 2023; Chane-Sane et al., 2021; Pertsch
et al., 2020; Jeon et al., 2022). For example, Lee
and Kim (2023) study the task of finding the best
route in a simple visual domain by training a sub-
goal system that predicts intermediate coordinates.
In contrast to them, our guiding agent has to pro-
duce utterances to describe a sub-goal (and we
use referring expressions or directions). Gürtler
et al. (2021) also address the question of “when to
provide sub-goals”, which is necessary in our task.
Nevertheless, in distinction to these works, we treat
the sub-goal generation not just as additional infor-
mation for the follower’s success but are interested
in the learned communicative strategies themselves.
We treat the sub-goal providing guide as an indi-
vidual participant in the environment similar to a
multi-agent setting.

Skill learning in cooperative multi-agent RL.
We treat both guide and follower as agents in a
cooperative setting and follow work that uses hand-
crafted policies (Wang et al., 2021; Ghosh et al.,
2020; Xie et al., 2020). In this sense, our approach
is similar to heterogeneous skill learning (Chang
et al., 2022; Liu et al., 2022; Hu et al., 2023) where
a single agent is trained to acquire a variety of

skills (in our case communication strategies). This
is, in particular, helpful due to the differences in
the action spaces of the guide (language acts) and
the follower (movements). In addition, this method
of having a hand-crafted follower policy allows us
to avoid the problem of emergent communication
where agents agree on a language that becomes
inaccessible to humans (Lowe et al., 2019).

3 The Collaborative Reference Game

We use a collaborative game of referential and in-
teractive language with Pentomino pieces (Sadler
et al., 2023) and extend it for guidance learning.
A guide has to instruct a follower to select a spe-
cific target piece with a gripper. In this setting,
both players are constrained as follows: The guide
can provide utterances but cannot move the gripper.
The follower can move the gripper but is not al-
lowed to provide an utterance. This asymmetry in
knowledge and skill forces them to work together
and coordinate. Zarrieß et al. (2016) found that
such a reference game leads to diverse language
use on the guide’s side.

3.1 Problem Formulation

We frame this game as an RL problem with sparse
rewards. At each time-step t, given an observa-
tion ot ∈ O of the environment (see Figure 2), the
guide has to choose an action at such that the over-
all resulting sequence of actions (a0, ..., at, ..., aT )



(which become verbalized into (l0, ..., lt, ..., lT ))
maximizes the sparse reward R(oT ) = r that is
given on episode end, either when a piece is se-
lected by the follower or t reaches Tmax = 30.
This maximal number of steps is sufficient to nav-
igate to the target piece with some extra steps for
corrections on our 21× 21 tile maps. The follower
starts in the center of the map so that the farthest
tile would be 10 horizontal plus 10 vertical steps
away.

3.2 Actions

We let the guide predict “intent” actions and trans-
late them into sentences instead of predicting words
directly to reduce the agent’s burden on action
space exploration (later this verbalization process
could be done by a language generation system).
Here we focus on the guide’s choice among five
intent categories: silence, confirm, decline,
directive, reference. For the directives, we
allow more fine-grained control over the utterance
production, so that the agent has to choose between
left, right, up, down and take. Similarly,
for the references the agent has to choose among
possible preference orders PCS, PSC, SPC, CPS,
SCP and CSP (in which P, C and S stand for piece,
color, and shape, respectively). These preference
orders (PO) define the order in which properties
are compared between the target piece and its dis-
tractors. This means, for example, that a CSP-based
reference is likely to mention the target piece’s
color because the color is tried first to distinguish
the target from its distractors (and it is very un-
likely that all pieces share the same color). These
six reference actions, five directive actions,
silence, confirm and decline lead to a total of
|A| = 14 actions. In comparison, the vocabulary
contains 37 tokens and the maximal sentence length
is 12 which results in 3712 possible utterances when
predicting individual words instead of intents.

3.3 Verbalization

The chosen intent is then verbalized based on tem-
plates by application of the following rules:

silence→ <empty string>

confirm→ Yes this [way|<piece>]

decline→ Not this [way|<piece>]

directive(take)→ Take <piece>

directive(dir)→ Go <dir>

reference(PO)→ Take the <IA(PO)>

where <piece> resolves to a piece’s color and
shape when the current gripper position is located
over a piece (or otherwise simply piece). The
direction <dir> resolve to the according intent
name. The fine-grained reference intent (PO) is
given to the “Incremental Algorithm” (Dale and Re-
iter, 1995), which produces the referring expression
for reference verbalization (see Appendix A.1).

3.4 Rewards

Following Chevalier-Boisvert et al. (2019), we de-
fine a basic sparse reward for playing the game:

RGame = 1− 0.9 ∗ (T/Tmax) (1)

In addition, we introduce a sparse reward for the
guide’s individual effort in an episode:

RGuide = 1− 0.9 ∗ (EGuide/Tmax) (2)

where the guide’s effort EGuide is the sum over
the assumed efforts of taking the respective actions:

EGuide =
T∑
t=1


0, if at ∈ {silence}
1.0, if at ∈ {confirm,decline}
1.1, if at ∈ {directive}
1.2, if at ∈ {reference}

(3)
These action-based efforts follow the assumed

cognitive load for producing them i.e. saying noth-
ing is the cheapest and comparing pieces with each
other to produce a reference is the highest. Fi-
nally, we give an additional reward (ROutcome) of
+1 when the correct piece or a penalty of −1 if the
wrong or no piece has been taken at all, so that:

R = (RGame +RGuide)/2 +ROutcome (4)

Given this formulation, the guide has to play the
game by being active (not just stay silent), achieve
the goal (get the bonus) and reduce its individual
effort (stay mostly silent) to reach a high reward.

