
Under review as a conference paper at ICLR 2021

INNER ENSEMBLE NETWORKS: AVERAGE ENSEMBLE
AS AN EFFECTIVE REGULARIZER

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Inner Ensemble Networks (IENs) which reduce the variance within
the neural network itself without an increase in the model complexity. IENs utilize
ensemble parameters during the training phase to reduce the network variance.
While in the testing phase, these parameters are removed without a change in the
enhanced performance. IENs reduce the variance of an ordinary deep model by a
factor of 1/mL−1, where m is the number of inner ensembles and L is the depth of
the model. Also, we show empirically and theoretically that IENs lead to a greater
variance reduction in comparison with other similar approaches such as dropout
and maxout. Our results show a decrease of error rates between 1.7% and 17.3% in
comparison with an ordinary deep model. We also show that IEN was preferred by
Neural Architecture Search (NAS) methods over prior approaches.

1 INTRODUCTION

Training Phase

Deep Layer Deep Layer

Mean

Deep Layer

Layers of a
Deep Model

Merged Deep Layer

Testing Phase

IEN Layer

Method ResNet110 DenseNet40 VGG16

IEN 5.94 / 1.73M 5.04 / 176K 6.79 / 15.2M

Maxout 6.32 / 8.60M 7.34 / 854K 7.71 / 74.1M

Base 8.38 / 1.73M 7.20 / 176K 7.00 / 15.2M

Input

Output

.

.

.

Figure 1: During the training phase, inner ensemble weights are used to achieve better performance.
In the testing phase, these extra weights are no longer necessary. The final model parameters count is
the same as that of the original model without additional ensemble parameters. The table is accuracy/
parameters count on CIFAR-10 dataset.

Ensemble learning (Rokach, 2010; Zhou, 2012) is based on a combination of predictions of multiple
models trained over the same dataset or random subsets of the dataset to improve model performance.
Ensemble methods have been widely used in deep learning (Qiu et al., 2014; Dietterich, 2000; Drucker
et al., 1994; Wasay et al., 2020) to improve overall model accuracy. Combining neural networks
in ensembles is known to reduce the variance in the prediction. In other words, the ensemble of
networks generalizes better to unseen data than a single network (Krogh & Vedelsby, 1995; Geman
et al., 1992; Zhou et al., 2002). However, there is a concern regarding the number of parameters
of the final model, which involves the parameters of each constituent model. The large number of
parameters in the final model decreases inference speed and increases model storage size, which can
be problematic for some applications. In this paper, our objective is to find a solution that leads to an
overall reduction in variance resulting from the ensembles, yet preserves the number of parameters of
the underlying model.

1

Under review as a conference paper at ICLR 2021

We introduce Inner Ensemble Networks (IENs) to overcome the problem of the increased number
of parameters in regular ensembles. IEN uses m instances of the same layer and applies an average
operation on the output of these layers as illustrated in Figure 1. IEN can be applied to each layer
of a selected base model architecture. We hypothesize that the overall variance of the model can
be decomposed into sub-variances within the model layers themselves. By using IENs, we reduce
the sub-variances of each layer resulting in an overall variance reduction of the model. Therefore,
we primarily explore the averaging method in our setting. Now we refer to regular ensembles as
outer ensembles. The performance of IENs is between that of an ordinary deep model and an outer
ensemble of multiple instances of the same model.

In this work, we discuss the theoretical aspects of variance reduction resulting from applying IENs. We
show how to remove the excess weights used during the training and verify our approach empirically.
We also contrast IEN variance reduction with closely related approaches such as dropout (Srivastava
et al., 2014) and maxout (Goodfellow et al., 2013) which gives a new perspective to these methods.
When using IEN during the training phase, m times the number of parameters in the base model
are required to do an inner ensemble. This could be expensive if applied to Fully Connected (FC)
layers. We show empirically that using IEN on Convolutional Neural Network (CNN) layers alone
results in a performance that exceeds that of a base model. This makes the training cheaper because
of the shared parameters property of CNNs. We also show that using IEN on both CNNs and Fully
Connected (FC) layers similarly results in a performance which exceeds that of base models, but at the
cost of increased training time. Lastly, we extend IEN as a Neural Architecture Search (NAS) (Zoph
& Le, 2016) cell. We applied NAS searching algorithms to discover new cells. The discovered cells
show a preference for using IEN as a cell operator.

2 RELATED WORK

Ensemble methods are meta-algorithms that combine a set of independently trained networks into
one predictive model in order to improve performance. Other methods include bagging and boosting
which reduce predictive variance and bias (Opitz & Maclin, 1999). Averaging the results of several
models is one of the most common approaches and is extensively adopted in modern deep learning
practice (Russakovsky et al., 2015b; Rajpurkar et al., 2016). One variation is to create ensembles
of the same model at different training epochs (Qiu et al., 2014). (Abbasian et al., 2013) proposed
using inner ensembles to make learning decisions within the learning algorithms of classic machine
learning techniques. Other approaches such as (Ba & Caruana, 2014) used a model compression
technique, in which they trained a shallow network using an ensemble of networks. Yet, it has a
high cost of first training the ensembles and then the actual shallow model unlike IENs which train a
single model. (Opitz et al., 2017) developed a method that averages the output layer of a model by
encouraging diversity in subsets of the output layer neurons. A main concern is the complexity of the
method which is not a simple plug-in method like IENs. In IENs you simply replace the CNN or FC
layers with IEN layers without the need to change anything else. Another concern in (Opitz et al.,
2017) is that it forces a specific loss function unlike IENs which is agnostic from the choice of a loss
function. Though inspired by ensemble methods that average independent networks, the proposed
IEN structure is fundamentally different in that a) it only needs the extra ensemble weights during the
training phase and b) it trains the ensembles jointly in a single model.

We could state that the idea of IEN existed implicitly in previous methods, starting from max-
out (Goodfellow et al., 2013). Maxout replicates deep layers and takes the maximum of the response
coming from these replicas. Maxout can be considered as an ensemble that uses max instead of
average. Yet, we show both theoretically and empirically that maxout is not a desirable option and
IEN is a better alternative. Dropout (Srivastava et al., 2014; Baldi & Sadowski, 2013) can be seen
as a geometric mean of several sub-networks within a deep model. We believe that IEN aligns with
dropout as they are both only applied during the training phase. However, IEN can be applied on
every layer of the deep model unlike dropout. Dropout was originally designed to be applied on FC
layers. When it comes to CNNs, dropout is applied carefully (Park & Kwak, 2016) and cannot be
utilized to the fullest extent. We also show theoretically IEN variance reduction is greater than that of
dropout when m ≥ 2.

