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Abstract

The transition matrix methods have garnered sustained attention as a class of1

techniques for label-noise learning due to their simplicity and statistical consis-2

tency. However, existing methods primarily focus on class-dependent noise and3

lack applicability for instance-dependent noise, while some methods specifically4

designed for instance-dependent noise tend to be relatively complex. To address5

this issue, we propose an extended model based on transition matrix in this paper,6

which preserves simplicity while extending its applicability to handle a broader7

range of noisy data beyond class-dependent noise. The proposed algorithm’s con-8

vergence and generalization properties are theoretically analyzed under certain9

assumptions. Experimental evaluations conducted on various synthetic and real-10

world noisy datasets demonstrate significant improvements over existing transition11

matrix-based methods. Upon acceptance of our paper, the code will be open12

sourced.13

1 Introduction14

Deep neural networks have achieved remarkable success in various fields in recent years, especially15

in classification problems with labeled data [32, 2]. Compared to traditional methods, deep neural16

networks have greatly improved performance but their effects heavily depend on the accuracy of the17

provided labels. Bringing data with corrupted labels into the neural network model without special18

treatment can severely affect the prediction performance [8, 50]. However, acquiring accurately19

annotated data in reality can be very expensive, so a larger amount of data comes from the Internet or20

annotations by non-professional annotators. Therefore, it is currently worth studying and promoting21

how to alleviate the damage caused to the model when using noisy labels and make the model more22

robust, which is known as the problem of label-noise learning or called learning with noisy labels23

[29, 36, 10, 43, 41, 1, 35].24

Various methods have been proposed for label-noise learning. Existing methods can be classified into25

several categories. One of them is to design novel loss functions or network structures [53, 39, 28],26

which reduce the impact of noisy labels to make the model more robust. Another category is sample27

selection based on sample loss or feature extracted, dividing samples into the clean dataset and the28

noisy dataset [4, 10, 13, 19]. Then they relabel the noisy labels [33, 15], or clear the noisy labels29

and use semi-supervised methods for learning [3, 19]. These methods are common recently and30

have achieved some good results. However, the process of sample selection is relatively subjective,31

and statistical consistency is lost after the selection, and most of them lack theoretical support.32

In contrast, transition matrix methods [9, 43, 22, 14, 59] have statistical consistency and usually33

have corresponding theoretical analysis as support, attracting continued attention and occupying an34

important position in various learning algorithms with label noise.35
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The core idea of transition matrix methods is to use a matrix measuring the transition probability from36

the distribution of true label to the distribution of observed noisy label. If an accurate transition matrix37

can be estimated and combined with observable data to obtain the noisy class-posterior probability, the38

distribution of clean label can be inferred for network learning. Therefore, estimating the transition39

matrix is the key to this type of method. However, it is infeasible to estimate an individual transition40

matrix for each sample without additional conditions [26]. Previous methods mostly focus on class-41

dependent and instance-independent label noise problems [43, 22, 51], assuming that the transition42

matrix is fixed for all samples. Among these methods, some [31, 43] assume the existence of anchor43

points to estimate the transition matrix, while other methods obtain the optimal estimation by adding44

a regularization term for matrix structure to weaken the anchor points assumption [22, 51]. However,45

these methods are not suitable for instance-dependent label noise and complex real-world data because46

they estimate only one matrix for all samples. Moreover, when the estimation of noisy class-posterior47

distribution is inaccurate, the estimation of the transition matrix may be easily affected [47], thereby48

affecting the estimation of the clean label distribution. Although some methods [42, 58, 52, 20] have49

recently been designed to use special networks or structures for instance-dependent noise situations,50

the estimation errors for them are still large, and the computational cost is too high to lose the concise51

characteristic of transition matrix methods.52

Addressing the limitations of current transition matrix-based methods, this paper introduces an53

extended model for transition matrix that extends their applicability from class-dependent noise to54

a broader range of label-noise data without requiring additional techniques such as clustering or55

self-supervised learning. Inspired by methods that handle noise using sparse structures [57, 25], our56

model combines a global transition matrix with a sparse implicit regularization term [31, 25] for57

fitting the distribution of noisy labels across instances, replacing the need for estimating a separate58

transition matrix for each sample. This approach allows us to incorporate instance-level information59

into the model, expanding its capability beyond class-dependent noise scenarios while avoiding the60

unidentifiability and computational complexity of estimating instance-dependent matrices.61

The structure of the following sections is as follows. In Section 2, we give relevant definitions and62

propose our method. In section 3 we conduct a theoretical analysis of the proposed method on a63

simplified model. In Section 4, we conduct experiments on various synthetic and real-world noisy64

datasets, comparing with other transition matrix-based methods. We conclude the paper in Section 5.65

In addition, we provide a more specific review of related works in Appendix A, proofs of theorems in66

Appendix B, and experimental details in Appendix C.67

The main contributions of this paper are:68

• We propose a novel extended model for transition matrix, incorporating sparse implicit regu-69

larization, which enables the extension of transition matrix methods from class-dependent70

noise to a broader range of noisy label data while maintaining simplicity, without the need71

for excessive additional framework design or sophisticated techniques.72

• Under certain assumptions, we provide theoretical analysis on the convergence and gener-73

alization results of the algorithm on a simplified model. We prove the theorems proposed74

accordingly, giving support for the effectiveness of the proposed method.75

• Our proposed method achieves significant improvements compared to previous transition ma-76

trix methods on both synthetic and real-world noisy label datasets, and produces competitive77

results without the need for additional auxiliary techniques.78

2 Methodology79

In this section, we give relevant definitions and propose a novel model that extends the transition80

matrix with implicit regularization (TMR) from class-dependent noise to more label-noise. It is a81

convenient and end-to-end model. We will formulate the method in detail and illustrate it theoretically.82

2.1 Preliminaries83

Let X ⊂ Rd be the feature space, Y = {1, 2, · · · , C} be the label space, where C is the number84

of classes. Random variables (X,Y ), (X, Ỹ ) ∈ X × Y denote the underlying data distributions85

with true and noisy labels respectively. In general, we can not observe the latent true data samples86
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D(N) = {(xi, yi)}Ni=1, but can only obtain the corrupted data D̃(N) = {(xi, ỹi)}Ni=1, where ỹ ∈ Y is87

the noisy label corrupted from the true label y, while denote corresponding one-hot label as y and ỹ.88

Transition matrix methods use a matrix T (x) ∈ [0, 1]C×C to represent the probability from clean89

label to noisy label, where the ij-th entry of the transition matrix is the probability that the instance x90

with the clean label i corrupted to a noisy label j. The matrix satisfies the requirement that the sum91

of each row
∑C

j=1 Tij(x) is 1, and usually has the requirement for Tii(x) > Tij(x),∀j ̸= i. The92

set of possible values for T is denoted as T =
{
T ∈ [0, 1]C×C |

∑C
j=1 Tij = 1,Tii > Tij ,∀j ̸= i

}
.93

Let P (Y |X = x) = [P (Y = 1|X = x), · · · , P (Y = C|X = x)]⊤ be the clean class-posterior94

probability and P (Ỹ |X = x) = [P (Ỹ = 1|X = x), · · · , P (Ỹ = C|X = x)]⊤ be the noisy95

class-posterior probability, the formula can be write as:96

P (Ỹ |X = x) = T (x)⊤P (Y |X = x). (1)

Though estimating the transition matrix and the noisy class-posterior probability, the clean class-97

posterior probability can be inferred by P (Y |X = x) = T (x)−⊤P (Ỹ |X = x), where the symbol98

