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ABSTRACT

The field of protein design has garnered significant attention in AI for Science
(AI4Science). While most existing studies focus on generating native protein
structures for applications such as binding target discovery and drug design, this
paper tackles a different problem. We aim to generate both native and non-native
protein conformations, i.e., 3D structures along the folding pathway. This task
holds significant potential for advancing key applications, including folding path-
way prediction, drug discovery, and the study of protein misfolding diseases. To
address this challenge, we introduce Pandora (i.e., Protein Conformation Diffusion
Model for Generation), a novel diffusion-based framework designed to gener-
ate diverse, physically and chemically plausible protein backbone structures. By
leveraging a diffusion architecture, Pandora captures a broad spectrum of fold-
ing patterns while adhering to biophysical constraints. Extensive experiments
across multiple protein folding pathway datasets demonstrate the effectiveness
and generalizability of our approach in producing realistic and biologically mean-
ingful conformations. The implementation of Pandora is publicly available at
https://anonymous.4open.science/r/Pandora-71AD.

1 INTRODUCTION

Proteins are fundamental biological macromolecules that govern a vast array of processes essential to
life. Comprised of amino acid chains that fold into intricate three-dimensional structures, proteins
exhibit diverse functionalities that are closely tied to their conformations. Understanding the geo-
metric and structural properties of proteins is crucial for deciphering their mechanisms of action and
functional diversity. Such insights are pivotal for driving innovations in areas like medicine (Kuhlman
& Bradley, 2019), protein folding pathway (Majewski et al., 2023), and understanding protein
misfolding disease (Hartl, 2017).

1.1 MOTIVATION

In recent years, breakthroughs like AlphaFold (Senior et al., 2020), AlphaFold 2 (Jumper et al.,
2021), and the more recent AlphaFold 3 (Abramson et al., 2024) have significantly advanced our
understanding of native protein structures. Beyond structural prediction, these landmark studies have
catalyzed widespread interest in applying deep learning to biological sciences, sparking a surge of
innovative research. For instance, methods such as RoseTTAFold (Baek et al., 2021), ESMFold (Lin
et al., 2022), ProteinBERT (Brandes et al., 2022) showcase the transformative potential of deep
learning in addressing complex biological problems, further establishing AI4Science as a driving
force in protein research. While these advances have primarily targeted the prediction of static, native
protein structures, they often overlook the dynamic folding pathways and transient intermediate
conformations that proteins undergo during folding. Recent studies (Zheng et al., 2024; Wu et al.,
2024; Ruzmetov et al., 2025) have investigated near-equilibrium conformations of folded proteins,
offering important insights into the structural fluctuations of stable proteins. However, this line of
research remains limited, as it fails to model the full folding process—particularly the transient,
non-native conformations essential for understanding protein folding mechanisms.

Understanding these non-native conformations is crucial for uncovering the mechanisms behind
protein folding and misfolding, which are directly linked to various diseases such as Alzheimer’s
and Parkinson’s (Selkoe, 2004). The inability to fully capture the spectrum of protein conformations
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Figure 1: Different protein conformations.

highlights the need for novel computational frameworks capable of exploring both native and
non-native protein structures. Traditional approaches to studying non-native conformations in the
folding process primarily rely on molecular dynamics (MD) simulations (Binder et al., 2004), which
solve differential equations using mathematical and physical models. However, such simulations
are computationally expensive and time-prohibitive, particularly for larger proteins. For example,
simulating a protein’s folding process over 10µs can take months (Shaw et al., 2010), or even longer,
due to the immense computational cost of resolving molecular interactions at extremely fine time
steps. Addressing these limitations, the emergence of deep learning-based approaches offers new
hope, enabling the modeling of longer timescales and the dynamics of larger proteins, thereby
facilitating advancements across multiple domains.

Protein Folding Mechanisms. Understanding how proteins fold into their native structures (as shown
in Figure 1 (a)) is essential for uncovering the principles that govern their functionality. Some
research (e.g., (Zhao et al., 2023; Janson et al., 2023)) explore folding pathway by utilizing deep
learning techniques, while (Majewski et al., 2023) accelerates dynamics via coarse-grained simulation.
Recently, (Ianeselli et al., 2025) makes use of Variational autoencoders to predict folding actions.
Understanding the process by which a protein transitions between conformations is essential, making
the study of non-native conformations particularly important.

Protein Misfolding Mechanisms. Investigating protein misfolding mechanisms (as shown in Fig-
ure 1 (a)) is crucial for understanding the causes of various diseases, such as Alzheimer’s, Parkinson’s,
and Huntington’s disease. Misfolding occurs when proteins deviate from their intended folding
pathways, resulting in the adoption of aberrant conformations that often aggregate into toxic struc-
tures. Some research (e.g., (Englander et al., 2007)) studies misfolding protein in the manner of
experimental observations, while (Bhowmik et al., 2018) utilizes clustering methods to find po-
tentially misfolded states among various non-native conformations. By leveraging deep learning
methods that can sample a diverse ensemble of non-native conformations, we can better uncover
elusive misfolded states, thereby enhancing our understanding of misfolding pathways and their role
in disease mechanisms.

As highlighted above, advancing our understanding of protein folding and misfolding mechanisms
requires the ability to generate a diverse range of both native and non-native conformations that
reflect the intricacies of folding pathways. Producing a wide variety of native and non-native states
provides several benefits. Firstly, it enables the discovery of critical intermediates that contribute to
protein aggregation and misfolding-related diseases. Additionally, studying non-native conformations
provides structural insights into the folding process, revealing how proteins transition between
different states along their folding pathways. Therefore, developing innovative methods to generate
and analyze diverse non-native conformations is of paramount importance.

1.2 CHALLENGES AND CONTRIBUTIONS

Native protein structure prediction has been well studied in many papers (e.g., (Senior et al., 2020;
Jumper et al., 2021; Baek et al., 2021; Lin et al., 2022; Abramson et al., 2024)), and meanwhile some
studies (e.g., (Zheng et al., 2024; Wu et al., 2024; Ruzmetov et al., 2025)) focus on states near the
properly folded protein. In addition, some works have explored folding pathways, such as (Zhao
et al., 2023; Janson et al., 2023; Majewski et al., 2023; Ianeselli et al., 2025). However, most of these
works may not be capable of generating various non-native protein conformations. As a consequence,
several challenges remain underexplored.

• Challenge 1: Stochastic conformations. Protein folding is an inherently complex process influ-
enced by environmental factors, such as temperature, which introduces a degree of randomness
into the folding pathways. Even when using MD simulations, the outcomes can vary and exhibit
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stochasticity. Therefore, it is essential to develop models that inherently incorporate this random-
ness to better capture the diversity of folding behaviors. If we directly apply previous methods,
such as AlphaFold 2 (Jumper et al., 2021), ESMFold (Lin et al., 2022), and so on, we can only
obtain finite and determined protein conformations, which is not desirable to address this challenge.
Some of other methods (e.g., (Janson et al., 2023; Ianeselli et al., 2025)) focusing on non-native
conformations also fall into such inability. Thus, it is crucial to take stochasticity into account so
as to generate diverse non-native conformations.

