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ABSTRACT

Neural networks leverage robust internal representations in order to generalise.
Learning them is difficult, and often requires a large training set that covers the
data distribution densely. We study a common setting where our task is not purely
opaque. Indeed, very often we may have access to information about the under-
lying system (e.g. that observations must obey certain laws of physics) that any
“tabula rasa” neural network would need to re-learn from scratch, penalising data
efficiency. We incorporate this information into a pre-trained reasoning module,
and investigate its role in shaping the discovered representations in diverse self-
supervised learning settings from pixels. Our approach paves the way for a new
class of data-efficient representation learning.

1 INTRODUCTION

Neural networks are able to learn policies in environments without access to their specifics (Schrit-
twieser et al., 2020), generate large quantities of text (Brown et al., 2020), or automatically fold pro-
teins to high accuracy (Senior et al., 2020). However, such “tabula rasa” approaches hinge on having
access to substantial quantities of data, from which robust representations can be learned. Without
a large training set that spans the data distribution, representation learning is difficult (Belkin et al.,
2019; LeCun, 2018; Sun et al., 2017).

Here, we study ways to construct neural networks with representations that are robust, while re-
taining a data-driven approach. We rely on a simple observation: very often, we have some (partial)
knowledge of the underlying dynamics of the data, which could help make stronger predictions from
fewer observations. This knowledge, however, usually requires us to be mindful of abstract proper-
ties of the data—and such properties cannot always be robustly extracted from natural observations.
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Figure 1: Bouncing balls example (re-printed, with permission, from Battaglia et al. (2016)). Natural
inputs, x, correspond to pixel observations. Predicting future observations (natural outputs, y), can
be simplified as follows: if we are able to extract a set of abstract inputs, x̄, (e.g. the radius, position
and velocity for each ball), the movements in this space must obey the laws of physics.

Motivation Consider the task of predicting the future state of a system of n bouncing balls, from
a pixel input x (Figure 1). Reliably estimating future pixel observations, y, is a challenging recon-
struction task. However, the generative properties of this system are simple. Assuming knowledge of
simple abstract inputs (radius, rc, position, xc, and velocity, vc) for every ball, x̄c, the future move-
ments in this abstract space are the result of applying the laws of physics to these low-dimensional
quantities. Hence, future abstract states, ȳ, can be computed via a simple algorithm that aggregates
pair-wise forces between objects.
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While this gives us a potentially simpler path from pixel inputs to pixel outputs, via abstract inputs
to abstract outputs (x → x̄  ȳ → y), it still places potentially unrealistic demands on our task
setup, every step of the way:

x→ x̄: Necessitates either upfront knowledge of how to abstract away x̄ from x, or a massive
dataset of paired (x, x̄) to learn such a mapping from;

x̄ ȳ: Implies that the algorithm perfectly simulates all aspects of the output. In reality, an algo-
rithm may often only give partial context about y. Further, algorithms often assume that
x is provided without error, exposing an algorithmic bottleneck (Deac et al., 2021): if x̄ is
incorrectly predicted, this will negatively compound in ȳ, hence y;

ȳ→ y: Necessitates a renderer that generates y from ȳ, or a dataset of paired (ȳ,y) to learn it.

We will assume a general setting where none of the above constraints hold: we know that the
mapping x̄  ȳ is likely of use to our predictor, but we do not assume a trivial mapping or a
paired dataset which would allow us to convert directly from x to x̄ or from ȳ to y. Our only
remaining assumption is that the algorithm x̄  ȳ can be efficiently computed, allowing us to
generate massive quantities of paired abstract input-output pairs, (x̄, ȳ).

Present work In this setting, we propose Reasoning-Modulated Representations (RMR), an ap-

proach that first learns a latent-space processor of abstract data; i.e. a mapping x̄
f−→ z

P−→ z′
g−→ ȳ,

where z ∈ Rk are high-dimensional latent vectors. f and g are an encoder and decoder, designed
to take abstract representations to and from this latent space, and P is a processor network which
simulates the algorithm x̄ ȳ in the latent space.

We then observe, in the spirit of neural algorithmic reasoning (Veličković & Blundell, 2021), that
such a processor network can be used as a drop-in differentiable component for any task where the

x̄  ȳ kind of reasoning may be applicable. Hence, we then learn a pipeline x
f̃−→ z

P−→ z′
g̃−→

y, which modulates the representations z obtained from x, forcing them to pass through the pre-
trained processor network. By doing so, we have ameliorated the original requirement for a massive
natural dataset of (x,y) pairs. Instead, we inject knowledge from a massive abstract dataset of
(x̄, ȳ) pairs, directly through the pre-trained parameters of P . This has the potential to relieve the
pressure on encoders and decoders f̃ and g̃, which we experimentally validate on several challenging
representation learning domains.

Our contributions can be summarised as follows:

• Verifying and extending prior work, we show that meaningful latent-space models can be
learned from massive abstract datasets, on physics simulations and Atari 2600 games;

• We then show that these latent-space models can be used as differentiable components
within neural pipelines that process raw observations. In doing so, we recover a data-
efficient neural network pipeline that relies solely on the existence of massive abstract
datasets (which can often be automatically generated).

• Finally, we demonstrate early signs of processor reusability: latent-space abstract models
can be used in tasks which do not even directly align with their environment, so long as
these tasks can benefit from their underlying reasoning procedure.