−⊤ denotes the transpose of the inverse matrix. Alternatively, the neural network can be utilized to99

fit the clean label distribution by the loss function:100

L =
1

N

N∑
i=1

ℓ
(
T (xi)

⊤fθ(xi), ỹi

)
, (2)

where fθ(·) : X → ∆C−1 (∆C−1 ⊂ [0, 1]C is the C-dimensional simplex) is a differentiable101

function represented by a neural network with parameters θ and ℓ is a loss function usually using102

cross-entropy (CE) loss. Therefore, the key to addressing the problem in this class of methods lies in103

how to estimate the transition matrix.104

Since it is difficult to estimate the transition matrix T (x) individually for each sample, the majority105

of existing methods [31, 10, 22] focus on studying the class-dependent and instance-independent106

transition matrix, i.e., T (x) = T for ∀x. However, these methods are limited by the assumption107

of class-dependence and cannot be directly applied to instance-dependent label noise with good108

effectiveness. Our objective is to make improvement and extension based on this limitation.109

2.2 Transition Matrix with Implicit Regularization110

The main issue with directly applying class-dependent transition matrix methods to instance-111

dependent noise lies in using a fixed matrix T , multiplying with clean class-posterior probability112

P (Y |X), i.e., T⊤P (Y |X) is not always equal to the noisy class-posterior probability P (Ỹ |X),113

even if the probability values P (Y |X) and P (Ỹ |X) are correctly estimated. Therefore, for a broader114

range of label-noise scenarios, relying solely on a fixed matrix T is insufficient.115

The core idea of our proposed model is to introduce a residual term r(X) to fit the distribution116

difference between P (Ỹ |X) and T⊤P (Y |X), where r(X) is a C-dimensional vector for each X .117

It can be transformed into using T⊤P (Y |X) + r(X) to fit P (Ỹ |X).118

Intuitively, if an overall relatively suitable transition matrix T is applied to T⊤P (Y |X), then the119

difference between it and the probability P (Ỹ |X) should be small. Inspired by methods that handle120

noise using sparse structures [57, 25], we utilize a sparse structure to model the residual term r.121

Follow the works [30, 31, 25], using implicit regularization to represent sparse structures is a method122

that facilitates updates and provides more stable learning performance. We exploit this technique123

to model the residual term as ri = ui ⊙ ui − vi ⊙ vi with respect to training sample xi, where124

ui, vi are all C-dimensional vectors and ⊙ denotes an entry-wise Hadamard product. As usual, we125

use a deep neural network fθ(·) to learn the true label probability yi w.r.t xi. So for the noisy label126

probability distribution ỹi given by the data, the model use T⊤fθ (xi) + ui ⊙ ui − vi ⊙ vi to fit it.127

Bring it into the loss function as:128

1

N

N∑
i=1

ℓ
(
T⊤fθ(xi) + ui ⊙ ui − vi ⊙ vi, ỹi

)
. (3)
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Due to the potential existence of different T and P (Y |X = x) such that P (Ỹ |X = x) =129

T⊤
1 P1(Y |X = x) = T⊤

2 P2(Y |X = x), we add a regularization term of the volume of the130

matrix Vol(T ) = log det(T ) to loss function as [22] to ensure the transition matrix is identifiable.131

The total loss function applied in our proposed method is:132

L(θ,T , {ui,vi}Ni=1) =
1

N

N∑
i=1

ℓ
(
T⊤fθ(xi) + ui ⊙ ui − vi ⊙ vi, ỹi

)
+ λ · log det(T ), (4)

where we estimate parameters according to:133

θ̂, T̂ , {ûi, v̂i}Ni=1 = argmin
θ,T ,{ui,vi}N

i=1

L(θ,T , {ui,vi}Ni=1). (5)

We use the gradient descent method to update the parameters to be learned above. This method134

constitutes our proposed extended Transition Matrix model with sparse implicit Regularization135

(TMR).The method steps are summarized in Algorithm 1 in Appendix B.1.136

Through our model, the estimation of individual transition matrices for each sample is replaced137

by the estimation of the global matrix and the sparse residual term. In this way, the number of138

parameters for the transition matrix is reduced from O(NC2) to O(NC), which greatly reduces the139

difficulty of matrix estimation and computational consumption when C is large. In addition, the140

incorporation of sparse implicit regularization in combination with the transition matrix makes the141

learning optimization process concise and efficient.142

2.3 Integration with Contrastive Learning143

To further improve the effectiveness of our approach, we first utilize contrastive learning as a pre-144

trained feature extractor, followed by label learning. In this work, we also examine the enhancement145

of the TMR method by incorporating the SimCLR method from contrastive learning as a feature146

learner as pre-trained encoder, then resulting in TMR+.147

3 Theoretical Analysis148

In this section, we want to analyze the effectiveness of the proposed method theoretically under149

specific conditions related to label-noise generation. However, it is difficult to give a direct analysis150

of the deep neural network model. So we follow the theoretical analysis method of [25] to simplify151

the proposed model and study on an approximately linear structure to demonstrate the effectiveness152

of our proposed model.153

3.1 Model Simplification and Convergence Analysis154

The first to solve is the construction of an approximate simplified model for theoretical analysis of155

our algorithm. Based on [12], we use first-order Taylor expansion to approximate the deep neural156

network fθ(·), which is highly over-parameterized:157

fθ(x) ≈ fθ0
(x) +

(
∂f⊤

θ (x)

∂θ

∣∣∣
θ=θ0

)⊤

· (θ − θ0), (6)

where fθ(x) is a C-dimensional vector, θ ∈ Rp (p ≫ N ) denotes the parameters of the neural158

network, ∂f⊤
θ (x)
∂θ

∣∣∣
θ=θ0

is a p × C matrix, θ0 is the initialization of θ, symbol · represents matrix159

multiplication. For simplicity, we drop the constant term in the derivation and abbreviate ∂f⊤
θ (x)
∂θ

∣∣∣
θ=θ0

160

as∇θ0
f(x). The approximate formula becomes:161

fθ(x) ≈ ∇θ0
f(x)⊤ · θ. (7)

Through this processing, we simplify the deep neural network into an approximately linear structure,162

and we use fθ(x) = ∇θ0
f(x) · θ in the following theoretical analysis. We use a N ×C matrix F to163

represent the neural network predictions on the overall training dataset {(xi, yi)}Ni=1:164

F =

 f⊤
θ (x1)

...
f⊤
θ (xN )

 . (8)
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In order to be written in matrix form, we rewrite the formula (7) in vector expansion form:165

f⊤
θ (x) = [fθ(x)1, · · · , fθ(x)C ] = vec(∇θ0f(x))

⊤ ·Θ, (9)

where vec(A) denotes matrix expansion of a m× n matrix A by column vectors:166

vec(A) = [A1,1, · · · ,Am,1, · · · ,A1,n, · · · ,Am,n]
⊤
, (10)

and Θ is a CP ×C matrix, denoting the Kronecker product of C ×C identity matrix IC with θ, i.e.,167

Θ = IC ⊗ θ =


θ 0 · · · 0
0 θ · · · 0
...

...
. . .