• Challenge 2: Structurally valid conformations. Ensuring that the generated conformations are not
only diverse but also structurally valid is a significant challenge. Non-native conformations must
satisfy physical and chemical constraints, such as steric clashes, bond angles, and dihedral angles,
to remain biologically meaningful. Simply generating diverse conformations without considering
structural validity may result in unrealistic, unstable, or biologically irrelevant structures. Some
methods (e.g., (Huang et al., 2024)) generate molecules that may not be able to capture the special
backbone structure of conformations, while some methods (e.g., (Zheng et al., 2024; Ruzmetov
et al., 2025)) only concentrate on native proteins and may not be capable of modeling the diversity
of non-native conformations. Furthermore, several methods (e.g., Lu et al. (2023); Wang et al.
(2024); Shen et al. (2025)) generate conformations at the amino acid residue level, implicitly fixing
certain bond lengths and bond angles during generation. However, prior studies (Lundgren &
Niemi, 2012; Peng et al., 2014; Karplus et al., 2008) have shown that, for internal residues, key bond
angles, particularly the N−Cα−C angle, are not invariant but vary systematically with secondary
structure. This suggests that treating such angles as rigid may overlook important conformation-
dependent stereochemistry. Thus, it is essential to integrate mechanisms or constraints that can
guarantee the structural plausibility of the generated conformations at the atomic level under the
premise of diversity, with particular emphasis on maintaining atomic-level stereochemical fidelity.

Our approach and contributions. We propose Pandora (shorted for Protein Conformation Diffusion
Model for Generation), a novel framework designed to generate diverse and structurally valid
protein conformations. Pandora operates through two primary phases: the forward process and
the reverse process. In the forward process, a conditional transformer model that fully embeds
structural information is trained to denoise perturbed conformations. In the reverse process, a random
conformation is progressively refined step by step using regulation techniques, ultimately producing
a wide range of valid conformations. The key contributions of this paper are summarized as follows.

• Non-native Protein conformation Generation. To the best of our knowledge, this is the first work
that explores generating diverse non-native protein conformations in protein folding pathways
in atomic level. Generating such conformations is crucial for understanding intermediate folding
states and misfolding mechanisms, as well as for advancing research in protein structure prediction
and related applications.

• An innovative method driven by the diffusion framework. We develop an effective method,
Pandora, to generate diverse conformations for different proteins. For one thing, Pandora considers
intrinsic connection information (i.e., amino acids, atoms, chemical bonds) since this information
is identical for the same protein. For another, Pandora also incorporates different structural
information (i.e., bond lengths, bond angles, and dihedral angles), as these geometric differences
are fundamental in determining the diverse conformations of an identical protein.

• Experimental results. We perform comprehensive experiments on multiple protein folding
pathway datasets to assess the generation capability of Pandora. Experimental results show that
our algorithm outperforms baseline methods by a significant margin while maintaining robust
generalizability.

2 PROBLEM DEFINITION AND OVERVIEW

We first define the protein conformation generation problem and then present the overview of our
proposed Pandora. Appendix A.1 lists the frequently used notations and terminologies in the paper.

2.1 PROBLEM DEFINITION

Protein. Proteins consist of chains of amino acid residues. Each residue contains an alpha carbon
(Cα) atom, which is bonded to an amino group (−NH2), a carboxyl group (−COOH), and a
side-chain (−R) that determines the residue type. Consecutive residues are linked by peptide
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Figure 2: Overview of Pandora.

bonds, formed through a dehydration synthesis process. A protein sequence can be represented as
S = [s1, s2, ..., sn], where n is the number of residues, and si ∈ {0, ..., 19} indicates the type of the
i-th residue.

Backbone. The protein backbone is composed of the nitrogen (N ) from the amino group, the
alpha carbon (Cα), the carbonyl carbon (C), and the carbonyl oxygen (O). The backbone structure
is the most essential part of a protein. Given the backbone, the full protein conformation can be
reconstructed using various tools (e.g., (Krivov et al., 2009; Zhang et al., 2023)).

Conformation. A protein’s conformation refers to its 3D structure, which can be represented as a
series of atomic coordinates defining the spatial arrangement of its atoms. Then, conformation can be
formulated as COOR = [coor1, coor2, ..., coorn], where coori denotes the set of atom coordinates
belonging to the i-th residue, while the backbone coordinates are thereby COOR(bb).

To generate biologically plausible conformations, the bond lengths L (as shown in Figure 1 (b))
between atoms must adhere to their natural distributions. Otherwise, deviations in bond lengths can
lead to an increase in bond energy, resulting in unrealistic conformations. Similarly, bond angles
Θ and dihedral torsions (i.e., dihedral angles X ) (as shown in Figure 1 (b)) play a crucial role in
determining how a protein folds and twists. Therefore, the bond angles and dihedral angles of
generated conformations must also conform to their natural distributions. Detailed definitions of L,
Θ, and X can be found in Appendix A.1 .

Note that given the atomic coordinates COOR(bb), one can derive (L,Θ,X ), and conversely, given
(L,Θ,X ), the corresponding coordinates can also be reconstructed, though additional rotation and
translation may be required. In summary, COOR(bb) ⇔ (L,Θ,X ) under the assumption of rotation
and translation invariance. Since protein conformations remain unchanged under any rotation or
translation, generating (L,Θ,X ) directly avoids the invariance problem that arises when generating
coordinates directly. Based on this, the problem can be formally defined as follows.

Problem Statement. Given the types of amino acids S of a protein conformation, the task is to find a
model Φ that can help generate ξ ≜ (L,Θ,X ) that conform to biological plausibility. That is, we
aim to model the conditional distribution pΦ(ξ|S) ≜ pΦ(L,Θ,X|S).

2.2 OVERVIEW OF PANDORA

We present the overview of Pandora in Figure 2. There are two main phases in Pandora.

Forward Process. We first train a denoising model that can denoise the noised conformations, which
consists of two main steps.

Noising and Embedding. To fully utilize conformation information, we initially construct a graph for
the noised conformations, and then embed the graph with amino acid types, bond information, and
angle information in nodes and edges as shown in Figure 2 (a).

Conditional Transformer. As depicted in Figure 2 (b), we employ conditional transformer blocks to
update the node and edge features by mutual deep interaction. Meanwhile, conditional information
is also incorporated to enhance the representation of nodes and edges. Based on the acquired
representation, we calculate the denoised bond lengths, bond angles, and dihedral angles by simple
Multi-Layer Perceptron (MLP) layers (Rosenblatt, 1958).
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Reverse Process. Given a random structure as presented in Figure 2 (c), we apply the denoising model
to denoise random conformations steps by steps. During each step, we regulate the conformation to
ensure plausibility and add noise to introduce stochasticity.

3 METHODOLOGY

In this section, we present Pandora, Protein Conformation Diffusion Model for Generation). We first
give the formulation of diffusion process on conformation graphs in Sec. 3.1 and then provide the
details of Pandora architecture in Sec. 3.2. Finally, we introduce the inference procedure in Sec. 3.3.