3.5 Observations

The environment exposes at each time-step t an
observation ot that contains the following:

• the follower’s gripper coordinates gt = (x, y)

• the guide’s utterance lt (might be empty)
• a full view of the scene vt for the guide
• a partial view pt of the scene for the follower



The visual observations are 3-dimensional rep-
resentations of the full W ×H-sized board for the
guide (RGB-images) and a 11× 11-sized cut-out
centered on the gripper’s position for the follower
(CSI-images). We add a 4th channel to the visual
observations to indicate the gripper position by set-
ting the values to zero at gt and one otherwise.
In addition, the guide is informed about the target
piece coordinates by setting the according values to
zero for the target piece and ones otherwise on a 5th
channel of its visual observation. For our purposes,
the follower receives a symbolic representation of
the partial view where colors, shapes and piece IDs
are mapped to numbers (see Appendix A.1).

3.6 Task Instances

The task is that a guide provides utterances to a
follower who has to take an intended target piece
among several other pieces (the distractors). Thus,
a game instance of this task is defined by the num-
ber and identity of pieces on the board, including
which of these is the target piece, and by the size
of the board.

The appearance and positioning of the pieces is
derived from symbolic piece representations: a tu-
ple of shape (9), color (6), and position (8). We ex-
periment with 360 of these symbolic pieces which
include all shapes, colors, and positions and split
them into distinct sets (see Table 1). Therefore,
the target symbols for the testing tasks are distinct
from the ones seen during training (they might
share color and shape though, but are for example
positioned elsewhere).

We ensure the reproducibility of our experiments
by constructing 2500 training, 175 validation, and
420 testing tasks representing scenes with a map
size of 21× 21 tiles (see Appendix A.2 for the de-
tailed generation process) where each piece occu-
pies five adjacent tiles and overlapping is avoided.

TPS Tasks Boards
Training 275 2500 700
Validation 25 175 175
Testing 60 420 420

Table 1: The number of tasks and boards in each data
split. The target pieces for the tasks are chosen from
non-overlapping sub-sets of target piece symbols (TPS).
For evaluation splits, we mix-in training pieces as dis-
tractors. We construct boards with at least 1 and up to 7
distractors.

4 The Follower Behaviors

For the follower, we take inspiration from Sun
et al. (2023) who suggest a plan-based approach to-
wards solving text-based tasks with language mod-
els: given a task’s natural language instruction their
model initially produces a plan, which is then ex-
ecuted and repeatedly refined or revised. We im-
plement a policy that keeps track of a plan that
contains up to 10 actions (the plan horizon; which
is exactly the number of actions needed to reach the
diagonal corner of the partial view). Our follower’s
behavior of following the plan is adjustable along
two dimensions: confidence and autonomy.

Confidence. The actions in the plan are associ-
ated with a decreasing probability of being exe-
cuted (the “confidence triangle” in Figure 2) so
that given a discount factor ϕ ∈ [0, 1] and a lower
threshold L ∈ [0, 1] we calculate:

Confidence(ai) = max(ϕi,L) (5)

Which introduces a notion of confidence: either
the planned action is executed or a wait action oc-
curs (hesitation). Furthermore, this conceptualizes
that a follower becomes increasingly unsure about
the continuation of the plan without receiving feed-
back from the guide.

Autonomy. The revision process for our fol-
lower policy is conceptually divided into five sub-
programs that run after the guide’s utterance is
received, parsed and the assumed intent type is
determined, as follows:

• on_silence: The follower executes, based
on confidence, the next action in the plan (if
available). Otherwise, it waits.

• on_confirm: The follower sets the confi-
dence for all actions in the current plan to
1. Then the next action is chosen as described
under on_silence.

• on_decline: The follower erases the current
plan. As the plan is then empty, a wait action
will be returned.

• on_directive: The follower parses the ut-
terances for the concrete directives (a direc-
tion or a “take” prompt). For “take”, the
plan is replaced with take action under the
assumption that this is the last action to be
performed. Otherwise, the plan is filled with
actions that align with the direction prompt.



Then, the next action is chosen as described
under on_silence.

• on_reference: The follower updates its in-
ternal target descriptor (color, shape, position)
based on the new reference. Given this up-
dated descriptor, the follower identifies candi-
date coordinates in the symbolic representa-
tion of the current field of view, for example,
coordinates that are blue given a reference
“Take the blue piece”. If such a coordinate
is identified and the follower has not already
approached it, then the shortest path to that
candidate is established as a new plan. Other-
wise, if the descriptor only contains a position,
then a direction towards that position is ap-
proached. In the case where the follower is
already in that position, a randomly chosen
piece in the field of view is approached. When
none of this matches, then the current plan
proceeds as described under on_silence.

Now, the autonomy defines which procedures the
follower undertakes, when intermediate feedback
is missing (the guide stays silent). The cautious fol-
lower is performing solely the previously defined
procedures: when the plan is exhausted, then it
waits until a new directive or reference is given. If
this follower is over an assumed target piece, then it
waits until the “take” directive is given by the guide.
In contrast, the eager follower aims to actually take
an assumed target piece when approaching it in the
current field of view. Furthermore, the eager fol-
lower autonomously looks for target candidates at
each step (as described in the on_reference pro-
cedure) and potentially revises the plan (also when
the guide stays silent).