2

Under review as a conference paper at ICLR 2021

3 INNER ENSEMBLE NETS (IENS)

Let us assume a deep model with L layers. The lth layer has a response yl from an input xl multiplied
by a learnable weight matrix wl, where yl,xl and wl are all tensors. An ordinary deep model layer
can be formulated as:

yl = wlxl (1)
Thus, an IEN deep layer with m inner ensembles can be defined as:

yIEN
l =

1

m

∑
i∈m

wilxl (2)

Where wil = {wikj : k ∈ dl, j ∈ nl} ∈ Rdl×nl , xl = {xi : i ∈ nl} ∈ Rnl×1 and yIEN
l = {yi : i ∈

dl} ∈ Rdl×1. We notice that IEN trains a single model with multiple inner ensembles. Though IEN
uses m extra parameters during the training phase, the training time does not scale as a multiplier of
m. This makes IEN an economical regularization method (Appendix F).

4 IEN THEORETICAL ANALYSIS

In this section, we start with analyzing IEN variance response. We discuss the method of removing
the ensemble weights. Then we contrast maxout and dropout variance response with that of IEN.

4.1 IEN VARIANCE RESPONSE

In this section we show that IEN ensembles of size m ∈ Z>1 decrease the overall variance of a deep
net by a factor of:

1

mL−1 , where L is the number of layers in the network. (3)

We end up with a new initialization that prevents the explosion or degradation of the gradients. To
analyze a deep model variance that uses IEN we use the assumptions of (He et al., 2015a) and (Glorot
& Bengio, 2010):

• wil elements are initialized to be mutually independent with zero mean and a symmetric
distribution sharing the same distribution variance.
• xl elements are initialized to be mutually independent sharing the same distribution with

zero mean.
• wl and xl are independent from each other.

The variance of each yIEN
l ∈ yIEN

l is:

Var
[
yIEN
l

]
= nlVar

[
1

m

∑
i∈m

wilxl

]
= nl

1

m2
Var

[∑
i∈m

wilxl

]
(4)

Because wil and xl are independent, which implies they are uncorrelated, we can state:

Var
[
yIEN
l

]
= nl

1

m2

∑
i∈m

Var
[
wilxl

]
= nl

1

m2
Var [xl]

∑
i∈m

Var
[
wil
]

(5)

Because all elements of wil share the same distribution parameters, their variances are equal. We can
define Var

[
wil
]

= Var [wl] and by their independence:

Var
[
yIEN
l

]
= nl

1

m
Var [xl] Var [wl] (6)

By using the the results and assumptions made at Appendix A.2 given that xl = f (yl−1), where f is
an activation function and β2 is a the gain of f , we have:

Var
[
yIEN
l

]
= nlβ

2 1

m
Var [wl] Var [yl−1] (7)

3

Under review as a conference paper at ICLR 2021

For cascaded l layers and with the fact that Var [y1] represents the variance of the input layer, we
arrive at:

Var
[
yIEN
l

]
= Var [y1]

(
L∏
l=2

β2nl
1

m
Var [wl]

)
(8)

An ordinary deep model variance response (He et al., 2015a) is:

Var [yL] = Var [y1]

(
L∏
l=2

β2nlVar [wl]

)
(9)

From equation 8 and 9, the variance of response using IEN is 1
mL−1 times less than using an ordinary

deep model. This states that going deeper using IEN layers or wider using m will lead to better
generalization of the model. We verified this empirically in the experiments section. We also want
the multiplication in 8 to have a proper scalar in order to avoid reduction or magnification of the input
signal, we want:

β2nl
m

Var [wl] = 1,∀l (10)

So we need to initialize our weights to be:

wil ∼ N
(

0,
m

β2nl

)
(11)

For simplicity, we use the same initialization for the first layer.

4.2 REVERTING BACK TO THE ORIGINAL NETWORK SIZE

Though the IEN reduces the variance of the network, we still have the burden of the extra parameters.
Because of the training mechanism of IEN, allm ensembles receive the same error signal. This results
in weights that are close to each other in value, but not exactly the same because of the initialization.
The most straight forward approach is to average these weights. The final weight w̃l of IEN becomes:

w̃l =
1

m

∑
i∈m

wil (12)

Thus, our IEN layer becomes: yIEN
l = w̃lxl which has the exact same number of parameters as before

using the IEN, but with the added benefit of variance reduction. Hence, we were able to revert back
to the original model size for the inference stage, yet we utilized the extra parameters of IEN during
the training phase. Natural questions arise regarding whether the method of averaging the weights is
applicable to maxout and whether it is applicable to m separately trained models. The answer to both
is no. We verified these findings empirically in the experiments section.

4.3 CONNECTION WITH DROPOUT

Dropout (Srivastava et al., 2014) is considered as a geometric mean of several small networks (Baldi
& Sadowski, 2013). Here we try to connect dropout with IEN and contrast the variance performance.
We want to note that we do not introduce IEN as an alternative for dropout. It is simply a tool to be
used alongside other deep learning regularization tools. Dropout can be defined as:

ydropout
l = δlwlxl (13)

Where δl ∼ Bernoulli (p) of probability p. From B, the variance of a dropout layers is upper bounded
as follows:

Var
[
ydropout
L

]
≤ Var [y1]

(
L∏
l=2

β2nl
1

2
Var [wl]

)
(14)

Thus, dropout decreases the variance response at most:

≤ 1

2L−1
times less than using an ordinary deep model. (15)

Comparing equations 15 and 3, we conclude that IEN outperforms dropout if used alone when m > 2.

4

Under review as a conference paper at ICLR 2021

4.4 CONNECTION WITH MAXOUT

Maxout (Goodfellow et al., 2013) is a universal approximator. It shares a common setting with IEN in
terms of having multiple replicas of the weights and it selects the max response out of these replicas.
One disadvantage of maxout is that the required number of parameters in both training and inference
stays the same, unlike IEN with a finale averaged weight that solves the problem for inference as
stated in section 4.2. A maxout layer is defined as:

ymaxout
l = max{wilxl}mi (16)

Because the usage of max makes the analysis of variance much harder, we provide three views for
the variance of maxout. The first one is a general upper bound (Appendix C) on the variance of
maxout, which is not tight, but is helpful in our analysis. The bound is:

Var
[
ymaxout
L

]
≤ Var [y1]

(
L∏
l=2

nlmβ
2Var [wl]

)
(17)

which suggests that maxout might result in an explosion in the variance by a factor of

mL−1 more than using an ordinary deep model. (18)

in comparison with both IEN and even an ordinary deep model. We observe this behavior in Table 1.

The second bound of maxout states the lowest possible variance (Ding et al., 2015) (Appendix D) it
can achieve under an assumption that

(
wilxl

)
∼ N (0, 1) and a linear activation function is:

Var
[
ymaxout
l

]
≥ nl

c

logm
, c > 0 (19)

The IEN variance reduction gain under the later assumptions and by using equation 3 is:

Var
[
yIEN
l

]
= nl

1

m
(20)

This maxout bound shows that as the number of ensembles m increases, the variance decreases,
controlled by the value of c. The issue is that this bound is only for a single-layer model and it is
difficult to extend it to multi-layer models. Yet it gives some insights. Depending on the value of c in
equation 19, the IEN could perform better or worse. We highlight that these findings are limited and
only valid for the aforementioned assumptions.