2 RELATED WORK

Neural algorithmic reasoning RMR relies on being able to construct robust latent-space models
that imitate abstract reasoning procedures. This makes it well aligned with neural algorithmic rea-
soning (Cappart et al., 2021), which is concerned with constructing neuralised versions of classical
algorithms (typically by learning to execute them in a manner that extrapolates). Leveraging the
ideas of algorithmic alignment (Xu et al., 2019), several known algorithmic primitives have already
been successfully neuralised. This includes iterative computation (Veličković et al., 2019; Tang
et al., 2020), linearithmic algorithms (Freivalds et al., 2019), and data structures (Strathmann et al.,
2021; Veličković et al., 2020). Further, the XLVIN model (Deac et al., 2021) demonstrates how such
primitives can be re-used for data-efficient planning, paving the way for a blueprint (Veličković &
Blundell, 2021) that we leverage in RMR as well.
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Physical simulation with neural networks Our work also has contact points with prior art in
using (graph) neural networks for physics simulations. In fact, there is a tight coupling between al-
gorithmic computation and simulations, as the latter are typically realised using the former. Within
this space, abstract GNN models of physics have been proposed by works such as interaction net-
works (Battaglia et al., 2016) and NPE (Chang et al., 2016), and extended to pixel-based inputs by
visual interaction networks (Watters et al., 2017). The generalisation power of these models has in-
creased drastically in recent years, with effective models of systems of particles Sanchez-Gonzalez
et al. (2020) as well as meshes (Pfaff et al., 2020) being proposed. Excitingly, it has also been
demonstrated that rudimentary laws of physics can occasionally be recovered from the update rules
of these GNNs (Cranmer et al., 2020), and that they can be used to uncover new physical knowledge
(Bapst et al., 2020).

Recent work has also explored placing additional constraints on learning-based physical simulators,
for example by using Hamiltonian ODE integrators in conjunction with GNN models (Sanchez-
Gonzalez et al., 2019), or by coupling a (non-neural) differentiable physics engine directly to visual
inputs and optimizing its parameters via backprop (Jaques et al., 2019; Jatavallabhula et al., 2021).

Object-centric and modular models for dynamic environments RMR with factored latents can
be viewed as a form of object-centric neural network, in which visual objects in an image or video
are represented as separate latent variables in the model and their temporal dynamics and pairwise
interactions are modeled via GNNs or self-attention mechanisms. There is a rich literature on dis-
covering objects and learning their dynamics from raw visual data without supervision, with object-
centric models such as R-NEM (Van Steenkiste et al., 2018), SQAIR (Kosiorek et al., 2018), OP3
(Veerapaneni et al., 2020), SCALOR (Jiang et al., 2019), G-SWM (Lin et al., 2020). Recent work
has explored using contrastive losses (Kipf et al., 2019) in this context or other losses directly in
latent space (François-Lavet et al., 2019). Related approaches discover and use keypoints (Kulkarni
et al., 2019) to describe objects and even discover causal relations from visual input (Li et al., 2020)
using neural relational inference (Kipf et al., 2018) in conjunction with a keypoint discovery method.
A related line of works integrate attention-mechanisms in modular and object-centric models to in-
terface latent variables with visual input, including models such as RMC (Santoro et al., 2018), RIM
(Goyal et al., 2019), Slot Attention (Locatello et al., 2020), SCOFF (Goyal et al., 2021b), and NPS
(Goyal et al., 2021a).

3 RMR ARCHITECTURE
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Figure 2: Reasoning-modulated representation learner (RMR).
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Having provided a high-level overview of RMR and surveyed the relevant related work, we proceed
to carefully detail the blueprint of RMR’s various components. This will allow us to ground any
subsequent RMR experiments on diverse domains directly in our blueprint. Throughout this section,
it will be useful to refer to Figure 2 which presents a visual overview of this section.

Preliminaries We assume a set of natural inputs, X , and a set of natural outputs, Y . These sets
represent the possible inputs and outputs of a target function, Φ : X → Y , which we would like to
learn based on a (potentially small) dataset of input-output pairs, (x,y), where y = Φ(x).

We further assume that the inner workings of Φ can be related to an algorithm, A : X̄ → Ȳ . The
algorithm operates over a set of abstract inputs, X̄ , and produces outputs from an abstract output
set Ȳ . Typically, it will be the case that dim X̄ � dimX ; that is, abstract inputs are assumed
substantially lower-dimensional than natural inputs. We do not assume existence of any aligned
input pairs (x, x̄), and we do not assume that A perfectly explains the computations of Φ. What we
do assume is that A is either known or can be trivially computed, giving rise to a massive dataset of
abstract input-output pairs, (x̄, ȳ), where ȳ = A(x̄).

Lastly, we assume a latent space, Z , and that we can construct neural network components to both
encode and decode from it. Typically, Z will be a real-valued vector space (Z = Rk) which is
high-dimensional; that is, k > dim X̄ . This ensures that any neural networks operating over Z are
not vulnerable to bottleneck effects.

Note that either the natural or abstract input set may be factorised, e.g., into objects; in this case, we
can accordingly factorise the latent space, enforcing Z = Rn×k, where n is the assumed maximal
number of objects (typically a hyperparameter of the models if not known upfront).