5 Learning Communication Policies for
Different Follower Behaviors

Mnih et al. (2015) showed that vision-driven re-
inforcement learning policies can achieve human-
level performance in pixel-based environments like
Atari games. Similarly, the guide as an agent in our
environment has the challenging task to learn:

(a) when to produce an utterance (or stay silent),
(b) what to produce (confirm, decline, direct, re-

fer), and
(c) how to produce it (which directive or prefer-

ence order)

based solely on visual observation of the board
state and the follower actions.

Figure 3: The guide’s recurrent vision network.

5.1 The Guide

The observation ot = (vt) with vt ∈ R21×21×5

is encoded into a 128-dimensional feature vector
ṽt ∈ R using a 4-layer convolutional neural net-
work similar to that by Chevalier-Boisvert et al.
(2019). Then, the feature vector ṽt is fed through an
LSTM (Hochreiter and Schmidhuber, 1997) which
functions as a memory mechanism (updating a state
vector ht that is passed forward in time). Given the
resulting memory-conditioned visual feature vector
x̃t, we learn a parameterized actor-critic-based pol-
icy π(x̃t; θ) ∼ at where the actor predicts a distri-
bution over the action space (intents) and the critic
estimates the value of the current state (Figure 3).
For the recurrent policy, we use the implementation
of StableBaselines3-Contrib v1.8.0 (Raffin et al.,
2021), which performs back-propagation through
time until the first step in an episode.

5.2 Experiment Setup

We employ the Proximal Policy Optimization
(PPO) algorithm (Schulman et al., 2017) for policy
learning in our sparse reward environment that re-
spects an assumed accumulated effort over actions.
Then we evaluate to which extent the resulting poli-
cies (the guides) are adapted towards the follower
behaviors in such ways that align with expecta-
tions based on the follower’s dimensions of confi-
dence and autonomy. Thus, for the experiments,
we initiate different cautious and eager follower’s
with increasing confidence discount factors so that
ϕ ∈ [0.75, 0.85, 0.90, 0.95, 0.97, 0.99].

We use StableBaselines3 v1.8.0 (Raffin et al.,
2021) to learn for each of these follower behaviors a
separate guide. We train each guide with 4 parallel
running environments (batch size) and 1 million
time steps in total. This means that each board in
the training split is seen at least 13 times. Every
100k steps during training, we evaluate the pairings
against the validation set. We keep for each pairing
the guides that achieve the highest mean episode
reward based on these validation runs. We conduct
the experiments with three different seeds.



5.3 Results and Discussion
Overall Results. The overall results in Table 2
show that learned policies are communicative
strategies that can successfully guide the follower
(towards the target piece) in most of the cases (on
average in 92% of the test episodes). This indicates
that the guide learned the goal of the game and
hereby almost reaches the best episode length (on
average only 1.93 steps longer than the shortest
path). The overall average effort (9.72) covers only
about 71.5% of the average episode length (13.58)
which means that the policies altogether produce
an utterance in about 2 out of 3 steps.

Has the guide learned to stay silent? Indeed,
Figure 4 shows that the policies converge to a mode
where the silence intent is chosen in at least 23%
of the steps: The guides are in general able to
learn to say nothing. The most chosen intent is
reference which is reasonable because it provides
crucial information (the target piece description)
and triggers an update of the follower’s plan.

What preference orders are chosen for the
reference production? The reference intents
define the order in which properties are compared
between the target piece and its distractors. This
means, for example, that a CSP reference is likely to
mention the target piece’s color because the color
attribute is first compared to distinguish the target
from its distractors (and it is very likely that at least
one distractor gets excluded because otherwise, all
pieces would share the same color). Thus, it is
reasonable that there are communicative strategies
learned that choose CSP in the majority of cases
as shown in Figure 5. This means that the guide
produces a reference that likely includes the shape
and the color of the target piece. These properties
are indeed useful for the follower to identify and
approach the target in its field of view. On the other
hand, preference orders that test positions first (PCS

and PSC) are also chosen rather often. These strate-
gies lead the follower to the target piece without
having it necessarily already in the field of view.

The effects of the follower’s autonomy mode.
We experimented with two levels of autonomy of
the follower. The results in Table 2 show that the
policies that learn from interactions with the eager
follower require on average 2.00 points less effort
than the cautious one. This is reasonable as the ea-
ger follower is autonomously updating the plan and
looking for target candidates at each step. Along

Metrics: mR ↑ mSR ↑ mEPL ↓ mEff. ↓
— Cautious —

100% Silent 0.00 0.00 30.00 0.00
100% Ref. -1.04 0.00 30.00 34.8
PPO-Guide 1.55 0.94 13.97 10.72

ϕ=75 1.52 0.93 15.02 11.07
ϕ=85 1.47 0.96 14.13 14.63
ϕ=90 1.59 0.95 13.87 10.33
ϕ=95 1.57 0.94 13.67 10.49
ϕ=97 1.57 0.93 13.27 10.00
ϕ=99 1.57 0.90 13.88 7.78

— Eager —
100% Silent 0.45 0.23 16.78 0.00
100% Ref. 0.86 0.75 18.57 21.09
PPO-Guide 1.57 0.91 13.19 8.72

ϕ=75 1.54 0.92 13.54 10.04
ϕ=85 1.60 0.89 14.28 6.15
ϕ=90 1.49 0.92 13.24 11.67
ϕ=95 1.59 0.92 12.86 8.39
ϕ=97 1.58 0.90 12.64 7.28
ϕ=99 1.59 0.93 12.58 8.76

— Overall —
100% Silent 0.23 0.11 23.39 0.00
100% Ref. -0.09 0.37 24.29 27.94
PPO-Guide 1.56 0.92 13.58 9.72

Table 2: The mean rewards (mR), success rates (mSR in
%), episodes lengths (mEPL) and efforts of the agents on
the test tasks for the chosen autonomy and confidence
combinations of the follower (averaged over all seeds).
A shortest path solver reaches 11.65 mEPL (3.13 std).
Given this, the upper bound for the mean reward is 1.83.
Best values in bold.