The last bound is the asymptotic bound by using extreme value theorem (Leadbetter & Rootzen,
1988) (AppendixE). When m is sufficiently large under the assumptions that

(
wilxl

)
∼ N

(
0, σ2

)
and f is a linear activation function, the bound is:

Var
[
ymaxout
l

]
≈ nl

π2

6

σ2

2 lnm
(21)

Suggesting that the asymptotic maxout bound is:

≈ π2

12 ln (m)
times less than ordinary deep model (22)

4.5 SUMMARY OF THE VARIANCE GAINS

Figure 2 summarizes the variance behaviour in IEN, dropout and maxout. We assume a model with
one layer to have common settings that aligns with all derived bounds and f is a linear activation
function. We used equation 20 for IEN, and equation 15 for dropout and equations 19, 21 and 18 for
maxout. We observe that IEN variance reduction surpasses all previous methods and the different
maxout variance bounds except when c is extremely small in maxout lower variance bound. We also
observe that the maxout upper bound explodes compared to IEN and dropout. Dropout variance
reduction remains the same.

5

Under review as a conference paper at ICLR 2021

0 100 200 300 400 500 600 700 800 900 m0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
ria

nc
e

Ga
in

IEA
Dropout
Maxout Upper

Maxout Asymptotic
Maxout Lower,c=0.01
Maxout Lower,c=0.21

Maxout Lower,c=0.41
Maxout Lower,c=0.61
Maxout Lower,c=0.81

Maxout Lower,c=1.01
Maxout Lower,c=1.21
Maxout Lower,c=1.41

0

200

400

600

800

1000

M
ax

ou
t U

pp
er

 V
ar

ia
nc

e
Ga

in

Figure 2: The variance gain of IEN, maxout and dropout versus the number of ensembles in a single
linear layer model. Please note that maxout upper variance gain has a different scale.

5 EXPERIMENTS & DISCUSSIONS

We wanted to verify that IEN generalized the deep model better than other approaches. For this we
chose three well-known deep models based on the extent of their residual connections, starting from
VGG (Simonyan & Zisserman, 2014) which has no residual connections, then ResNet (He et al.,
2015b) which has one residual connection, and finally DenseNet (Huang et al., 2016) which is a fully
residual connected net. We believe that benchmarking against these models will give an overview
that be can generalized to other architectures. We use both CIFAR-10 and CIFAR-100 (Krizhevsky &
Hinton, 2009) for all of our experiments as the former shows the performance on a small classification
task and the latter on a larger classification task. We also choose to experiment on image classification
models as they use both CNN and FC layers. We used the original hyper-parameters of the models
in the experiments without any tuning in favor of our method.

Table 1: Error rate mean and std of IEN, maxout and the original model design on different deep
model architectures. The lower, the better. The subscript w̃ indicates results using the weight
downsizing method from section 4.2. +FC stands for IEN applied on both FC and CNN layers.
Maxout results are only on CNN layers. The italic titled models have the exact same number of
parameters as the corresponding base models. The rest have the same number of parameters that
scales with m. IEN and maxout have m = 4.

Dataset ResNet56 ResNet110 DenseNet40-12 DenseNet100-12 VGG16 VGG19

CIFAR-10

IENw̃ 6.93±0.26 6.27±0.32 7.50± 0.18 5.22±0.19 6.80±0.18 6.79±0.30
IEN 6.93±0.26 6.28±0.32 7.5± 0.18 5.22±0.19 6.79±0.19 6.79±0.31
IEN+FCw̃ 6.49±0.04 5.94±0.26 6.89±0.20 5.04±0.07 6.85±0.18 7.15±0.27
IEN+FC 6.49±0.04 5.94±0.26 6.89±0.20 5.04±0.07 6.85±0.18 7.15±0.27
Maxoutw̃ 89.99±0 90±0 89.70±0.51 90±0 90±0 90±0
Maxout 7.98±0.32 6.32±0.12 7.34±0.155 6.16±0.54 7.71±0.15 8.16±0.18
Basew̃ 89.99 90 90 90 90 90
Base 8.38±1.2 6.38±0.48 7.20±0.15 5.6±0.12 7.00±0.08 7.02±0.08

CIFAR-100

IENw̃ 29.34±0.49 28.17±0.11 29.37±0.30 23.76±0.45 28.49±0.39 29.40±0.22
IEN 29.34±0.49 28.16±0.10 29.37±0.30 23.76±0.45 28.50±0.39 29.41±0.23
IEN+FCw̃ 28.20±0.19 27.34±0.28 29.76±0.19 23.67±0.37 29.33±0.10 31.81±0.19
IEN+FC 28.20±0.19 27.34±0.28 29.76±0.19 23.67±0.37 29.33±0.10 31.81±0.19
Maxoutw̃ 99.01±0.01 99±0 99± 0 99± 0 99±0 99±0
Maxout 31.8±1.69 29.47±0.84 30.49±0.75 28.88±5.72 31.68±0.65 34.32±0.30
Basew̃ 98.96 99.14 99 90 99 99
Base 29.97±0.71 27.83±0.64 29.85±0.39 24.01±0.14 29.27±0.27 30.92±0.49

5.1 IEN BEHAVIOR ANALYSIS

Where to apply IEN: IEN can be applied to both CNN and FC layers. The question that arises
concerns the cost of training time which is correlated with the number of parameters. Another
question is whether it is better to apply IEN to just CNN layers or both CNN and FC layers. From
Table 1, applying IEN to CNN layers only, IENw̃, yields better results than the base model as observed
for ResNet, VGG an DenseNet. Also, it might not be enough to apply it only to CNN layers, as

6

Under review as a conference paper at ICLR 2021

observed in DenseNet40-12 results. Yet, when it is applied to FC layers, IEN+FCw̃, too it will yield
better results than the base model. So, the model designer has a choice. If IEN is applied to CNN
layers only, it will save training time and enhance the performance. If applied to both CNN and FC
layers it will increase the training time, but will result in a better performance than the former.

Weight downsizing property: We denote the downsized model using the method from section 4.2
with subscript w̃. We observe from Table 1 that downsized IEN models which have the same number
of parameters as the base model do have the same performance as the one with the full ensemble
parameters. This property was verified across different architectures as shown in the same table. Also,
it holds for applying IEN on CNN or FC layers. We also wanted to verify if this property can be
extended to the base model or the maxout model. We applied w̃ on both of them and as observed
from Table 1 their performance was extremely poor and close to random guessing. We observe that
the weight downsizing property was only successful in IEN for two reasons. Firstly, the mean is
a linear operator allowing the inner ensembles weights to receive the same error signal during the
training phase. Secondly, the weights were initialized from the same distribution. This leads the
weights to behave very similarly, resulting in closely related weights.

Connection with the variance analysis: From Table 1, we observe that IEN outperforms previous
methods such as maxout and the base model. We now recall from the variance reduction gain of
IEN equation 3 that going deeper leads to better results. We notice this happens in both ResNet and
DenseNet. Yet, it does not hold for VGG-16 and VGG-19 which is the same case for maxout and the
base model. This suggests the necessity of residual connections as in (Veit et al., 2016). Aside from
VGG results, our variance analysis of IEN aligns with the empirical findings. For maxout, we notice
in some cases such as ResNet56 results for CIFAR-10, that it performs better than the base model.
This is related to the maxout lower bound that was discussed earlier. However, in some cases such as
ResNet56 for CIFAR-100, maxout performs far worse than the base model. This aligns too with the
upper and asymptotic variance bounds of maxout. The dropout results are at Appendix G.