...
0 0 · · · θ


CP×C

. (11)

We use a Jacobian matrix G ∈ RN×CP to denote the partial derivatives of the network for each168

sample:169

G =

 vec(∇θ0
f(x1))

⊤

...
vec(∇θ0f(xN ))⊤

 . (12)

Then, an aggregate form of formula (7) is:170

F = G ·Θ. (13)

Now we give a simplified model assumption that there exists an underlying ground truth parameter171

θ∗ such that corresponding F∗ generated by equation (13) fits the true label distribution for sample.172

Meanwhile, there exist potentially true transition matrix T∗ and sparse residual matrix R∗ =173

[r(x1), · · · , r(xN )]
⊤ made up of the residual terms r(x) for sample defined in Section 2.2. We174

assume that the N × C observed noisy label matrix Ỹ = [ỹ1, · · · , ỹN ]
⊤ is generated by:175

Ỹ = F∗ · T∗ +R∗. (14)

Expanded form after bringing in G and θ∗ is:176

Ỹ = G · (IC ⊗ θ∗) · T∗ +R∗. (15)

The problem to be studied is transformed into given G and observed Ỹ generated by formula (15),177

how to estimate the underlying θ∗, T∗ and R∗. At this time, our proposed loss function (4) to be178

optimized transforms into:179

L(θ,T ,U ,V ) = L
(
G · (IC ⊗ θ) · T +U ⊙U − V ⊙ V , Ỹ

)
+ λ · log det(T ), (16)

where L is matrix form from ℓ in formula (4), U = [u1, · · · ,uN ]⊤, V = [v1, · · · ,vN ]⊤, R =180

U ⊙U − V ⊙ V .181

Intuitively, the parameters θ,T ,R are unidentifiable without other conditions due to the model (15)182

is over-parameterized. We need to add some conditional assumptions to ensure the convergence183

of parameters. The required conditions are summarized in the Appendix B.2, such as the low rank184

condition of G, sparsity of R∗, special small initialization setting, sufficiently scattered assumption185

[22] of clean class-posterior probability distribution, etc. Under these conditions, we try to analyze186

the effectiveness of our algorithm. For the simplicity of proof, we use square loss in formula (16),187

which can be analogized to cross-entropy loss. The parameter optimization problem (5) becomes:188

θ̂, T̂ , Û , V̂ = argmin
θ,T ,U ,V

1

2
∥G · (IC ⊗ θ) · T +U ⊙U − V ⊙ V − Ỹ ∥22 + λ · log det(T ). (17)

Based on this, the convergence result of parameters estimation is as follows:189

Theorem 3.1. (Convergence) Under the conditions in B.2, the estimated parameters θ̂, T̂ , R̂ for190

optimization problem (17) based on Algorithm 1 converge to the ground truth solution θ∗, T∗, R∗.191

The proof can be seen in Appendix B.3. Theorem 3.1 shows that under a simplified linear model and192

some conditions, one can use our proposed algorithm to obtain the consistent estimation of network193

parameters θ∗ applicable to learning with clean label data. At the same time, we can estimate the194

overall transition probability T∗ from the correct label to the noisy label that we observed. Theorem195

3.1 provides theoretical support for the effectiveness of our proposed method.196
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3.2 Generalization Analysis197

In addition to convergence, the generalization of the proposed result is also worth exploring. It is198

finite to the amount of noisy label training data D̃(N) = {(xi, ỹi)}Ni=1 we can observe, which is199

considered to be randomly sampled from the overall infinite noisy data D̃. We want to explore how200

well the parameters θ̂(N), T̂(N) estimated by the proposed algorithm with finite data D̃(N) fit when201

applied to the overall data D̃.202

We define a function class about the data as203

F :=
{
ℓ(T⊤fθ(·) + γ(·), ·) : X × Y → R+,∀θ ∈ Rp,T ∈ T

}
, (18)

where γ(·) is the true residual term for each sample. Each element in F is a function about204

data sample. It is worth mentioning that the term of log det(T ) can be incorporated into the205

loss function ℓ, without explicitly writing it separately for simplicity. Denote the ϵ-cover of F206

as NF = N (ϵ,F , ∥ · ∥∞), the average losses on D̃(N) and D̃ are L(θ(N),T(N),R(N); D̃(N)) and207

L(θ,T ,R; D̃) respectively. According to Theorem 3.1, for any fixed ϵ > 0, there exists estimated208

parameters θ̂(N), T̂(N), R̂(N) obtained by our algorithm such that:209

L(θ̂(N), T̂(N), R̂(N); D̃(N)) ≤ L(θ(N),T(N),R
∗
(N); D̃(N)) + ϵ, ∀θ(N) ∈ Rp,T(N) ∈ T (19)

where R∗
(N) is the true residual terms for D̃(N). If we know the ground truth R∗, we have the210

following result:211

Theorem 3.2. Suppose the loss function is bounded by 0 ≤ ℓ(·, ·) ≤M . For any δ > 0, then with212

probability at least 1− δ we have213

L(θ̂(N), T̂(N),R∗; D̃) ≤ inf
θ∈Rp,T∈T

L(θ,T ,R∗; D̃)+M

√
ln(2NF/δ)

2n
+M

√
ln(2/δ)

2n
+3ϵ. (20)

The proof can be found in Appendix B.4, using Theorem 2 in [48] as a reference. For any fixed ϵ > 0,214

as n continues to increase, the terms
√

ln(2NF/δ)
2n and

√
ln(2/δ)

2n on the right side of the inequality215

(20) tend to 0. Since the ϵ can be arbitrarily small, the right side of the inequality (20) can be bounded.216

Looking back at the optimization target (17), we can find that the Theorem 3.2 states the estimators217

θ̂(N), T̂(N) based on finite data D̃(N) can also be applied relatively effectively to wider data D̃ as218

long as they are randomly generated from the same pattern. It shows the generalization result of our219

algorithm, indicating that the estimation θ̂(N), T̂(N) can be applied to new data and only the residual220

terms R need to be estimated separately.221

4 Experiments222

In this section, we present experimental findings to showcase the effectiveness of our proposed223

method compared to other methods. We evaluate our approach on both synthetic instance-dependent224

noisy datasets and real-world noisy datasets. More experimental details can be found in the Appendix225

C.226

4.1 Datasets227

We conduct experiments on following image classification datasets: CIFAR-10 and CIFAR-100 [16],228

CIFAR-10N and CIFAR-100N [40], Clothing1M [44], Webvision and ILSVRC12 [21]. Among229

them, CIFAR-10 and CIFAR-100 both have 32 × 32 × 3 color images including 50,000 training230

images and 10,000 test images. CIFAR-10 has 10 classes while CIFAR-100 has 100 classes. We231

generate instance-dependent noisy data on CIFAR-10 and CIFAR-100 with noise rates ranging from232

10% to 50%, following the same generation method as in [42]. CIFAR-10N and CIFAR-100N are233

manually annotated by human annotators, existing noisy labels within them. Clothing1M is a real-234

world dataset consisting of 1 million training images, consisting of 14 categories. WebVision contains235

2.4 million images crawled from the websites using the 1,000 concepts in ImageNet ILSVRC12, but236

only the first 50 classes of the Google image subset are used in our experiments. For the validation237

set selection in our TMR method, we randomly sampled 10 samples from each observed class for238

each dataset to form the validation set, while the remaining samples were used for the training set.239
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4.2 Experimental Setup240

We conduct the experiments using NVIDIA 3090Ti graphics cards. During the training process, we241

update the transition matrix using the Adam optimization method, the initialization is consistent242

with [22]. While the updates for other parameters are performed using the stochastic gradient243

descent (SGD) optimization method. More specifically, for CIFAR-10/10N, we use ResNet-18 as244

the backbone network with 300 epochs, batch size 128, learning rate for network is 0.05, 0.0005 for245

transition matrix and divided by 10 after the 30th and 60th epoch. For CIFAR-100/100N, we use246

ResNet-34 network with the same 300 epochs, batch size 128, while learning rate for network is 0.05,247