Chosen Intent: S C D O R
— Cautious —

PPO-Guide 0.27 0.04 / 0.09 0.60
ϕ=75 0.27 0.08 / 0.08 0.56
ϕ=85 0.06 0.08 / 0.09 0.78
ϕ=90 0.29 0.09 / 0.08 0.53
ϕ=95 0.28 / / 0.09 0.63
ϕ=97 0.30 / / 0.09 0.61
ϕ=99 0.43 / / 0.09 0.48

— Eager —
PPO-Guide 0.34 0.06 0.06 0.09 0.46

ϕ=75 0.25 0.26 0.03 0.08 0.38
ϕ=85 0.53 0.01 0.09 0.08 0.29
ϕ=90 0.16 0.05 0.11 0.08 0.59
ϕ=95 0.34 / 0.13 0.09 0.45
ϕ=97 0.42 / / 0.11 0.47
ϕ=99 0.33 0.02 / 0.08 0.57

— Overall —
PPO-Guide 0.31 0.05 0.03 0.09 0.53

Table 3: The intent’s mean chance of being chosen at a
step (for each policy evaluated on the test split) broken
down by a follower’s confidence and autonomy. The in-
tents are abbreviated as follows: silence (S), confirm
(C), decline (D), directive (O) and reference (R).
It appears reasonable that the cautious follower’s actions
are never declined because the behavior is to always wait
for the guide’s instructions (in contrast to the eager ones
that explore occasionally on their own). Similarly, the
higher confidence follower’s require less re-assurance
(confirms) of their actions.



these lines, it is also reasonable that the decline
intent is never selected for the cautious follower
(see Table 3) because it never tried to approach a
target piece without the guide referencing it.

The effects of the follower’s confidence. The
differences in the intent selection strategy of the
learned policies (guides) shown in Table 3 indi-
cate that guides learned from interaction with more
confident follower’s (ϕ > 0.9) produce less or no
confirm actions. This seems reasonable as the
decrease in the execution probability of these fol-
lowers is less steep and a reference action has a
similar effect. Furthermore, we see a slight ten-
dency of guides to stay quieter (on average) when
trained with more confident followers as shown in
Figure 6. However we cannot see such a tendency
for guides trained with less confident followers.

6 Conclusions

In this work, we examined an interesting intersec-
tion between psycho-linguistic studies and deep
learning with reinforcement learning. We con-
sidered neural agents as possible interaction part-
ners (for humans) in a challenging reference game
where a guide has to learn when, what, and how
information (actionable intents) is to be provided
to a follower. As a proxy for different follower be-
haviors, we implemented a hand-crafted policy that
is controllable along two dimensions: autonomy in
exploration and confidence in executing an action.
We experimented with a learning signal that in addi-
tion to the goal condition also respects an assumed
communicative effort. Our results indicate that this
formulation of the learning signal leads to commu-
nicative strategies that are less verbose (stay silent
more often) and that the resulting guide behaviors
are adapted (in terms of intent selection distribu-
tions) to the follower’s autonomy and confidence
levels. We think this work presents a useful case
study of neural agents that have to learn adapted
communication strategies in an interactive setting
(possibly with humans). In future work, we want
to investigate other reward formulations for the
reference game and evaluate the learning of com-
munication policies where the utterance production
process spans multiple time steps (one word at a
time) and the production must be possibly inter-
rupted and revised during the interaction.

Figure 4: An intent’s mean chance of being chosen at a
step (for all learnt policies evaluated on the test split).

Figure 5: The distribution of the preference order
choices for the reference action (from Figure 4). The
preferences over position (P), shape (S) and color (C)
are given to the IA for reference production.

Figure 6: The mean number of silent turns performed
by the learnt policies (incl. all seeds) during the test
episodes. We fitted a linear regression with a confidence
interval of 99% through the data points separately for the
followers with ϕ = {75, 85} and ϕ = {90, 95, 97, 99}.
The latter shows a trend towards more silence turns
when the guide is paired with more confident followers.



Acknowledgements

We want to thank the anonymous reviewers for their
comments. This work was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation) – 423217434 (“RECOLAGE”) grant.

References
Stefano V. Albrecht and Peter Stone. 2018. Au-

tonomous agents modelling other agents: A com-
prehensive survey and open problems. Artif. Intell.,
258:66–95.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev.
2021. Goal-conditioned reinforcement learning with
imagined subgoals. In Proceedings of the 38th In-
ternational Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages
1430–1440. PMLR.

Can Chang, Ni Mu, Jiajun Wu, Ling Pan, and Huazhe
Xu. 2022. E-MAPP: efficient multi-agent reinforce-
ment learning with parallel program guidance. In
Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem
Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. 2019. Babyai: A plat-
form to study the sample efficiency of grounded lan-
guage learning. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net.

Herbert H. Clark and Deanna Wilkes-Gibbs. 1986. Re-
ferring as a collaborative process. Cognition, 22(1):1–
39. Place: Netherlands Publisher: Elsevier Science.

John D. Co-Reyes, Abhishek Gupta, Suvansh Sanjeev,
Nick Altieri, Jacob Andreas, John DeNero, Pieter
Abbeel, and Sergey Levine. 2019. Guiding policies
with language via meta-learning. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Robert Dale and Ehud Reiter. 1995. Computational in-
terpretations of the gricean maxims in the generation
of referring expressions. Cogn. Sci., 19(2):233–263.