Abstract pipeline RMR training proceeds by first learning a model of the algorithm A, which is
bound to pass through a latent-space representation. That is, we learn a neural network approximator
g(P (f(x̄))) ≈ A(x̄), which follows the encode-process-decode paradigm (Hamrick et al., 2018).
It consists of the following three building blocks: Encoder, f : X̄ → Z , tasked with projecting
the abstract inputs into the latent space; Processor, P : Z → Z , simulating individual steps of
the algorithm in the latent space; Decoder, g : Z → Ȳ , tasked with projecting latents back into
the abstract output space. Such a pipeline is now widely used both in neural algorithmic reasoning
(Veličković et al., 2019) and learning physical simulations (Sanchez-Gonzalez et al., 2020), and can
be trained end-to-end with gradient descent.

For reasons that will become apparent, it is favourable for most of the computational effort to be
performed by P . Accordingly, encoders and decoders are often designed to be simple learnable lin-
ear projections, while processors tend to be either deep MLPs or graph neural networks—depending
on whether the latent space is factorised into nodes.

Natural pipeline Once an appropriate processor, P , has been learned, it may be observed that it
corresponds to a highly favourable component in our setting. Namely, we can relate its operations to
the algorithm A, and since it stays high-dimensional, it is a differentiable component we can easily
plug into other neural networks without incurring any bottleneck effects. This insight was originally
recovered in XLVIN (Deac et al., 2021), where it yielded a generic implicit planner. As an ablation,
we have also rediscovered the bottleneck effect in our settings; see Appendix C. We now leverage
similar insights for general representation learning tasks.

On a high level, what we need to do is simple and elegant: swap out f and g for natural encoders
and decoders, f̃ : X → Z and g̃ : Z → Y , respectively. We are then able to learn a function
g̃(P (f̃(x))) ≈ Φ(x), which is once again to be optimised through gradient descent. We would
like P to retain its semantics during training, and therefore it is typically kept frozen in the natural
pipeline. Note that P might not perfectly represent A which in turn might not perfectly represent
Φ. While we rely on a skip connection in our implementation of P , it has no learnable parameters
and does not offer the system the ability to learn a correction of P in the natural setting. Our choice
is motivated by the desire to both maintain the semantics and interpretability of P and to make this
processor a bottleneck forcing the model to rely on it. We show empirically that our pipeline is
surprisingly robust to imperfect P models even with weak (linear) encoders/decoders.
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It is worth noting several potential challenges that may arise while training the natural pipeline,
especially if the training data for it is sparsely available. We also suggest remedies for each:

• If x and/or y exhibit any nontrivial geometry, simple linear projections will rarely suffice
for f̃ and g̃. For example, our natural inputs will often be pixel-based, necessitating a
convolutional neural network for f̃ .

• Further, since the parameters of P are kept frozen, f̃ is left with a challenging task of
mapping natural inputs into an appropriate manifold that P can meaningfully operate over.
While we demonstrate clear empirical evidence that such meaningful mappings definitely
occur, we remark that its success may hinge on carefully tuning the hyperparameters of f̃ .

• A very common setting assumes that the abstract inputs and latents are factorised into
objects, but the natural inputs are not. In this case, f̃ is tasked with predicting appropriate
object representations from the natural inputs. This is known to be a challenging feat
(Greff et al., 2020), but can be successfully performed. Sometimes arbitrarily factorising
the feature maps of a CNN (Kipf et al., 2019) is sufficient, while at other times, models
such as slot attention (Locatello et al., 2020) may be required.

• One corollary of using automated object extractors for f̃ is that it’s very difficult to enforce
their slot representations to line up in the same way as in the abstract inputs. This implies
that P should be permutation equivariant (and hence motivates using a GNN for it).

4 RMR FOR BOUNCING BALLS

To evaluate the capability of the RMR pipeline for transfer from the abstract space to the pixel space,
we apply it on the “bouncing balls” problem. The bouncing balls problem is an instance of a physics
simulation problem, where the task is to predict the next state of an environment in which multiple
balls are bouncing between each other and a bounding box. Though this problem had been studied
in the the context of physics simulation from (abstract) trajectories (Battaglia et al., 2016) and from
(natural) videos (Watters et al., 2017; Van Steenkiste et al., 2018; Löwe et al., 2020), here we focus
on the aptitude of RMR to transfer learned representations from trajectories to videos.

Our results affirm that strong abstract models can be trained on such tasks, and that including them
in a video pipeline induces more robust representations. See Appendix A for more details on hyper-
parameters and experimental setup.

Preliminaries Here, trajectories are represented by 2D coordinates of 10 balls through time, defin-
ing our abstract inputs and outputs X̄ = Ȳ = R10×2. We slice these trajectories into a series of
moving windows containing the input, x̄∗, spanning a history of three previous states, and the target,
ȳ, representing the next state. We obtain these trajectories from a 3D simulator (MuJoCo (Todorov
et al., 2012)), together with their short-video renderings, which represent our natural input and out-
put space X = Y = R64×64×3. Our goal is to train an RMR abstract model on trajectories and
transfer learned representations to improve a dynamics model trained on these videos.

Abstract pipeline So as to model the dynamics of trajectories, we closely follow the RMR
desiderata for the abstract model. We set f to a linear projection over the input concatenation,
P to a Message Passing Neural Network (MPNN), following previous work (Battaglia et al., 2016;
Sanchez-Gonzalez et al., 2020), and g to a linear projection.

Our model learns a transition function g(P (f(x̄∗)) ≈ ȳ, supervised using Mean Squared Error
(MSE) over ball positions in the next step. It achieves an MSE of 4.59 × 10−4, which, evaluated
qualitatively, demonstrates the ability of the model to predict physically realistic behavior when
unrolled for 10 steps (the model is trained on 1-step dynamics only). Next, we take the processor P
from the abstract pipeline and re-use it in the natural pipeline.