0.0002 for transition matrix and divided by 10 after the 30th and 60th epoch. For clothing1M, we248

use a ResNet-50 pre-trained with 10 epochs, batch size 64, learning rate 0.002 for network, 0.0001249

for transition matrix and divided by 10 after the 5th epoch. We use InceptionResNetV2 network250

on Webvision, with 100 epochs, batch size 32, learning rate 0.02 for network, 0.0005 for transition251

matrix and divided by 10 after the 30th and 60th epoch. For ILSVRC12, we directly use the model252

trained on Webvision, following the common setting in other papers in this field.253

4.3 Comparison Methods254

In our experiments, we included the following commonly used baseline methods for instance-255

dependent transition matrix estimation and comparison: (1) GCE [53], (2) Forward [31], (3) DMI256

[45], (4) VolMinNet [22], (5) PeerLoss [27] (6) BLTM [46], (7) PartT [42], (8) MEIDTM [6], (9)257

SOP [25] as an implicit regularization method for comparison, as well as state-of-the-art methods258

for comparison purposes: (10) Co-teaching [10], (11) ELR+ [24], (12) DivideMix [19], (13) SOP+259

[25], (14) CC [54], (15) PGDF [5], (16) DISC [23].260

Table 1: Test accuracy with instance-dependent noise on CIFAR-10/100.
CIFAR-10

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%
CE 88.86±0.23 86.93±0.17 82.42±0.44 76.68±0.23 58.93±1.54

GCE 90.82±0.05 88.89±0.08 82.90±0.51 74.18±3.10 58.93±2.67
Forward 91.71±0.08 89.62±0.14 86.93±0.15 80.29±0.27 65.91±1.22

DMI 91.43±0.18 89.99±0.15 86.87±0.34 80.74±0.44 63.92±3.92
VolMinNet 89.97±0.57 87.01±0.64 83.80±0.67 79.52±0.83 61.90±1.06
PeerLoss 90.89±0.07 89.21±0.63 85.70±0.56 78.51±1.23 59.08±1.05
BLTM 90.45±0.72 88.14±0.66 84.55±0.48 79.71±0.95 63.33±2.75
PartT 90.32±0.15 89.33±0.70 85.33±1.86 80.59±0.41 64.58±2.86

MEIDTM 92.91±0.07 92.26±0.25 90.73±0.34 85.94±0.92 73.77±0.82
SOP 93.58±0.31 93.07±0.45 92.42±0.43 89.83±0.77 82.52±0.97
TMR 94.45±0.17 93.90±0.21 93.14±0.20 91.82±0.31 87.04±0.42

CIFAR-100
IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE 66.55±0.23 63.94±0.51 61.97±1.16 58.70±0.56 56.63±0.69
GCE 69.18±0.14 68.35±0.33 66.35±0.13 62.09±0.09 56.68±0.75

Forward 67.81±0.48 67.23±0.29 65.42±0.63 62.18±0.26 58.61±0.44
DMI 67.06±0.46 64.72±0.64 62.80±1.46 60.24±0.63 56.52±1.18

VolMinNet 67.78±0.62 66.13±0.47 61.08±0.90 57.35±0.83 52.60±1.31
PeerLoss 65.64±1.07 63.83±0.48 61.64±0.67 58.30±0.80 55.41±0.28
BLTM 68.42±0.42 66.62±0.85 64.72±0.64 59.38±0.65 55.68±1.43
PartT 67.33±0.33 65.33±0.59 64.56±1.55 59.73±0.76 56.80±1.32

MEIDTM 69.88±0.45 69.16±0.16 66.76±0.30 63.46±0.48 59.18±0.16
SOP 74.09±0.52 73.13±0.46 72.14±0.46 68.98±0.58 64.24±0.86
TMR 76.96±0.25 75.94±0.32 74.87±0.45 72.56±0.60 69.85±0.56

4.4 Experimental Results on Synthetic Datasets261

We primarily validated our TMR method against previous instance-based transition matrix methods262

on synthetic CIFAR-10/100 noise datasets. These methods mainly focus on estimating the transition263

matrix and do not leverage advanced self-supervised or semi-supervised techniques. We performed 5264
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independent runs for each experimental configuration, and the average values and standard deviations265

of each experiment are presented in Table 1.266

The results demonstrate that our proposed TMR method outperforms other methods of the same267

category across various noise rates. It is evident that traditional transition matrix methods such as268

Forward and VolMinNet exhibit subpar performance when handling instance-dependent noise. On269

the other hand, specialized transition matrix methods designed for instance-dependent noise, such as270

ParT and MEIDTM, still show significant gaps compared to our method.271

Furthermore, as the noise rates increase, the test accuracy of existing transition matrix methods272

significantly decline. This is particularly pronounced in the case of CIFAR-100 with 50% instance-273

dependent noise (IDN) data, where all transition matrix methods achieve test accuracy below 60%.274

In contrast, our proposed TMR method achieves a remarkable test accuracy of 69.85%, showcasing275

its exceptional performance. That demonstrates relatively robust performance of TMR with only a276

slight decrease as the noise rate increases.277

It is worth mentioning that SOP [25], as a method that also applies implicit regularization based278

on sparsity assumptions, achieves comparable performance to our method when the noise rates are279

low. However, it still falls short of our method’s performance. As the noise rate increases, SOP is280

more adversely affected by the noise due to its reliance on the sparsity assumption. In contrast, our281

proposed TMR method effectively estimates the overall trend by utilizing the transition matrix and282

combines it with sparsity, thereby demonstrating robustness even in the presence of higher noise283

rates. For instance, on CIFAR-10/100 with a 10% noise rate, TMR outperforms SOP by 0.87 and284

2.87 percentage points, respectively. When the noise rate increases to 50%, TMR surpasses SOP by285

4.52 and 5.61 percentage points, respectively. This clearly demonstrates the general effectiveness of286

our method in handling label noise learning across various noise rates.287

Table 2: Test accuracy on CIFAR-10N and CIFAR-100N.
CIFAR-10N CIFAR-100N

Aggregate Random 1 Random 2 Random 3 Worst Noisy
CE 87.77±0.38 85.02±0.65 86.46±1.79 85.16±0.61 77.69±1.55 50.50±0.66

Forward 88.24±0.22 86.88±0.50 86.14±0.21 87.04±0.35 79.49±0.46 57.01±1.03
Co-teaching 91.20±0.13 90.33±0.13 90.30±0.17 90.15±0.18 83.83±0.13 60.37±0.27

ELR+ 94.83±0.10 94.43±0.41 94.20±0.24 94.34±0.22 91.09±1.60 66.72±0.07
DivideMix 95.01±0.71 95.16±0.19 94.89±0.23 95.03±0.20 92.56±0.42 71.13±0.48

SOP+ 95.61±0.13 95.28±0.13 95.31±0.10 95.39±0.11 93.24±0.21 67.81±0.23
PGDF 95.35±0.12 94.95±0.21 94.78±0.34 94.92±0.28 94.22±0.29 67.76±0.35
TMR+ 96.06±0.21 95.96±0.17 95.74±0.31 95.88±0.14 94.91±0.22 70.31±0.28

4.5 Experimental Results on Real-world Datasets288

In addition to comparing with transition matrix methods, we also enhanced our method, TMR, by289

incorporating SimCLR for feature learning, as TMR+. We compared TMR+ with other state-of-the-290

art methods on multiple real-world noisy datasets, and the results are presented in Table 2 and Table291

3.292

Table 3: Test accuracy on Clothing1M, Webvision and ILSVRC12.
Clothing1M Webvision ILSVRC12

CE 69.1 - -
Forward 69.8 61.1 57.3

Co-teaching 69.2 63.6 61.5
ELR+ 74.81 77.78 70.29

DivideMix 74.76 77.32 75.20
SOP+ 74.98 77.60 75.29

CC 75.40 79.36 76.08
PGDF 75.19 81.47 75.45
DISC 73.72 80.28 77.44
TMR+ 75.42 82.06 77.65
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The results demonstrate that regardless of the type of noise labels, whether it is aggregated, random,293

or the worst-case scenario in CIFAR-10N, as well as in CIFAR-100N with more label categories, our294

method consistently achieves the best results in handling real-world noise. When dealing with large295

datasets like Clothing1M and complex image datasets like Webvision, TMR+ also achieves excellent296

results compared to to other SOTA methods like CC, PGDF and DISC.297

Through extensive experiments on five real-world datasets, we demonstrate that our TMR method298

can significantly benefit from combining with self-supervised methods such as contrastive learning,299

indicating that high-quality features can greatly enhance our original TMR method. TMR is a300

plug-and-play model, where the feature extraction part can be unrelated to TMR itself and be replaced301

with other similar methods without requiring additional special handling.302

Table 4: Ablation study of TMR, IR represents implicit regularization and TM represents transition
matrix.