Ido Davidesco, Emma Laurent, Henry Valk, Tessa
West, Catherine Milne, David Poeppel, and Suzanne
Dikker. 2023. The Temporal Dynamics of Brain-
to-Brain Synchrony Between Students and Teachers
Predict Learning Outcomes. Psychological Science,
34(5):633–643.

Haihong E, Peiqing Niu, Zhongfu Chen, and Meina
Song. 2019. A novel bi-directional interrelated
model for joint intent detection and slot filling. In

Proceedings of the 57th Conference of the Associa-
tion for Computational Linguistics, ACL 2019, Flo-
rence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers, pages 5467–5471. Association for Computa-
tional Linguistics.

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna
Rohrbach, Jacob Andreas, Louis-Philippe Morency,
Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein,
and Trevor Darrell. 2018. Speaker-follower mod-
els for vision-and-language navigation. In Advances
in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pages 3318–3329.

Xiaofeng Gao, Qiaozi Gao, Ran Gong, Kaixiang Lin,
Govind Thattai, and Gaurav S. Sukhatme. 2022. Di-
alfred: Dialogue-enabled agents for embodied in-
struction following. IEEE Robotics Autom. Lett.,
7(4):10049–10056.

Ahana Ghosh, Sebastian Tschiatschek, Hamed Mahdavi,
and Adish Singla. 2020. Towards deployment of ro-
bust cooperative AI agents: An algorithmic frame-
work for learning adaptive policies. In Proceedings
of the 19th International Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’20, Auck-
land, New Zealand, May 9-13, 2020, pages 447–455.
International Foundation for Autonomous Agents and
Multiagent Systems.

Solomon W. Golomb. 1996. Polyominoes: Puzzles, Pat-
terns, Problems, and Packings. Princeton University
Press.

Jing Gu, Eliana Stefani, Qi Wu, Jesse Thomason, and
Xin Wang. 2022. Vision-and-language navigation:
A survey of tasks, methods, and future directions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May
22-27, 2022, pages 7606–7623. Association for Com-
putational Linguistics.

Nico Gürtler, Dieter Büchler, and Georg Martius. 2021.
Hierarchical reinforcement learning with timed sub-
goals. In Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, De-
cember 6-14, 2021, virtual, pages 21732–21743.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Bin Hu, Chenyang Zhao, Pu Zhang, Zihao Zhou, Yuan-
hang Yang, Zenglin Xu, and Bin Liu. 2023. En-
abling intelligent interactions between an agent and
an LLM: A reinforcement learning approach. CoRR,
abs/2306.03604.

Sukai Huang, Nir Lipovetzky, and Trevor Cohn. 2023.
A reminder of its brittleness: Language reward shap-
ing may hinder learning for instruction following
agents. CoRR, abs/2305.16621.

https://doi.org/10.1016/j.artint.2018.01.002
https://doi.org/10.1016/j.artint.2018.01.002
https://doi.org/10.1016/j.artint.2018.01.002
http://proceedings.mlr.press/v139/chane-sane21a.html
http://proceedings.mlr.press/v139/chane-sane21a.html
http://papers.nips.cc/paper_files/paper/2022/hash/4f2accafe6fa355624f3ee42207cc7b8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/4f2accafe6fa355624f3ee42207cc7b8-Abstract-Conference.html
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=rJeXCo0cYX
https://doi.org/10.1016/0010-0277(86)90010-7
https://doi.org/10.1016/0010-0277(86)90010-7
https://openreview.net/forum?id=HkgSEnA5KQ
https://openreview.net/forum?id=HkgSEnA5KQ
https://doi.org/10.1207/s15516709cog1902_3
https://doi.org/10.1207/s15516709cog1902_3
https://doi.org/10.1207/s15516709cog1902_3
https://doi.org/10.1177/09567976231163872
https://doi.org/10.1177/09567976231163872
https://doi.org/10.1177/09567976231163872
https://doi.org/10.18653/v1/p19-1544
https://doi.org/10.18653/v1/p19-1544
https://proceedings.neurips.cc/paper/2018/hash/6a81681a7af700c6385d36577ebec359-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/6a81681a7af700c6385d36577ebec359-Abstract.html
https://doi.org/10.1109/LRA.2022.3193254
https://doi.org/10.1109/LRA.2022.3193254
https://doi.org/10.1109/LRA.2022.3193254
https://doi.org/10.5555/3398761.3398817
https://doi.org/10.5555/3398761.3398817
https://doi.org/10.5555/3398761.3398817
https://doi.org/10.18653/v1/2022.acl-long.524
https://doi.org/10.18653/v1/2022.acl-long.524
https://proceedings.neurips.cc/paper/2021/hash/b59c21a078fde074a6750e91ed19fb21-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/b59c21a078fde074a6750e91ed19fb21-Abstract.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/arXiv.2306.03604
https://doi.org/10.48550/arXiv.2306.03604
https://doi.org/10.48550/arXiv.2306.03604
https://doi.org/10.48550/arXiv.2305.16621
https://doi.org/10.48550/arXiv.2305.16621
https://doi.org/10.48550/arXiv.2305.16621


Jeewon Jeon, Woojun Kim, Whiyoung Jung, and
Youngchul Sung. 2022. MASER: multi-agent re-
inforcement learning with subgoals generated from
experience replay buffer. In International Confer-
ence on Machine Learning, ICML 2022, 17-23 July
2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages
10041–10052. PMLR.