3.1 DIFFUSION MODELS

Denoising diffusion probabilistic models (Ho et al., 2020) are a type of generative model that captures
the underlying data distribution of ξ (defined in Sec. 2.1) by employing a forward process and a
reverse process. Following (Song et al., 2020; Jing et al., 2022), we aim to construct a diffusion
process {ξt}Tt=0 indexed by a continuous time variable t ∈ [0, T ], such that ξ0 ∼ p0 (i.e., data
distribution), for which we have a dataset of independent and identically distributed (i.i.d.) samples.
Then, This diffusion process can be modeled as the solution to an Itô Stochastic Differential Equation
(SDE), given by the following formula:

dξ = f(ξ, t)dt+ g(t)dw. (1)

where w is the Wiener process, f(ξ, t) : R|ξ| → R|ξ| is the drift coefficient of ξt and g(t) is the
diffusion coefficient of ξt. Given ξT ∼ pT (i.e., prior distribution), for which we have a tractable
form to generate samples efficiently, the reverse process samples from the prior and yields samples
from the data distribution p0(ξ) by solving the reverse SDE.

dξ =
[
f(ξt, t)− g2(t)∇ξ log pt(ξ)

]
dt+ g(t)dw̄. (2)

Here, w̄ is a standard Wiener process when time flows backwards from T to 0, and dt is an infinitesi-
mal negative timestep. With definition above, our goal is to train a neural network Φ to fit the score
∇ξ log pt(ξ). Inspired by the techniques applied in (Huang et al., 2024), we train Φ to recover ξ0 by
optimizing the following objective function.

min
θ

Et

{
λ(t)Eξ0Eξt|ξ0

[
||Φθ(ξt, t)− ξ0||22

]}
(3)

With proper choice of λ(t) (Huang et al., 2024; Song et al., 2020), it is equivalent to the simple noise
prediction loss used in (Ho et al., 2020).

3.2 NETWORK ARCHITECTURE

There are two main stages, including Noising and Embedding (in Sec. 3.2.1) and Conditional
Transformer (in Sec. 3.2.2).

3.2.1 NOISING AND EMBEDDING

Noising. For a given backbone of a protein conformation, we first obtain its bond length, bond angle,
and dihedral angle information, marked by ξ0 = (L0,Θ0,X0). Then, we add noise with different
levels corresponding to t by the following formula:

ξt = fcut
(√

ᾱt · ξ0 +
√
1− ᾱt · ϵ

)
(4)

where ϵ is the Gaussian noise, while definition of ᾱt and α/β schedule are detailed in Appendix A.2.
Note that a bond angle only ranges in [0, π], while a dihedral angle only ranges in [−π, π), which
means that we must regulate Θt and Xt to maintain consistency. For simplicity, we directly apply a
cutoff operation fcut so that Θt and Xt remain within their respective valid ranges.

Embedding. To fully utilize information, we embed both node (i.e., atom) and edge (i.e., a pair of
nodes) information by processing xi (i.e., all information of the i-th atom).

Node Embedding. For each atom, we embed atom types, amino acid types, and ξt into a high-
dimensional representation. Atom types and amino acid types are mapped into high-dimensional
space using the embedding functions fe

at : {C,Cα,N,O} → Rlat and fe
S : S → RlS , respectively.

Meanwhile, ξt = (Lt,Θt,Xt) is transformed using Gaussian smearing techniques (Unke & Meuwly,
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2019), which smooth discrete data (e.g., bond length, bond angle, dihedral angle) into continuous
distributions. This involves applying several Exponential Gaussian Kernels given by:

fe
L, f

e
Θ, f

e
X (x) ≜

{
exp

(
βe
k · (x− µe

k)
2
)}K

k=1

: R → RK (5)

where the definitions of βe
k, µe

k, and K, as well as additional details about the embedding functions,
are provided in Appendix A.3.. Consequently, the embedding of node i is obtained by concatenating
the above representations, i.e., xe

i ≜ [fe
at; f

e
S ; f

e
L; f

e
Θ; f

e
X ](xi) ∈ Rlne

Edge Embedding. For each edge between a pair of nodes, we also construct effective edge embeddings
by mapping them to high-dimensional representations. First, we check whether there is a chemical
bond by fe

cb ∈ {0, 1}. Then, we compute the distance dij = fe
d (xi, xj) between atom i and j

via a distance function. Similarly, we leverage Gaussian smearing fe
dr : R → RK to smooth the

distance relation. Meanwhile, we further discretize distance to capture additional relationships
between atom pairs by a series of boolean functions fe

b (dij) ≜ {I(dij ≤ dk)}Kk=1, where dk’s are a
series of thresholds illustrated in Appendix A.3. In summary, the embedding of edge is obtained by
concatenating the above terms, i.e., xe

ij ≜ [fe
cb; f

e
d ; f

e
dr; f

e
b ](xi, xj) ∈ Rlee

3.2.2 CONDITIONAL TRANSFORMER

We first introduce the core attention mechanism, then illustrate how time information is embedded
into the conditional architecture, and finally explain how to recover ξ0.

Attention Mechanism. Inspired by (Huang et al., 2024), we also extend Transformer (Vaswani et al.,
2017) with the assistance of edge information. The procedure in the l-th layer is as follows:

q
(l)
i , k

(l)
i , v

(l)
i = FC(l)

q,k,v(x
(l)
i ), q

(l)
ij , v

(l)
ij = FC(l)

q,v(x
(l)
ij )

w
(l)
ij = (tanh(q(l)ij )⊙ q

(l)
i ) · k(l)j , m

(l)
i =

∑
j

w
(l)
ij (tanh(v(l)ij )⊙ v

(l)
i )

(6)

where FC is a fully connected layer. The above process is denoted as Att(x
(l)
i , x

(l)
ij ).

Conditional Architecture. Directly concatenating time information into node or edge embedding
may fail to let them fully interact. To address this, we implement two useful functions proposed
in (Huang et al., 2024), i.e., fln(x, c) = (1+MLP(c)) ·LN(x)+MLP(c) and fs(x, c) = MLP(c) ·h.
Here, LN refers to layer normalization (Ba et al., 2016) and c is the conditional information of t,
which is embedded using Sinusoidal Position Embeddings (Vaswani et al., 2017). Then, we can define
multihead attention blocks with conditional m(l)

i = Att(fln(x
(l)
i , c), fs(x

(l)
ij , c)). Initially, x(0)

i and

x
(0)
ij are set to xe

i and xe
ij , respectively. By Equation (6), we update node and edge information by the

following equations:

x̂
(l)
i = fs(m

(l)
i , c) + x

(l)
i , x

(l+1)
i = fs

(
MLP(fln

(
x̂
(l)
i

)
, c), c

)
+ x̂

(l)
i

x̂
(l)
ij = fs

(
FC(m(l)

i +m
(l)
j ), c

)
+ x

(l)
ij , x

(l+1)
ij = fs

(
MLP

(
fln(x̂

(l)
ij ), c

)
, c

)
+ x̂

(l)
ij

(7)

ξ0 Recovery. After L layers of conditional attention layers, we obtain x
(L)
i for node i. Inspired

by (Zhang et al., 2022), for an arbitrary bond length ξij , bond angle ξijk, or dihedral angle ξijkl, we
compute its change ∆ξij... ≜ MLP(mean(x(L)

i , x
(L)
j , ...)). For instance, when calculating dihedral

angles, the offset is computed as ∆ξijkl = MLP((x(L)
i + x

(L)
j + x

(L)
k + x

(L)
l )/4). Finally, we can

acquire ξ̂0 by the following equations:

ξ̂0 ≜ Φθ(ξt, t) = fcut
(
ξt +∆ξ

)
(8)