Natural pipeline Here we evaluate whether the pre-trained RMR processor can be reused for
learning the dynamics of the bouncing balls from videos. The pixel-based encoder f̄ is concatenation
of per-input-image Slot Attention model (Locatello et al., 2020), passed through a linear layer, and
a Broadcast Decoder (Watters et al., 2019) for the pixel-based decoder ḡ.
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The full model is a transition function ḡ(P (f̄(x∗)) ≈ y, supervised by pixel reconstruction loss over
the next step image. We compare the performance of the RMR model with a pre-trained processor
P against a baseline in which P is trained fully end-to-end. The RMR model achieves an MSE of
7.94±0.41 (×10−4), whereas the baseline achieves 9.47±0.24 (×10−4). We take a qualitative look
at the reconstruction rollout of the RMR model in Figure 3, and expose the algorithmic bottleneck
properties for this task in Appendix C.

Figure 3: RMR for bouncing balls reconstruction rollout. States marked in green are the natural
input, followed by the reconstructed output. The states below the reconstruction is the ground truth.

5 CONTRASTIVE RMR FOR ATARI

We evaluate the potential of our RMR pipeline for state representation learning on the Atari 2600
(Bellemare et al., 2013). We find the RMR applicable here because there is a potential wealth of
information that can be obtained about the Atari’s operation—namely, by inspecting its RAM traces.

Preliminaries Accordingly, we will define our set of abstract inputs and outputs as Atari RAM
matrices. Given that the Atari has 128 bytes of memory, X̄ = Ȳ = B128×8 (where B = {0, 1} is the
set of bits). We collect data about how the console modifies the RAM by acting in the environment
and recording the trace of RAM arrays we observe. These traces will be of the form (x̄, a, ȳ) which
signify that the agent’s initial RAM state was x̄, and that after performing action a ∈ A, its RAM
state was updated to ȳ. We assume that a is encoded as an 18-way one-hot vector.

We would like to leverage any reasoning module obtained over RAM states to support representation
learning from raw pixels. Accordingly, our natural inputs, X , are pixel arrays representing the
Atari’s framebuffer.

Mirroring prior work, we perform contrastive learning directly in the latent space, and set Y = Z;
that is, our natural outputs correspond to an estimate of the “updated” latents after taking an action.
All our models use latent representations of 64 dimensions per slot, meaning Z = R128×64.

We note that it is important to generate a diverse dataset of experiences in order to train a robust
RAM model. To simulate a dataset which might be gathered by human players of varying skill, we
sample our data using the 32 policy heads of a pre-trained Agent57 (Badia et al., 2020). Each policy
head collects data over three episodes in the studied games. Note that this implies a substantially
more challenging dataset than the one reported by Anand et al. (2019), wherein data was collected
by a purely random policy, which may well fail to explore many relevant regions of the games.

Abstract pipeline Firstly, we set out to verify that it is possible to train nontrivial Atari RAM
transition models. The construction of this abstract experiment follows almost exactly the abstract
RMR setup: f and g are appropriately sized linear projections, while P needs to take into account
which action was taken when updating the latents. To simplify the implementation and allow further
model re-use, we consider the action a part of the P ’s inputs. See Appendix F for detailed equations.

This implies that our transition model learns a function g(P (f(x̄), a)) ≈ ȳ. We supervise this model
using binary cross-entropy to predict each bit of the resulting RAM state. Since RAM transitions
are assumed deterministic, we assume a fully Markovian setup and learn 1-step dynamics.

For brevity purposes, we detail our exact hyperparameters and results per each Atari game consid-
ered in Appendix B. Our results ascertain the message passing neural network (MPNN) (Gilmer
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et al., 2017) as a highly potent processor network in Atari: it ranked most potent in 17 out of 24
games considered, compared to MLPs and Deep Sets (Zaheer et al., 2017). Accordingly, we will
focus on leveraging pre-trained MPNN processors for the next phase of the RMR pipeline.

Natural pipeline We now set out to evaluate whether our pre-trained RMR processors can be
meaningfully re-used by an encoder in a pixel-based contrastive learning pipeline.

For our pixel-based encoder f̃ , we use the same CNN trunk as Anand et al. (2019)—however, as we
require slot-level rather than flat embeddings, the final layers of our encoder are different. Namely,
we apply a 1 × 1 convolution computing 128m feature maps (where m is the number of feature
maps per-slot). We then flatten the spatial axes, giving every slot m × h × w features, which we
finally linearly project to 64-dimensional features per-slot, aligning with our pre-trained P . Note that
settingm = 1 recovers exactly the style of object detection employed by C-SWM (Kipf et al., 2019).
Since our desired outputs are themselves latents, g̃ is a single linear projection to 64 dimensions.

Overall, our pixel-based transition model learns a function g̃(P (f̃(x), a)) ≈ f̃(y), where y is the
next state observed after applying action a in state x. To optimise it, we re-use exactly the same
TransE-inspired (Bordes et al., 2013) contrastive loss that C-SWM (Kipf et al., 2019) used.

Once state representation learning concludes, all components are typically thrown away except for
the encoder, f̃ , which is used for downstream tasks. As a proxy for evaluating the quality of the
encoder, we train linear classifiers on the concatenation of all slot embeddings obtained from f̃ to
predict individual RAM bits, exactly as in the abstract model case. Note that we have not violated
our assumption that paired (x, x̄) samples will not be provided while training the natural model—in
this phase, the encoder f̃ is frozen, and gradients can only flow into the linear probe.

