
Under review as a conference paper at ICLR 2023

PATH REGULARIZATION: A CONVEXITY AND SPAR-
SITY INDUCING REGULARIZATION FOR PARALLEL
RELU NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding the fundamental principles behind the success of deep neural net-
works is one of the most important open questions in the current literature. To
this end, we study the training problem of deep neural networks and introduce an
analytic approach to unveil hidden convexity in the optimization landscape. We
consider a deep parallel ReLU network architecture, which also includes stan-
dard deep networks and ResNets as its special cases. We then show that pathwise
regularized training problems can be represented as an exact convex optimization
problem. We further prove that the equivalent convex problem is regularized via
a group sparsity inducing norm. Thus, a path regularized parallel ReLU network
can be viewed as a parsimonious convex model in high dimensions. More impor-
tantly, since the original training problem may not be trainable in polynomial-time,
we propose an approximate algorithm with a fully polynomial-time complexity in
all data dimensions. Then, we prove strong global optimality guarantees for this
algorithm. We also provide experiments corroborating our theory.

(a) 2-layer NN with WD (b) 3-layer NN with WD (c) 3-layer NN with PR (Ours)

Figure 1: Decision boundaries of 2-layer and 3-layer ReLU networks that are globally optimized
with weight decay (WD) and path regularization (PR). Here, our convex training approach in (c)
successfully learns the underlying spiral pattern for each class while the previously studied convex
models in (a) and (b) fail (see Appendix A.1 for details).

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved substantial improvements in several fields of machine
learning. However, since DNNs have a highly nonlinear and non-convex structure, the fundamental
principles behind their remarkable performance is still an open problem. Therefore, advances in
this field largely depend on heuristic approaches. One of the most prominent techniques to boost
the generalization performance of DNNs is regularizing layer weights so that the network can fit a
function that performs well on unseen test data. Even though weight decay, i.e., penalizing the `22-
norm of the layer weights, is commonly employed as a regularization technique in practice, recently,
it has been shown that `2-path regularizer (Neyshabur et al., 2015b), i.e., the sum over all paths in
the network of the squared product over all weights in the path, achieves further empirical gains
(Neyshabur et al., 2015a). Therefore, in this paper, we investigate the underlying mechanisms behind
path regularized DNNs through the lens of convex optimization.

1

Under review as a conference paper at ICLR 2023

j1

...

j2...

j3
x

w1j1 w
2j

1 j
2

w3j2j3

Input Data X

Sub-network 1 Sub-network 2

. . .

Sub-network K

Output

Parallel ReLU Network

fθ(X) =
∑K
k=1

(
(XW1k)+ W2k

)
+
w3k

Path Regularization

R(θ) =
∑
j1,j2,j3

(
‖w1j1‖22w2

2j1j2
w2

3j2j3

)

+

Figure 2: (Left): Parallel ReLU network in (1) with K sub-networks and three layers (L = 3)
(Right): Path regularization for a three-layer network.

Table 1: Complexity comparison with prior works (n: # of data samples, d: feature dimension,
ml: # of hidden neurons in layer l, ε: approximation accuracy, r: rank of the data, κ � r: chosen
according to (10) such that ε accuracy is achieved)

Loss function 2-layer complexity L-layer complexity Globally optimal
Arora et al. (2018a) Convex loss O

(
2m1ndm1poly(n, d,m1)

)
- 3(Brute-force)

Goel et al. (2021) `2-loss 2O(
m5

1
ε2

)poly(n, d) - 7(NP-hard)
Froese et al. (2021) `p-loss O

(
2m1ndm1poly(n, d,m1)

)
- 3(Brute-force)

Pilanci & Ergen (2020) Convex loss O(nrpoly(d, r)) - 3(Convex, exact)

Ours Convex loss O(nrpoly(d, r)) O
(
nr
∏L−2
j=1 mjpoly(d, r,

∏L−2
j=1 ml)

)
3(Convex, exact)

Ours Convex loss O(nκpoly(d, κ)) O
(
nκ
∏L−2
j=1 mjpoly(d, κ,

∏L−2
j=1 ml)

)
3(Convex, ε-opt)

2 PARALLEL NEURAL NETWORKS

Although DNNs are highly complex architectures due to the composition of multiple nonlinear
functions, their parameters are often trained via simple first order gradient based algorithms, e.g.,
Gradient Descent (GD) and variants. However, since such algorithms only rely on local gradient
of the objective function, they may fail to globally optimize the objective in certain cases (Shalev-
Shwartz et al., 2017; Goodfellow et al., 2016). Similarly, Ge et al. (2017); Safran & Shamir (2018)
showed that these pathological cases also apply to stochastic algorithms such as Stochastic GD
(SGD). They further show that some of these issues can be avoided by increasing the number of
trainable parameters, i.e., operating in an overparameterized regime. However, Anandkumar & Ge
(2016) reported the existence of more complicated cases, where SGD/GD usually fails. Therefore,
training DNNs to global optimality remains a challenging optimization problem (DasGupta et al.,
1995; Blum & Rivest, 1989; Bartlett & Ben-David, 1999).

To circumvent difficulties in training, recent studies focused on models that benefit from overparam-
eterization (Brutzkus et al., 2017; Du & Lee, 2018; Arora et al., 2018b; Neyshabur et al., 2018). As
an example, Wang et al. (2021); Ergen & Pilanci (2021d;c); Zhang et al. (2019); Haeffele & Vidal
(2017) considered a new architecture by combining multiple standard NNs, termed as sub-networks,
in parallel. Evidences in Ergen & Pilanci (2021d;c); Zhang et al. (2019); Haeffele & Vidal (2017);
Zagoruyko & Komodakis (2016); Veit et al. (2016) showed that this way of combining NNs yields an
optimization landscape that has fewer local minima and/or saddle points so that SGD/GD generally
converges to a global minimum. Therefore, many recently proposed NN-based architectures that
achieve state-of-the-art performance in practice, e.g., SqueezeNet (Iandola et al., 2016), Inception
(Szegedy et al., 2017), Xception (Chollet, 2017), and ResNext (Xie et al., 2017), are in this form.

Notation and preliminaries: Throughout the paper, we denote matrices and vectors as uppercase
and lowercase bold letters, respectively. For vectors and matrices, we use subscripts to denote a
certain column/element. As an example, wlkjl−1jl denotes the jl−1j

th
l entry of the matrix Wlk. We

use Ik and 0 (or 1) to denote the identity matrix of size k× k and a vector/matrix of zeros (or ones)

2

Under review as a conference paper at ICLR 2023

with appropriate sizes. We use [n] for the set of integers from 1 to n. We use ‖ · ‖2 and ‖ · ‖F to
represent the Euclidean and Frobenius norms, respectively. Additionally, we denote the unit `p ball
as Bp := {u ∈ Rd : ‖u‖p ≤ 1}. We also use 1[x ≥ 0] and (x)+ = max{x, 0} to denote the 0-1
valued indicator and ReLU, respectively.

In this paper, we particularly consider a parallel ReLU network with K sub-networks and each
sub-network is an L-layer ReLU network (see Figure 2) with layer weights Wlk ∈ Rml−1×ml ,
∀l ∈ [L− 1] and wLk ∈ RmL−1 , where m0 = d, mL = 11, and ml denotes the number of neurons
in the lth hidden layer. Then, given a data matrix X ∈ Rn×d, the output of the network is as follows

fθ(X) :=

K∑

k=1

(
(XW1k)+ . . .W(L−1)k

)
+
wLk, (1)

where we compactly denote the parameters as θ :=
⋃
k{Wlk}Ll=1 with the parameter space as Θ

and each sub-network represents a standard deep ReLU network.
Remark 1. Most commonly used neural networks in practice can be classified as special cases of
parallel networks, e.g., standard NNs and ResNets (He et al., 2016) see Appendix A.2 for details.

2.1 OUR CONTRIBUTIONS

• We prove that training the path regularized parallel ReLU networks (1) is equivalent to a convex
optimization problem that can be approximately solved in polynomial-time by standard convex
solvers (see Table 1). Therefore, we generalize the two-layer results in Pilanci & Ergen (2020) to
multiple nonlinear layer without any strong assumptions in contrast to Ergen & Pilanci (2021c)
and a much broader class of NN architectures including ResNets.

• As already observed by Pilanci & Ergen (2020); Ergen & Pilanci (2021c), regularized deep ReLU
network training problems require exponential-time complexity when the data matrix is full rank,
which is unavoidable. However, in this paper, we develop an approximate training algorithm
which has fully polynomial-time complexity in all data dimensions and prove global optimality
guarantees in Theorem 2. To the best of our knowledge, this is the first convex optimization based
and polynomial-time complexity (in data dimensions) training algorithm for ReLU networks with
global approximation guarantees.

• We show that the equivalent convex problem is regularized by a group norm regularization where
grouping effect is among the sub-networks. Therefore the equivalent convex formulation reveals
an implicit regularization that promotes group sparsity among sub-networks and generalizes prior
works on linear networks such as Dai et al. (2021) to ReLU networks.

• We derive a closed-form mapping between the parameters of the non-convex parallel ReLU net-
works and its convex equivalent in Proposition 1. Therefore, instead of solving the challenging
non-convex problem, one can globally solve the equivalent convex problem and then construct an
optimal solution to the original non-convex network architecture via our closed-form mapping.

2.2 OVERVIEW OF OUR RESULTS

Given data X ∈ Rn×d and labels y ∈ Rn, we consider the following regularized training problem
p∗L := min

θ∈Θ
L (fθ(X),y) + βR(θ) , (2)

where Θ := {θ ∈ Θ : Wlk ∈ Rml−1×ml ,∀l ∈ [L],∀k ∈ [K]} is the parameter space, L (·, ·) is an
arbitrary convex loss function,R(·) represents the regularization on the network weights, and β > 0
is the regularization coefficient.

For the rest of the paper, we focus on a scalar output regression/classification framework with arbi-
trary loss functions, e.g., squared loss, cross entropy or hinge loss. We also note that our derivations
can be straightforwardly extended to vector outputs networks as proven in Appendix A.11. More
importantly, we use `2-path regularizer studied in Neyshabur et al. (2015b;a), which is defined as

R(θ) :=

K∑

k=1

√√√√ ∑

j1,j2,...,jL

(
‖w1kj1‖22

L∏

l=2

w2
lkjl−1jl

)
,

1We analyze scalar outputs, however, our derivations extend to vector outputs as shown in Appendix A.11.

3

Under review as a conference paper at ICLR 2023

where wlkjl−1jl is the jl−1j
th
l entry of Wlk. The above regularizer sums the square of all the

parameters along each possible path from input to output of each sub-network k (see Figure 2) and
then take the squared root of the summation. Therefore, we penalize each path in each sub-network
and then group them based on the sub-network index k.