CIFAR-10 CIFAR-100
IDN-0.2 IDN-0.4 IDN-0.2 IDN-0.4

w/o IR 90.25 83.31 66.09 62.47
w/o TM 93.36 89.67 72.78 68.59

TMR 93.90 91.82 75.94 72.56

4.6 Ablation Study303

Besides the aforementioned experiments, we conducted ablation studies on proposed TMR method to304

assess the importance of each component. Table 4 presents the comparative results under 20% and305

40% instance-dependent noise rates, where "w/o" denotes "without", "TM" represents the transition306

matrix, and "IR" the represents implicit regularization. From the results, it can be observed that the307

absence of either IR or TM significantly affects the performance of our TMR method. Removing IR308

has a greater impact, particularly in the case of instance-dependent noise, resulting in a substantial309

decrease compared to TMR. While removing TM yields similar results on CIFAR-10 with a 20%310

noise rate, the difference becomes apparent when the noise rate increases to 40% or when applied311

to more complex datasets like CIFAR-100. These results indicate that both the transition matrix312

and implicit regularization term are crucial components in our model, highlighting the innovation of313

combining these two aspects in our method.314

5 Conclusion315

We propose an extended model for transition matrix that firstly combines it with sparse implicit316

regularization, enabling the extension of transition matrix methods from class-dependent noise to a317

broader range of noise scenarios while maintaining the simplicity of the model. The effectiveness of318

our method is theoretically analyzed under certain assumptions and validated through experiments319

on various noisy datasets. Additionally, our method can be enhanced by combining with pre-trained320

feature extractor such as contrastive learning, achieving state-of-the-art performance.321
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A Related Works485

A.1 Transition Matrix Methods486

Most previous transition matrix methods focus on class-dependent label noise to simplify the esti-487

mation difficulty. Some of the early methods [31, 43, 47] usually assume the existence of anchor488

points and make the transition matrix identifiable by finding anchor points or approximate anchor489

points. To mitigate the anchor point assumption, VolMinNet [22] and TVD [51] add different forms490

of regularization for the transition matrix respectively to make it identifiable. While other methods491

[7, 17] try setting up unique network structure to estimate the transition matrix. Besides, [34, 48]492

utilize structures like meta-learning to estimate the transition matrix, but may require more clean data493

and computational consumption. Although the above methods are designed to handle class-dependent494

label noise, it is not suitable when encountering instance-dependent noise or real-world noisy data.495

However, it is not feasible to estimate a transition matrix individually for each sample without other496

assumptions or multiple noisy labels [26]. In order to achieve an approximate estimation of the497

instance-dependent transition matrix, [9] uses an adaptation layer to estimate the transition matrix498

based on each sample’s output, but the error is large due to the influence of the initial value. While499

[46] uses a separate network to estimate the transition matrix based on the Bayesian label. Some500

methods [42, 38, 58, 59] learn a part-dependent or group-dependent matrix through clustering, which501

is a compromise estimation method lies between instance-dependent and class-dependent methods.502

Other methods [6, 14] utilize similarity in feature space to assist transition matrix learning. Although503

these instance-dependent transition matrix methods achieve identifiability through special treatments,504

they are usually relatively complex and have larger errors, which is contrary to the convenient and505

simple characteristics of transition matrix methods.506

A.2 Implicit Regularization507

Implicit regularization can be regarded as a statistical method for sparsity, playing the role of508

minimizing L1 loss in sparse noise learning and being currently used in various models [55, 37, 49,509

18, 56]. Among these methods, SOP [25] is the one worthy of special attention, which is related510

to our method. SOP also uses implicit regularization for noisy label learning, which gives a sparse511

representation of the residual term between prediction and observed noisy label. However, it does not512

take advantage of the overall transfer probability of noise and the noise sparsity assumption does not513

apply to high noise rates situation, so its performance on large noise rates data is relatively weak. We514

will compare it with our proposed method by experimental results specifically in Section 4.515

B Algorithm and proofs516

B.1 Algorithm517

The steps of our TMR algorithm are shown in detail in Algorithm 1.518

B.2 Conditions519

Condition 1. For optimization problem (17), initialize parameters in the algorithm 1 with ui = t1,520

v = t1, where 1 are vectors of all 1, t is a small value scalar. There exists a given α0 > 0 such that521

the learning rates of gradient descent satisfy lr(u) = lr(v) = αlr(θ), α < α0.522

Condition 2. Denote the rank of G in formula (15) as r, the number of sparse nonzero entries of R∗523

is k, P is the matrix of row vectors in SVD decomposition of G. Define s = N
r max1≤i≤N∥P⊤ei∥22.524

Then k, r, s satisfy 4k2rs < N .525

Condition 3. The row vectors of matrix F in formula (14) are sufficiently scattered, which is a526

weakened requirement of the anchor points assumption can be found in Definition 2 of [22].527

B.3 Proof of Theorem 3.1528

Proof. Denote Q = (IC ⊗ θ) · T , the optimization problem in (17) can be written as:529

min
1

2
∥G ·Q+U ⊙U − V ⊙ V − Ỹ ∥22 + λ · log det(T ). (21)
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Algorithm 1 Extended Transition Matrix Model with Sparse Implicit Regularization (TMR)

Input: Training data {(xi,yi)}Ni=1, network fθ(·), coefficient λ, learning rate τθ, τu, τv, τT , batch
size m, epoch number E, transition matrix update frequency k.
Initialization: Transition matrix T with an identity matrix, draw entries of {ui,vi}Ni=1 from i.i.d.
Gaussian distribution with zero-mean and s.t.d. 1e-8.
for t = 1 to E do

for b = 1 to N/m do
Get a sample batch B ⊆ {1, . . . , N} with |B| = m
Calculate loss L by 4 with batch B
for i in B do

Update ui ← ui − τu · ∂L/∂ui

Update vi ← vi − τv · ∂L/∂vi

end for
Update θ ← θ − τθ · ∂L/∂θ
if b/k is 0 then

Update T ← T − τT · ∂L/∂T
end if

end for
end for
Output: Network parameters θ̂, variables {ûi, v̂i}Ni=1 and transition matrix T̂ .