Effect of number of ensembles m: We also wanted to study the effect of number of ensembles m
on accuracy of the models. Figure 3 illustrates this affect. We notice that IEN with m = [2, 4, 8]
outperforms maxout with the same m. Most of the time maxout performs worse than the base model.
In a few cases such as CIFAR-10 ResNet56, maxout might perform better than the base model but
not better than IEN. Most of the time IEN and IEN+FC outperform the base model. Lastly, using
m = [2, 4] is much better than using m = 8. This suggests that going higher with the number
of inner ensembles is not desirable. This behavior aligns with the typical behavior of an outer
ensemble (Rosen, 1996).

64 66 68 70 72 74 76

Accuracy %

2

4

8

m
 e

ns
em

bl
es

91.0 91.5 92.0 92.5 93.0 93.5 94.0 94.5 95.0

2

4

8 IEN
IEN+FC
Maxout
ResNet56
ResNet110
DenseNet-40-12
DenseNet-100-12
VGG16
VGG19
CIFAR-10
CIFAR-100
Base

Figure 3: The effect of changing m versus model mean accuracy. IEN, maxout and base model
accuracies are shown. CIFAR-10 results are the thin line shapes, while CIFAR-100 results are the
thick line shapes. Colors represents different architectures. Dashed line is the base model mean
accuracy.

5.2 COMPARISON WITH OUTER-ENSEMBLE

We denote regular ensembles as outer ensembles to distinguish them from inner ensembles. From
Table 2, an outer ensemble of IENs exceeds in performance an outer ensemble of base models and
maxout models using the same number of parameters except in a few cases. From Table 2 and Table 1
we notice that an outer ensemble of the base model outperforms single model IEN, but an IEN model

7

Under review as a conference paper at ICLR 2021

is better than a single base model. This indicates that IEN performance stands in between a single
regular model and an ensemble of the same model.

Table 2: Results of outer-ensemble of the models. Each model was trained 3 times and the predictions
were averaged. The metric reported is the mean of the error rate. The lower the better. The subscript
w̃ indicates results with the weight downsizing method from section 4.2. +FC stands for IEN applied
on Fully Connected layer. All IENs and Maxouts have m = 4. The base model ensemble results are
from 4 trained models.

Dataset ResNet56 ResNet101 DenseNet40-12 DenseNet100-12 VGG16 VGG19

CIFAR-10

IENw̃ 5.49 5.00 5.91 4.02 5.68 5.71
IEN+FCw̃ 5.05 4.95 5.21 4.04 5.70 6.02
Maxout 6.43 5.20 5.66 4.87 6.24 6.66
Base 5.68 4.97 5.46 4.59 5.61 5.67

CIFAR-100

IENw̃ 24.38 23.32 24.85 19.65 24.60 25.33
IEN+FCw̃ 23.62 23.03 24.44 19.11 25.44 27.44
Maxout 26.34 24.12 24.72 24.65 26.89 29.29
Base 24.13 22.26 24.85 19.86 24.76 26.02

5.3 EXTENSION TO NAS

IEN
Maxout

CNN

Skip

3x3

3x3

3x3 3x3

1x1

1x1

GDAS cell DARTS-V1 cell
Node

Figure 4: Cells discovered using NAS DARTS-V1 and GDAS search algorithms. 1× 1 and 3× 3 are
the CNN kernel sizes. IEN and maxout have m = 4. The cells are acyclic graphs. The dashed arrows
are skip connections. Colors represent different approaches.

In order to make sure that IEN is preferred in deep model design, we tested it using NAS search
algorithms. We introduced IEN and maxout as operators in both DARTS-V1 (Liu et al., 2018) and
GDAS (Dong & Yang, 2019) search algorithms besides regular CNNs. We ran NAS-Bench-201 (Dong
& Yang, 2020) on both DARTS and GDAS to discover the cells. We report results on CIFAR-10,
CIFAR-100, and ImageNet-16-120. ImageNet-16-120 is a subset of ImageNet (Russakovsky et al.,
2015a) that is used by NAS-Bench-201. From Figure 4 GDAS shows a high preference towards using
IENs. DARTS-V1 resulted in a mix between maxout and IEN and used IEN in the early stage of the
cell. This early usage of IEN might correlate with the importance of reducing the variance in the
early layers of a deep model. Also, DARTS resulted in a skip-connect cell which is a known bias in
DARTS algorithm (Dong & Yang, 2020). Table 3 shows that our discovered cell which depends on
IEN resulted in a better performance than cells that use regular CNNs.

Table 3: Accuracies of four cell models based on NAS-Bench-201 configuration, using our discovered
cells and the original NAS-Bench-201 cells.

NAS Search Method Cell CIFAR-10 CIFAR-100 ImageNet-16-120

DARTS-V1 Ours 41.28 17.36 16.77
NAS-Bench-201 Cell 39.77 15.03 16.43

GDAS Ours 91.26±0.11 72.68±0.12 47.6±0.33
NAS-Bench-201 Cell 89.89±0.08 71.34±0.04 41.59± 1.33

6 CONCLUSION

We presented IENs which enhance the performance of a deep model by utilizing the concept
of ensembles while keeping the model parameters free from the excess ensemble weights. We
theoretically analyzed the variance reduction gain of IEN and other approaches with respect to

8

Under review as a conference paper at ICLR 2021

ordinary deep model variance. We empirically showed that IENs outperformed other methods when
applied on known deep model architectures. We analyzed IEN behavior versus that of outer ensembles
and extended it to NAS with the discovery of new cells.

7 REVIEWS DISCUSSION

Table 4: To Reviewer#1: Mean error rate and std reported. Different variations are discussed.
Dataset Variation ResNet56 ResNet110 DenseNet40-12 DenseNet100-12

CIFAR10

IEN (ours) 6.49±0.04 5.94±0.32 6.89±0.20 5.04±0.07
lr = 1/m,w =

∑
j wj 89.29±0.03 72.66±1.46 8.52±0.21 6.42±0.08

lr = lr, w = 1/m
∑

j wj 92.3±0.36 90.9±0.06 7.33±0.16 5.29±0.21
lr = lr, w =

∑
j wj 93.08±0.35 84.48±0.74 7.10±0.05 5.07±0.15

CIFAR100

IEN (ours) 28.20±0.19 27.34±0.28 29.37±0.19 23.67±0.37
lr = 1/m,w =

∑
j wj 64.23±0.22 40.27±0.38 32.22±0.44 28.55±0.09

lr = lr, w = 1/m
∑

j wj 69.86±0.31 66.7±0.25 29.48±0.67 23.84±0.25
lr = lr, w =

∑
j wj 70.81±0.15 56.44±0.11 29.30±0.53 24.12±0.04

Table 5: To Reviewer#4: Mean accuracy on CIFAR-10C and CIFAR-100C datasets (Hendrycks &
Dietterich, 2019).