We now propose a scaling to show that (2) is equivalent to a group `1 regularized problem.
Lemma 1. The following problems are equivalent 2:

min
θ∈Θ
L(fθ(X),y)+βR(θ) = min

θ∈Θs
L(fθ(X),y)+β

K∑

k=1

‖wLk‖2,

where wLk ∈ RmL−1 are the last layer weights of each sub-network k, and Θs := {θ ∈ Θ :∑
j1,j2,...,jL−2

(
‖w1kj1‖22

∏L−1
l=2 w2

lkjl−1jl

)
≤ 1,∀jL−1,∀k ∈ [K]} denotes the parameter space

after rescaling.

The advantage of the form in Lemma 1 is that we can derive a dual problem with respect to the
output layer weights wLk and then characterize the optimal layer weights via optimality conditions
and the prior works on `1 regularization in infinite dimensional spaces (Rosset et al., 2007). Thus,
we first apply the rescaling in Lemma 1 and then take the dual with respect to the output weights
wLk. To characterize the hidden layer weights, we then change the order of minimization for the
hidden layer weights and the maximization for the dual parameter to get the following dual problem3

p∗L ≥ d∗L := max
v
−L∗(v) s.t. max

θ∈Θs

∥∥∥vT
(
(XW1)+ . . .W(L−1)

)
+

∥∥∥
2
≤ β, (3)

where L∗ is the Fenchel conjugate function of L, which is defined as (Boyd & Vandenberghe, 2004)

L∗(v) := max
z

zTv − L (z,y) .

The dual problem in (3) is critical for our derivations since it provides us with an analytic perspective
to characterize a set of optimal hidden layer weights for the non-convex neural network in (1). To
do so, we first show that strong duality holds for the non-convex training problem in Lemma 1,
i.e., p∗L = d∗L. Then, based on the exact dual problem in (3), we propose an equivalent analytic
description for the optimal hidden layer weights via the KKT conditions.

We note that strong duality for two-layer ReLU networks has already been proved by previous
studies (Wang et al., 2021; Ergen & Pilanci, 2021c; Pilanci & Ergen, 2020; Ergen & Pilanci, 2021b;
Zhang et al., 2019; Bach, 2017), however, this is the first work providing an exact characterization
for path regularized deep ReLU networks via convex duality.

3 PARALLEL NETWORKS WITH THREE LAYERS

Here, we consider a three-layer parallel network with K sub-networks, which is a special case of
(1) when L = 3. Thus, we have the following training problem

p∗3=min
θ∈Θ
L(fθ(X),y)+β

K∑

k=1

√∑

j1,j2

‖w1kj1‖22w2
2kj1j2

w2
3kj2

. (4)

where Θ = {(W1k,W2k,w3k) : W1k ∈ Rd×m1 ,W2k ∈ Rm1×m2 ,w3k ∈ Rm2}. By Lemma 1,

p∗3 = min
θ∈Θs

L (fθ(X),y) + β

K∑

k=1

‖w3k‖2. (5)

Then, taking the dual of (5) with respect to the output layer weights w3k ∈ Rm2 and then changing
the order of the minimization for {W1k,W2k} and the maximization for the dual variable v yields

p∗3 ≥ d∗3 := max
v
−L∗(v) s.t. max

θ∈Θs

∥∥∥vT
(
(XW1)+ W2

)
+

∥∥∥
2
≤ β. (6)

2All the proofs are presented in the supplementary file.
3We present the details in Appendix A.7.

4

Under review as a conference paper at ICLR 2023

linear classi�er
(2,2)

(3,3)

(1,0)

x

y

linear
classi

�er

(2,2)
(3,3)

(1,0)

x

y

lin
ea
r
cl
as
si
�
er

(2,2)
(3,3)

(1,0)

x

y

line
ar
cla

ssi�
er

(2,2)
(3,3)

(1,0)

x

y

𝐃! =
1 0 0
0 1 0
0 0 1

𝐃" =
1 0 0
0 1 0
0 0 0

𝐃# =
0 0 0
0 0 0
0 0 0

𝐃$ =
0 0 0
0 0 0
0 0 1

Figure 3: Illustration of possible hyperplane arrangements that determine the diagonal matrices Di.
Here, we have three samples in two dimensions and we want to separate these samples with a linear
classifier. Di basically encodes information regarding which side of the linear classifier samples lie.

Here, we remark that (4) is non-convex with respect to the layer weights, we may have a duality
gap, i.e., p∗3 ≥ d∗3. Therefore, we first show that strong duality holds in this case, i.e., p∗3 = d∗3 as
detailed in Appendix A.4. We then introduce an equivalent representation for the ReLU activation
as follows.

Since ReLU masks the negative entries of inputs, we have the following equivalent representation

(
(XW1)+ w2

)
+

=

m1∑

j1=1

(Xw1j1)+ w2j1

+

=

m1∑

j1=1

(Xw̄j1)+ Ij1

+

= D2

m1∑

j1=1

Ij1D1j1Xw̄j1 ,

(7)

where w̄j1 = |w2j1 |w1j1 , Ij1 = sign(w2j1) ∈ {−1,+1}, and we use the following alternative
representation for ReLU (see Figure 3 for a two dimensional visualization)

(Xw)+=DXw⇐⇒DXw≥0

(In−D)Xw≤0
⇐⇒ (2D−In)Xw≥0,

where D ∈ Rn×n is a diagonal matrix of zeros/ones, i.e., Dii ∈ {0, 1}. Therefore, we first enu-
merate all possible signs and diagonal matrices for the ReLU layers and denote them as Ij1 , D1ij1
and D2l respectively, where j1 ∈ [m1], i ∈ [P1], l ∈ [P2]. Here, D1ij1 and D2l denotes the
masking/diagonal matrices for the first and second ReLU layers, respectively and P1 and P2 are the
corresponding total number diagonal matrices in each layer as detailed in Section A.10. Then, we
convert the non-convex dual constraints in (6) to a convex constraint using D1ij1 , D2l and Ij1 .

Using the representation in (7), we then take the dual of (6) to obtain the convex bidual of the primal
problem (4) as detailed in the theorem below.
Theorem 1. The non-convex training problem in (4) can be cast as the following convex program

min
z,z′∈C

L
(
X̃(z− z′),y

)
+

β√
m2

(‖z‖F,1 + ‖z′‖F,1), (8)

where ‖·‖F,1 denotes a d×m1 dimensional group Frobenius norm operator such that given a vector
u ∈ Rdm1P , ‖u‖F,1 :=

∑P
i=1 ‖Ui‖F , where Ui ∈ Rd×m1 are reshaped partitions of u. Moreover,

the convex set C is defined as

C := {z : zsij1l ∈ Csil,∀i ∈ [P1], l ∈ [P2], s ∈ [M]}

Csil :=

{
{wj1}j1 : (2D2l − In)

m1∑

j1=1

Isij1lD1ij1Xwj1 ≥ 0, (2D1ij1 − In)Xwj1 ≥ 0,∀j1 ∈ [m1]

}

where Isij1l ∈ {+1,−1}, M = 2m1 , and z, z′ ∈ Rdm1MP1P2 are constructed by stacking
zsij1l, z

s′

ij1l
∈ Rd, ∀i ∈ [P1], l ∈ [P2], j1 ∈ [m1], s ∈ [M], respectively. Also, the effective data

matrix X̃ ∈ Rn×dm1MP1P2 is defined as

X̃ := IM ⊗ X̃s, X̃s := [D21D111X . . .D2lD1ij1X . . .D2P2
D1P1m1

X] .

5

Under review as a conference paper at ICLR 2023

We next derive a mapping between the convex program (8) and the non-convex architecture (4).
Proposition 1. An optimal solution to the non-convex parallel network training problem in (4), de-
noted as {W∗

1k,w
∗
2k, w

∗
3k}Kk=1, can be recovered from an optimal solution to the convex program in

(8), i.e., {z∗, z′∗} via a closed-form mapping. Therefore, we prove a mapping between the parame-
ters of the parallel network in Figure 2 and its convex equivalent.

Next, we prove that the convex program in (8) can be globally optimized with a polynomial-time
complexity given X has fixed rank, i.e., rank(X) = r < min{n, d}.
Proposition 2. Given a data matrix such that rank(X) = r < min{n, d}, the convex program in
(8) can be globally optimized via standard convex solvers with O(d3m3

1m
3
223(m1+1)m2n3(m1+1)r)

complexity, which is a polynomial-time complexity in terms of n, d. Note that here globally optimiz-
ing the training objective means to achieve the exact global minimum up to any arbitrary machine
precision or solver tolerance.

Below, we show that the complexity analysis in Proposition 2 extends to arbitrarily deep networks.
Corollary 1. The same analysis can be readily applied to arbitrarily deep networks. Therefore,
given rank(X) = r < min{n, d}, we prove that L-layer architectures can be globally optimized

with O
(
d3
(∏L−2

j=1 m
3
j

)
23
∑L−1
j=1 mjn3r(1+

∑L−2
l=1

∏l
j=1mj)

)
, which is polynomial in n, d.

3.1 POLYNOMIAL-TIME TRAINING FOR ARBITRARY DATA

Based on the analysis in Corollary 1, exponential complexity is unavoidable for deep networks when
the data matrix is full rank, i.e., rank(X) = min{n, d}. Thus, we propose a low rank approximation
to the model in (4). We first denote the rank-r approximation of X as X̂r such that ‖X − X̂r‖2 ≤
σr+1, where σr+1 represents the (r+ 1)th largest singular value of X. Then, we have the following
result.
Theorem 2. Given an R-Lipschitz convex loss function L (·,y), the regularized training problem

p∗3=min
θ∈Θ
L(fθ(X),y)+β

K∑

k=1

√∑

j1,j2

‖w1kj‖22w2
2kj1j2

w2
3kj2

, (9)

can be solved using the data matrix X̂r to achieve the following optimality guarantee

p∗3 ≤ pr ≤ p∗3
(

1 +

√
m1m2Rσr+1

β

)2

, (10)

where pr denotes the objective value achieved by the parameters trained using X̂r.

Remark 2. Theorem 1 and 2 imply that for a given arbitrary rank data matrix X, the reg-
ularized training problem in (4) can be approximately solved by convex solvers to achieve a

worst-case approximation p∗3
(

1 + RRσr+1

β

)2

with complexity O(d3m3
123(m1+1)n3(m1+1)r), where

r � min{n, d}. Therefore, even for full rank data matrices where the complexity is exponential in
n or d, one can approximately solve the convex program in (8) in polynomial-time. Moreover, we
remark that the approximation error proved in Theorem 2 can be arbitrarily small for practically
relevant problems. As an example, consider a parallel network training problem with `2 loss func-
tion, then the upperbound becomes (1 +

√
m1m2σr+1

β)2, which is typically close to one due to fast
decaying singular values in practice (see Figure 4).