Tom Jurgenson and Aviv Tamar. 2023. Goal-
conditioned supervised learning with sub-goal pre-
diction. CoRR, abs/2305.10171.

Gyeong Taek Lee and Kang Jin Kim. 2023. A con-
trollable agent by subgoals in path planning using
goal-conditioned reinforcement learning. IEEE Ac-
cess, 11:33812–33825.

Yuntao Liu, Yuan Li, Xinhai Xu, Yong Dou, and
Donghong Liu. 2022. Heterogeneous skill learn-
ing for multi-agent tasks. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Ryan Lowe, Jakob N. Foerster, Y-Lan Boureau, Joelle
Pineau, and Yann N. Dauphin. 2019. On the pit-
falls of measuring emergent communication. In Pro-
ceedings of the 18th International Conference on Au-
tonomous Agents and MultiAgent Systems, AAMAS

’19, Montreal, QC, Canada, May 13-17, 2019, pages
693–701. International Foundation for Autonomous
Agents and Multiagent Systems.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves, Martin A. Riedmiller, Andreas Fidje-
land, Georg Ostrovski, Stig Petersen, Charles Beat-
tie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. 2015. Human-level control through
deep reinforcement learning. Nat., 518(7540):529–
533.

Seungwhan Moon, Satwik Kottur, Paul A. Crook,
Ankita De, Shivani Poddar, Theodore Levin, David
Whitney, Daniel Difranco, Ahmad Beirami, Eunjoon
Cho, Rajen Subba, and Alborz Geramifard. 2020.
Situated and interactive multimodal conversations.
In Proceedings of the 28th International Confer-
ence on Computational Linguistics, COLING 2020,
Barcelona, Spain (Online), December 8-13, 2020,
pages 1103–1121. International Committee on Com-
putational Linguistics.

Jesse Mu, Victor Zhong, Roberta Raileanu, Minqi Jiang,
Noah D. Goodman, Tim Rocktäschel, and Edward
Grefenstette. 2022. Improving intrinsic exploration
with language abstractions. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Khanh Nguyen and Hal Daumé III. 2019. Help,
anna! visual navigation with natural multimodal as-
sistance via retrospective curiosity-encouraging imi-
tation learning. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing, EMNLP-IJCNLP
2019, Hong Kong, China, November 3-7, 2019, pages
684–695. Association for Computational Linguistics.

Khanh Nguyen, Debadeepta Dey, Chris Brockett, and
Bill Dolan. 2019. Vision-based navigation with
language-based assistance via imitation learning with
indirect intervention. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, pages
12527–12537. Computer Vision Foundation / IEEE.

Aishwarya Padmakumar, Jesse Thomason, Ayush Shri-
vastava, Patrick Lange, Anjali Narayan-Chen, Span-
dana Gella, Robinson Piramuthu, Gökhan Tür, and
Dilek Hakkani-Tür. 2022. Teach: Task-driven em-
bodied agents that chat. In Thirty-Sixth AAAI Con-
ference on Artificial Intelligence, AAAI 2022, Thirty-
Fourth Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2022, The Twelveth Sym-
posium on Educational Advances in Artificial In-
telligence, EAAI 2022 Virtual Event, February 22
- March 1, 2022, pages 2017–2025. AAAI Press.

Alexander Pashevich, Cordelia Schmid, and Chen Sun.
2021. Episodic transformer for vision-and-language
navigation. In 2021 IEEE/CVF International Confer-
ence on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021, pages 15922–15932.
IEEE.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
8024–8035.

Karl Pertsch, Oleh Rybkin, Frederik Ebert, Sheng-
hao Zhou, Dinesh Jayaraman, Chelsea Finn, and
Sergey Levine. 2020. Long-horizon visual planning
with goal-conditioned hierarchical predictors. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi
Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. 2021. Stable-baselines3: Reliable reinforce-
ment learning implementations. Journal of Machine
Learning Research, 22(268):1–8.

https://proceedings.mlr.press/v162/jeon22a.html
https://proceedings.mlr.press/v162/jeon22a.html
https://proceedings.mlr.press/v162/jeon22a.html
https://doi.org/10.48550/arXiv.2305.10171
https://doi.org/10.48550/arXiv.2305.10171
https://doi.org/10.48550/arXiv.2305.10171
https://doi.org/10.1109/ACCESS.2023.3264264
https://doi.org/10.1109/ACCESS.2023.3264264
https://doi.org/10.1109/ACCESS.2023.3264264
http://papers.nips.cc/paper_files/paper/2022/hash/f0606b882692637835e8ac981089eccd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/f0606b882692637835e8ac981089eccd-Abstract-Conference.html
http://dl.acm.org/citation.cfm?id=3331757
http://dl.acm.org/citation.cfm?id=3331757
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.18653/v1/2020.coling-main.96
http://papers.nips.cc/paper_files/paper/2022/hash/db8cf88ced2536017980998929ee0fdf-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/db8cf88ced2536017980998929ee0fdf-Abstract-Conference.html
https://doi.org/10.18653/v1/D19-1063
https://doi.org/10.18653/v1/D19-1063
https://doi.org/10.18653/v1/D19-1063
https://doi.org/10.18653/v1/D19-1063
https://doi.org/10.1109/CVPR.2019.01281
https://doi.org/10.1109/CVPR.2019.01281
https://doi.org/10.1109/CVPR.2019.01281
https://ojs.aaai.org/index.php/AAAI/article/view/20097
https://ojs.aaai.org/index.php/AAAI/article/view/20097
https://doi.org/10.1109/ICCV48922.2021.01564
https://doi.org/10.1109/ICCV48922.2021.01564
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8d3a760ebab631565f8509d84b3b3f1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8d3a760ebab631565f8509d84b3b3f1-Abstract.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html


Philipp Sadler, Sherzod Hakimov, and David Schlangen.
2023. Yes, this way! learning to ground referring
expressions into actions with intra-episodic feedback
from supportive teachers. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023,
Toronto, Canada, July 9-14, 2023, pages 9228–9239.
Association for Computational Linguistics.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

Alane Suhr and Yoav Artzi. 2023. Continual learning
for instruction following from realtime feedback. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai,
and Chao Zhang. 2023. Adaplanner: Adaptive plan-
ning from feedback with language models. In Ad-
vances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Process-
ing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023.