Since implicit regularization can minimize the L1 loss and according to Proposition 3.3 in [25],530

the first half of formula (21) will converge to a global solution for any fixed T under Condition 1.531

Furthermore, it can be converted into the following optimization problem:532

min
Q,R

1

2
∥Q∥22 + β∥R∥1, s.t. Ỹ = G ·Q+R, (22)

where β = − log t
2α as defined in 1. When Condition 2 is true, the solution to problem (22) are Q∗ and533

R∗, where Ỹ is produced by G ·Q∗ +R∗. This conclusion can be deduced from the analogy of534

Proposition 3.5 in [25]. Combining formula (15), we can get:535

Q∗ = (IC ⊗ θ∗) · T∗. (23)

Therefore, problem (21) transform into an optimization problem with parameter θ,T :536

min
θ,T

log det(T ), s.t. (IC ⊗ θ) · T = Q∗. (24)

The above optimization problem has the same form as the optimization problem in [22], similar with537

Theorem 1 in this paper, under Condition 3, the solution to problem (24) is:538

θ̂ = θ∗, T̂ = T∗. (25)

To sum up, when all conditions in Appendix B.2 are met, we can get the ground truth solution θ∗, the539

estimators by our algorithm converge to T∗, R∗ as mentioned in Theorem 3.1.540

B.4 Proof of Theorem 3.2541

Proof. We use the inequality we use Hoeffding inequality [11] to help us complete the proof. Since542

θ̂(N), T̂(N) are not independent of the samples, we use ϵ-cover as mentioned in Section 3.2 to deal543

with the problem. In addition, the parameter R is omitted in the following proof for convenience and544

does not affect the understanding of the results.545

According to the definition of ϵ covering, We can find a pair of parameters θk,Tk in the covering set546

such that:547

|ℓ (θk,Tk;X,Y )− ℓ(θ̂(N), T̂(N);X,Y )| ≤ ϵ, ∀(X,Y ) ∈ X × Y. (26)

Average the loss over samples, we have:548

L(θ̂(N), T̂(N); D̃) ≤ L(θk,Tk; D̃) + ϵ. (27)
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To meet the requirement of probability 1− δ in Theorem 3.2, we take the probability value as δ/2NF549

in Hoeffding inequality due to the randomness of k. Thus, with probability at least 1− δ/2NF ,550

L(θk,Tk; D̃) ≤ L(θk,Tk; D̃(N)) +M

√
ln(2NF/δ)

2n
. (28)

By the definition of formula (26),551

L(θk,Tk; D̃(N)) ≤ L(θ̂(N), T̂(N); D̃(N)) + ϵ. (29)

According to the property of θ̂(N), T̂(N) in formula (19), for any θ ∈ Rp,T ∈ T,552

L(θ̂(N), T̂(N); D̃(N)) ≤ L(θ,T ; D̃(N)) + ϵ. (30)

Using the Hoeffding inequality again with probability δ/2, with probability at least 1− δ/2 we have:553

L(θ,T ; D̃(N)) ≤ L(θ,T ; D̃) +M

√
ln(2/δ)

2n
. (31)

Combining inequalities (27), (28), (29), (30), (31) and adding the probability values, we get the554

conclusion that with probability at least 1− δ,555

L(θ̂(N), T̂(N); D̃) ≤ L(θ,T , ; D̃)+M

√
ln(2NF/δ)

2n
+M

√
ln(2/δ)

2n
+3ϵ,∀θ ∈ Rp,T ∈ T. (32)

556

C Experiment details557

C.1 Experimental Setup558

We conduct experiments on a single NVIDIA 3090Ti graphics card. For software, we use Python 3.11559

and PyTorch 1.10 to build the models. Throughout the training process, transition matrix updates are560

carried out using the Adam optimization method, while updates for other parameters are performed561

using the stochastic gradient descent (SGD) optimization method. The experimental setup involves a562

few training hyper-parameters, including the backbone network used, batch size, learning rate for563

parameters, and weight of the regularization term. For specific experimental configurations, please564

refer to Table 5 in Appendix C.2.565

C.2 Hyper-parameters Setting566

The backbone network and hyper-parameters of the experiments on each dataset are listed in the table567

5.568

Table 5: Hyper-parameters on CIFAR-10/100, Clothing-1M and Webvision.

CIFAR-10 CIFAR-100 Clothing1M Webvision
Network ResNet18 ResNet34 ResNet-50 InceptionResNetV2

Batch size 128 128 64 32
Training samples 50,000 50,000 1,000,000 65,944

Epochs 300 300 10 100
Learning rate(lr) for network 0.05 0.05 0.002 0.02

lr decay for network Cosine Cosine 5th 50th
Weight decay for network 5e-4 5e-4 1e-3 5e-4

lr for T 0.0005 0.0002 0.0001 0.0005
lr decay for T 30th, 60th 30th, 60th 5th 50th

Initialization for T -2 -4.5 -2.5 -4
lr for u,v 10, 10 1, 100 0.1, 1 0.1, 1

lr decay for u,v Cosine Cosine 5th 50th
Coefficient λ 0.001 0.001 0.001 0.001
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Table 6: Test accuracy with symmetric and flip noise on CIFAR-10/100.
CIFAR-10

Symmetric Flip
20% 50% 20% 45%

CE 85.68±0.18 77.35±0.21 86.32±0.16 75.22±0.43
GCE 87.83±0.54 79.54±0.23 89.75±1.53 75.75±0.36

Forward 85.20±0.80 74.82±0.78 88.21±0.48 77.44±6.89
DMI 87.54±0.20 82.68±0.21 89.89±0.45 73.15±7.31

VolMinNet 89.58±0.26 83.37±0.25 90.37±0.30 88.54±0.21
PeerLoss 87.97±0.33 81.06±0.47 89.11±0.42 76.89±1.83
BLTM 88.30±0.38 82.04±0.29 90.77±0.45 80.53±1.51
PartT 89.97±0.36 83.72±0.56 90.81±0.43 86.15±0.87

MEIDTM 90.89±0.20 84.61±0.39 91.01±0.19 88.45±1.07
SOP 93.18±0.57 88.98±0.43 94.02±0.30 89.58±0.86
TMR 94.36±0.22 91.63±0.30 94.55±0.19 93.17±0.53

CIFAR-100
Symmetric Flip

20% 50% 20% 45%
CE 51.43±0.58 41.31±0.67 53.19±0.42 40.56±0.89

GCE 63.22±0.45 53.16±0.72 64.15±0.44 40.58±0.49
Forward 54.90±0.74 41.85±0.71 56.12±0.54 36.88±2.32

DMI 62.65±0.39 52.42±0.64 59.56±0.73 38.17±2.02
VolMinNet 64.94±0.40 53.89±1.26 68.45±0.69 58.90±0.89
PeerLoss 62.92±0.48 50.25±0.52 64.14±0.39 43.53±0.75
BLTM 63.46±0.58 52.43±0.47 67.10±0.22 48.68±0.77
PartT 65.76±0.28 54.88±0.93 69.40±0.39 56.12±0.61

MEIDTM 66.90±0.32 57.24±1.01 70.16±0.52 58.53±0.50
SOP 74.42±0.42 66.46±0.65 73.93±0.55 63.32±0.87
TMR 76.20±0.24 71.53±0.41 76.53±0.22 70.96±0.52

C.3 Supplementary experiments on class-dependent noise569

In addition to conducting experiments on instance-dependent noisy data, we further evaluated the570

general effectiveness of our method compared to other approaches by introducing class-dependent571

scenarios on CIFAR-10/100 datasets. Table 6 presents the comparative results on CIFAR-10/100572

datasets with symmetric noise rates of 20% and 50%, as well as flip noise rates of 20% and 45%. It can573

be observed that for class-dependent noise, which serves as a simplified case of instance-dependent574

noise, our proposed method TMR outperforms other comparative methods, including transition575

matrix methods specifically designed for class-dependent noise, such as VolMinNet. Specifically, the576

transition matrix methods specifically designed for handling instance-dependent noise, such as BLTM,577

PartT and MEIDTM, do not show significant improvements when applied to class-dependent noise578

scenarios compared to the transition matrix methods designed only for class-dependent noise, such as579