3.2 REPRESENTATIONAL POWER: TWO VERSUS THREE LAYERS

Here, we provide a complete explanation for the representational power of three-layer networks by
comparing with the two-layer results in Pilanci & Ergen (2020). We first note that three-layer net-
works have substantially higher expressive power due to the non-convex interactions between hidden
layers as detailed in Allen-Zhu et al. (2019); Pham & Nguyen (2021). Furthermore, Belilovsky et al.
(2019) show that layerwise training of three-layer networks can achieve comparable performance

6

Under review as a conference paper at ICLR 2023

4 5 6 7 8 9

of features (d)

10
-1

10
0

10
1

10
2

10
3

O
b

je
c
ti
v
e

 v
a

lu
e

(a) Objective value (↓)

4 5 6 7 8 9

of features (d)

0

1000

2000

3000

4000

5000

#
o

f
h

y
p

e
rp

la
n

e
 a

rr
a

n
g

e
m

e
n

ts
 (

P
)

Exact

Proposed

(b) # of hyperplane arrangements (P)

Figure 4: Verification of Theorem 2 and Remark 2. We train a parallel network using the convex
program in Theorem 1 with `2 loss on a toy dataset with n = 15, β = 0.1,m2 = 1, and the low-rank
approximation r = bd2c. To obtain a low-rank model, we first sample a data matrix from a standard
normal Gaussian distribution and then set σr+1 = . . . = σd = 1.

Table 2: Training objective of a three-layer parallel network trained with non-convex SGD
(5 independent initialization trials) on a toy dataset with (n, d,m1,m2, β, batch size) =
(5, 2, 3, 1, 0.002, 5), where the convex program in (8) are solved via the interior point solvers in
CVX/CVXPY.

Method Non-convex SGD Convex(Ours)
Run #1 Run #2 Run #3 Run #4 Run #5

K = 5
Training objective 0.0221 0.0239 0.0031 0.0027 0.0027 0.0007

Time(s) 11.62 11.62 11.62 11.62 11.62 4.947

K = 20
Training objective 0.0010 0.0027 0.0009 0.0010 0.0027 0.0007

Time(s) 44.37 44.37 44.37 11.55 44.37 4.947

K = 40
Training objective 0.0008 0.0009 0.0009 0.0009 0.0008 0.0007

Time(s) 91.87 91.87 91.87 91.87 91.87 4.947

to deeper models, e.g., VGG-11, on Imagenet. There exist several studies analyzing two-layer net-
works, however, despite their empirical success, a full theoretical understanding and interpretation
of three-layer networks is still lacking in the literature. In this work, we provide a complete char-
acterization for three-layer networks through the lens of convex optimization theory. To understand
their expressive power, we compare our convex program for three-layer networks in (8) with its
two-layer counterpart in Pilanci & Ergen (2020).

Pilanci & Ergen (2020) analyzes two-layer networks with one ReLU layer, so that the data matrix X
is multiplied with a single diagonal matrix (or hyperplane arrangement) Di. Thus, the effective data
matrix is in the form of X̃s = [D1X . . . DPX]. However, since our convex program in (8) has two
nonlinear ReLU layers, the composition of these two-layer can generate substantially more complex
features via locally linear variables {ws

ij1l
} multiplying the d-dimensional blocks of the columns of

the effective data matrix X̃s in Theorem 1. Although this may seem similar to the features in Ergen
& Pilanci (2021c), here, we have 2m1 variables for each linear region unlike Ergen & Pilanci (2021c)
which employ 2 variables per linear region. Moreover, Ergen & Pilanci (2021c) only considers the
case where the second hidden layer has only one neuron, i.e., m2 = 1, therefore do not consider
standard three layer or deeper networks. Hence, we exactly describe the impact of having one more
ReLU layer and its contribution to the representational power of the network.

7

Under review as a conference paper at ICLR 2023

(a) CIFAR-10 (b) Fashion-MNIST

Figure 5: Accuracy of a three-layer architecture trained using the non-convex formu-
lation (4) and the proposed convex program (8), where we use (a) CIFAR-10 with
(n, d,m1,m2,K, β, batch size) = (5x104, 3072, 100, 1, 40, 10−3, 103) and (b) Fashion-MNIST
with (n, d,m1,m2,K, β, batch size) = (6x104, 784, 100, 1, 40, 10−3, 103). We note that the con-
vex model is trained using (a) SGD and (b) Adam.

4 EXPERIMENTS

In this section4, we present numerical experiments corroborating our theory.

Low rank model in Theorem 2: To validate our claims, we generate a synthetic dataset as
follows. We first randomly generate a set of layer weights for a parallel ReLU network with
K = 5 sub-networks by sampling from a standard normal distribution. We then obtain the la-
bels as y =

∑
k

(
(XW1k)+ W2k

)
+
w3k + 0.1ε, where ε ∼ N(0, In). To promote a low rank

structure in the data, we first sample a matrix from the standard normal distribution and then set
σr+1 = . . . = σd = 1. We consider a regression framework with `2 loss and (n, r, β,m1,m2) =
(15, d/2, 0.1, 1, 1) and present the numerical results in Figure 4. Here, we observe that the low rank
approximation of the objective pr is closer to p∗3 than the worst-case upper-bound predicted by The-
orem 2. However, in Figure 4b, the low rank approximation provides a significant reduction in the
number of hyperplane arrangements, and therefore in the complexity of solving the convex program.

Toy dataset: We use a toy dataset with 5 samples and 2 features, i.e., (n, d) = (5, 2). To gen-
erate the dataset, we forward propagate i.i.d. samples from a standard normal distribution, i.e.,
xi ∼ N (0, Id), through a parallel network with 3 layers, 5 sub-networks, and 3 neurons, i.e.,
(L,K,m1,m2) = (3, 5, 3, 1). We then train the parallel network in (4) on this toy dataset using both
our convex program (8) and non-convex SGD. We provide the training objective and wall-clock time
in Table 2, where we particularly include 5 initialization trials for SGD. This experiment shows that
when the number of sub-networks K is small, SGD trials fail to converge to the global minimum
achieved by our convex program. However, as we increase K, the number of trials converging to
global minimum gradually increases. Therefore, we show the benign overparameterization impact.

Image classification: We conduct experiments on benchmark image datasets, namely CIFAR-10
(Krizhevsky et al., 2014) and Fashion-MNIST (Xiao et al., 2017). We particularly consider a ten
class classification task and use a parallel network with 40 sub-networks and 100 hidden neurons,
i.e., (K,m1,m2) = (40, 100, 1). In Figure 5, we plot the test accuracies against wall-clock time,
where we include several different optimizers as well as SGD. Moreover, we include a parallel net-
work trained with SGD/Adam and Weight Decay (WD) regularization to show the effectiveness of
path regularization in (4). We first note that our convex approach achieves both faster convergence
and higher final test accuracies for both dataset. However, the performance gain for Fashion-MNIST
seems to be significantly less compared to the CIFAR-10 experiment. This is due to the nature of
these datasets. More specifically, since CIFAR-10 is a much more challenging dataset, the base-
line accuracies are quite low (around ∼ 50%) unlike Fashion-MNIST with the baseline accuracies
around ∼ 90%. Therefore, the accuracy improvement achieved by the convex program seems low
in Figure 5b. We also observe that weight decay achieves faster convergence rates however path

4Details on the experiments can be found in Appendix A.1.

8

Under review as a conference paper at ICLR 2023

regularization yields higher final test accuracies. It is normal to have faster convergence with weight
decay since it can be incorporated into gradient-based updates without any computational overhead.

5 RELATED WORK

Parallel neural networks were previously investigated by Zhang et al. (2019); Haeffele & Vidal
(2017). Although these studies provided insights into the solutions, they require assumptions, e.g.,
sparsity among sub-networks in Theorem 1 of Haeffele & Vidal (2017)) and linear activations and
hinge loss assumptions in Zhang et al. (2019), which invalidates applications in practice.

Recently, Pilanci & Ergen (2020) studied weight decay regularized two-layer ReLU network training
problems and introduced polynomial-time trainable convex formulations. However, their analysis
is restricted to standard two-layer ReLU networks, i.e., in the form of fθ(X) = (XW1)+ w2.
The reasons for this restriction is that handling more than one ReLU layer is a substantially more
challenging optimization problem. As an example, a direct extension of Pilanci & Ergen (2020) to
three-layer NNs will yield doubly exponential complexity, i.e., O(nrn

r

) for a rank-r data matrix,
due to the combinatorial behavior of multiple ReLU layers. Thus, they only examined the case
with a single ReLU layer (see Table 1 for details and the other relevant references in Pilanci &
Ergen (2020)). In addition, since they only considered standard two-layer ReLU networks, their
analysis is not valid for a broader range of NN-based architectures as detailed in Remark 1. Later
on, Ergen & Pilanci (2021c) extended this approach to three-layer ReLU networks. However, since
they analyzed `2-norm regularized training problem, they had to put unit Frobenius norm constraints
on the first layer weights, which does not reflect the settings in practice. In addition, their analysis is
restricted to the networks with a single neuron in the second layer (i.e. m2 = 1) that is in the form
of fθ(X) =

∑
k

(
(XW1k)+ w2k

)
+
w3k. Since this architecture only allows a single neuron in the

second layer, each sub-network k has an expressive power that is equivalent to a standard two-layer
network rather than three-layer. This can also be realized from the definition of the constraint set C
in Theorem 1. Specifically, the convex set C in Ergen & Pilanci (2021c) has decoupled constraints
across the hidden layer index j1 whereas our formulation sums the responses over hidden neurons
before feeding through the next layer as standard deep networks do. Therefore, this analysis does
not reflect the true power of deep networks with L > 2. Moreover, the approach in Ergen & Pilanci
(2021c) has exponential complexity when the data matrix has full rank, which is unavoidable.

However, we analyze deep neural networks in (1) without any assumption on the weights. Further-
more, we develop an approximate training algorithm which has fully polynomial-time complexity
in data dimensions and prove strong global optimality guarantees for this algorithm in Theorem 2.

6 CONCLUDING REMARKS

We studied the training problem of path regularized deep parallel ReLU networks, which includes
ResNets and standard deep ReLU networks as its special cases. We first showed that the non-convex
training problem can be equivalently cast as a single convex optimization problem. Therefore, we
achieved the following advantages over the training on the original non-convex formulation: 1)
Since our model is convex, it can be globally optimized via standard convex solvers whereas the
non-convex formulation trained with optimizers such as SGD might be stuck at a local minimum,
2) Thanks to convexity, our model does not require any sort of heuristics and additional tricks such
as learning rate schedule and initialization scheme selection or dropout. More importantly, we pro-
posed an approximation to the convex program to enable fully polynomial-time training in terms
of the number of data samples n and feature dimension d. Thus, we proved the polynomial-time
trainability of deep ReLU networks without requiring any impractical assumptions unlike Pilanci
& Ergen (2020); Ergen & Pilanci (2021c). Notice that we derive an exact convex program only
for three-layer networks, however, recently Wang et al. (2021) proved that strong duality holds for
arbitrarily deep parallel networks. Therefore, a similar analysis can be extended to deeper networks
to achieve an equivalent convex program, which is quite promising for future work. Additionally,
although we analyzed fully connected networks in this paper, our approach can be directly extended
to various NN architectures, e.g., convolution networks (Ergen & Pilanci, 2021a), generative ad-
versarial networks (Sahiner et al., 2021a), NNs with batch normalization (Ergen et al., 2021), and
autoregressive models (Gupta et al., 2021).