3.3 INFERENCE

The inference process of Pandora is adapted from the sampling process in (Ho et al., 2020), given by
the following equations:

ϵ̂ =
ξt −

√
ᾱt · ξ̂0√

1− ᾱt
, ξ̃t−1 =

ξt − 1−ᾱt√
1−ᾱt

ϵ̂
√
αt

, ξt−1 = fcut
(
ξ̃t−1 + σtϵ · I(t > 1)

)
(9)
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Table 1: Comparison on ξ0 recovery and ablation study.
Methods JODO JODO-L GearNet STR2STR CONFD. CONFR. Pandora - len - angle - torsion - type
MAEL ↓ 0.176 0.093 0.422 0.526 0.337 0.157 0.025 0.168 0.026 0.025 0.025
MAEΘ ↓ 0.293 0.218 0.430 0.375 0.252 0.201 0.050 0.052 0.190 0.051 0.051
MAEX ↓ 1.415 1.369 0.753 1.167 1.083 0.702 0.374 0.380 0.382 0.688 0.446

As the time steps t decrease from T to 1, we can obtain ξ0 at t = 1. Note that during each reverse
step, we perform cutoff functions twice: once in Equation (8) and once in Equation (9), so that we
can regulate the generated conformation to maintain consistency and ensure that the conformations
remain coherent throughout the generation process.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. In our experiments, we use molecular dynamics simulation datasets from (Lindorff-
Larsen et al., 2011). We use five datasets for training (Villin, WW domain, Protein B, BBL, and
Homeodomain) and two datasets for testing and generalization evaluation (Trp-cage and BBA),
ensuring that the test proteins are unseen during training. Appendix B.1 provides a brief description
of each dataset and reports the numbers of atoms, amino acids, and conformations. Details of
hyperparameters are provided in Appendix B.2.

Algorithms. We evaluate the performance of several methods for molecular conformation generation.
As a representative baseline, we include JODO (Huang et al., 2024), an atomic coordinate generation
model. We also introduce an enhanced variant, JODO-L, which incorporates an additional ξ0 loss
term to improve conformational plausibility. For further comparison, we include several additional
baselines: GearNet (as implemented in DiffPack (Zhang et al., 2022)), STR2STR (Lu et al., 2023),
CONFDIFF (Wang et al., 2024), and CONFROVER (Shen et al., 2025). Further details on all baseline
methods are provided in Appendix B.3.

Evaluation Metrics. We evaluate the quality of ξ0 recovery using three metrics, including bond
length mean absolute error (MAEL), bond angle MAE (MAEΘ), and dihedral angle MAE (MAEX ).
As for evaluation of inference, we compare the generated ξ0 distribution with the true ξ0 distribution
by histogram, the Wasserstein distance (Villani, 2021), and probability density map.

We conduct experiments on a Linux server with an AMD EPYC 9654 96-Core CPU, 1TB of
RAM, and 8 Nvidia RTX A6000 GPUs. We provide the codes The codes can be accessed at
https://anonymous.4open.science/r/Pandora-71AD.

4.2 ξ0 RECOVERY

Table 1 shows the performance comparison (averaged over three trials) of Pandora and the baselines
on ξ0 recovery across five datasets, while standard deviations and results for each dataset are
provided in Appendix B.4. In summary, Pandora consistently outperforms the baseline methods
in recovering the lengths and angles of different conformations with marginal fluctuation. This
superior performance highlights Pandora’s ability to better capture structural variations and accurately
reconstruct conformations, making it a reliable tool for such tasks.

As for other methods, JODO-L outperforms JODO across all three metrics, primarily due to the
incorporation of the ξ0 loss in JODO-L. While this modification enhances its performance, the
dihedral recovery still exhibits a significantly larger MAE compared to Pandora. On the other hand,
GearNet achieves a relatively smaller MAEX but suffers from higher MAE in bond length and bond
angle recovery. Additionally, STR2STR delivers moderate results but incurs larger errors in MAEL
and MAEΘ. CONFDIFF (CONFD.) improves over STR2STR across all three metrics, with a notable
gain on MAEΘ, yet still trails Pandora. CONFROVER (CONFR.) further reduces errors relative to
CONFDIFF, achieving the strongest baseline performance on bond angle and dihedral recovery.

4.3 ABLATION STUDY

As described in Sec. 3.2.1, the node embedding consists of several components. To evaluate the
impact of each component, we measure the performance by removing specific parts, including amino
acid types (-type), bond length (-len), bond angle (-angle), dihedral angle (-torsion).
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Table 2: Wasserstein distance between true and generated distribution on training dataset.
Methods L1 ↓ L2 ↓ L3 ↓ L4 ↓ Θ1 ↓ Θ2 ↓ Θ3 ↓ Θ4 ↓ X1 ↓ X2 ↓ X3 ↓ X4 ↓
JODO 0.072 0.065 0.052 0.091 0.191 0.102 0.133 0.094 0.742 0.394 1.311 0.884

JODO-L 0.078 0.057 0.061 0.078 0.208 0.180 0.185 0.159 0.751 0.567 1.317 0.885
GearNet 1.438 1.425 1.444 1.438 1.097 1.006 0.905 0.951 2.878 2.543 1.091 2.977
Pandora 0.023 0.020 0.017 0.022 0.022 0.021 0.018 0.014 0.121 0.153 0.088 0.163

As shown in Table 1, removing bond length, bond angle, or dihedral angle Gaussian smearing
leads to a significant increase in the corresponding MAE, while standard deviations are provided
in Appendix B.4. For instance, if bond length Gaussian smearing is removed, MAEL increases by
approximately 6 times. Similarly, MAEΘ and MAEX increase by 3 times and 1 time, respectively,
when the corresponding components are removed. However, the changes in the remaining MAE
values are negligible. Regrading removal of amino acid types, both MAEL and MAEΘ change
marginally, while MAEX exhibits a significant increase. This is likely because different amino acid
types influence the dihedral angles of peptide bonds formed during dehydration condensation. The
information encoded in amino acid types plays a crucial role in guiding the prediction of dihedral
angles. Once this information is removed, the model struggles to accurately predict these angles,
leading to a noticeable decline in performance.

4.4 INFERENCE

The detailed definitions of L, Θ, and X can be found in Appendix A.1. Note that methods such as
STR2STR, CONFDIFF, and CONFROVER operate at the residue level. As a result, certain bond
lengths, bond angles, and dihedrals are fixed during generation, making distributional comparisons
on these variables non-informative. We therefore report average Wasserstein distances across five
datasets in Table 2. The complete results for all methods are provided are provided in Appendix B.5.

From the results above, we can conclude that Pandora consistently exhibits small Wasserstein
distances across all metrics, indicating its ability to generate conformations with a realistic distribution
that closely matches the ground truth. Additionally, although JODO-L outperforms JODO in ξ0
recovery, the scenario is different here. Specifically, JODO achieves better performance than JODO-L
in terms of Θ and X . This is likely because the modifications in JODO-L, while effective in reducing
MAEΘ and MAEX , do not translate effectively to Θ and X inference. As for GearNet, it struggles
to generate conformations that align with the true distribution, particularly in bond length (L), where
its performance is notably weaker.