VolMinNet. However, our proposed method, TMR, achieves significant improvements even when580

applied to class-dependent noise scenarios compared to VolMinNet. This indicates that our method581

has universal applicability and yields favorable results in both class-dependent and instance-dependent582

noise scenarios.583
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NeurIPS Paper Checklist584

1. Claims585

Question: Do the main claims made in the abstract and introduction accurately reflect the586

paper’s contributions and scope?587

Answer: [Yes]588

Justification: The main content and contributions of the work are reflected in the abstract589

and introduction.590

Guidelines:591

• The answer NA means that the abstract and introduction do not include the claims592

made in the paper.593

• The abstract and/or introduction should clearly state the claims made, including the594

contributions made in the paper and important assumptions and limitations. A No or595

NA answer to this question will not be perceived well by the reviewers.596

• The claims made should match theoretical and experimental results, and reflect how597

much the results can be expected to generalize to other settings.598

• It is fine to include aspirational goals as motivation as long as it is clear that these goals599

are not attained by the paper.600

2. Limitations601

Question: Does the paper discuss the limitations of the work performed by the authors?602

Answer: [Yes]603

Justification: In the theoretical analysis section and experimental section, we analyze the604

applicability and limitations of our method.605

Guidelines:606

• The answer NA means that the paper has no limitation while the answer No means that607

the paper has limitations, but those are not discussed in the paper.608

• The authors are encouraged to create a separate "Limitations" section in their paper.609

• The paper should point out any strong assumptions and how robust the results are to610

violations of these assumptions (e.g., independence assumptions, noiseless settings,611

model well-specification, asymptotic approximations only holding locally). The authors612

should reflect on how these assumptions might be violated in practice and what the613

implications would be.614

• The authors should reflect on the scope of the claims made, e.g., if the approach was615

only tested on a few datasets or with a few runs. In general, empirical results often616

depend on implicit assumptions, which should be articulated.617

• The authors should reflect on the factors that influence the performance of the approach.618

For example, a facial recognition algorithm may perform poorly when image resolution619

is low or images are taken in low lighting. Or a speech-to-text system might not be620

used reliably to provide closed captions for online lectures because it fails to handle621

technical jargon.622

• The authors should discuss the computational efficiency of the proposed algorithms623

and how they scale with dataset size.624

• If applicable, the authors should discuss possible limitations of their approach to625

address problems of privacy and fairness.626

• While the authors might fear that complete honesty about limitations might be used by627

reviewers as grounds for rejection, a worse outcome might be that reviewers discover628

limitations that aren’t acknowledged in the paper. The authors should use their best629

judgment and recognize that individual actions in favor of transparency play an impor-630

tant role in developing norms that preserve the integrity of the community. Reviewers631

will be specifically instructed to not penalize honesty concerning limitations.632

3. Theory Assumptions and Proofs633

Question: For each theoretical result, does the paper provide the full set of assumptions and634

a complete (and correct) proof?635
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Answer: [Yes]636

Justification: We conduct theoretical analysis of our method and provide proofs for the637

theorems in the paper.638

Guidelines:639

• The answer NA means that the paper does not include theoretical results.640

• All the theorems, formulas, and proofs in the paper should be numbered and cross-641

referenced.642

• All assumptions should be clearly stated or referenced in the statement of any theorems.643

• The proofs can either appear in the main paper or the supplemental material, but if644

they appear in the supplemental material, the authors are encouraged to provide a short645

proof sketch to provide intuition.646

• Inversely, any informal proof provided in the core of the paper should be complemented647

by formal proofs provided in appendix or supplemental material.648

• Theorems and Lemmas that the proof relies upon should be properly referenced.649

4. Experimental Result Reproducibility650

Question: Does the paper fully disclose all the information needed to reproduce the main ex-651

perimental results of the paper to the extent that it affects the main claims and/or conclusions652

of the paper (regardless of whether the code and data are provided or not)?653

Answer: [Yes]654

Justification: We provide a detailed description of the experimental setup in the experimental655

section, and specific settings for hyperparameters are provided in the appendix.656

Guidelines:657

• The answer NA means that the paper does not include experiments.658

• If the paper includes experiments, a No answer to this question will not be perceived659

well by the reviewers: Making the paper reproducible is important, regardless of660

whether the code and data are provided or not.661

• If the contribution is a dataset and/or model, the authors should describe the steps taken662

to make their results reproducible or verifiable.663

• Depending on the contribution, reproducibility can be accomplished in various ways.664

For example, if the contribution is a novel architecture, describing the architecture fully665

might suffice, or if the contribution is a specific model and empirical evaluation, it may666

be necessary to either make it possible for others to replicate the model with the same667

dataset, or provide access to the model. In general. releasing code and data is often668

one good way to accomplish this, but reproducibility can also be provided via detailed669

instructions for how to replicate the results, access to a hosted model (e.g., in the case670

of a large language model), releasing of a model checkpoint, or other means that are671

appropriate to the research performed.672

• While NeurIPS does not require releasing code, the conference does require all submis-673

sions to provide some reasonable avenue for reproducibility, which may depend on the674

nature of the contribution. For example675

(a) If the contribution is primarily a new algorithm, the paper should make it clear how676

to reproduce that algorithm.677

(b) If the contribution is primarily a new model architecture, the paper should describe678

the architecture clearly and fully.679

(c) If the contribution is a new model (e.g., a large language model), then there should680

either be a way to access this model for reproducing the results or a way to reproduce681

the model (e.g., with an open-source dataset or instructions for how to construct682

the dataset).683

(d) We recognize that reproducibility may be tricky in some cases, in which case684

authors are welcome to describe the particular way they provide for reproducibility.685

In the case of closed-source models, it may be that access to the model is limited in686

some way (e.g., to registered users), but it should be possible for other researchers687

to have some path to reproducing or verifying the results.688

5. Open access to data and code689
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Question: Does the paper provide open access to the data and code, with sufficient instruc-690

tions to faithfully reproduce the main experimental results, as described in supplemental691

material?692

Answer: [Yes]693

Justification: We provide partial code in the supplementary materials, and the complete code694

will be open-sourced upon acceptance of the paper.695

Guidelines:696

• The answer NA means that paper does not include experiments requiring code.697

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/698

public/guides/CodeSubmissionPolicy) for more details.699

• While we encourage the release of code and data, we understand that this might not be700

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not701

including code, unless this is central to the contribution (e.g., for a new open-source702

benchmark).703

• The instructions should contain the exact command and environment needed to run to704

reproduce the results. See the NeurIPS code and data submission guidelines (https:705

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.706

• The authors should provide instructions on data access and preparation, including how707

to access the raw data, preprocessed data, intermediate data, and generated data, etc.708

• The authors should provide scripts to reproduce all experimental results for the new709

proposed method and baselines. If only a subset of experiments are reproducible, they710

should state which ones are omitted from the script and why.711

• At submission time, to preserve anonymity, the authors should release anonymized712

versions (if applicable).713

• Providing as much information as possible in supplemental material (appended to the714

paper) is recommended, but including URLs to data and code is permitted.715

6. Experimental Setting/Details716

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-717

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the718

results?719

Answer: [Yes]720

Justification: We provided a detailed description of the experimental setup in the experimen-721

tal section, and specific settings for hyperparameters are provided in the appendix.722