9

Under review as a conference paper at ICLR 2023

REFERENCES

Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting system for
convex optimization problems. Journal of Control and Decision, 5(1):42–60, 2018.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameter-
ized neural networks, going beyond two layers. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.
cc/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf.

Animashree Anandkumar and Rong Ge. Efficient approaches for escaping higher order saddle points
in non-convex optimization. In Conference on learning theory, pp. 81–102, 2016.

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. In 6th International Conference on Learning Representations,
ICLR 2018, 2018a.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In 35th International Conference on Machine Learning,
ICML 2018, pp. 372–389. International Machine Learning Society (IMLS), 2018b.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of
Machine Learning Research, 18(1):629–681, 2017.

Peter Bartlett and Shai Ben-David. Hardness results for neural network approximation problems. In
European Conference on Computational Learning Theory, pp. 50–62. Springer, 1999.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. In International conference on machine learning, pp. 583–593. PMLR, 2019.

Avrim Blum and Ronald L Rivest. Training a 3-node neural network is np-complete. In Advances
in neural information processing systems, pp. 494–501, 1989.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. SGD learns
over-parameterized networks that provably generalize on linearly separable data. CoRR,
abs/1710.10174, 2017. URL http://arxiv.org/abs/1710.10174.

Daniel Smilkov Carter and Shan. URL https://playground.tensorflow.org/.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.

Thomas M Cover. Geometrical and statistical properties of systems of linear inequalities with ap-
plications in pattern recognition. IEEE transactions on electronic computers, (3):326–334, 1965.

Zhen Dai, Mina Karzand, and Nathan Srebro. Representation costs of linear neural networks: Anal-
ysis and design. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 26884–26896. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/
file/e22cb9d6bbb4c290a94e4fff4d68a831-Paper.pdf.

Bhaskar DasGupta, Hava T Siegelmann, and Eduardo Sontag. On the complexity of training neural
networks with continuous activation functions. IEEE Transactions on Neural Networks, 6(6):
1490–1504, 1995.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Simon S Du and Jason D Lee. On the power of over-parametrization in neural networks with
quadratic activation. arXiv preprint arXiv:1803.01206, 2018.

10

https://proceedings.neurips.cc/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf
http://arxiv.org/abs/1710.10174
https://playground.tensorflow.org/
https://proceedings.neurips.cc/paper/2021/file/e22cb9d6bbb4c290a94e4fff4d68a831-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e22cb9d6bbb4c290a94e4fff4d68a831-Paper.pdf

Under review as a conference paper at ICLR 2023

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Tolga Ergen and Mert Pilanci. Implicit convex regularizers of cnn architectures: Convex op-
timization of two- and three-layer networks in polynomial time. In International Confer-
ence on Learning Representations, 2021a. URL https://openreview.net/forum?id=
0N8jUH4JMv6.

Tolga Ergen and Mert Pilanci. Convex geometry and duality of over-parameterized neural networks.
Journal of Machine Learning Research, 22(212):1–63, 2021b.

Tolga Ergen and Mert Pilanci. Global optimality beyond two layers: Training deep relu networks via
convex programs. CoRR, abs/2110.05518, 2021c. URL https://arxiv.org/abs/2110.
05518.

Tolga Ergen and Mert Pilanci. Revealing the structure of deep neural networks via convex duality.
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 3004–3014.
PMLR, 18–24 Jul 2021d. URL http://proceedings.mlr.press/v139/ergen21b.
html.

Tolga Ergen, Arda Sahiner, Batu Ozturkler, John M. Pauly, Morteza Mardani, and Mert Pilanci.
Demystifying batch normalization in relu networks: Equivalent convex optimization models and
implicit regularization. CoRR, abs/2103.01499, 2021. URL https://arxiv.org/abs/
2103.01499.

Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need hun-
dreds of classifiers to solve real world classification problems? Journal of Machine Learning Re-
search, 15(90):3133–3181, 2014. URL http://jmlr.org/papers/v15/delgado14a.
html.

Vincent Froese, Christoph Hertrich, and Rolf Niedermeier. The computational complexity of relu
network training parameterized by data dimensionality, 2021.

Rong Ge, Jason D. Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with landscape
design, 2017.

Surbhi Goel, Adam Klivans, Pasin Manurangsi, and Daniel Reichman. Tight Hardness Results
for Training Depth-2 ReLU Networks. In James R. Lee (ed.), 12th Innovations in Theoretical
Computer Science Conference (ITCS 2021), volume 185 of Leibniz International Proceedings
in Informatics (LIPIcs), pp. 22:1–22:14, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. ISBN 978-3-95977-177-1. doi: 10.4230/LIPIcs.ITCS.2021.22. URL
https://drops.dagstuhl.de/opus/volltexte/2021/13561.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex programming,
version 2.1. http://cvxr.com/cvx, March 2014.

Vikul Gupta, Burak Bartan, Tolga Ergen, and Mert Pilanci. Convex neural autoregressive models:
Towards tractable, expressive, and theoretically-backed models for sequential forecasting and
generation. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3890–3894, 2021. doi: 10.1109/ICASSP39728.2021.9413662.

Benjamin D Haeffele and René Vidal. Global optimality in neural network training. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7331–7339, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

11

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://openreview.net/forum?id=0N8jUH4JMv6
https://openreview.net/forum?id=0N8jUH4JMv6
https://arxiv.org/abs/2110.05518
https://arxiv.org/abs/2110.05518
http://proceedings.mlr.press/v139/ergen21b.html
http://proceedings.mlr.press/v139/ergen21b.html
https://arxiv.org/abs/2103.01499
https://arxiv.org/abs/2103.01499
http://jmlr.org/papers/v15/delgado14a.html
http://jmlr.org/papers/v15/delgado14a.html
https://drops.dagstuhl.de/opus/volltexte/2021/13561
http://cvxr.com/cvx

Under review as a conference paper at ICLR 2023

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10 dataset. http://www.cs.
toronto.edu/kriz/cifar.html, 2014.

Behnam Neyshabur, Russ R Salakhutdinov, and Nati Srebro. Path-sgd: Path-normalized opti-
mization in deep neural networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015a. URL https://proceedings.neurips.cc/paper/2015/file/
eaa32c96f620053cf442ad32258076b9-Paper.pdf.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In Peter Grünwald, Elad Hazan, and Satyen Kale (eds.), Proceedings of The 28th
Conference on Learning Theory, volume 40 of Proceedings of Machine Learning Research, pp.
1376–1401, Paris, France, 03–06 Jul 2015b. PMLR. URL http://proceedings.mlr.
press/v40/Neyshabur15.html.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. To-
wards understanding the role of over-parametrization in generalization of neural networks. arXiv
preprint arXiv:1805.12076, 2018.

Piyush C Ojha. Enumeration of linear threshold functions from the lattice of hyperplane intersec-
tions. IEEE Transactions on Neural Networks, 11(4):839–850, 2000.

Huy Tuan Pham and Phan-Minh Nguyen. Global convergence of three-layer neural networks in
the mean field regime. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=KvyxFqZS_D.

Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time
convex optimization formulations for two-layer networks. In Hal Daumé III and Aarti Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 7695–7705. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/pilanci20a.html.

Saharon Rosset, Grzegorz Swirszcz, Nathan Srebro, and Ji Zhu. L1 regularization in infinite di-
mensional feature spaces. In International Conference on Computational Learning Theory, pp.
544–558. Springer, 2007.

Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer relu neural networks.
In International Conference on Machine Learning, pp. 4433–4441. PMLR, 2018.

Arda Sahiner, Tolga Ergen, Batu Ozturkler, Burak Bartan, John Pauly, Morteza Mardani, and Mert
Pilanci. Hidden convexity of wasserstein gans: Interpretable generative models with closed-form
solutions. arXiv preprint arXiv:2107.05680, 2021a.

Arda Sahiner, Tolga Ergen, John M. Pauly, and Mert Pilanci. Vector-output relu neural network
problems are copositive programs: Convex analysis of two layer networks and polynomial-time
algorithms. In International Conference on Learning Representations, 2021b. URL https:
//openreview.net/forum?id=fGF8qAqpXXG.

Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of gradient-based deep learning.
arXiv preprint arXiv:1703.07950, 2017.

Maurice Sion. On general minimax theorems. Pacific J. Math., 8(1):171–176, 1958. URL https:
//projecteuclid.org:443/euclid.pjm/1103040253.

Richard P Stanley et al. An introduction to hyperplane arrangements. Geometric combinatorics, 13:
389–496, 2004.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI con-
ference on artificial intelligence, 2017.

12

http://www. cs. toronto. edu/kriz/cifar. html
http://www. cs. toronto. edu/kriz/cifar. html
https://proceedings.neurips.cc/paper/2015/file/eaa32c96f620053cf442ad32258076b9-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/eaa32c96f620053cf442ad32258076b9-Paper.pdf
http://proceedings.mlr.press/v40/Neyshabur15.html
http://proceedings.mlr.press/v40/Neyshabur15.html
https://openreview.net/forum?id=KvyxFqZS_D
https://proceedings.mlr.press/v119/pilanci20a.html
https://openreview.net/forum?id=fGF8qAqpXXG
https://openreview.net/forum?id=fGF8qAqpXXG
https://projecteuclid.org:443/euclid.pjm/1103040253
https://projecteuclid.org:443/euclid.pjm/1103040253

Under review as a conference paper at ICLR 2023

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. In Advances in neural information processing systems, pp. 550–558,
2016.

Yifei Wang, Tolga Ergen, and Mert Pilanci. Parallel deep neural networks have zero duality gap.
2021.

RO Winder. Partitions of n-space by hyperplanes. SIAM Journal on Applied Mathematics, 14(4):
811–818, 1966.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492–1500, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Hongyang Zhang, Junru Shao, and Ruslan Salakhutdinov. Deep neural networks with multi-branch
architectures are intrinsically less non-convex. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 1099–1109, 2019.

13

Under review as a conference paper at ICLR 2023

Supplementary Material

Table of Contents
A Appendix 14

A.1 Additional numerical results and details . 14
A.2 Parallel ReLU networks . 16
A.3 Proof of Lemma 1 . 17
A.4 Proof of Theorem 1 . 17
A.5 Proof of Proposition 1 . 19
A.6 Proof of Theorem 2 . 20
A.7 Proof for the dual problem in (3) . 22
A.8 Hyperplane arrangements . 22
A.9 Low rank model in Theorem 2 . 23
A.10 Proof of Proposition 2 and Corollary 1 . 23
A.11 Extension to vector outputs . 25

A APPENDIX

A.1 ADDITIONAL NUMERICAL RESULTS AND DETAILS

In this section, we provide new numerical results and detailed information about our experiments in
the main paper.