To gain deeper insight into how Pandora effectively generates realistic conformations, we provide
histograms of the true and generated distributions for L, Θ, and X for all datasets in Appendix B.5.
Histograms for other datasets across all methods are also presented in Appendix B.5. Figure 5,
analogous to Figure 3, demonstrates that Pandora’s generated distributions closely align with true
distributions, particularly for Θ and X . While the L distributions exhibit a noticeable rightward shift,
the magnitude of this shift is approximately +0.025Å, which aligns with MAEL and is negligible
when compared to typical bond lengths of 1.1Å to 1.7Å. Furthermore, Pandora effectively captures
the asymmetry in X1, demonstrating its ability to recognize chirality in amino acids. In contrast, other
methods, such as JODO, tend to produce symmetric dihedral angle distributions, thereby ignoring
chirality, as illustrated in Figure 10 in Appendix B.5.

4.5 GENERALIZATION

We evaluate the generalizability of Pandora using two additional protein datasets that were excluded
from the training set, meaning these proteins were never seen during training. As shown in Table 3,
Pandora successfully generates plausible conformational structures for unseen proteins while main-
taining a low Wasserstein distance, demonstrating its strong generalization capability. For a clearer
illustration, histograms for dataset BBA are presented in Figure 3, while those for dataset Trp-cage
are provided in Appendix B.6. As shown in the figures, the generated distributions closely align with
the true distributions, further validating Pandora’s generalizability. Moreover, we evaluate joint distri-
butions over the radius of gyration (Rg, a compactness measure) and the root mean square deviation
(RMSD, a deviation from a reference after alignment). As shown in Figure 4, Pandora’s samples
closely match the true Rg–RMSD landscape, reproducing the high-density ridge, its orientation, and
the spread toward higher RMSD, further supporting Pandora’s generalizability. Probability density
maps for other datasets are provided in Appendix B.7.
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Table 3: Wasserstein distance between true and generated distribution on inference set.
Datasets L1 ↓ L2 ↓ L3 ↓ L4 ↓ Θ1 ↓ Θ2 ↓ Θ3 ↓ Θ4 ↓ X1 ↓ X2 ↓ X3 ↓ X4 ↓

BBA 0.024 0.021 0.018 0.021 0.025 0.026 0.014 0.011 0.585 0.533 0.183 0.673
Trp-cage 0.023 0.019 0.017 0.021 0.024 0.018 0.020 0.014 0.268 0.134 0.105 0.262

Figure 3: Pandora-generated histograms for dataset BBA.

Figure 4: Pandora-generated probability density map for dataset Trp-cage.

5 RELATED WORK

Diffusion Models for Molecule Generation. Diffusion models find extensive applications across
diverse areas of molecule generation. There are many works focusing on molecule generation,
such as (Hoogeboom et al., 2022; Jing et al., 2022; Wu et al., 2022; Huang et al., 2023; Xu et al.,
2022; Wang et al., 2025), demonstrating that diffusion models have been successfully applied to
molecular design, yielding remarkable results. Proteins, as a unique class of molecules, have also
garnered significant attention in the field of protein design. Thus, many works (Anand & Achim,
2022; Wu et al., 2024; Ingraham et al., 2023; Watson et al., 2023; Lin & AlQuraishi, 2023; Luo et al.,
2022; Watson et al., 2022; Yim et al., 2023; Lu et al., 2023; Wang et al., 2024; Shen et al., 2025)
apply diffusion models to tackle diverse tasks. These advancements highlight the growing impact of
diffusion models in advancing molecular and protein science.

Protein Folding and Misfolding. Protein folding remains a fundamental challenge in molecular
biology that has yet to be fully resolved. Correctly folded proteins are essential for nearly all biological
functions, and failures in folding can lead to severe consequences, such as loss of function or the
aggregation of misfolded proteins. Numerous studies have explored folding pathways through both
theoretical and experimental approaches (Onuchic & Wolynes, 2004; Dill et al., 2008; Lindorff-Larsen
et al., 2011), while other works focus on generating trajectories using deep learning methods Shen
et al. (2025); Jing et al. (2024). Meanwhile, significant attention has been given to understanding
the mechanisms of protein misfolding (Dobson, 2003; Englander et al., 2007; Bhowmik et al., 2018;
Hartl, 2017), which is often implicated in neurodegenerative diseases like Alzheimer’s, Parkinson’s,
and Huntington’s disease (Selkoe, 2004). These efforts collectively aim to deepen our understanding
of protein behavior and pave the way for advancements in addressing misfolding-related diseases.

6 CONCLUSION

This paper focuses on the generation of backbone structures for both native and non-native protein
conformations. To generate diverse and biologically plausible protein conformations, we propose
Pandora, a versatile framework that fully integrates comprehensive information and leverages a
conditional transformer architecture. Pandora employs proper regulation during inference, enabling
the production of desirable conformations. Extensive experiments demonstrate the effectiveness of
Pandora in generating diverse protein conformations and validate the practicality and generalizability
of the proposed model.
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APPENDIX

A ADDITIONAL DETAILS IN METHODS

A.1 NOTATIONS AND TERMINOLOGIES

Table 4 lists the frequently used notations and terminologies in this paper.

A.2 α/β SCHEDULE

In this subsection, we introduce the α/β schedule set in Pandora. Following (Nichol & Dhariwal,
2021), we use the following setting.

f(t) = cos2
(
t/T + s

1 + s
· π
2

)
, ᾱt =

f(t)

f(0)
, βt = 1− αt = 1− ᾱt

ᾱt−1
(10)

where s = 0.008 is a small offset to prevent βt from being too small near t = 0, and βt is clipped to
[0.0001, 0.9999]. As for σt in Equation (9), we apply posterior variance β̃t given by the following
formula.

σt =

√
β̂t, β̂t =

(1− ᾱt−1)

1− ᾱt
· βt (11)

A.3 EMBEDDING SETTINGS

As for exponential Gaussian kernels in Equation (5), we first define a set of K values {µe
k}Kk=1

that are equally spaced between a minimum value µmin and a maximum value µmax, as well as a
corresponding coefficient βe

k for each interval:

µe
k = µmin +

µmax − µmin

K − 1
· (k − 1), k = 1, 2, . . . ,K,

βe
k = −1

2

(
µmax − µmin

K − 1

)−2

, k = 1, 2, . . . ,K,

(12)

For fe
L, fe

Θ, fe
X , and fe

dr, we adopt different settings for µmin, µmax, and K. The specific configura-
tions for each case are summarized in Table 5.