Richard S. Sutton and Andrew G. Barto. 2018. Rein-
forcement Learning: An Introduction, second edition.
The MIT Press.

Jesse Thomason, Michael Murray, Maya Cakmak, and
Luke Zettlemoyer. 2019. Vision-and-dialog naviga-
tion. In 3rd Annual Conference on Robot Learning,
CoRL 2019, Osaka, Japan, October 30 - November
1, 2019, Proceedings, volume 100 of Proceedings of
Machine Learning Research, pages 394–406. PMLR.

Kees van Deemter. 2016. Computational Models of
Referring, chapter 4.6. The MIT Press.

Woodrow Zhouyuan Wang, Andy Shih, Annie Xie,
and Dorsa Sadigh. 2021. Influencing towards sta-
ble multi-agent interactions. In Conference on Robot
Learning, 8-11 November 2021, London, UK, volume
164 of Proceedings of Machine Learning Research,
pages 1132–1143. PMLR.

Annie Xie, Dylan P. Losey, Ryan Tolsma, Chelsea Finn,
and Dorsa Sadigh. 2020. Learning latent represen-
tations to influence multi-agent interaction. In 4th
Conference on Robot Learning, CoRL 2020, 16-18
November 2020, Virtual Event / Cambridge, MA,
USA, volume 155 of Proceedings of Machine Learn-
ing Research, pages 575–588. PMLR.

Mingyu Yang, Jian Zhao, Xunhan Hu, Wengang Zhou,
Jiangcheng Zhu, and Houqiang Li. 2022. LDSA:
learning dynamic subtask assignment in cooperative
multi-agent reinforcement learning. In Advances in
Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Sina Zarrieß, Julian Hough, Casey Kennington, Ramesh
Manuvinakurike, David DeVault, Raquel Fernández,
and David Schlangen. 2016. PentoRef: A Corpus of
Spoken References in Task-oriented Dialogues. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 125–131, Portorož, Slovenia. European Lan-
guage Resources Association (ELRA).

A Appendix

Robot image in Figure 1 adjusted from
https://commons.wikimedia.org/wiki/File:
Cartoon_Robot.svg. That file was made avail-
able under the Creative Commons CC0 1.0
Universal Public Domain Dedication.

A.1 Environment Details
Board The internal representation of the visual
state is a 2-dimensional grid that spans W×H tiles
where W and H are defined by the map size. A
tile is either empty or holds an identifier for a piece
(the tile is then occupied). The pieces are defined
by their colour, shape and coordinates and occupy
five adjacent tiles (within a virtual box of 5 × 5
tiles). The pieces are not allowed to overlap with
another piece’s tiles. For a higher visual variation,
we also apply rotations to pieces, but we ignore
the rotation for expression generation, though this
could be an extension of the task. The colors are
described in Table 4.

Name HEX RGB
red #ff0000 (255, 0, 0)
green #008000 (0, 128, 0)
blue #0000ff (0, 0, 255)
yellow #ffff00 (255, 255, 0)
brown #8b4513 (139, 69, 19)
purple #800080 (128, 0, 128)

Table 4: The colors for the Pentomino pieces.

Symbols The symbolic repesentations for the
shapes are: P (2), X (3), T (4), Z (5), W (6), U
(7), N (8), F (9), Y (10). The colors are encoded
as: red (2), green (3), blue (4), yellow (5), brown
(6), purple (7). The 0-symbol is reserved for out-
of-world tiles (which can occur in the partial view).
The 1-symbol is reserved for an empty tile.

Gripper The gripper can only move one position
at a step and can move over pieces, but is not al-
lowed to leave the boundaries of the board. The
gripper coordinates are defined as {(x, y) : x ∈
[0,W ], y ∈ [0, H]}.
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The IA on symbolic properties as based on the for-
mulation by van Deemter (2016)

Require: A set of distractors M , a set of property
values P of a referent r and a linear preference
order O over the property values P

1: D ← ∅
2: for P in O(P) do
3: E ← {m ∈M : ¬P (m)}
4: if E ̸= ∅ then
5: Add P to D
6: Remove E from M

7: return D

References The Incremental Algorithm (Algo-
rithm 1), in the formulation of (Dale and Re-
iter, 1995), is supposed to find the properties that
uniquely identify an object among others given a
preference over properties. To accomplish this the
algorithm is given the property values P of distrac-
tors in M and of a referent r. Then the algorithm
excludes distractors in several iterations until ei-
ther M is empty or every property of r has been
tested. During the exclusion process the algorithm
computes the set of distractors that do not share
a given property with the referent and stores the
property in D. These properties in D are the ones
that distinguish the referent from the others and
thus will be returned.

The algorithm has a meta-parameter O, indi-
cating the preference order, which determines the
order in which the properties of the referent are
tested against the distractors. In our domain, for
example, when color is the most preferred property,
the algorithm might return BLUE, if this property
already excludes all distractors. When shape is the
preferred property and all distractors do not share
the shape T with the referent, T would be returned.
Hence even when the referent and distractor pieces
are the same, different preference orders might lead
to different expressions.