Decision boundary plots in Figure 1: In order to visualize the capabilities of our convex training
approach, we perform an experiment on the spiral dataset which is known to be challenging for
2-layer networks while 3-layer networks can readily interpolate the training data (i.e. exactly fit the
training labels) (Carter & Shan). As the baselines of our analysis, we include the two-layer convex
training approach in Pilanci & Ergen (2020) and recently introduced three-layer convex training
approach (with weight decay regularization and several architectural and parametric assumptions)
in Ergen & Pilanci (2021c). As our experimental setup, we consider a binary classification task with
y ∈ {+1,−1}n and squared loss. We choose (n,m1,m2, P1, P2, β) = (30, 5, 1, 11, 11, 1e − 4)
and for Pilanci & Ergen (2020) we use P = 50 neurons/hyperplane arrangements. We also use
CVPXY with MOSEK solver (Grant & Boyd, 2014; Diamond & Boyd, 2016; Agrawal et al., 2018)
to globally solve the convex programs. As demonstrated in Figure 1, baselines methods, especially
Ergen & Pilanci (2021c), fit a function that is significantly different than the underlying spiral data
distribution. This clearly shows that since Pilanci & Ergen (2020) is restricted two-layer networks
and Ergen & Pilanci (2021c) have multiple assumptions, i.e., unit Frobenius norm constraints on
the layer weights (‖Wlk‖F ≤ 1,∀l ∈ [L − 2]) and last hidden layer weights cannot be matrices
(w(L−1)k ∈ RmL−2), both baseline approaches fail to reflect true expressive power of deep networks
(L > 2). On the other hand, our convex training approach for path regularized networks fits a model
that successfully describes the underlying data distribution for this challenging task.

Additional experiments: We also conduct experiments on several datasets available in UCI Ma-
chine Learning Repository (Dua & Graff, 2017), where we particularly selected the datasets from
Fernández-Delgado et al. (2014) such that n ≤ 500. For these datasets, we consider a conventional
binary classification framework with (m1,m2,K, β) = (100, 1, 40, 0.5) and compare the test ac-
curacies of non-convex architectures trained with SGD and Adam with their convex counter parts
in (8). For these experiments, we use the 80% − 20% splitting ratio for the training and test sets.
Furthermore, we train each algorithm long enough to reach training accuracy one. As shown in
Table 3, our convex approach achieves higher or the same test accuracy compared to the standard
non-convex training approach for most of the datasets (precisely 20 and 19 out of 21 datasets for
SGD and Adam, respectively). We also note that for this experiment, we used the unconstrained
form in (11) with the approximate version in Remark 3.3 of Pilanci & Ergen (2020).

14

Under review as a conference paper at ICLR 2023

Table 3: Test accuracies for UCI experiments ((m1,m2,K, β) = (100, 1, 40, 0.5) and 80% − 20%
training-test split). Here, we present the standard non-convex architectures and the proposed convex
counterpart trained with SGD and Adam optimizers. If one approach achieves higher accuracy on
a certain dataset, we display the corresponding accuracy value in bold font. We observe that our
convex approach achieves either higher or the same accuracy for 20 and 19 datasets (out of 21
datasets) when trained with SGD and Adam, respectively

SGD Adam
Dataset n d Non-convex Convex(Ours) Non-convex Convex(Ours)
acute-inflammation 120 6 1.000 1.000 1.000 1.000
acute-nephritis 120 6 1.000 1.000 1.000 1.000
balloons 16 4 1.000 1.000 1.000 1.000
breast-cancer 286 9 0.690 0.707 0.655 0.672
breast-cancer-wisc-prog 198 33 0.750 0.800 0.800 0.825
congressional-voting 435 16 0.667 0.667 0.551 0.597
conn-bench-sonar-mines-rocks 208 60 0.714 0.786 0.738 0.833
echocardiogram 131 10 0.704 0.704 0.666 0.703
fertility 100 9 0.750 0.800 0.800 0.800
haberman-survival 306 3 0.710 0.774 0.677 0.709
heart-hungarian 294 12 0.831 0.831 0.779 0.813
hepatitis 155 19 0.645 0.710 0.709 0.741
ionosphere 351 33 0.887 0.901 0.929 0.887
molec-biol-promoter 106 57 0.818 0.818 0.727 0.772
musk-1 476 166 0.958 0.927 0.947 0.927
parkinsons 195 22 0.974 1.000 0.923 1.000
pittsburg-bridges-T-OR-D 102 7 0.952 0.952 0.809 0.857
planning 182 12 0.541 0.568 0.649 0.703
statlog-heart 270 13 0.759 0.796 0.759 0.833
trains 10 29 1.000 1.000 1.000 1.000
vertebral-column-2clases 310 6 0.806 0.839 0.758 0.822

Highest test accuracy 20/21 19/21

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Stage

55

60

65

70

75

80

85

90

CI
FA

R-
10

 Te
st
 A
cc
ur
ac

y

convex layerwise training

Figure 6: Test accuracy for convex layerwise training, where each stage is our three-layer convex
formulation in Theorem 1. Here, we train three-layer neural networks sequentially using convex
optimization to build deep networks.

Details for the experiments in Table 2 and Figure 5: We first note that for the experiments in
Table 2, we use CVX/CVPXY (Grant & Boyd, 2014; Diamond & Boyd, 2016; Agrawal et al., 2018)
to globally solve the proposed convex program in (8). For these experiments, we use a laptop with i7
processor and 16GB of RAM. In order to tune the learning rate of SGD/GD, we first perform training

15

Under review as a conference paper at ICLR 2023

with a bunch of learning different learning rates and select the one with the best performance on the
validation datasets, which is 0.005 in these experiments.

For comparatively larger scale image classification experiments in Figure 5, we utilize a cluster GPU
with 50GB of memory. However since the equivalent convex program in (8) has constraint which are
challenging to handle for these datasets, we propose the following unconstrained convex problem
which has the same global minima with the constrained version as discussed in Gupta et al. (2021)

min
z,z′∈Rdm1MP1P2

L
(
X̃ (z′ − z) ,y

)
+ β (‖z‖G,1 + ‖z′‖G,1) + λ (hC(z) + hC(z

′)) (11)

where λ > 0 coefficient to penalize the violated constraints and hC(z) is a function to sum the
absolute value of all constraint violations defined as

hC(z) := 1T
∑

i,j1,l,s

((
−(2D1ij1 − In)Xzsij1l

)
+

)
+ 1T

∑

i,l,s

−

∑

j1

Isij1l(2D2l − In)D1ij1Xzsij1l

+

.

Thus, we obtain an unconstrained version of convex optimization problem (11), where one can use
commonly employed first-order gradient based optimizers, e.g., SGD and Adam, available in deep
learning libraries such PyTorch and Tensorflow. For both CIFAR-10 and Fashion-MNIST, we use
the same training and test splits in the original datasets. We again perform a grid search to tune the
learning rate, where the best performance is achieved by the following choices

(µConvex, µSGD, µAdam, µAdagrad, µAdadelta, µ
WD
SGD) = (5e− 7, 5e− 3, 2e− 5, 2e− 3, 3e− 1, 1)

and

(µConvex, µSGD, µAdam, µAdagrad, µAdadelta, µ
WD
SGD) = (1e− 5, 2e− 1, 2e− 3, 1e− 2, 3, 1)

as the learning rates for CIFAR-10 and Fashion-MNIST, respectively. We choose the momentum
coefficient of the SGD optimizer as 0.9. In addition to this, we set P1P2 = K and λ = 1e− 5.

More importantly, we remark that these experiments are performed by using a small sampled subset
of hyperplane arrangements rather than sampling all possible arrangements as detailed in Remark
3.3 of Pilanci & Ergen (2020). In particular, we first generate random weight matrices from a multi-
variate standard normal distribution and then solve the convex program using only the arrangements
of the sampled weight matrices.

Details for the experiments in Figure 6: Layerwise training with shallow neural networks was
proven to work remarkably well. Particularly, Belilovsky et al. (2019) shows that one can train three-
layer neural networks sequentially to build deep networks that outperform end-to-end training with
SOTA architectures. In Figure 6, we apply this layerwise training procedure with our convex training
approach. In particular, each stage in this figure is our three-layer convex formulation in Theorem
1. Here, we use the same experimental setting in the previous section. We observe that making
the network deeper by stacking convex layers resulted in significant performance improvements.
Specificaly, at the fifth stage, we achieved almost 85% accuracy for CIFAR-10 unlike below 60%
accuracies in Figure 5.

A.2 PARALLEL RELU NETWORKS

The parallel networks fθ(X) models a wide range of NNs in practice. As an example, standard NNs
and ResNets (He et al., 2016) are special cases of this network architecture. To illustrate this, let us
consider a parallel ReLU with two sub-networks and four layers, i.e., K = 2 and L = 4. If we set
Wlk = Wl∀k ∈ [2], l ∈ [4] then our architecture reduces to a standard four-layer network

2∑

k=1

((
(XW1k)+ W2k

)
+
W3k

)
+
w4k =

((
(XW1)+ W2

)
+
W3

)
+
w4,

where W1 ∈ Rd×m1 ,W2 ∈ Rm1×m2 ,W3 ∈ Rm2×m3 ,w4 ∈ Rm3 . For ResNets, we first remark
that since residual blocks are usually used after a ReLU activation function, which is positively
homogeneous of degree one, in practice, each residual block takes only nonnegative entries as its
inputs. Thus, we can assume X ∈ Rn×d+ without loss of generality. We also assume that weights

16

Under review as a conference paper at ICLR 2023

obey the following form: W11 = W1, W21 = W2, W12 = W22 = Id, W31 = W32 = W3, and
w41 = w42 = w4 then

fθ(X) =

2∑

k=1

((
(XW1k)+ W2k

)
+
W3k

)
+
w4k =

((
(XW1)+ W2

)
+
W3

)
+
w4 + (XW3)+ w4

which is a shallow ResNet as demonstrated in Figure 1 of Veit et al. (2016).

A.3 PROOF OF LEMMA 1

Let us first define rkjL−1
:=

√∑
j1,...,jL−2

(
‖w1kj1‖22

∏L−1
l=2 w2

lkjl−1jl

)
> 0. Notice that if

rkjL−1
= 0, this means that kth sub-network does not contribute the output of the parallel net-

work in (1). Therefore, we can remove the paths with rkjL−1
= 0 without loss of generality. Now,

we use the following change of variable

W′
lk = Wlk,∀l ∈ [L− 2], w′(L−1)kjL−1

=
w(L−1)kjL−1

rkjL−1

,∀l ∈ [L− 1], w′LkjL−1
= rkjL−1

wLkjL−1
.