With respect to the boolean function fe
b , we set the threshold values as follows:

dk =
5

K − 1
· (k − 1), k = 1, 2, . . . ,K (13)

where K = 8.
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Table 4: Notations and terminologies
Notations Explanation

L1 Bond length of Ni − Cαi

L2 Bond length of Cαi − Ci

L3 Bond length of Ci −Ni+1

L4 Bond length of Ci −Oi

L Union set of {L1,L2,L3,L4}
Θ1 Bond angle of Ni − Cαi − Ci

Θ2 Bond angle of Cαi − Ci −Ni+1

Θ3 Bond angle of Ci −Ni+1 − Cαi+1

Θ4 Bond angle of Cαi − Cαi −Oi

Θ Union of {Θ1,Θ2,Θ3,Θ4}
X1 Dihedral angle of Ni − Cαi − Ci −Ni+1

X2 Dihedral angle of Cαi − Ci −Ni+1 − Cαi+1

X3 Dihedral angle of Ci −Ni+1 − Cαi+1 − Ci+1

X4 Dihedral angle of Ni − Cαi − Ci −Oi

X Union of {X1,X2,X3,X4}
ξ Union of {L,Θ,X}
si The type of an amino acid residue.
S Union set of {si}, i.e., protein sequence.
coori The set of atom coordinates belonging to the i-th residue.
COOR Union of {coori}, i.e., coordinates of all atoms.
COOR(bb) The backbone coordinates.
Φ, pΦ A denoising,generative model.
T Total number of time steps.
t Time index, t = 0, 1, . . . , T − 1.
p0, pT The data distribution and the prior distribution, respectively.
ξ0, ξT A sample drawn from p0 and pT .
w, w̄ The Wiener process and reverse Wiener process.
f(ξ, t), g(t) The drift,diffusion coefficient.
f(ξ, t), g(t) The drift,diffusion coefficient.
θ The parameters of model Φ.
ϵ The Gaussian noise ∼ N(0, I).
fcut A cutoff function that ensures ξ remains within the valid range.
βe
k, µ

e
k, dk The width, center and threshold parameters.

K The numbers of exponential Gaussian kernels.
fe
at, f

e
S , f

e
L, f

e
Θ, f

e
X Node embedding functions.

fe
cb, f

e
d , f

e
dr, f

e
b Edge embedding functions.

lat, lS , lne, lee The length of embedding.
xi All information of the i-th atom
xe
i , x

e
ij The node embedding and edge embedding.

dij The distance between the i-th and j-th atom.
L Total number of attention layers.
l Layer index, l = 0, 1, . . . , L− 1.
q(l), k(l), v(l) Query, key, value.
FC The fully connected layer.
m(l) Aggregated information from other nodes.
w(l) The attention weight.
fln Adaptive scale function.
fs Shift function.
MAEL,MAEΘ,MAEX Mean absolute error of L,Θ,X .
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Table 5: Settings for different embedding functions.

Function µmin µmax K

fe
L 0 10 8

fe
Θ 0 π 8

fe
X −π π 8

fe
dr 0 5 16

Table 6: Statistics of datasets.
Dataset Villin WW domain Protein B BBL Homeodomain Trp-cage BBA
Atoms 577 562 737 710 919 272 504

Amino Acids 35 35 47 47 52 20 28
Conformations 2517 235 1600 1600 1600 1600 1600

B ADDITIONAL DETAILS IN EXPERIMENTS

B.1 DATASETS

In (Lindorff-Larsen et al., 2011), twelve small, fast-folding proteins (10–80 residues) were simulated
using long, atomistic MD in explicit water with a single modified CHARMM force field on the Anton
supercomputer. Simulations near the melting temperature yielded repeated folding–unfolding within
100µs-1ms trajectories, giving several folds and unfolds per protein and ∼8 ms total data.

We select seven datasets (details in Table 6). Five (Villin, WW domain, Protein B, BBL, and
Homeodomain) are used for training, and the remaining two are reserved for testing and generalization
evaluation. Because the test sets comprise entirely different proteins, with no sequence or structural
overlap with the training proteins, there is no data leakage.

B.2 HYPERPARAMETERS

There are several hyperparameters in Pandora. As for the optimizer for training, we choose Adam
optimizer with a learning rate of 0.001, betas (0.9,0.999), and no weight decay. We set the length of
atom type and amino acid type embedding as 32 (i.e., le = lS = 32).

For each geometric feature (bond length, bond angle, dihedral angle), we use an embedding of size
K for each type. Specifically, there are four types of bond lengths and four types of bond angles,
resulting in a total embedding size of 4K for each group. For dihedral angles, although there are
four unique types as listed above, the definition of each dihedral angle involves overlapping atoms.
For instance, the dihedral angle X1 is defined on Ni − Cαi − Ci −Ni+1 for each residue i. As a
result, an atom such as N2 is involved in two consecutive dihedral angles: first as the terminal atom in
N1 −Cα1 −C1 −N2, and then as the initial atom in N2 −Cα2 −C2 −N3. The same applies to X2

and X3, where overlapping atoms also lead to duplicated embedding entries. This overlap means that,
although there are only four types of dihedral angles, the total number of unique used for dihedral
embeddings is 4 + 3 = 7, because each internal atom is counted twice due to this sharing. Therefore,
the total embedding size for dihedral angles is 7K. In summary, lne = le+lS+4K+4K+7K = 184

Regarding the length of the edge embedding, it is given by lee = 1 + 1 +K +K = 26, as detailed
in Appendix A.3. Meanwhile, we employ L = 5 attention layers, through which node and edge
representations are iteratively updated with information from each other.

B.3 BASELINES

We compare several baselines to our method, training each on the same datasets and under the same
protocol as Pandora to ensure fairness.

JODO and JODO-L. JODO (Huang et al., 2024) is capable of generating molecules with varying
numbers of atoms, different bond types, and diverse atomic coordinates. However, in our setting, the
design of new proteins is not required, and thus, it is unnecessary to generate varying atom counts or
bond structures. Consequently, we modify JODO to focus solely on generating atomic coordinates.
During training, we compute the mean squared error (MSE) between the denoised coordinates and the
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Table 7: Comparison on ξ0 recovery.
Method MAEL ↓ MAEΘ ↓ MAEX ↓
JODO 0.176(±0.023) 0.293(±0.003) 1.415(±0.002)

JODO-L 0.093(±0.001) 0.218(±0.006) 1.369(±0.007)

GearNet 0.422(±0.003) 0.430(±0.004) 0.753(±0.000)

STR2STR 0.526(±0.074) 0.375(±0.025) 1.167(±0.084)

CONFDIFF 0.337(±0.026) 0.252(±0.002) 1.083(±0.003)

CONFROVER 0.157(±0.007) 0.201(±0.006) 0.702(±0.034)

Pandora 0.025(±0.004) 0.050(±0.000) 0.374(±0.002)

Table 8: Ablation study.
Method MAEL ↓ MAEΘ ↓ MAEX ↓

- len 0.168(±0.002) 0.052(±0.000) 0.380(±0.002)

- angle 0.026(±0.000) 0.190(±0.001) 0.382(±0.001)

- torsion 0.025(±0.000) 0.051(±0.000) 0.688(±0.001)

- type 0.025(±0.000) 0.051(±0.000) 0.446(±0.009)

ground truth coordinates to optimize the model. For JODO-L, we further compute the mean squared
error between the denoised ξ0 and the true ξ0, i.e., ξ0 loss, enabling JODO-L to more accurately
recover the original ξ0.

GearNet. We employ the architecture of GearNet to compute node and edge representations, and
subsequently predict ξ0 following the approach described in (Zhang et al., 2022).

STR2STR / CONFDIFF / CONFROVER. These methods employ SE(3)-based, residue-level
models that generate equivariant rotations and translations to reconstruct protein backbones. For
CONFROVER, we use its time-independent sampling for fair comparison.

B.4 ξ0 RECOVERY EXPERIMENT DETAILS

In this section, we present detailed results for each individual dataset. The results in Table 9
closely align with those in Table 1. Overall, Pandora consistently outperforms baseline methods in
recovering the lengths and angles of various conformations with minimal fluctuation. This remarkable
performance highlights Pandora’s ability to effectively capture structural variations and accurately
reconstruct conformations.