CIFAR Arch Blur Weather Digital Noise
Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Gauss. Shot Impulse

D
en

se
N

et
10

0-
12

10C
IEN 82.43 56.90 78.81 75.84 81.95 76.73 87.31 92.61 81.06 83.12 71.30 76.09 41.11 54.06 51.56
Maxout 81.74 50.50 77.71 77.35 75.77 70.82 84.69 90.32 76.09 82.72 68.19 78.48 52.13 62.43 54.20
Base 79.48 54.92 75.78 71.33 79.95 75.05 86.28 91.85 78.53 81.99 68.68 76.05 38.50 51.42 47.89

100C
IEN 56.77 15.54 48.38 49.50 51.64 42.83 61.56 70.72 53.76 55.15 48.05 43.34 15.26 23.18 19.10
Maxout 54.07 16.46 46.75 47.84 46.98 37.54 54.77 66.63 42.18 55.15 44.07 47.58 18.71 26.27 20.42
Base 56.98 19.35 50.47 49.06 53.54 45.82 62.81 71.31 54.10 56.06 48.12 45.28 14.74 22.27 19.58

R
es

N
et

11
0 10C

IEN 81.30 46.96 75.29 75.22 78.79 75.00 86.98 92.42 76.15 82.21 72.47 77.7 46.95 58.55 56.96
Maxout 82.20 51.96 76.90 77.63 78.95 76.97 85.96 91.91 73.06 83.54 76.57 82.11 56.57 66.35 59.66
Base 81.36 56.24 76.45 76.09 79.6 76.22 85.45 91.03 73.28 82.6 74.81 80.31 51.50 61.91 58.75

100C
IEN 56.21 22.56 50.27 49.28 49.86 44.94 58.83 67.14 49.05 55.22 48.20 45.90 20.28 27.80 25.55
Maxout 56.67 32.28 51.45 51.87 52.24 50.04 54.34 65.62 44.61 57.21 53.48 55.72 31.95 39.49 31.44
Base 56.21 24.67 51.18 49.75 50.08 45.73 57.94 66.80 48.56 55.59 48.86 48.21 22.63 30.33 26.26

Table 6: To Reviewer#4: Comparison with SWA (Izmailov et al., 2018).
DNN(Budget) SGD SGD + IEN SWA 1.5 Budgets SWA 1.5 Budgets + IEN
PreResNet110(150) 76.77±0.38 77.05±0.14 79.10±0.21 79.19±0.25
WideResNet28x10 (200) 80.82±0.23 81.47±0.14 82.15±0.27 83.45±0.13

Table 7: To Reviewer#3 Avg pool layer applied after each CNN, same place where IEN was applied.
Dataset IEN Base Avg Pool

CIFAR-10 ResNet56 6.93±0.26 8.38±1.2 12.61±0.90
ResNet110 6.27±0.32 6.38±0.48 14.58±0.05

CIFAR-100 ResNet56 29.34±0.49 29.97±0.71 39.93±1.80
ResNet110 28.17±0.11 27.83±0.64 41.75±2.21

Table 8: To Reviewer#3 & #2. Accuracy on CIFAR-10 dataset.
Accuracy Accuracy Increase from Baseline

Baseline of (Opitz et al., 2017) 80.86 -
DivLoss of (Opitz et al., 2017) on their Baseline 82.30 1.70%
Negative Correlation of (Liu & Yao, 1999) on (Opitz et al., 2017) Baseline 80.90 0.03%
Reproduced Baseline of (Opitz et al., 2017) by us 80.50 -
IEN (ours) on the reproduced Baseline 82.71 2.74%

9

Under review as a conference paper at ICLR 2021

REFERENCES

Kaiming he initialization. https://pytorch.org/docs/stable/nn.init.html#
torch.nn.init.calculate_gain. Accessed: 2020-06-10.

Houman Abbasian, Chris Drummond, Nathalie Japkowicz, and Stan Matwin. Inner ensembles:
Using ensemble methods inside the learning algorithm. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pp. 33–48. Springer, 2013.

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in neural information
processing systems, pp. 2654–2662, 2014.

Pierre Baldi and Peter J Sadowski. Understanding dropout. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems
26, pp. 2814–2822. Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/
4878-understanding-dropout.pdf.

Thomas G Dietterich. Ensemble methods in machine learning. In International workshop on multiple
classifier systems, pp. 1–15. Springer, 2000.

Jian Ding, Ronen Eldan, Alex Zhai, et al. On multiple peaks and moderate deviations for the
supremum of a gaussian field. The Annals of Probability, 43(6):3468–3493, 2015.

X. Dong and Y. Yang. Searching for a robust neural architecture in four gpu hours. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1761–1770, 2019.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations (ICLR), 2020. URL https:
//openreview.net/forum?id=HJxyZkBKDr.

Harris Drucker, Corinna Cortes, Lawrence D Jackel, Yann LeCun, and Vladimir Vapnik. Boosting
and other ensemble methods. Neural Computation, 6(6):1289–1301, 1994.

emcor (https://stats.stackexchange.com/users/48639/emcor). Extreme value theory - show: Normal
to gumbel. Cross Validated. URL https://stats.stackexchange.com/q/105745.
URL:https://stats.stackexchange.com/q/105745 (version: 2015-05-17).

Cheng-Yang Fu. pytorch-vgg-cifar10. https://github.com/chengyangfu/
pytorch-vgg-cifar10. Accessed: 2020-05-26.

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma.
Neural computation, 4(1):1–58, 1992.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010.
PMLR. URL http://proceedings.mlr.press/v9/glorot10a.html.

Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout
networks. arXiv preprint arXiv:1302.4389, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In Proceedings of the 2015
IEEE International Conference on Computer Vision (ICCV), ICCV ’15, pp. 1026–1034, USA,
2015a. IEEE Computer Society. ISBN 9781467383912. doi: 10.1109/ICCV.2015.123. URL
https://doi.org/10.1109/ICCV.2015.123.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015b. URL http://arxiv.org/abs/1512.03385.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645. Springer, 2016.

10

https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.calculate_gain
https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.calculate_gain
http://papers.nips.cc/paper/4878-understanding-dropout.pdf
http://papers.nips.cc/paper/4878-understanding-dropout.pdf
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
https://stats.stackexchange.com/q/105745
https://github.com/chengyangfu/pytorch-vgg-cifar10
https://github.com/chengyangfu/pytorch-vgg-cifar10
http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1109/ICCV.2015.123
http://arxiv.org/abs/1512.03385

Under review as a conference paper at ICLR 2021

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
CoRR, abs/1608.06993, 2016. URL http://arxiv.org/abs/1608.06993.

Yerlan Idelbayev. Proper ResNet implementation for CIFAR10/CIFAR100 in PyTorch. https:
//github.com/akamaster/pytorch_resnet_cifar10. Accessed: 20xx-xx-xx.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Av-
eraging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407,
2018.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and active learning.
In Advances in neural information processing systems, pp. 231–238, 1995.