We now note that
∑

j1,...,jL−2

(
‖w′1kj1‖22

L−1∏

l=2

w′
2

lkjl−1jl

)
=

1

r2
kjL−1

∑

j1,...,jL−2

(
‖w1kj1‖22

L−1∏

l=2

w2
lkjl−1jl

)
= 1.

Then, (2) can be restated as follows

p∗L = min
{{Wlk}Ll=1

}K
k=1

L

(
K∑
k=1

(
(XW1k)+ . . .W(L−1)k

)
+
wLk,y

)
+ β

K∑
k=1

√√√√ ∑
j1...,jL

(
‖w1kj1‖22

L∏
l=2

w2
lkjl−1jl

)

= min
{{Wlk}

L−1
l=1
}Kk=1

{w′Lk}
K
k=1

L

 K∑
k=1

∑
jL−1

(
(XW1k)+ . . .w(L−1)kjL−1

)
+

rkjL−1

w′LkjL−1
,y

+ β

K∑
k=1

√√√√√∑
jL−1

w′
2

LkjL−1

∑
j1,...,jL−2

(
‖w1kj1‖22

∏L−1
l=2 w2

lkjl−1jl

)
r2
kjL−1

= min
{{Wlk}

L−1
l=1
}Kk=1

{w′Lk}
K
k=1

L

 K∑
k=1

∑
jL−1

(
(XW1k)+ . . . r

−1
kjL−1

w(L−1)kjL−1

)
+
w′LkjL−1

,y

+ β

K∑
k=1

‖w′Lk‖2

= min
{{W′lk}

L
l=1}

K
k=1

(W′1k,...,W
′
(L−1)k)∈Θs,∀k

L

(
K∑
k=1

((
XW′

1k

)
+
. . .W′

(L−1)k

)
+
w′Lk,y

)
+ β

K∑
k=1

‖w′Lk‖2,

where Θs :=
{

(W1, . . . ,WL−1) :
∑
j1,...,jL−2

(
‖w1j1‖22

∏L−1
l=2 w2

ljl−1jl

)
= 1, ∀jL−1 ∈ [mL−1]

}
.

We also note that one can relax the equality constraint as an inequality constraint without loss of
generality. This is basically due to the fact that if a constraint is not tight, i.e., strictly less than one,
at the optimum then we can remove that constraint and make the corresponding output layer weight
arbitrarily small via a simple scaling to make the objective value smaller. However, this would lead
to a contradiction since this scaling further reduces the objective, which means that the initial set of
layer weights (that yields a strict inequality in the constraints) are not optimal.

A.4 PROOF OF THEOREM 1

To obtain the bidual problem of (4), we first utilize semi-infinite duality theory as follows. We first
compute the dual of (6) with respect to the dual parameter v to get

p∗∞ := min
‖w3‖2≤1

min
µ
L
(∫

θ∈Θs

(
(XW1)+ W2

)
+
w3dµ(θ),y

)
+ β‖µ‖TV , (12)

17

Under review as a conference paper at ICLR 2023

where ‖µ‖TV denotes the total variation norm of the signed measure µ. Notice that (12) is an
infinite-dimensional neural network training problem similar to the one studied in Bach (2017).
More importantly, this problem is convex since the model is linear with respect to the measure µ
and the loss and regularization functions are convex (Bach, 2017). Thus, we have no duality gap,
i.e., d∗3 = p∗∞. In addition to this, even though (12) is an infinite-dimensional convex optimization
problem, it reduces to a problem with at most n+ 1 neurons at the optimum due to Caratheodory’s
theorem (Rosset et al., 2007). Therefore, (12) can be equivalently stated as the following finite-size
convex optimization problem

p∗∞ = min
θ∈Θs

L
(
K∗∑

k=1

(
(XW1k)+ W2k

)
+
w3k,y

)
+ β

K∗∑

k=1

‖w3k‖2

= min
θ∈Θs

L (fθ(X),y) + β

K∗∑

k=1

‖w3k‖2, (13)

where K∗ ≤ n + 1. We further remark that given K ≥ K∗, (13) and (5) are the same problems,
which also proves strong duality as p∗3 = p∗∞ = d∗3. In the remainder of the proof, we show that
using an alternative representation for the ReLU activation, we can achieve a finite-dimensional
convex bidual formulation.

Now we restate the dual problem (6) as

d∗3 = max
v
−L∗(v) s.t. max

θ∈Θs

∥∥∥vT
(
(XW1)+ W2

)
+

∥∥∥
2
≤ β. (14)

We first note that using the representation in (7), the dual constraint in (14) can be written as

max
θ∈Θs

∥∥∥vT ((XW1)+ W2

)
+

∥∥∥
2
≤ β ⇐⇒ max

θ∈Θs

√√√√ m2∑
j2=1

(
vT
(
(XW1)+ w2j2

)
+

)2

≤ β

⇐⇒ max
θ∈Θs

√
m2

(
vT
(
(XW1)+ w2

)
+

)2

≤ β

⇐⇒ max
Ij1∈{±1}

max
θ∈Θs

√√√√√m2

vT

(
m1∑
j1=1

Ij1 (Xw1j1 |w2j1 |)+

)
+

2

≤ β

⇐⇒ max
i∈[P1]
l∈[P2]

max
Ij1∈{±1}

max
{wj1}j1∈Cil

√
m2

∣∣∣∣∣vTD2l

m1∑
j1=1

Ij1D1ij1Xwj1

∣∣∣∣∣ ≤ β
(15)

where Θs = {(W1,W2) :
∑m1

j1=1 ‖w1j1‖22w2
2j1j2

≤ 1,∀j2 ∈ [m2]}, we apply a variable change
as wj1 = |w2j1 |w1j1 and define the set Cil as

Cil :={{wj1}j1 : (2D2l − In)

m1∑
j1=1

Ij1D1ij1Xwj1 ≥ 0, (2D1ij1 − In)Xwj1 ≥ 0,∀j1 ∈ [m1],

m1∑
j1=1

‖wj1‖
2
2 ≤ 1}.

We also note that P1 and P2 denote the number of possible hyperplane arrangement for the first and
second ReLU layer (see Appendix A.10 for details).

Then we have

max
θ∈Θs

∥∥∥vT ((XW1)+ W2

)
+

∥∥∥
2
≤ β ⇐⇒ max

i∈[P1]
l∈[P2]
Ij1∈{±1}

max
{wj1}j1∈Cil

√
m2

∣∣∣∣∣vTD2l

m1∑
j1=1

Ij1D1ij1Xwj1

∣∣∣∣∣ ≤ β,

⇐⇒

max
{wsij1l}j1∈C

s
il

√
m2v

TD2l

m1∑
j1=1

Isij1lD1ij1Xws
ij1l ≤ β,

max
{ws
′
ij1l
}j1∈C

s
il

−
√
m2v

TD2l

m1∑
j1=1

Is
′
ij1lD1ij1Xws′

ij1l ≤ β,
, ∀i ∈ [P1], ∀l ∈ [P2], ∀s ∈ [M],

18

Under review as a conference paper at ICLR 2023

where we use M := |{±1}m1 | = 2m1 to enumerate all possible sign patterns {Ij1}m1
j1=1 of the size

m1. Using the equivalent representation above, we rewrite the dual (14) as

max
v
−L∗(v) s.t. max

{wsij1l}j1∈C
s
il

√
m2v

TD2l

m1∑

j1=1

Isij1lD1ij1Xws
ij1l ≤ β, ∀i, l, s (16)

max
{ws

′
ij1l
}j1∈C

s
il

−√m2v
TD2l

m1∑

j1=1

Is′ij1lD1ij1Xws′

ij1l ≤ β, ∀i, l, s. (17)

Since the problem above is convex and satisfies the Slater’s condition when all the parameters are
set to zero, we have strong duality (Boyd & Vandenberghe, 2004), and thus we can state (16) as

min
γsil≥0

γs
′
il ≥0

max
v

min
{wsij1l}j1∈C

s
il

{ws
′
ij1l
}j1∈C

s
il

−L(v)∗ +

M∑

s=1

P1∑

i=1

P2∑

l=1

γsil

β −√m2v

TD2l

m1∑

j1=1

Isij1lD1ij1Xws
ij1l

(18)

+

M∑

s=1

P1∑

i=1

P2∑

l=1

γs
′

il

β +

√
m2v

TD2l

m1∑

j1=1

Is′ij1lD1ij1Xws′

ij1l

 .

(19)

Due to Sion’s minimax theorem (Sion, 1958), we can change the order the inner minimization and
maximization to obtain closed-form solutions for the maximization over the variable v. This yields
the following problem

min
γsuil ≥0

min
{wsij1l}j1∈C

s
il

{ws
′
ij1l
}j1∈C

s
il

L

M∑

s=1

P2∑

l=1

P1∑

i=1

m1∑

j1=1

√
m2D2lD1ij1X(Isij1lγsilws

ij1l − Is
′

ij1lγ
s
ilw

s′

ij1l),y

+ β

M∑

s=1

P1∑

i=1

P2∑

l=1

(γsil + γs
′

il). (20)

Finally, we introduce a set of variable changes changes as zsij1l =
√
m2γ

s
ilIsij1lws

ij1l
and zs

′

ij1l
=

√
m2γ

s′

il Is
′

ij1l
ws′

ij1l
such that (20) can be cast as the following convex problem

min
{zsij1l}j1∈C

s′
il

{zs
′
ij1l
}j1∈C

s′
il

L

M∑

s=1

P2∑

l=1

P1∑

i=1

m1∑

j1=1

D2lD1ij1X(zsij1l − zs
′

ij1l),y

+
β√
m2

M∑

s=1

P1∑

i=1

P2∑

l=1

√√√√

m1∑

j1=1

‖zsij1l‖22 +

√√√√
m1∑

j1=1

‖zs′ij1l‖22

 , (21)

where the constraint set Csil are defined as

Cs′il :=

{
{zj1}j1 : (2D2l − In)

m1∑

j1=1

D1ij1Xzj1 ≥ 0, (2D1ij1 − In)XIsij1lzj1 ≥ 0,∀j1 ∈ [m1]

}
.

Notice that (21) is a constrained convex optimization problem with 2dm1MP1P2 variables and
2n(m1 + 1)MP1P2 constraints in the set Csil.

A.5 PROOF OF PROPOSITION 1

In this section, we prove that once the convex program in (21) is globally optimized to obtain a
set of optimal solutions {zs∗ij1l, zs

′∗

ij1l
}i,j1,l,s, one can recover an optimal solution to the non-convex

19

Under review as a conference paper at ICLR 2023

training problem (4) via a simple closed-form mapping as detailed below

W∗
1k =

{
1
m2

[
Isi1lzs

∗

i1l Isi2lzs
∗

i2l . . . Isim1l
zs
∗

im1l

]
if 1 ≤ k ≤MP1P2

1
m2

[
Is′i1lzs

′∗

i1l Is′i2lzs
′∗

i2l . . . Is′im1l
zs
′∗

im1l

]
if MP1P2 + 1 ≤ k ≤ 2MP1P2

W∗
2k =

Isi1l Isi1l . . . Is11l

...
... . . .