Among the other methods, JODO-L still consistently outperforms JODO across all three metrics and
all five datasets, largely due to the inclusion of the ξ0 loss in JODO-L. Although this enhancement
improves its overall performance, its dihedral recovery still shows a substantially higher MAE
compared to Pandora. Meanwhile, GearNet achieves a relatively lower MAEX , but its performance is
hindered by higher MAE values in bond length and bond angle recovery. For the remaining methods,
STR2STR shows middling performance with noticeably higher angle errors than Pandora.CONFDIFF
narrows the gap somewhat, but still has larger MAEs in both lengths and angles. CONFROVER
occasionally competes on angles, yet its bond-length errors remain higher overall.

B.5 DETAILS OF INFERENCE EXPERIMENTS

We report the Wasserstein distance comparison of all methods across all training datasets in Table 10.
The Wasserstein distances between the true ξ0 and the generated ξ0 distributions for each individual
dataset are presented in Table 11. The results remain consistent with those in Table 2 and Table 10.
Pandora achieves notably low Wasserstein distances, highlighting its exceptional ability to generate
realistic native and non-native protein conformations. Meanwhile, JODO and JODO-L do not exhibit
a clear superiority over each other across the datasets. As for GearNet, it continues to exhibit high
Wasserstein distances in L and Θ. Additionally, as the number of amino acids increases, GearNet’s
performance in L worsens, indicating its inability to effectively capture bond length information,
particularly in larger protein conformations. For the remaining methods, STR2STR attains moderate
distances but remains above Pandora on most coordinates. CONFDIFF reduces mismatch on a
few coordinates yet still trails in both bond-length and angle components. CONFROVER shows
occasional competitiveness on isolated terms (e.g., X2) but generally exhibits larger distances, leading
to less faithful distributional recovery. Figure 5 to Figure 39 present the histograms of all datasets for
each method.
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Table 9: Comparison on ξ0 recovery on inference set.
Datasets Villin WW domain Protein B BBL Homeodomain

MAEL
JODO 0.137 (±0.012) 0.246 (±0.033) 0.245 (±0.051) 0.177 (±0.023) 0.153 (±0.013)

JODO-L 0.078 (±0.001) 0.141 (±0.019) 0.129 (±0.013) 0.083 (±0.006) 0.080 (±0.007)

GearNet 0.425 (±0.004) 0.427 (±0.009) 0.422 (±0.005) 0.424 (±0.007) 0.420 (±0.004)

STR2STR 0.472 (±0.064) 0.466 (±0.060) 0.584 (±0.070) 0.564 (±0.106) 0.512 (±0.069)

CONFDIFF 0.317 (±0.028) 0.316 (±0.020) 0.370 (±0.030) 0.336 (±0.025) 0.338 (±0.028)

CONFROVER 0.145 (±0.004) 0.149 (±0.005) 0.170 (±0.007) 0.159 (±0.009) 0.154 (±0.006)

Pandora 0.026 (±0.000) 0.026 (±0.000) 0.025 (±0.000) 0.024 (±0.000) 0.026 (±0.000)

MAEΘ

JODO 0.280 (±0.004) 0.351 (±0.007) 0.335 (±0.002) 0.290 (±0.003) 0.266 (±0.006)

JODO-L 0.209 (±0.004) 0.282 (±0.016) 0.275 (±0.010) 0.206 (±0.006) 0.189 (±0.006)

GearNet 0.431 (±0.003) 0.432 (±0.005) 0.429 (±0.006) 0.430 (±0.007) 0.427 (±0.004)

STR2STR 0.374 (±0.024) 0.365 (±0.018) 0.370 (±0.028) 0.384 (±0.015) 0.373 (±0.033)

CONFDIFF 0.250 (±0.002) 0.228 (±0.006) 0.246 (±0.003) 0.244 (±0.000) 0.250 (±0.002)

CONFROVER 0.190 (±0.002) 0.196 (±0.003) 0.211 (±0.005) 0.203 (±0.006) 0.198 (±0.005)

Pandora 0.050 (±0.000) 0.052 (±0.000) 0.050 (±0.000) 0.047 (±0.000) 0.050 (±0.000)

MAEX
JODO 1.349 (±0.013) 1.700 (±0.032) 1.593 (±0.009) 1.400 (±0.007) 1.309 (±0.017)

JODO-L 1.324 (±0.010) 1.534 (±0.034) 1.518 (±0.021) 1.340 (±0.007) 1.293 (±0.013)

GearNet 0.738 (±0.008) 0.821 (±0.020) 0.805 (±0.011) 0.758 (±0.012) 0.711 (±0.005)

STR2STR 1.149 (±0.079) 1.232 (±0.075) 1.179 (±0.103) 1.203 (±0.051) 1.137 (±0.111)

CONFDIFF 1.068 (±0.005) 1.150 (±0.003) 1.110 (±0.004) 1.088 (±0.002) 1.060 (±0.002)

CONFROVER 0.639 (±0.020) 0.741 (±0.024) 0.775 (±0.034) 0.710 (±0.038) 0.669 (±0.028)

Pandora 0.357 (±0.005) 0.409 (±0.017) 0.452 (±0.005) 0.359 (±0.002) 0.332 (±0.011)

Table 10: Wasserstein distance between true and generated distribution on training dataset.
Methods L1 ↓ L2 ↓ L3 ↓ L4 ↓ Θ1 ↓ Θ2 ↓ Θ3 ↓ Θ4 ↓ X1 ↓ X2 ↓ X3 ↓ X4 ↓
JODO 0.072 0.065 0.052 0.091 0.191 0.102 0.133 0.094 0.742 0.394 1.311 0.884

JODO-L 0.078 0.057 0.061 0.078 0.208 0.180 0.185 0.159 0.751 0.567 1.317 0.885
GearNet 1.438 1.425 1.444 1.438 1.097 1.006 0.905 0.951 2.878 2.543 1.091 2.977

STR2STR - - 0.027 - - 0.047 0.054 - 0.831 0.675 1.424 -
CONFDIFF - - 0.025 - - 0.042 0.048 - 1.073 1.160 2.744 -

CONFROVER - - 0.023 - - 0.038 0.044 - 0.234 0.093 0.218 -
Pandora 0.023 0.020 0.017 0.022 0.022 0.021 0.018 0.014 0.121 0.153 0.088 0.163

B.6 DETAILS OF GENERALIZATION EXPERIMENTS

Histograms for dataset Trp-cage is shown in Figure 40.

B.7 PROBABILITY DENSITY MAPS

Figures 41 and 46 show probability density maps for additional datasets. As illustrated, Pandora’s
generated densities closely match the ground-truth distributions, demonstrating its strong ability to
produce samples that follow the true distribution even for proteins unseen during training.

C LLM USAGE

We used a Large Language Model (LLM) solely to aid and polish the writing of this paper. The LLM
was applied to improve grammar, clarity, and fluency, suggest alternative phrasings for readability.