Our comparisons for this experiment, evaluating our RMR pipeline against an identical architecture
with an unfrozen P (equivalent to C-SWM (Kipf et al., 2019)) is provided in Table 1. For each
of 20 random seeds, we feed identical batches to both models, hence we can perform a paired
Wilcoxon test to assess the statistical significance of any observed differences on validation episodes.
The results are in line with our hypothesis: representations learnt by RMR are significantly better
(p < 0.05) on 15 out of 24 games, significantly worse only on Pitfall!—and indistinguishable to
C-SWM’s on others. This is despite the fact their architectures are identical, indicating that the pre-
trained abstract model induces stronger representations for predicting the underlying data factors.
As was the case for bouncing balls, we expose the algorithmic bottleneck here too; see Appendix C.

As a relevant initial baseline—and to emphasise the difficulty of our task—we also include in Table 1
the performance of the latent embeddings extracted from a pre-trained Agent57 (Badia et al., 2020).
These embeddings are, perhaps unsurprisingly, substantially worse than both the RMR and C-SWM
models. As Agent57 was trained on a reward-maximising objective, its embeddings are likely to
capture the controllable aspects of the input, while filtering out the environment’s background.

Abstract model transfer While the results above indicate that endowing a self-supervised Atari
representation learner with knowledge of the underlying game’s RAM transitions yields stronger
representations, one may still argue that this constitutes a form of “privileged information”. This is
due to the fact we knew upfront which game we were learning the representations for, and hence
could leverage the specific RAM dynamics of this game.

In the final experiment, we study a more general setting: we are given access to RAM traces showing
us how the Atari console manipulates its memory in response to player input, but we cannot guaran-
tee these traces came from the same game that we are performing representation learning over. Can
we still effectively leverage this knowledge?

Specifically, we test abstract model transfer in the following way: first, we take a pre-trained abstract
processor network P from one game (the “train game”) and freeze it. Then, using this processor,
we perform the aforementioned natural pipeline training and testing over frames from another game
(the “test game”). We then evaluate whether the recovered performance improves over the C-SWM
model with unfrozen weights—once again using a paired one-sided Wilcoxon test over 20 seeds to
ascertain statistical significance of any differences observed. The final outcome of our experiment is
hence a 24 × 24 matrix, indicating the quality of abstract model transfer from every game to every
other game. Table 1 corresponds to the “diagonal” entries of this matrix.
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Table 1: Natural modelling results for Atari 2600. Bit-level F1 reported for slots with high entropy,
as in Anand et al. (2019). Results assumed significant at p < 0.05 (one-sided paired Wilcoxon test).

Game Agent57 C-SWM RMR p-value

Asteroids 0.514±0.001 0.582±0.009 0.593±0.004 < 10−5

Battlezone 0.351±0.003 0.592±0.005 0.589±0.007 0.056
Berzerk 0.454±0.084 0.463±0.053 0.470±0.025 0.364
Bowling 0.554±0.004 0.944±0.006 0.946±0.003 0.071
Boxing 0.558±0.002 0.667±0.012 0.669±0.011 0.215
Breakout 0.657±0.001 0.836±0.009 0.852±0.008 < 10−5

Demon Attack 0.539±0.004 0.653±0.006 0.658±0.004 0.002
Freeway 0.424±0.052 0.912±0.025 0.919±0.035 0.032
Frostbite 0.405±0.001 0.580±0.025 0.594±0.016 0.035
H.E.R.O. 0.481±0.001 0.729±0.026 0.779±0.021 < 10−5

Montezuma’s Revenge 0.743±0.003 0.824±0.012 0.821±0.016 0.156
Ms. Pac-Man 0.506±0.001 0.599±0.004 0.602±0.006 0.038
Pitfall! 0.495±0.003 0.626±0.015 0.603±0.010 < 10−5

Pong 0.392±0.001 0.750±0.016 0.762±0.010 0.001
Private Eye 0.594±0.001 0.863±0.010 0.867±0.008 0.045
Q*Bert 0.536±0.010 0.588±0.015 0.590±0.017 0.165
River Raid 0.686±0.001 0.762±0.005 0.764±0.007 0.032
Seaquest 0.472±0.007 0.634±0.013 0.653±0.008 < 10−5

Skiing 0.599±0.007 0.766±0.028 0.775±0.014 0.174
Space Invaders 0.588±0.002 0.719±0.012 0.761±0.006 < 10−5

Tennis 0.533±0.008 0.724±0.007 0.729±0.005 0.007
Venture 0.567±0.001 0.632±0.005 0.633±0.004 0.392
Video Pinball 0.375±0.011 0.724±0.009 0.745±0.008 < 10−5

Yars’ Revenge 0.608±0.001 0.715±0.008 0.751±0.010 < 10−5

The results, presented in Figure 4, testify to the performance of RMR. Representations learned by
RMR transfer better in 64.6% of the train/test game pairs, are indistinguishable from C-SWM in
33.7% of the game pairs and perform worse than C-SWM in only 1.7% of game pairs. Therefore, in
plentiful circumstances, the answer to our original question is positive: discovering a trace of Atari
RAM transitions of unknown origin can often be of high significance for representation learning
from Atari pixels, regardless of whether the underlying games match.