...
Isim1l

Isim1l
. . . Is1m1l

 if 1 ≤ k ≤MP1P2

Is′i1l Is′i1l . . . Is′11l

...
... . . .

...
Is′im1l

Is′im1l
. . . Is′1m1l

 if MP1P2 + 1 ≤ k ≤ 2MP1P2

w∗3k =

{[
1 1 . . . 1

]T
if 1 ≤ k ≤MP1P2[

−1 −1 . . . −1
]T

if MP1P2 + 1 ≤ k ≤ 2MP1P2

,

where

(s, l, i) =

(⌊

k−1
P1P2

⌋
+ 1,

⌊
k−1−(s−1)P1P2

P1

⌋
+ 1, k − (s− 1)P1P2 − (l − 1)P1

)
if 1 ≤ k ≤MP1P2(⌊

k′−1
P1P2

⌋
+ 1,

⌊
k′−1−(s−1)P1P2

P1

⌋
+ 1, k′ − (s− 1)P1P2 − (l − 1)P1

)
else

with k′ = k −MP1P2. Hence, we achieve an optimal solution to the original non-convex training
problem (4) as {W∗

1k,W
∗
2k,w

∗
3k}2MP1P2

k=1 , where W∗
1k ∈ Rd×m1 , W∗

2k ∈ Rm1×m2 , and w∗3k ∈
Rm2 respectively. Next, we confirm that the proposed set of layer weights are indeed optimal by
plugging them back to both the convex and non-convex objectives.

We first verify that both the optimal convex and non-convex layer weights give the same network
output as follows (8), i.e.,

2MP1P2∑

k=1

(
(XW∗

1k)+ W∗
2k

)
+
w∗3k =

M∑

s=1

P2∑

l=1

P1∑

i=1

m1∑

j=1

D2lD1ij1X
(
zs
∗

ij1l − zs
′∗

ij1l

)
.

Now, we show that the proposed set of weight matrices for the non-convex problem achieves the
same regularization cost with (21), i.e.,
2MP1P2∑

k=1

√√√√
m2∑

j2=1

m1∑

j1=1

‖w∗1kj1‖22w∗
2

2kj1j2
w∗

2

3kj2
=

1√
m2

M∑

s=1

P1∑

i=1

P2∑

l=1

√√√√

m1∑

j1=1

‖zs∗ij1l‖2 +

√√√√
m1∑

j=1

‖zs′∗ij1l‖2

 .

Since {W∗
1k,W

∗
2k,w

∗
3k}2MP1P2

k=1 yields the same network output and regularization cost with the
optimal parameters of the convex program in (21), we conclude that the proposed set parameters for
the non-convex problem also achieves the optimal objective value p∗3, i.e.,

p∗3 = L
(

2MP1P2∑

k=1

(
(XW∗

1k)+ W∗
2k

)
+
w∗3k,y

)
+ β

2MP1P2∑

k=1

√√√√
m2∑

j2=1

m1∑

j1=1

‖w∗kj1‖22w∗
2

2kj1j2
w∗

2

3kj2
.

A.6 PROOF OF THEOREM 2

We start with defining the optimal parameters for the original and rank-k approximation of the
rescaled problem in (5) as

{(W∗
1k,W

∗
2k,w

∗
3k)}Kk=1 := argmin

θ∈Θs

L
(

K∑

k=1

(
(XW1k)+ W2k

)
+
w3k,y

)
+ β

K∑

k=1

‖w3k‖2

{(Ŵ1k,Ŵ2k, ŵ3k)}Kk=1 := argmin
θ∈Θs

L
(

K∑

k=1

((
X̂rW1k

)
+
W2k

)

+

w3k,y

)
+ β

K∑

k=1

‖w3k‖2

(22)

20

Under review as a conference paper at ICLR 2023

and the objective value achieved by the parameters trained using X̂r as

pr := L
(

K∑

k=1

((
XŴ1k

)
+
Ŵ2k

)

+

ŵ3k,y

)
+ β

K∑

k=1

‖ŵ3k‖2.

Then, we have

p∗3 = L
(

K∑

k=1

(
(XW∗

1k)+ W∗
2k

)
+
w∗3k,y

)
+ β

K∑

k=1

‖w∗3k‖2

(i)

≤ L
(

K∑

k=1

((
XŴ1k

)
+
Ŵ2k

)

+

ŵ3k,y

)
+ β

K∑

k=1

‖ŵ3k‖2 = pr

(ii)

≤ L
(

K∑

k=1

((
X̂rŴ1k

)
+
Ŵ2k

)

+

ŵ3k,y

)
+ (β +

√
m1m2Rσr+1)

K∑

k=1

‖ŵ3k‖2

≤
(
L
(

K∑

k=1

((
X̂rŴ1k

)
+
Ŵ2k

)

+

ŵ3k,y

)
+ β

K∑

k=1

‖ŵ3k‖2
)(

1 +

√
m1m2Rσr+1

β

)

(iii)

≤
(
L
(

K∑

k=1

((
X̂rW

∗
1k

)
+
W∗

2k

)

+

w∗3k,y

)
+ β

K∑

k=1

‖w∗3k‖2
)(

1 +

√
m1m2Rσr+1

β

)

(iv)

≤
(
L
(

K∑

k=1

(
(XW∗

1k)+ W∗
2k

)
+
w∗3k,y

)
+ β

K∑

k=1

‖w∗3k‖2
)(

1 +

√
m1m2Rσr+1

β

)2

= p∗3

(
1 +

√
m1m2Rσr+1

β

)2

,

where (i) and (iii) follow from the optimality definitions of the original and approximated problems
in (22). In addition, (ii) and (iv) follow from the relations below

L
(

K∑
k=1

((
XŴ1k

)
+

Ŵ2k

)
+

ŵ3k,y

)

= L

 K∑
k=1

m2∑
j2=1

[((
XŴ1k

)
+

ŵ2kj2

)
+

ŵ3kj2
−
((

X̂rŴ1k

)
+

ŵ2kj2

)
+

ŵ3kj2
+

((
X̂rŴ1k

)
+

ŵ2kj2

)
+

ŵ3kj2

]
,y

(1)

≤ L

 K∑
k=1

m2∑
j2=1

[((
XŴ1k

)
+

ŵ2kj2

)
+

ŵ3kj2
−
((

X̂rŴ1k

)
+

ŵ2kj2

)
+

ŵ3kj2

]
,y

+ L

 K∑
k=1

m2∑
j2=1

((
X̂rŴ1k

)
+

ŵ2kj2

)
+

ŵ3kj2
,y

(2)

≤ R

∥∥∥∥∥∥
K∑
k=1

m2∑
j2=1

[((
XŴ1k

)
+

ŵ2kj2

)
+

ŵ3kj2
−
((

X̂rŴ1k

)
+

ŵ2kj2

)
+

ŵ3kj2

]∥∥∥∥∥∥
2

+ L

 K∑
k=1

m2∑
j2=1

((
X̂rŴ1k

)
+

ŵ2kj2

)
+

ŵ3kj2
,y

= R

∥∥∥∥∥∥
K∑
k=1

m2∑
j2=1

(((
XŴ1k

)
+

ŵ2kj2

)
+

−
((

X̂rŴ1k

)
+

ŵ2kj2

)
+

)
ŵ3kj2

∥∥∥∥∥∥
2

+ L

 K∑
k=1

m2∑
j2=1

((
X̂rŴ1k

)
+

ŵ2kj2

)
+

ŵ3kj2
,y

(3)

≤ R
K∑
k=1

m2∑
j2=1

∥∥∥∥∥
((

XŴ1k

)
+

ŵ2kj2

)
+

−
((

X̂rŴ1k

)
+

ŵ2kj2

)
+

∥∥∥∥∥
2

∣∣ŵ3kj2

∣∣+ L

 K∑
k=1

m2∑
j2=1

((
X̂rŴ1k

)
+

ŵ2kj2

)
+

ŵ3kj2
,y

≤ R max

k∈[K],j2∈[m2]

∥∥∥∥∥
((

XŴ1k

)
+

ŵ2kj2

)
+

−
((

X̂rŴ1k

)
+

ŵ2kj2

)
+

∥∥∥∥∥
2

K∑
k=1

‖ŵ3k‖1 + L

 K∑
k=1

m2∑
j2=1

((
X̂rŴ1k

)
+

ŵ2kj2

)
+

ŵ3kj2
,y

(4)

≤ R max
k∈[K]

∥∥∥X− X̂r

∥∥∥
2

m1∑
j1=1

‖ŵ1kj1
‖2|ŵ2kj1j2

|
K∑
k=1

‖ŵ3k‖1 + L

 K∑
k=1

m2∑
j2=1

((
X̂rŴ1k

)
+

ŵ2kj2

)
+

ŵ3kj2
,y

(5)

≤
√
m1R max

k∈[K]

∥∥∥X− X̂r

∥∥∥
2

√√√√ m1∑
j1=1

‖ŵ1kj1
‖22|ŵ2kj1j2

|2
K∑
k=1

‖ŵ3k‖1 + L

 K∑
k=1

m2∑
j2=1

((
X̂rŴ1k

)
+

ŵ2kj2

)
+

ŵ3kj2
,y

21

Under review as a conference paper at ICLR 2023

(6)
=
√
m1Rσr+1

K∑
k=1

‖ŵ3k‖1 + L

 K∑
k=1

m2∑
j2=1

((
X̂rŴ1k

)
+

ŵ2kj2

)
+

ŵ3kj2
,y

≤
√
m1m2Rσr+1

K∑
k=1

‖ŵ3k‖2 + L

 K∑
k=1

m2∑
j2=1

((
X̂rŴ1k

)
+

ŵ2kj2

)
+

ŵ3kj2
,y

 ,

where we use the convexity and R-Lipschtiz property of the loss function, convexity of `2-
norm, 1-Lipschitz property of the ReLU activation, ‖x‖1 ≤

√
m‖x‖2 for x ∈ Rm, and

maxk
∑m1

j1=1 ‖ŵ1kj1‖22ŵ2
2kj1j2

≤ 1 from the rescaling in Lemma 1 for (1), (2), (3), (4), (5), and
(6) respectively.

A.7 PROOF FOR THE DUAL PROBLEM IN (3)

In order to prove the dual problem, we directly utilize Fenchel duality (Boyd & Vandenberghe,
2004). Let us first rewrite the primal regularized training problem after the application of the rescal-
ing in Lemma 1 as follows

p∗L = min
ŷ∈Rn,θ∈Θs

L (ŷ,y) + β

K∑

k=1

‖wLk‖2 s.t. ŷ =

K∑

k=1

(
(XW1k)+ . . .W(L−1)k

)
+
wLk. (23)

The corresponding Lagrangian can be computed by incorporating the constraints into objective via
a dual veriable as follows

L(v, ŷ,wLk) = L (ŷ,y)− vT ŷ + vT
K∑

k=1

(
(XW1k)+ . . .W(L−1)k

)
+
wLk + β

K∑

k=1

‖wLk‖2.