MR Leadbetter and Holger Rootzen. Extremal theory for stochastic processes. The Annals of
Probability, pp. 431–478, 1988.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. CoRR,
abs/1806.09055, 2018. URL http://arxiv.org/abs/1806.09055.

Yong Liu and Xin Yao. Ensemble learning via negative correlation. Neural networks, 12(10):
1399–1404, 1999.

David Opitz and Richard Maclin. Popular ensemble methods: An empirical study. Journal of
artificial intelligence research, 11:169–198, 1999.

Michael Opitz, Horst Possegger, and Horst Bischof. Efficient model averaging for deep neural
networks. In Shang-Hong Lai, Vincent Lepetit, Ko Nishino, and Yoichi Sato (eds.), Computer
Vision – ACCV 2016, pp. 205–220, Cham, 2017. Springer International Publishing. ISBN 978-3-
319-54184-6.

Sungheon Park and Nojun Kwak. Analysis on the dropout effect in convolutional neural networks. In
Asian conference on computer vision, pp. 189–204. Springer, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
pp. 8024–8035, 2019.

Geoff Pleiss, Danlu Chen, Gao Huang, Tongcheng Li, Laurens van der Maaten, and Kilian Q
Weinberger. Memory-efficient implementation of densenets. arXiv preprint arXiv:1707.06990,
2017.

Xueheng Qiu, Le Zhang, Ye Ren, Ponnuthurai N Suganthan, and Gehan Amaratunga. Ensemble deep
learning for regression and time series forecasting. In Computational Intelligence in Ensemble
Learning (CIEL), 2014 IEEE Symposium on, pp. 1–6. IEEE, 2014.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, 2016.

Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2):1–39, 2010.

Bruce E Rosen. Ensemble learning using decorrelated neural networks. Connection science, 8(3-4):
373–384, 1996.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015a. doi: 10.1007/s11263-015-0816-y.

11

http://arxiv.org/abs/1608.06993
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10
http://arxiv.org/abs/1806.09055

Under review as a conference paper at ICLR 2021

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252, 2015b.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

user_lambda (https://math.stackexchange.com/users/338905/user_lambda). Distribution of
the maximum of a large number of normally distributed random variables. Mathe-
matics Stack Exchange. URL https://math.stackexchange.com/q/2035079.
URL:https://math.stackexchange.com/q/2035079 (version: 2016-11-29).

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. In Advances in neural information processing systems, pp. 550–558,
2016.

Abdul Wasay, Brian Hentschel, Yuze Liao, Sanyuan Chen, and Stratos Idreos. Mothernets: Rapid
deep ensemble learning. In Proceedings of the 3rd MLSys Conference (MLSys), 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. Chapman and Hall/CRC, 2012.

Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: many could be better than
all. Artificial intelligence, 137(1-2):239–263, 2002.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. CoRR,
abs/1611.01578, 2016. URL http://arxiv.org/abs/1611.01578.

12

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://math.stackexchange.com/q/2035079
http://arxiv.org/abs/1611.01578

Under review as a conference paper at ICLR 2021

APPENDIX

CONTENTS

A Lemmas 14

A.1 Variance of the product of independent random variables 14

A.2 Variance gain of a non-linear activation function 14

B Dropout variance response 15

C Maxout variance upper bound 16

D Maxout variance lower bound 17

E Maxout variance asymptotic bound 17

F Models training time and parameters count 18

G Empirical analysis of dropout 18

H Guide to the code 19

H.1 ResNet Details . 19

H.2 DenseNet Details . 19

H.3 VGG Details . 19

H.4 NAS Details . 19

13

Under review as a conference paper at ICLR 2021

A LEMMAS

A.1 VARIANCE OF THE PRODUCT OF INDEPENDENT RANDOM VARIABLES

if y1, y2, ..., yn are independent random variables, then:

Var [y1 ∗ y2...yn] =

n∏
i=1

(
Var [yi] + E [yi]

2
)
−

n∏
i=1

E [yi]
2 (23)

A.2 VARIANCE GAIN OF A NON-LINEAR ACTIVATION FUNCTION

Let y be a random variable, x = f (y), where f is a nonlinear activation function, one can state that:

Var [x] =

∫ ∞
−∞

f (y)
2 P (y) dy (24)

By using first order Taylor series expansion:

Var [x] ≈
∫ ∞
−∞

(f (y0) + f ′ (y0) (y − y0))
2 P (y) dy (25)

Where y0 = 0, then:

Var [x] ≈
∫ ∞
−∞

f (0)
2 P (y) dy +

∫ ∞
−∞

f ′ (0)
2
y2P (y) dy + 2

∫ ∞
−∞

f (0) f ′ (0) yP (y) dy (26)

While Equation 26 is valid only for smoothness C1 functions it also works reasonably on non C1
functions like ReLU= max (0, y). If we choose x = max (0, y) aka a ReLU function, we have:

x′ (y) =

{
1 if y >= 0

0 if y < 0
(27)

By using Equation 26 and by assuming x has zero mean with symmetric distribution:

Var [x] ≈
∫ ∞
−∞

f ′ (0)
2
y2P (y) dy =

∫ ∞
0

y2P (y) dy (28)

Thus, we can state:

Var [x] ≈ 1

2

∫ ∞
−∞

y2P (y) dy = β2Var [y] (29)

We denote the gain 1
2as β2. Same procedure can be applied to different activation functions. A full

table of different gains for commonly used deep model activation function can be found at (pyt).

In case x has a non-zero mean, we find the gain β2 for a ReLU activation:

Var [x] =

∫ ∞
−∞

x2P (x) dx−
(∫ ∞
−∞

xP (x) dx

)2

(30)

Var [x] =

∫ ∞
−∞

f (y)
2 P (y) dy −

(∫ ∞
−∞

f (y)P (y) dy

)2

(31)

By using first order Taylor series expansion and y0 = 0:

Var [x] ≈
∫ ∞
−∞

f (0)
2 P (y) dy+

∫ ∞
−∞

f ′ (0)
2
y2P (y) dy+2

∫ ∞
−∞

f (0) f ′ (0) yP (y) dy−
(∫ ∞
−∞

f (y)P (y) dy

)2

By using ReLU equation 27:

Var [x] ≈
∫ ∞
−∞

f ′ (0)
2
y2P (y) dy −

(∫ ∞
−∞

f (y)P (y) dy

)2

14

Under review as a conference paper at ICLR 2021

Suppose ∫ ∞
−∞

f ′ (0)
2
y2P (y) dy = β2

∫ ∞
−∞

y2P (y) dy, β2 ≤ 1

By using the characteristic of ReLU that:∫ ∞
−∞

f (y)P (y) dy ≥
∫ ∞
−∞

yP (y) dy

Then:

Var [x] ≤ β2

(∫ ∞
−∞

y2P (y) dy −
(∫ ∞
−∞

yP (y) dy

)2
)

= β2Var [y]

B DROPOUT VARIANCE RESPONSE

ydropout
l = ∆l ◦ wlxl

Assumptions:

• wl = {wji : j ∈ dl, i ∈ nl} ∈ Rdl×nl elements are initialized to be mutually independent
with zero mean and a symmetric distribution
• xl = {xi : i ∈ nl} ∈ Rnl×1 elements are initialized to be mutually independent sharing the

same distribution with zero mean
• ∆l = {δi : i ∈ dl} ∈ Rdl×1 elements are Bernoulli δl mutually independent random

variables which are multiples element wise by wl
• wl, ∆l and xl are independent from each other

• ydropout
l = {yi : i ∈ n} ∈ Rdl×1

The variance of each ydropout
l ∈ ydropout

l , where l is the layer number, is:

Var
[
ydropout
l

]
= nlVar [δlwlxl] (32)

By using the lemma in A.1:

Var
[
ydropout
l

]
= nl

[(
Var [δl] + E [δl]

2
)(

Var [wl] + E [wl]
2
)(

Var [xl] + E [xl]
2
)
−
(
E [δl]

2
)(

E [wl]
2
)(

E [xl]
2
)]

= nl

[(
Var [δl] + E [δl]

2
)(

Var [wl] +�
��
�*0

E [wl]
2

)(
Var [xl] +�

��
�*0

E [xl]
2

)
−
(
E [δl]

2
)(
�
��
�*0

E [wl]
2

)(
�
��
�*0

E [xl]
2

)]
Thus,

Var
[
ydropout
l

]
= nl

(
Var [δl] + E [δl]

2
)

Var [wl] Var [xl] (33)

By using the the results and assumption made at A.2 given that xl = f (yl−1), we have:

Var
[
ydropout
l

]
= nlβ

2
(

Var [δl] + E [δl]
2
)

Var [wl] Var [yl−1] (34)

For cascaded l layers and with the fact that Var [y1] represents the variance of the input layer, we
arrive at:

Var
[
ydropout
L

]
= Var [y1]

(
L∏
l=2

β2nl

(
Var [δl] + E [δl]

2
)

Var [wl]

)
(35)

For a Bernoulli random variable the maximum E [δl] = 1
2 with Var [δl] = 1

4 , then we can upper bound

the Var
[
ydropout
L

]
to be:

Var
[
ydropout
L

]
≤ Var [y1]

(
L∏
l=2

β2nl

(
1

4
+

(
1

2

)2
)

Var [wl]

)
(36)

15

Under review as a conference paper at ICLR 2021

Var
[
ydropout
L

]
≤ Var [y1]

(
L∏
l=2

β2nl
1

2
Var [wl]

)
(37)

C MAXOUT VARIANCE UPPER BOUND

ymaxout
l = max{wilxl}mi

Assumptions:

• wil = {wikj : k ∈ dl, j ∈ nl} ∈ Rdl×nl elements are initialized to be mutually independent
with zero mean and a symmetric distribution

• xl = {xi : i ∈ nl} ∈ Rnl×1 elements are initialized to be mutually independent sharing the
same distribution with zero mean

• wl and xl are independent from each other

• ymaxout
l = {yi : i ∈ dl} ∈ Rdl×1

The variance of each ymaxout
l ∈ ymaxout

l , where l is the layer number, is:

Var
[
ymaxout
l

]
= nlVar

[
max{wilxl}mi

]
(38)

This can be upper bounded using the fact the Var [max (zi)
m
i] ≤ Var

[∑
i∈m zi

]
, applying this bound:

Var
[
ymaxout
l

]
≤ nlVar

[∑
m∈i
{wilxl}

]
= nl

∑
m∈i

Var
[
wilxl

]
(39)

Because wil and xl are both independent and by using lemma A.1:

Var
[
ymaxout
l

]
≤ nl

∑
m∈i

[(
Var
[
wil
]

+ E
[
wil
]2)(

Var [xl] + E [xl]
2
)
−
(
E
[
wil
]2)(E [xl]

2
)]

= nl
∑
m∈i

Var
[
wil
]

+��
��*

0

E
[
wil
]2(Var [xl] +��

��*
0

E [xl]
2

)
−


��

��*
0

E
[
wil
]2(

�
��
�*0

E [xl]
2

)
= nl

∑
m∈i

Var
[
wil
]

Var [xl]

By using the the results and assumption made at A.2 given that xl = f (yl−1), we have:

Var
[
ymaxout
l

]
≤ nlβ2Var [yl−1]

∑
m∈i

Var
[
wil
]

(40)

Because all elements of wil share the same distribution, their variance is equal, we can donate
Var
[
wil
]

= Var [wl] and by their independence:

Var
[
ymaxout
l

]
≤ nlmβ2Var [yl−1] Var [wl] (41)

For cascaded l layers and with the fact that Var [y1] represents the variance of the input layer, we
arrive at:

Var
[
ymaxout
L

]
≤ Var [y1]

(
L∏
l=2

nlmβ
2Var [wl]

)
(42)

16

Under review as a conference paper at ICLR 2021

D MAXOUT VARIANCE LOWER BOUND

ymaxout
l = max{wilxl}mi

Assumptions:

• wil = {wikj : k ∈ dl, j ∈ nl} ∈ Rdl×nl elements are initialized to be mutually independent
with zero mean and a symmetric distribution
• xl = {xi : i ∈ nl} ∈ Rnl×1 elements are initialized to be mutually independent sharing the

same distribution with zero mean
• wl and xl are independent from each other
•
(
wilxl

)
∼ iid N (0, 1)

• ymaxout
l = {yi : i ∈ dl} ∈ Rdl×1

From (Ding et al., 2015) for i ∈ m the Var [maxi zi] ≥ c
logm , where zi ∼ N (0, 1) and c > 0. Then:

Var
[
ymaxout
l

]
≥ nl

c

logm
(43)

E MAXOUT VARIANCE ASYMPTOTIC BOUND

ymaxout
l = max{wilxl}mi

Assumptions:

• wil = {wikj : k ∈ dl, j ∈ nl} ∈ Rdl×nl elements are initialized to be mutually independent
with zero mean and a symmetric distribution
• xl = {xi : i ∈ nl} ∈ Rnl×1 elements are initialized to be mutually independent sharing the

same distribution with zero mean
• wl and xl are independent from each other
•
(
wilxl

)
∼ iid N

(
0, σ2

)
• ymaxout

l = {yi : i ∈ dl} ∈ Rdl×1

The variance of each ymaxout
l ∈ ymaxout

l , where l is the layer number, is:

Var
[
ymaxout
l

]
= nlVar

[
max{wilxl}mi

]
(44)

For more details about this proof please check (user_lambda
, https://math.stackexchange.com/users/338905/user_lambda; emcor ,
https://stats.stackexchange.com/users/48639/emcor; Leadbetter & Rootzen, 1988).