Qualitative analysis of transfer While we find this result interesting in and of itself, it also raises
interesting follow-up questions. Is representation learning on certain games more prone to being
improved just by knowing anything about the Atari console? Figure 4 certainly implies so: several
games (such as Seaquest or Space Invaders) have “fully-green” columns, making them “universal
recipients”. Similarly, we may be interested about the “donor” properties of each game – to what
extent are their RAM models useful across a broad range of test games?

We study both of the above questions by performing a hierarchical (complete-link) clustering of the
rows and columns of the 24 × 24 matrix of transfer performances, to identify clusters of related
donor and recipient games. Both clusterings are marked in Figure 4 (on the sides of the matrix).

The analysis reveals several well-formed clusters, from which we are able to make some preliminary
observations, based on the properties of the various games. To name a few examples:

• The strongest recipients (e.g. Yars’ Revenge, H.E.R.O., Seaquest, Space Invaders and As-
teroids) tend to include elements of “shooting” in their gameplay.

• Conversely, the weakest recipients (River Raid, Berzerk, Private Eye, Ms. Pac-Man and
Pitfall!) are all games in which movement is generally unrestricted across most of the
screen, indicating a larger range of possible coordinate values to model.

• Pong, Breakout, Battlezone and Skiing cluster closely in terms of donor properties—and
they are all games in which movement is restricted to one axis only.
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Figure 4: A hierarchically clustered heatmap depiction of the transfer results, where the Train Game
abstract models have been trained on the Test Games. The results are summarised by a Wilcoxon
test, denoting where the performance of RMR is better, does not differ or is worse than C-SWM’s.
In each cell, the mean relative % improvement is noted. The significance cutoff is p < 0.05.

• Lastly, strong donors (Montezuma’s Revenge, Yars’ Revenge, Q*Bert and Venture) all
feature massive, abrupt, changes to the game state (as they feature multiple rooms, for
example). This implies that they might generally have seen a more diverse set of transitions.
Further, on Yars’ Revenge, a massive laser features, which, conveniently, prints an RGB
projection of the RAM itself on the frame.

6 CONCLUSIONS

We presented Reasoning-Modulated Representations (RMR), a novel approach for leveraging back-
ground algorithmic knowledge within a representation learning pipeline. By encoding the under-
lying algorithmic priors as weights of a processor neural network, we alleviate requirements on
alignment between abstract and natural inputs, protect our model against bottlenecks, and make it
more data-efficient in the process. We believe that RMR paves the way to a novel class of algorith-
mic reasoning-inspired representations, with a high potential for transfer across tasks—a feat that
has largely eluded deep reinforcement learning research.
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REPRODUCIBILITY STATEMENT

Our work proposes a general pipeline for representation learning under algorithmic priors. We have
made a careful effort to expose all of the key elements of our RMR pipeline, both within figures and
in text. We also report the hyperparameters of our experiments in the Appendices.

We carefully described the manner in which our datasets have been collected. Further, we will ex-
plore the options for open-sourcing the specific datasets we employed in this paper post-publication.
We note that Atari trajectory datasets similar to the one we explore here (albeit with a significantly
weaker actor) are already publicly available e.g. through the work of Anand et al. (2019).

REFERENCES

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R Devon
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Petar Veličković and Charles Blundell. Neural algorithmic reasoning. arXiv preprint
arXiv:2105.02761, 2021.

12



Under review as a conference paper at ICLR 2022
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Petar Veličković, Lars Buesing, Matthew C Overlan, Razvan Pascanu, Oriol Vinyals, and Charles
Blundell. Pointer graph networks. arXiv preprint arXiv:2006.06380, 2020.

Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea
Tacchetti. Visual interaction networks: Learning a physics simulator from video. Advances in
neural information processing systems, 30:4539–4547, 2017.

Nicholas Watters, Loic Matthey, Christopher P Burgess, and Alexander Lerchner. Spatial broadcast
decoder: A simple architecture for learning disentangled representations in vaes. arXiv preprint
arXiv:1901.07017, 2019.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? arXiv preprint arXiv:1905.13211, 2019.

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
How neural networks extrapolate: From feedforward to graph neural networks. arXiv preprint
arXiv:2009.11848, 2020.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and
Alexander Smola. Deep sets. arXiv preprint arXiv:1703.06114, 2017.

A BOUNCING BALLS MODELLING SETUP

Abstract pipeline The f is a linear projection over the concatenation of inputs, outputting a 128-
long representation for each of the 10 balls in the input. The P is a MPNN over the fully connected
graph of the ball representations. It is a 2-pass MPNN with a 3-layered ReLU-activated MLP as a
message function, without the final layer activation, projecting to the same 128-dimensional space,
per object. Finally, g is a linear projection applied on each object representation of the output of P .

The model is MSE-supervised with ball position on the next step. It is trained on a 8-core TPU for
10000 epochs, with a batch size of 512, and the Adam optimizer with the initial learning rate of
0.0001.

Natural pipeline f̄ is a Slot Attention model (Locatello et al., 2020) on each input image, con-
catenating the images and passing them through a linear layer, outputting a 128-dimensional vector
for each of the objects. ḡ is a Broadcast Decoder (Watters et al., 2019) containing a sequence of 5
transposed convolutions and a linear layer mapping before calculating the reconstructions and their
masks.