We then define the following dual function

g(v) = min
ŷ,wLk

L(v, ŷ,wLk)

= min
ŷ,wLk

L (ŷ,y)− vT ŷ + vT
K∑

k=1

(
(XW1k)+ . . .W(L−1)k

)
+
wLk + β

K∑

k=1

‖wLk‖2

= −L∗(v) s.t.
∥∥∥vT

(
(XW1k)+ . . .W(L−1)k

)
+

∥∥∥
2
≤ β, ∀k ∈ [K],

where L∗ is the Fenchel conjugate function defined as (Boyd & Vandenberghe, 2004)

L∗(v) := max
z

zTv − L (z,y) .

Hence, we write the dual problem of (23) as

p∗L = min
θ∈Θs

max
v

g(v) = min
θ∈Θs

max
v
−L∗(v) s.t.

∥∥∥vT
(
(XW1k)+ . . .W(L−1)k

)
+

∥∥∥
2
≤ β, ∀k ∈ [K].

However, since the hidden layer weights are the variables of the outer minimization, we cannot
directly characterize the optimal hidden layer weight in the form above. Thus, as the last step of the
derivation, we change the order of the minimization over θ and the maximization over v to obtain
the following lower bound

p∗L ≥ d∗L = max
v

min
θ∈Θs

−L∗(v) s.t.
∥∥∥vT

(
(XW1k)+ . . .W(L−1)k

)
+

∥∥∥
2
≤ β, ∀k ∈ [K]

= max
v
−L∗(v) s.t. max

θ∈Θs

∥∥∥vT
(
(XW1)+ . . .W(L−1)

)
+

∥∥∥
2
≤ β.

A.8 HYPERPLANE ARRANGEMENTS

Here, we review the notion of hyperplane arrangements detailed in Pilanci & Ergen (2020).

We first define the set of all hyperplane arrangements for the data matrix X as

H :=
⋃{
{sign(Xw)} : w ∈ Rd

}
,

22

Under review as a conference paper at ICLR 2023

where |H| ≤ 2n. The set H all possible {+1,−1} labelings of the data samples {xi}ni=1 via a
linear classifier w ∈ Rd. We now define a new set to denote the indices with positive signs for each
element in the set H as S :=

{
{∪hi=1{i}} : h ∈ H

}
. With this definition, we note that given an

element S ∈ S, one can introduce a diagonal matrix D(S) ∈ Rn×n defined as

D(S)ii :=

{
1 if i ∈ S
0 otherwise

.

D(S) can be also viewed as a diagonal matrix of indicators, where each diagonal entry is one if
the the corresponding sample labeled as +1 by the linear classifier w, zero otherwise. Therefore,
the output of ReLU activation can be equivalently written as (Xw)+ = D(S)Xw provided that
D(S)Xw ≥ 0 and (In −D(S))Xw ≤ 0 are satisfied. One can define more compactly these two
constraints as (2D(S)− In)Xw ≥ 0. We now denote the cardinality of S as P , and obtain the
following upperbound

P ≤ 2

r−1∑

k=0

(
n− 1

k

)
≤ 2r

(
e(n− 1)

r

)r

where r := rank(X) ≤ min(n, d) (Ojha, 2000; Stanley et al., 2004; Winder, 1966; Cover, 1965).

A.9 LOW RANK MODEL IN THEOREM 2

In Section 3.1, we propose an ε-approximate training approach that has polynomial-time complexity
even when the data matrix is full rank. Here, you can select the rank r by plugging in the desired
approximation error and network structure in equation 10. We show that the approximation error
proved in Theorem 2 can be arbitrarily small for practically relevant problems. As an example,
consider a parallel architecture training problem with `2 loss function, then the upperbound becomes
(1 +

√
m1m2σr+1

β)2, which can be arbitrarily close to one due to presence of noise component (with
small σr+1) in most datasets in practice (see Figure 4 for an empirical verification). This observation
is also valid for several benchmark datasets, including MNIST, CIFAR-10, and CIFAR-100, which
exhibit exponentially decaying singular values (see Figure 7) and therefore effectively has a low
rank structure. In addition, singular values can be computed to set the target rank and the value of
the regularization coefficient to obtain any desired approximation ratio using Theorem 2.

A.10 PROOF OF PROPOSITION 2 AND COROLLARY 1

We first review the multi-layer hyperplane arrangements concept introduced in Section 2.1 of Ergen
& Pilanci (2021c). Based on this concept, we then calculate the training complexity to globally
solve the convex program in Theorem 1.

If we denote the number of hyperplane arrangements for the first ReLU layer as P1, then from
Appendix A.8 we know that

P1 ≤ 2r

(
e(n− 1)

r

)r
≈ O(nr). (24)

In order to obtain a bound for the number of hyperplane arrangements in the second ReLU
layer we first note that preactivations of the second ReLU layer, i.e., (XW1)+ w2 can be equiv-
alently represented as a matrix-vector product form by using the effective data matrix X̄ :=
[I1D11X I2D12X . . . Im1

D1m1
X] due to the equivalent representation in (7). Therefore,

given rank(X̄) = r2 ≤ m1r

P̄2 ≤ 2

r2−1∑

k=0

(
n− 1

k

)
≤ 2r2

(
e(n− 1)

r2

)r2
≤ 2m1r

(
e(n− 1)

m1r

)m1r

.

However, notice that X̄ is not a fixed data matrix since we can choose each diagonal D1j1 among a
set {Di}P1

i=1 of size P1 due to (24) and the sign pattern Ij1 among the set {+1,−1} of size 2. Thus,
in the worst-case, we have the following upper-bound

P2 ≤ P̄2(2P1)m1 ≤ 22m1+1(e(n− 1))2m1r

mm1r−1
1 r2m1r−m1−1

≈ O(nm1r). (25)

23

Under review as a conference paper at ICLR 2023

0 100 200 300 400 500 600 700 800

SV index

0.00

0.02

0.04

0.06

0.08

N
o
r
m

a
li
z
e
d
 S

V
s

(a) MNIST-Linear scale

0 100 200 300 400 500 600 700 800

SV index

10−5

10−4

10−3

10−2

10−1

N
o
r
m

a
li
z
e
d
 S

V
s

(b) MNIST-Log scale

0 500 1000 1500 2000 2500 3000

SV index

0.00

0.02

0.04

0.06

0.08

0.10

N
o
r
m

a
li
z
e
d
 S

V
s

(c) CIFAR-10-Linear scale

0 500 1000 1500 2000 2500 3000

SV index

10−5

10−4

10−3

10−2

10−1

N
o
r
m

a
li
z
e
d
 S

V
s

(d) CIFAR-10-Log scale

Figure 7: The values of normalized singular values of the data matrix for the MNIST and CIFAR-10
datasets. As illustrated in both figures, the singular values follow an exponentially decaying trends
indicating an effective low rank structure.

Notice that given fixed scalars m1 and r, both P1 and P2 are polynomial terms with respect to the
number of data samples n and the feature dimension d.

Remark 3. Notice that Convolutional Neural Networks (CNNs) operate on the patch matrices
{Xb}Bb=1 instead of the full data matrix X, where Xb ∈ Rn×h and h denotes the filter size. Hence,
even when the data matrix is full rank, i.e., r = min{n, d}, the number of hyperplane arrangements
P1 is upperbounded as P1 ≤ O(nrc), where rc := maxb rank(Xb) ≤ h � min{n, d} (see Ergen
& Pilanci (2021a) for details). For instance, let us consider a CNN with m1 = 512 filters of size
3× 3, then rc ≤ 9 independent of data dimension n, d. As a consequence, weight sharing structure
in CNNs dramatically limits the number of possible hyperplane arrangements. This also explains
efficiency and remarkable generalization performance of CNNs in practice.

Training complexity analysis: Here, we calculate the computational complexity to globally solve
the convex program in (8). Note that (8) is a convex optimization problem with 2dm1MP1P2

variables and 2n(m1 + 1)MP1P2 constraints. Therefore, due to the upperbounds in (24) and (25)
of Appendix A.8, the convex program (8) can be globally optimized by a standard interior-point
solver with the computational complexityO(d3m3

123(m1+1)n3(m1+1)r), which is a polynomial-time
complexity in terms of n, d.

The analysis in this section can be recursively extended to arbitrarily deep parallel networks. First
notice that if we apply the same approach to obtain an upperbound on P3, then due to the mul-
tiplicative pattern in (25), we obtain P3 ≤ P ′3(2P2)m2 ≤ O(nm2m1r). In a similar manner, the
number of hyperplane arrangements in the lth layer is upperbounded as Pl ≤ O(nr

∏l−1
j=1mj), which

is polynomial in both n and d for fixed data rank r and fixed layer widths {mj}l−1
j=1.

24

Under review as a conference paper at ICLR 2023

A.11 EXTENSION TO VECTOR OUTPUTS

In this section, we extend the analysis to parallel networks with multiple outputs where the label
matrix is defined as Y ∈ Rn×C provided that there exist C classes/outputs. Then the primal non-
convex training problem is as follows

p∗v := min
θ∈Θ
L
(

K∑

k=1

fθ,k(X),Y

)
+ β

K∑

k=1

√√√√ ∑

j1,j2,...,jL

(
‖w1kj1‖22

L−1∏

l=2

w2
lkjl−1jl

‖w2
LkjL−1jL

‖2
)
.

Applying Lemma 1 and each step in the proof of Theorem 1 yield

d∗v := max
V

min
θ∈Θs

−L∗(V) s.t.
∥∥∥VT

(
(XW1k)+ . . .W(L−1)k

)
+

∥∥∥
F
≤ β, ∀k ∈ [K],

where the corresponding Fenchel conjugate function is

L∗(V) := max
Z

trace
(
ZTV

)
− L (Z,Y) .

Notice that above we have a dual matrix V instead of the dual vector in the scalar output case. More
importantly, here, we have `2 norm in the dual constraint unlike the scalar output case with absolute
value. Therefore, the vector-output case is slightly more challenging than the scalar output case and
yields a different regularization function in the equivalent convex program.

The rest of the derivations directly follows the steps in Section A.4 and Sahiner et al. (2021b).

25

	Introduction
	Parallel Neural Networks
	Our Contributions
	Overview of Our Results

	Parallel networks with three layers
	Polynomial-time training for arbitrary data
	Representational power: Two versus three layers

	Experiments
	Related Work
	Concluding Remarks
	Supplementary Material
	 Supplementary Material
	Appendix
	Additional numerical results and details
	Parallel ReLU networks
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Theorem 2
	Proof for the dual problem in (3)
	Hyperplane arrangements
	Low rank model in Theorem 2
	Proof of Proposition 2 and Corollary 1
	Extension to vector outputs

