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ABSTRACT

Data filtering plays a central role in improving model performance, particularly for
vision language models that are pretrained on large, noisy, and redundant image-
caption datasets. Existing filtering techniques assess every sample individually
and retain those that exceed a certain quality threshold, but such strategies fail to
capture higher-order interactions. In this work, we propose a novel submodular
framework for data selection that addresses this limitation. Our method, Submodu-
lar Distribution Matching (SDM), selects a subset by: (1) training a type of sparse
autoencoder to learn disentangled and monotone features; (2) estimating a target
feature distribution from a target dataset; and (3) selecting a subset of samples
whose feature distribution closely matches the target via submodular maximization.
Given the DataComp-medium training set and no external models, SDM achieves
state-of-the-art accuracy on both ImageNet-1K and average performance across
38 downstream tasks. On the full DataComp-medium benchmark, SDM delivers
performance within 1% of the state-of-the-art results while using over 5× fewer
GPU hours than the leading approach.

1 INTRODUCTION

Web-scale image-caption datasets have been critical to recent advances in multimodal learning,
enabling capabilities such as zero-shot image classification (Jia et al., 2021; Radford et al., 2021),
text-guided generation (Kim et al., 2022; Ramesh et al., 2021; Zhang et al., 2023), multimodal
retrieval (Radford et al., 2021), and a range of other applications (Jiang et al., 2023). However,
because these datasets are typically scraped from the web, they contain noisy and redundant samples
that can degrade model performance (Elazar et al., 2024; Webster et al., 2023). Given their scale,
manual curation is infeasible, making algorithmic data selection an increasingly important area of
research.

Figure 1: Quality Score Limitations. Low-quality
samples can still be useful for learning broader concepts.
For example, a model may have enough samples to learn
the concept of “cat,” but without the low-scoring “green
background” image, it lacks examples needed to learn
the concept of “green.”

Most data selection methods applied at web-
scale follow a common strategy: estimate
the quality of each sample and retain those
above a threshold. Some methods use sim-
ple heuristics, such as image resolution or cap-
tion length (Gadre et al., 2023); others lever-
age CLIP embeddings to assess semantic align-
ment (Gadre et al., 2023; Wang et al., 2024b)
or proximity to a reference dataset like Ima-
geNet (Gadre et al., 2023; Wang et al., 2024b).
More recent approaches train specialized mod-
els on curated external datasets to estimate sample quality (Fang et al., 2024; Kim et al., 2024;
Shechter & Carmon, 2025b). In general, these methods treat each sample independently when
evaluating their utility.

While evaluating samples independently can be computationally efficient, it overlooks properties that
only emerge at the dataset level. For example, individually high-quality samples may be redundant
when selected together, while samples that seem low-quality in isolation may capture rare concepts
that enhance diversity when included (see Figure 1). Ignoring distributional properties during
selection can lead to datasets that are imbalanced, ultimately limiting the generalization ability of
models trained on them (Aghabagherloo et al., 2025).
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Figure 2: Overview. Our pipeline consists of three steps: (1) Train a sparse autoencoder (SAE) to disentangle
pretrained neural features into meaningful sparse representations, (2) estimate an empirical distribution of a
target dataset over sparse features (3) use a submodular distribution matching objective to select A ⊆ V that
matches the target distribution.

We argue that effective data selection must also account for distributional properties, particularly by
ensuring a balanced representation of underlying concepts at the set level. This goal requires us to
(1) identify and reason about the presence of individual concepts at a set level and (2) select a subset
of data such that the distribution over these concepts exhibits desirable properties.

Standard neural representations, such as CLIP embeddings, are ill-suited for this purpose. These
representations tend to be entangled (Olah et al., 2020), blending multiple concepts in ways that
make it difficult to quantify or control how much of a given concept is present in a set. To address
this, we use sparse autoencoders (SAEs) to disentangle compact neural representations into sparse
features that correspond to disentangled concepts (Makhzani & Frey, 2014). We further require these
features to be monotone, meaning that their values increase as more of the corresponding concept
is present (Gupta et al., 2016). This encourages the feature values behave more like counts: when
aggregating over a set, the total contribution of a concept can be obtained simply by summing its
values across individual items. To this end, we introduce a novel loss term inspired by Bhatt et al.
(2024) to promote learning monotone features. Intuitively, these disentangled and monotone features
provide a set of “knobs” we can adjust to control which concepts—and in what proportions—are
included in the final dataset.

To balance concepts in a desirable way, we frame data selection as a distribution matching prob-
lem: our goal is to match the distribution over concepts in the selected set to a target distribution
derived from a downstream task. We then connect this distribution matching objective to submodular
maximization: specifically, we show that maximizing certain instances of feature-based functions
(FB functions)—a class of monotone, non-decreasing submodular functions—correspond to mini-
mizing the KL divergence between the concept distribution of the selected set and the target. This
connection allows us to use scalable algorithms for approximate maximization with constant factor
guarantees (Nemhauser et al., 1978). Finally, we demonstrate that this objective can be combined
with existing quality-based filtering strategies, enabling a unified approach that considers both
distributional properties and individual sample quality.

Our contributions can be summarized as follows: (1) We introduce a data selection framework
that disentangles dense features into disentangled and monotone concepts and selects a subset of
data that maxmimizes a FB function based objective. (2) We offer a theoretical interpretation of the
FB objective by connecting it to distribution matching. (3) We demonstrate strong empirical results
on DataComp-medium, a dataset of 128M image-caption pairs, showing that models trained on our
filtered dataset achieve significant improvements compared to existing data selection methods.