The model is MSE-supervised by pixel reconstruction (per-pixel MSE) over the next step image.
Both the RMR and the baseline are trained on a 8-core TPU for 1000 epochs, with a batch size of
512, with the Adam optimiser and the initial learning rate of 0.0001, all over 3 random seeds.

B ATARI ABSTRACT MODELLING SETUP AND RESULTS

Our best processor network is a MPNN (Gilmer et al., 2017) over a fully connected graph (Santoro
et al., 2017) of RAM slots, which concatenates the action embedding to every node (as done in Kipf
et al. (2019)). It uses three-layer MLPs as message functions, with the ReLU activation applied after
each hidden layer. The entire model is trained for every game in isolation, over 48 distinct episodes
of Agent57 experience. We use the Adam SGD optimiser (Kingma & Ba, 2014) with a batch size
of 50 and a learning rate of 0.001 across all Atari experiments. To evaluate the benefits of message
passing, we also compare our model to Deep Sets (Zaheer et al., 2017), which is equivalent to our
MPNN model—only it passes messages over the identity adjacency matrix. Lastly, we evaluate the
benefits of factorised latents by comparing our methods against a three-layer MLP applied on the
flattened RAM state.
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Table 2: Abstract modelling results for Atari 2600. Entire-slot accuracies and bit-level F1 scores are
reported only for slots with high entropy, as per Anand et al. (2019).

Copy baseline MLP Deep Sets MPNN
Game Slot acc. Bit F1 Slot acc. Bit F1 Slot acc. Bit F1 Slot acc. Bit F1

Asteroids 70.65% 0.856 71.28% 0.872 72.84% 0.879 80.69% 0.930
Battlezone 57.09% 0.841 61.19% 0.840 61.71% 0.867 71.06% 0.892
Berzerk 84.32% 0.905 86.17% 0.930 84.16% 0.923 86.67% 0.933
Bowling 93.86% 0.972 97.43% 0.991 90.72% 0.966 98.41% 0.995
Boxing 59.78% 0.848 54.45% 0.834 59.79% 0.890 58.56% 0.877
Breakout 89.80% 0.949 92.77% 0.970 94.34% 0.979 96.45% 0.988
Demon Attack 67.90% 0.850 68.43% 0.864 66.70% 0.877 69.51% 0.879
Freeway 46.65% 0.787 75.93% 0.921 84.68% 0.959 89.17% 0.965
Frostbite 76.83% 0.904 79.09% 0.904 78.25% 0.946 76.52% 0.918
H.E.R.O. 76.71% 0.891 82.96% 0.932 80.17% 0.929 89.07% 0.956
Montezuma’s Revenge 82.58% 0.907 87.30% 0.941 85.90% 0.951 85.44% 0.932
Ms. Pac-Man 83.80% 0.941 80.60% 0.935 81.50% 0.952 85.88% 0.966
Pitfall! 66.60% 0.862 78.28% 0.923 81.92% 0.947 80.40% 0.941
Pong 68.76% 0.873 73.58% 0.911 74.71% 0.920 83.23% 0.952
Private Eye 75.25% 0.889 81.95% 0.932 84.77% 0.954 86.41% 0.955
Q*Bert 83.00% 0.915 90.07% 0.966 87.87% 0.943 89.26% 0.946
River Raid 76.95% 0.895 80.82% 0.927 69.96% 0.865 86.79% 0.954
Seaquest 71.23% 0.859 78.48% 0.898 75.53% 0.906 70.94% 0.798
Skiing 91.02% 0.966 93.42% 0.980 93.51% 0.983 96.37% 0.992
Space Invaders 81.67% 0.942 84.62% 0.957 89.38% 0.974 91.98% 0.985
Tennis 78.13% 0.890 82.13% 0.926 71.60% 0.856 80.20% 0.893
Venture 61.29% 0.858 63.16% 0.863 64.88% 0.886 76.56% 0.935
Video Pinball 76.71% 0.848 85.92% 0.912 78.64% 0.877 86.61% 0.913
Yars’ Revenge 69.25% 0.896 74.87% 0.929 72.69% 0.948 84.11% 0.969

One immediate observation is that RAM updates in Atari are extremely sparse, with a copy baseline
already being very strong for many games. To prevent the model from having to repeatedly re-learn
identity functions, we also make it predict masks of the shapeM = B128, specifying which cells
are to be overwritten by the model at this step. This strategy, coupled with teacher forcing (as done
by Veličković et al. (2020); Strathmann et al. (2021)) yielded substantially stronger predictors. We
also use this observation to prevent over-inflating our prediction scores: we only display prediction
accuracy over RAM slots with label entropy larger than 0.6 (as done by Anand et al. (2019)).

The full results of training Atari RAM transition models, for the games studied in Anand et al.
(2019), are provided in Table 2. We evaluate both bit-level F1 scores, as well as slot-level accuracy
(for which all 8 bits need to be predicted correctly in order to count), over the remaining 48 Agent57
episodes as validation. To the best of our knowledge, this is the first comprehensive feasibility study
for learning Atari RAM transition models.

C REDISCOVERING THE ALGORITHMIC BOTTLENECK

As mentioned in the main text body, one of the key reasons in favour of a high-dimensional algo-
rithmic component is to avoid the algorithmic bottleneck, as first exposed by Deac et al. (2021).

In short, the performance guarantees of running classical algorithms rely on having the exactly cor-
rect inputs for them. If there are any errors in the predictions of these (usually very low-dimensional)
inputs, these errors may propagate to the algorithmic computations and yield suboptimal results.
Further, there is no room for any kind of fallback if such an event occurs.