Recall that the standard normal CDF Φ is such that:

1− Φ (y) ∼ e−y
2/2

y
√

2π
(45)

when y →∞ and that, for every y:

P (Yn ≤ µ+ yσ) = Φ (y)
m (46)

Hence, if ym is chosen such that:

m
e−y

2
n/2

yn
√

2π
= t (47)

for some given t, then:
P (Ym ≤ µ+ ymσ)→ e−t (48)

Solving this for ym yields:

ym =
√

2 lnm− ln lnm+ 2 ln t+ ln (4π)

2
√

2 lnm
(49)

17

Under review as a conference paper at ICLR 2021

Then, we can define:

Zm =
√

2 lnm
Ym − µ
σ

− 2 lnm+
1

2
ln lnm+

1

2
ln (4π) (50)

where, for every real z:
P (Z ≤ z) = exp

(
−e−z

)
= G (µ = 0, β = 1) a standard Gumbel distribution. (51)

Which aligns with the convergence from extreme value theorem. From Equation 50, for µ = 0, we
have and for sufficiently large m:

Ym ≈
σ√

2 lnm

[
Zm + 2 lnm− 1

2
ln lnm− 1

2
ln (4π)

]
(52)

Hence:

Var [Ym] ≈ Var
[

σ√
2 lnm

[
Zm + 2 lnm− 1

2
ln lnm− 1

2
ln (4π)

]]
(53)

Var [Ym] ≈ σ2

2 lnm
Var [Zm] (54)

A standard Gumbel distribution have a variance of π
2

6 , then:

Var [Ym] ≈ π2

6

σ2

2 lnm
(55)

In our case Ym = ymaxout
l and Var [wlxl] = σ2, yielding:

Var
[
ymaxout
l

]
≈ nl

π2

6

Var [wlxl]

2 lnm
= nl

π2

6

σ2

2 lnm
(56)

F MODELS TRAINING TIME AND PARAMETERS COUNT

Table 9: Model parameters count / Average training time per epoch in seconds. M stands for Million,
K stands for Thousand. All models were trained on Nvidia V100 GPU. Models in italic title have the
same size at testing time. +FC stands for IEN applied on both FC and CNN layers. Maxout results
are only on CNN layers. All models have m = 4

.
Dataset ResNet56 ResNet110 DenseNet40-12 DenseNet100-12 VGG16 VGG19

CIFAR-10

IEN 4.25M / 55.16 8.60M / 97.17 854.94K / 102.79 3.74M / 239.49 74.11M / 26.62 100.66M / 32.34
IEN+FC 4.25M / 55.9 8.61M / 105.38 860.26K / 101.01 3.75M / 244.74 76.23M / 27.46 102.79M / 32.93
Maxout 4.25M / 57.45 8.60M / 110.53 854.94K / 106.33 3.74M / 244.74 74.11M / 28.20 100.66M / 33.98
Base 853.02K / 17.16 1.73M / 42.01 176.12K / 51.96 769.16K / 115.16 15.25M / 7.61 20.57M / 9.21

CIFAR-100

IEN 4.25M / 58.56 8.61M / 94.75 866.91K / 96.13 3.77M / 239.63 74.16M / 26.68 100.71M / 32.29
IEN+FC 4.28M / 58.30 8.64M / 96.38 920.11K / 98.71 3.75M / 244.74 76.46M / 27.32 103.02M / 33.10
Maxout 4.25M / 62.64 8.61M / 111.1 866.91K / 104.53 3.77M / 253.85 74.16M / 28.18 100.71M / 34.02
Base 858.87k / 20.01 1.73M / 36.28 188.09K / 47.73 800.3K / 114.13 15.30M / 7.62 20.61M / 9.20

From Table 9 we notice that Maxout training time is always more than IEN. There is also an increase
in both training time and parameters size of IEN+FC against IEN only. Training time of IEN with
m = 4 is much cheaper than training 4 ordinary models, but it comes at the cost of the memory only
during the training time.

G EMPIRICAL ANALYSIS OF DROPOUT

We wanted to analyze the effect of using dropout everywhere except the input and output layers.
Dropout performance is the best when its probability is set to 0.5. We tested two combinations,
dropout applied as before and IEN followed by dropout. Table 10 summarizes these experiments.
We notice that dropout only leads to very poor performance in comparison with IEN and base
models. This shows that even though theoretically dropout can lower the variance, it is not applicable
everywhere unlike IEN. Also, from the same Table 10 we notice that when IEN is combined with
dropout the results get slightly better. This suggests the power of IEN in reducing the variance even
when the model is being driven by another component. This dropout behaviour was noticed by (He
et al., 2016), yet (Zagoruyko & Komodakis, 2016) suggested the correct placement of dropout is to
be inserted into residual block between convolutions with probability set to 0.3. In Table 10 the right
column show the results of correctly placed dropout. We still notice that IEN performs better than it.

18

Under review as a conference paper at ICLR 2021

Table 10: Results of applying dropout everywhere except the input and output layer. Mean error rate
and std for multiple runs are reported. The lower the better. IEN uses m = 4.

Dataset IEN Base Dropout Dropout+IEN Correctly Placed Dropout

CIFAR-10 ResNet56 6.93±0.26 8.38±1.2 90.48±0.04 90.12±0.01 7.38±0.10
ResNet110 6.27±0.32 6.38±0.48 91.29±0.07 90.13±0.01 9.33±0.18

CIFAR-100 ResNet56 29.34±0.49 29.97±0.71 99.09±0.015 98.98±0.01 29.10±0.32
ResNet110 28.17±0.11 27.83±0.64 98.91±0.01 98.98±0.01 35.13±0.71

H GUIDE TO THE CODE

Most of the models needed 1x Nvidia V100 with 32 GB of GPU memory for training. Some
DenseNet models needed 2x Nvidia V100. Our code is attached for results reproduction with a quick
README.MD.

H.1 RESNET DETAILS

We used an open source repository (Idelbayev) that produces the same results like ResNet original
paper using Pytorch (Paszke et al., 2019). The models were trained for 200 epochs using a learning
rate of 0.1 and batch size of 128.

H.2 DENSENET DETAILS

We used an open source repository (Pleiss et al., 2017) that produces the same results like original
DenseNet paper but in more memory efficient way using Pytorch. The models were trained for 300
epochs using a learning rate of 0.1 and batch size of 64. The is code located at:

H.3 VGG DETAILS

We used an open source repository (Fu). The models were trained for 300 epochs using a learning
rate of 0.9 and batch size of 128.

H.4 NAS DETAILS

We used the default settings in NAS-Bench-201 (Dong & Yang, 2020). We only added our IEN and
Maxout operators and searched, trained the models.

19

	Introduction
	Related work
	Inner Ensemble Nets (IENs)
	IEN theoretical analysis
	IEN variance response
	Reverting back to the original network size
	Connection with dropout
	Connection with maxout
	Summary of the variance gains

	Experiments & discussions
	IEN behavior analysis
	Comparison with outer-ensemble
	Extension to NAS

	Conclusion
	Reviews Discussion
	Lemmas
	Variance of the product of independent random variables
	Variance gain of a non-linear activation function

	Dropout variance response
	Maxout variance upper bound
	Maxout variance lower bound
	Maxout variance asymptotic bound
	Models training time and parameters count
	Empirical analysis of dropout
	Guide to the code
	ResNet Details
	DenseNet Details
	VGG Details
	NAS Details