There are 3 expression templates that are used
when only a single property value of the target
piece is returned by the Incremental Algorithm
(IA):

• Take the [color] piece

• Take the [shape]

• Take the piece at [position]

Then there are 3 expression templates that are se-
lected when two properties are returned:

• Take the [color] [shape]

• Take the [color] piece at [position]

• Take the [shape] at [position]

And finally there is one expression templates that
lists all property values to identify a target piece:

• Take the [color] [shape] at [position]

Vocabulary Overall, the property values and sen-
tence templates lead to a small vocabulary of 37
words:

• 9 shapes: P, X, T, Z, W, U, N, F, Y

• 6 colors: red, green, blue, yellow, brown, pur-
ple

• 6 position words: left, right, top, bottom, cen-
ter (which are combined to e.g., right center
or top left)

• 12 template words: take, the, piece, at, yes,
no, this, way, go, a, bit, more

• 4 special words: <s>, <e>, <pad>, <unk>

The maximal sentence length is 12.

A.2 Task Details

To create a task, we first place the target piece on
a board. Then, we sample uniformly random from
all possible pieces and place them until the wanted
number of pieces is reached (we experiment with
2 to 8 pieces on a board). If a piece cannot be
placed after a certain amount of tries, then we re-
sample a piece and try again. The coordinates are
chosen at random uniform from the coordinates
that fall into an area of the symbolic description.
We never set a piece into the center, because that is
the location where the gripper is initially located.
In this way, we construct 100 training boards (or
1 evaluation board respectively) for each number
of pieces (2-8). To ensure that a board scene in
the training split cannot be aligned with a target
piece, we create 3 extra tasks for a single board by
choosing extra targets (when fewer than 4 pieces
are on a board, then we create a task for each piece).
For evaluation, we only create a single task for each
target piece symbol.

A.3 Guide Details

Agent Parameters: 602, 447



feature_dims 128
normalize_images True
shared_lstm True
enable_critic_lstm False
n_lstm_layers 1
lstm_hidden_size 128

Table 5: Policy arguments for the the RecurrentPPO
agent

Policy Architecture We instantiate the actor-
critic PPO agent with an architecture defined by
pi=[64, 64], vf=[64, 64] meaning that the ac-
tor is a 2-layer feedforward network with 64 param-
eters per layer. The critic has the same architecture,
but does not share the weights with the actor.

Vision Encoder The visual encoder is a convo-
lutional neural network (CNN) with 4 layers that
maps the visual observations vt ∈ R21×21×5 into
a 128-dimensional features vector ṽ ∈ R.
We consecutively apply four blocks of
(nn.Conv2d(),nn.BatchNorm2d(),nn.ReLU())
with same padding where the kernel size is 3× 3,
except for the first blocke where we set the kernel
size to 1 × 1. After the fourth block we apply
a nn.AdaptiveMaxPool2d((1, 1)) layer from
PyTorch v1.13.0 (Paszke et al., 2019) to collapse
the spatial dimensions of the feature maps.

Learning Algorithm We use the RecurrentPPO
implementation from StableBaselines-Contrib
v1.8.0 (Raffin et al., 2021) with the hyper-
parameters in Table 6 (and the defaults otherwise).

learning_rate 3e-4
clip_range 0.2
gamma 0.99
gae_lambda 0.95
ent_coef 0.0
vf_coef 0.5
max_grad_norm 0.5
lr_init 3e-4
n_steps 128
batch_size 128
num_epochs 10

Table 6: RecurrentPPO hyperparameters

A.4 Experiment Details
We trained the agents simultaneously on 8 GeForce
GTX 1080 Ti (11GB) where each of them con-
sumed about 4GB of GPU memory. The training

for the 36 configurations took around 144 hours in
total (about 4h for the 1 million steps each). The
random seeds were set to 49184, 98506 or 92999
respectively. As the evaluation criteria on the test-
ings tasks we chose success rate which indicates
the relative number of episodes (in a rollout or in
a test split) where the agent selected the correct
piece:

mSR =

∑N si
N

where si =

{
1, for correct piece
0, otherwise

Efforts. We choose EGuide := {0, 1.0, 1.1, 1.2}
for the efforts of the categories of actionable intent
in such a way that the silence action is the one with
the least effort. The silence action simply results
into the metabolic costs necessary to perform the
task over multiple time steps (the game reward).
The other language actions introduce an additional
effort. These actions should differ on the magni-
tude in such a way that they can be ordered based
on the effort where the reference production is pre-
sumably taking the most effort (1.2) and a confir-
mation (“Yes”) or rejection signal (“No”) is taking
less effort (1.0). We assumed that directive are on
the middle ground (1.1) and that they should appear
more often, when used. This basically means for
around every 10th action an additional non-silence
action can be taken, when choosing to use direc-
tives over references. Moreover, when using the
maximal number of 30 steps and only taking the
respective actions, this results into an effort reward
of 1 − (0.9 · 1.2) = −0.08 (slightly negative) for
the references and 1− (0.9 · 1.1) = 0.01 (slightly
positive) for the directives and 1− (0.9 ·1.0) = 0.1
(still positive) for the confirmations or corrections.
These magnitudes are supposed to be close to the
initial formulation for the game reward and thus
around −2 and +2 (incl. the outcome) to keep the
learning of the value function more stable. We note
that the signal for the ordering of the actionable
intents is very small, but it should make an effect.
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