In contrast, the high-dimensional neural processors like the ones we study here are not vulnerable to
bottleneck effects: if any dimensions of the latent state are poorly predicted, the other components
of it could step in and compensate for this. Further, we can easily support skip connections in the
case where the algorithm is not fully descriptive of the problem we’re solving.
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In this section, we reaffirm the bottleneck effect for both Atari and bouncing ball experiments by
providing additional sets of ablations on the processor network’s latent size.

We ablate various RMR processor network architectures, for dim z ∈ {2, 4, 8, 16, 32, 64}, but leav-
ing all other components and operations unchanged.

The results of this ablation for the Atari representation learning setting are provided in Figure 5. It
can be clearly observed that, as we reduce the size of the latents, this typically induces a performance
regression in the downstream bit F1 scores. This indicates the algorithmic bottleneck effect.

On the bouncing balls task, we observe the algorithmic bottleneck as well, with more pronounced
effects. Namely, for all latent sizes 32 and under, the validation MSE shoots up even though the train-
ing MSE keeps improving. Ultimately, we also attempted using an Interaction Network (Battaglia
et al., 2016) as a bottlenecked RMR processor which requires projecting on to x̄ rather than z, which
exhibited exactly the same behaviour, at a larger scale. The IN processor achieved a final validation
MSE of 341.40± 5.60 (×10−4). This is roughly 43× worse than the non-bottlenecked RMR.

D ON THE WEAK ACCEPTOR PROPERTIES OF BATTLEZONE

Out of all the Atari games studied in our work, Battlezone could been singled out as the least “recep-
tive” to RMR processors—with only four games successfully donating their RAM representations
to its pixel based encoder (Figure 4).

We set out to study why this effect took place. Upon inspection of the game’s dynamics1, we deter-
mined that Battlezone has certain properties that make representation learning uniquely challenging
and somewhat decoupled from the underlying console computation.

Namely, Battlezone is the only game in our dataset that is played in the “first-person”. Therefore,
from the point of view of the pixel inputs, it may seem as if the player is always in the same place,
and we would expect the mechanics and the way of thinking about the ’avatar’ to be substantially
different from all other Atari games considered.

E ON THE DATA DISTRIBUTION AND SETUP USED FOR TRAINING P

In many cases, while an algorithmic prior may be known, generative aspects of the relevant abstract
inputs for the natural task could be unknown. For example, it may be known that the natural task
could benefit from a sorting subroutine, but it may not be known upfront how many objects will
need to be sorted.

When such details are unknown, it may still be possible to fall back to abstract inputs sampled from
some sensible generic random distribution—so long as the processor network is trained in a way
that promotes extrapolation. For a recent theoretical treatment of OOD generalisation in algorithmic
reasoners, we refer the reader to Xu et al. (2020). Further, as observed by Deac et al. (2021) in the
case of implicit planning, even generic random abstract distributions can promote useful transfer to
noisy pixel-based acting settings such as Atari.

Lastly, it is important to ensure that, in the abstract pipeline, the processor network P carries the
brunt of the computational burden; otherwise, the reasoning task may be partially captured in either
f or g, and not left to P ’s weights. In our work, we generally promote such behaviour by keeping
f and g to be only linear layers; but even in settings where this is not appropriate, we recommend
taking care to not overpower the abstract encoder and decoder.

F ATARI ABSTRACT MODEL EQUATIONS

In this appendix, we provide a “bird’s eye” view of the modelling steps taken by our abstract Atari
pipeline, aiming to support future implementations of the RMR blueprint. We will readily re-use the
notation from the main text for the various components.

1https://www.youtube.com/watch?v=9X4_xy7rC1A
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Figure 5: Bit-level F1 scores for the Atari experiments while varying the latent size. A clear de-
creasing trend is apparent a dim z is reduced, indicating the bottleneck effect.
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Firstly, the abstract encoder f is applied on the relevant Atari RAM representations, x̄, augmented
by a one-hot representation which is aiming to provide a generic embedding of the semantics of each
RAM slot. f is implemented as a linear layer, hence:

z = f(x̄‖o) = Wf x̄ + Ufo + bf (1)

where Wf ,Uf ,bf are learnable weights, and o ∈ B128×128 is a one-hot encoding s.t. o = I128.

In a separate pipeline (officially part of the processor network), the performed actions are also en-
coded using a linear action encoder:

α = fa(a) = Wfaa + bfa (2)

where a is a one-hot encoded action representation.

Then, the processor network GNN is called to update these latents, and a sum-based skip connection
is employed to promote a model-free path:

z′ = P (z +α) + z +α (3)

Here, the processor network P is implemented as a standard message passing neural network
(Gilmer et al., 2017) over a fully connected graph. Equations of such a P are commonly exposed in
e.g. Veličković et al. (2019).

Lastly, the relevant decoder networks predict two properties: a mask which signifies which RAM
slots have been changed as a result of applying a, and the updated states ȳ.

µ = gµ(z′) = σ (Wµz′ + bµ) (4)
ȳ = g(z′)� Iµ>0.5 = (Wgz′ + bg)� Iµ>0.5 (5)

Here, σ is the logistic sigmoid activation, � is the elementwise product, and I is the indicator
function, which thresholds the mask. While this thresholding is non-differentiable, we note that the
mask values can be directly supervised from known trajectories, and at training time, teacher forcing
can be applied—slotting ground-truth masks in place of the indicator function.
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