Guidelines:723

• The answer NA means that the paper does not include experiments.724

• The experimental setting should be presented in the core of the paper to a level of detail725

that is necessary to appreciate the results and make sense of them.726

• The full details can be provided either with the code, in appendix, or as supplemental727

material.728

7. Experiment Statistical Significance729

Question: Does the paper report error bars suitably and correctly defined or other appropriate730

information about the statistical significance of the experiments?731

Answer: [Yes]732

Justification: We conducted multiple repeated experiments to validate our approach and733

performed ablation experiments.734

Guidelines:735

• The answer NA means that the paper does not include experiments.736

• The authors should answer "Yes" if the results are accompanied by error bars, confi-737

dence intervals, or statistical significance tests, at least for the experiments that support738

the main claims of the paper.739
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• The factors of variability that the error bars are capturing should be clearly stated (for740

example, train/test split, initialization, random drawing of some parameter, or overall741

run with given experimental conditions).742

• The method for calculating the error bars should be explained (closed form formula,743

call to a library function, bootstrap, etc.)744

• The assumptions made should be given (e.g., Normally distributed errors).745

• It should be clear whether the error bar is the standard deviation or the standard error746

of the mean.747

• It is OK to report 1-sigma error bars, but one should state it. The authors should748

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis749

of Normality of errors is not verified.750

• For asymmetric distributions, the authors should be careful not to show in tables or751

figures symmetric error bars that would yield results that are out of range (e.g. negative752

error rates).753

• If error bars are reported in tables or plots, The authors should explain in the text how754

they were calculated and reference the corresponding figures or tables in the text.755

8. Experiments Compute Resources756

Question: For each experiment, does the paper provide sufficient information on the com-757

puter resources (type of compute workers, memory, time of execution) needed to reproduce758

the experiments?759

Answer: [Yes]760

Justification: We list the relevant details in the experimental section.761

Guidelines:762

• The answer NA means that the paper does not include experiments.763

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,764

or cloud provider, including relevant memory and storage.765

• The paper should provide the amount of compute required for each of the individual766

experimental runs as well as estimate the total compute.767

• The paper should disclose whether the full research project required more compute768

than the experiments reported in the paper (e.g., preliminary or failed experiments that769

didn’t make it into the paper).770

9. Code Of Ethics771

Question: Does the research conducted in the paper conform, in every respect, with the772

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?773

Answer: [Yes]774

Justification: We submitted the paper following the NeurIPS Code of Ethics.775

Guidelines:776

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.777

• If the authors answer No, they should explain the special circumstances that require a778

deviation from the Code of Ethics.779

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-780

eration due to laws or regulations in their jurisdiction).781

10. Broader Impacts782

Question: Does the paper discuss both potential positive societal impacts and negative783

societal impacts of the work performed?784

Answer: [Yes]785

Justification: We discuss the positive implications of our work and ensure it does not have786

any negative societal impact.787

Guidelines:788

• The answer NA means that there is no societal impact of the work performed.789
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• If the authors answer NA or No, they should explain why their work has no societal790

impact or why the paper does not address societal impact.791

• Examples of negative societal impacts include potential malicious or unintended uses792

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations793

(e.g., deployment of technologies that could make decisions that unfairly impact specific794

groups), privacy considerations, and security considerations.795

• The conference expects that many papers will be foundational research and not tied796

to particular applications, let alone deployments. However, if there is a direct path to797

any negative applications, the authors should point it out. For example, it is legitimate798

to point out that an improvement in the quality of generative models could be used to799

generate deepfakes for disinformation. On the other hand, it is not needed to point out800

that a generic algorithm for optimizing neural networks could enable people to train801

models that generate Deepfakes faster.802

• The authors should consider possible harms that could arise when the technology is803

being used as intended and functioning correctly, harms that could arise when the804

technology is being used as intended but gives incorrect results, and harms following805

from (intentional or unintentional) misuse of the technology.806

• If there are negative societal impacts, the authors could also discuss possible mitigation807

strategies (e.g., gated release of models, providing defenses in addition to attacks,808

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from809

feedback over time, improving the efficiency and accessibility of ML).810

11. Safeguards811

Question: Does the paper describe safeguards that have been put in place for responsible812

release of data or models that have a high risk for misuse (e.g., pretrained language models,813

image generators, or scraped datasets)?814

Answer: [NA]815

Justification: There are no concerns in this regard regarding this work.816

Guidelines:817

• The answer NA means that the paper poses no such risks.818

• Released models that have a high risk for misuse or dual-use should be released with819

necessary safeguards to allow for controlled use of the model, for example by requiring820

that users adhere to usage guidelines or restrictions to access the model or implementing821

safety filters.822

• Datasets that have been scraped from the Internet could pose safety risks. The authors823

should describe how they avoided releasing unsafe images.824

• We recognize that providing effective safeguards is challenging, and many papers do825

not require this, but we encourage authors to take this into account and make a best826

faith effort.827

12. Licenses for existing assets828

Question: Are the creators or original owners of assets (e.g., code, data, models), used in829

the paper, properly credited and are the license and terms of use explicitly mentioned and830

properly respected?831

Answer: [Yes]832

Justification: The data and code used in our work are all publicly available and open-source.833

Guidelines:834

• The answer NA means that the paper does not use existing assets.835

• The authors should cite the original paper that produced the code package or dataset.836

• The authors should state which version of the asset is used and, if possible, include a837

URL.838

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.839

• For scraped data from a particular source (e.g., website), the copyright and terms of840

service of that source should be provided.841
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• If assets are released, the license, copyright information, and terms of use in the842

package should be provided. For popular datasets, paperswithcode.com/datasets843

has curated licenses for some datasets. Their licensing guide can help determine the844

license of a dataset.845

• For existing datasets that are re-packaged, both the original license and the license of846

the derived asset (if it has changed) should be provided.847

• If this information is not available online, the authors are encouraged to reach out to848

the asset’s creators.849

13. New Assets850

Question: Are new assets introduced in the paper well documented and is the documentation851

provided alongside the assets?852

Answer: [NA]853

Justification: The paper currently does not include any new assets.854

Guidelines:855

• The answer NA means that the paper does not release new assets.856

• Researchers should communicate the details of the dataset/code/model as part of their857

submissions via structured templates. This includes details about training, license,858

limitations, etc.859

• The paper should discuss whether and how consent was obtained from people whose860

asset is used.861

• At submission time, remember to anonymize your assets (if applicable). You can either862

create an anonymized URL or include an anonymized zip file.863

14. Crowdsourcing and Research with Human Subjects864

Question: For crowdsourcing experiments and research with human subjects, does the paper865

include the full text of instructions given to participants and screenshots, if applicable, as866

well as details about compensation (if any)?867

Answer: [NA]868

Justification: The paper does not involve crowdsourcing nor research with human subjects.869

Guidelines:870

• The answer NA means that the paper does not involve crowdsourcing nor research with871

human subjects.872

• Including this information in the supplemental material is fine, but if the main contribu-873

tion of the paper involves human subjects, then as much detail as possible should be874

included in the main paper.875

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,876

or other labor should be paid at least the minimum wage in the country of the data877

collector.878

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human879

Subjects880

Question: Does the paper describe potential risks incurred by study participants, whether881

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)882

approvals (or an equivalent approval/review based on the requirements of your country or883

institution) were obtained?884

Answer: [NA]885

Justification: The paper does not involve crowdsourcing nor research with human subjects.886

Guidelines:887

• The answer NA means that the paper does not involve crowdsourcing nor research with888

human subjects.889

• Depending on the country in which research is conducted, IRB approval (or equivalent)890

may be required for any human subjects research. If you obtained IRB approval, you891

should clearly state this in the paper.892
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• We recognize that the procedures for this may vary significantly between institutions893

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the894

guidelines for their institution.895

• For initial submissions, do not include any information that would break anonymity (if896

applicable), such as the institution conducting the review.897
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