The LLM did not contribute to research ideation, experimental design, data processing or analysis,
model development, or interpretation of results. All technical content, claims, and conclusions were
conceived, verified, and finalized by the authors, who reviewed and approved all LLM-edited text to
ensure accuracy and faithfulness to the original intent.
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Table 11: Wasserstein distance between true and generated distribution on each training dataset.
Methods L1 ↓ L2 ↓ L3 ↓ L4 ↓ Θ1 ↓ Θ2 ↓ Θ3 ↓ Θ4 ↓ X1 ↓ X2 ↓ X3 ↓ X4 ↓

Villin
JODO 0.054 0.034 0.042 0.052 0.154 0.138 0.144 0.129 0.505 0.578 1.278 1.132

JODO-L 0.055 0.046 0.043 0.071 0.146 0.079 0.114 0.080 0.494 0.491 1.262 1.115
GearNet 1.199 1.183 1.203 1.197 1.176 1.083 0.983 1.031 2.111 2.293 0.993 2.969

STR2STR - - 0.027 - - 0.048 0.055 - 0.646 0.762 1.442 -
CONFDIFF - - 0.027 - - 0.050 0.057 - 0.824 0.529 2.592 -

CONFROVER - - 0.023 - - 0.039 0.045 - 0.176 0.111 0.205 -
Pandora 0.022 0.020 0.017 0.021 0.022 0.023 0.021 0.014 0.185 0.223 0.088 0.269

WW domain
JODO 0.092 0.069 0.066 0.098 0.243 0.215 0.214 0.179 1.377 0.621 1.309 0.592

JODO-L 0.094 0.088 0.066 0.117 0.251 0.135 0.163 0.111 1.370 0.388 1.322 0.591
GearNet 1.200 1.184 1.204 1.198 1.188 1.083 0.983 1.033 3.234 2.096 0.787 1.731

STR2STR - - 0.028 - - 0.052 0.053 - 1.347 0.747 1.310 -
CONFDIFF - - 0.024 - - 0.045 0.048 - 1.544 0.431 1.936 -

CONFROVER - - 0.024 - - 0.042 0.044 - 0.388 0.121 0.165 -
Pandora 0.024 0.021 0.018 0.024 0.019 0.015 0.014 0.013 0.139 0.114 0.109 0.073

Protein B
JODO 0.102 0.079 0.088 0.115 0.248 0.210 0.218 0.178 0.784 0.536 1.414 0.548

JODO-L 0.088 0.082 0.063 0.123 0.226 0.120 0.156 0.106 0.788 0.284 1.410 0.555
GearNet 1.593 1.583 1.601 1.595 1.044 0.957 0.853 0.895 3.299 2.624 1.135 3.008

STR2STR - - 0.026 - - 0.045 0.054 - 0.801 0.414 1.480 -
CONFDIFF - - 0.025 - - 0.041 0.045 - 1.119 2.371 3.436 -

CONFROVER - - 0.022 - - 0.037 0.045 - 0.228 0.093 0.268 -
Pandora 0.022 0.020 0.016 0.022 0.024 0.022 0.017 0.014 0.172 0.080 0.120 0.297

BBL
JODO 0.079 0.055 0.055 0.068 0.210 0.179 0.180 0.160 0.582 0.493 1.249 0.796

JODO-L 0.064 0.055 0.045 0.069 0.177 0.090 0.116 0.086 0.570 0.307 1.241 0.806
GearNet 1.593 1.583 1.601 1.595 1.037 0.953 0.856 0.898 3.054 2.735 1.319 3.303

STR2STR - - 0.025 - - 0.044 0.050 - 0.637 0.610 1.393 -
CONFDIFF - - 0.023 - - 0.034 0.044 - 0.947 1.064 2.784 -

CONFROVER - - 0.021 - - 0.036 0.041 - 0.200 0.089 0.239 -
Pandora 0.023 0.021 0.018 0.022 0.022 0.021 0.019 0.014 0.050 0.127 0.065 0.106

Homeodomain
JODO 0.065 0.047 0.052 0.055 0.185 0.159 0.168 0.147 0.508 0.607 1.333 1.356

JODO-L 0.060 0.054 0.042 0.073 0.156 0.087 0.118 0.086 0.489 0.499 1.319 1.351
GearNet 1.604 1.591 1.610 1.604 1.041 0.953 0.852 0.897 2.694 2.967 1.221 3.872

STR2STR - - 0.027 - - 0.046 0.055 - 0.723 0.840 1.495 -
CONFDIFF - - 0.028 - - 0.042 0.048 - 0.929 1.405 2.971 -

CONFROVER - - 0.023 - - 0.036 0.044 - 0.181 0.051 0.212 -
Pandora 0.023 0.020 0.016 0.021 0.021 0.022 0.020 0.016 0.059 0.220 0.055 0.072

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 5: Pandora-generated histograms for dataset Villin.

Figure 6: Pandora-generated histograms for dataset WW domain.

Figure 7: Pandora-generated histograms for dataset Protein B.

Figure 8: Pandora-generated histograms for dataset BBL.
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Figure 9: Pandora-generated histograms for dataset Homeodomain.

Figure 10: JODO-generated histograms for dataset Villin.

Figure 11: JODO-generated histograms for dataset WW domain.

Figure 12: JODO-generated histograms for dataset Protein B.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 13: JODO-generated histograms for dataset BBL.

Figure 14: JODO-generated histograms for dataset Homeodomain.

Figure 15: JODO-L-generated histograms for dataset Villin.

Figure 16: JODO-L-generated histograms for dataset WW domain.
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Figure 17: JODO-L-generated histograms for dataset Protein B.

Figure 18: JODO-L-generated histograms for dataset BBL.

Figure 19: JODO-L-generated histograms for dataset Homeodomain.

Figure 20: GearNet-generated histograms for dataset Villin.
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Figure 21: GearNet-generated histograms for dataset WW domain.

Figure 22: GearNet-generated histograms for dataset Protein B.

Figure 23: GearNet-generated histograms for dataset BBL.

Figure 24: GearNet-generated histograms for dataset Homeodomain.
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Figure 25: STR2STR-generated histograms for dataset Villin.

Figure 26: STR2STR-generated histograms for dataset WW domain.

Figure 27: STR2STR-generated histograms for dataset Protein B.

Figure 28: STR2STR-generated histograms for dataset BBL.

Figure 29: STR2STR-generated histograms for dataset Homeodomain.

Figure 30: CONFDIFF-generated histograms for dataset Villin.
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Figure 31: CONFDIFF-generated histograms for dataset WW domain.

Figure 32: CONFDIFF-generated histograms for dataset Protein B.

Figure 33: CONFDIFF-generated histograms for dataset BBL.

Figure 34: CONFDIFF-generated histograms for dataset Homeodomain.

Figure 35: CONFROVER-generated histograms for dataset Villin.

Figure 36: CONFROVER-generated histograms for dataset WW domain.
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Figure 37: CONFROVER-generated histograms for dataset Protein B.

Figure 38: CONFROVER-generated histograms for dataset BBL.

Figure 39: CONFROVER-generated histograms for dataset Homeodomain.

Figure 40: Pandora-generated histograms for dataset Trp-cage.

Figure 41: Pandora-generated probability density map for dataset Villin.

Figure 42: Pandora-generated probability density map for dataset WW domain.
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Figure 43: Pandora-generated probability density map for dataset Protein B.

Figure 44: Pandora-generated probability density map for dataset BBL.

Figure 45: Pandora-generated probability density map for Homeodomain.

Figure 46: Pandora-generated probability density map for BBA.
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