2 METHOD

In this section, we begin with a brief introduction to feature-based functions (FB functions) (§2.1),
describe the process we use to construct a disentangled and monotone set of concepts (§2.2 §2.3),
and finally derive the proposed subset selection objective (§2.4, §2.5). Our full workflow is shown
in Figure 2. We also provide a brief introduction to submodularity and a scalable strategy commonly
used to approximately maximize these functions in Appendix C.

Notations. Unless mentioned otherwise, V = V source = [n] = {1, 2, . . . n} denotes the ground
set indexing the data points to select a subset from, and V tar denotes the ground set indexing the
target data points. We denote the space of latent representation of images as X ⊆ Rdin

+ and the
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Figure 3: SAE Visualization. Each row displays the top-activating images from DataComp for two randomly
selected neurons of the CLIP image encoder (left) and an SAE (right). CLIP features tend to activate for a mix of
unrelated concepts, while SAE features represent more coherent concepts. See Appendix L for more examples.

space of representation of sparse representations output as Z ⊆ Rdsparse

+ . Zsource and Ztar are the
design matrices for source and target respectively, such that Zsource

j ≜ henc(xsource
j )T (similarly

for the target), where henc : X → Z denotes the encoder of sparse autoencoder. ∆d−1 represents a
probability simplex in d-dimensions and I[·] is an indicator function. Lastly, we use ϕ to denote the
concave function, and m(A) represents a modular function defined on any A ⊆ V .

2.1 PRIMER ON FEATURE-BASED FUNCTIONS

This work focuses on a specific class of submodular function referred to as feature-based func-
tions (Stobbe & Krause, 2010; Dolhansky & Bilmes, 2016) or FB functions. Given a set of indices
V = [1, . . . , n], a design matrix Z = [z1, . . . ,zn]

⊤ ∈ Rn×d
+ of non-negative entries, a list of

monotone, non-decreasing concave functions (ϕi)ni=1, and a vector of non-negative weights w ∈ Rd
+

we define feature-based functions for any A ⊆ V as follows:

f(A) =

d∑
i=1

wi ϕi
(
mi(A)

)
, where mi(A) ≜

∑
j∈A

zji, (1)

For FB-functions, each feature must be monotone, meaning that larger zji values correspond to a
stronger presence of concept i in item j, and larger mi(A) indicates greater total presence of concept
i in set A. For instance, in bag-of-words or TF-IDF representations, zji is the frequency (or weighted
frequency) of word i in document j, so mi(A) naturally increases as more documents in A contain
that word. The concavity of each ϕi enforces diminishing returns: once a concept is already well
represented in set A, adding more instances with similar concepts contributes less marginal gain.
Finally, the weights wi allow assigning relative importance to different features.

2.2 OBTAINING SPARSE FEATURES

We begin by extracting information-rich representations from a pretrained image encoder; however,
these features typically respond to several, potentially unrelated concepts (Olah et al., 2020). To
address this, we disentangle these representations using Sparse Autoencoders (SAEs), drawing
inspiration from early sparse coding methods (Lee et al., 2006) and recent advances in interpretabil-
ity (Makhzani & Frey, 2014; Gao et al., 2025; Huben et al., 2024; Pach et al., 2025).

Formally, given an input x already in some dense representation space X ⊆ Rdin
+ , we define a k-SAE

(Gao et al., 2025; Makhzani & Frey, 2014) with autoencoding in dsparse dimensions using an encoder
henc and an affine mapping based decoder, respectively, with encoder projecting input into a sparse,
high dimensional non-negative space (dsparse >> din).

henc(x) = TopK
(
ReLU(Wenc(x− bdec) + benc)

)
; x̃ =Wdec h

enc(x) + bdec (2)

where Wenc ∈ Rdsparse×din , benc ∈ Rdsparse , Wdec ∈ Rdin×dsparse , bdec ∈ Rdin and TopK(·) only
retaining top-k entries of a vector and setting anything else as 0. In other words, every input
vector is transformed by the encoder into a sparse representation that has k nonnegative entries
and reconstructs x̃, using an affine transformation. k-SAE’s are typically trained with a simple
reconstruction loss Lrecons(x, x̃) = ∥x − x̃∥22 and we include an additional activity regularizer
Lact-reg =

∑
x∈b ∥hϕ(x)∥2/|b| to keep activations from being too large (Merity et al., 2017). The
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resulting sparse representations tend to exhibit the property that individual features respond to images
containing a concept which can often be interpretable by humans as shown in Figure 3 - this property
is frequently referred to as monosemanticity (Gao et al., 2025; Huben et al., 2024; Pach et al., 2025).

We note that the property of monosemanticity is ill-defined, since it depends entirely on how one
chooses to define a “concept.” For instance, a hidden neuron that activates in the presence of any bird
in an input image can be considered monosemantic with respect to the bird concept, but polysemantic
with respect to individual bird species. Nevertheless, we use the shorthand ”monosemanticity” to
mean ”monosemanticity with respect to a fixed set of concepts.”

Monosemanticity is also distinct from the notion of monotonicity. For example, a hidden neuron that
only activates in the presence of a bird may still be considered monosemantic even if its activation
value is higher when more non-bird species are present in the image. Despite being monosemantic,
the magnitude of the activation does not correspond to the “strength” or uniqueness of the concept’s
presence. Conversely, a feature may be monotone and polysemantic—for instance, if higher values
indicate a larger presence of both birds and cats. While k-SAEs disentangle dense representations into
useful concepts, we additionally introduce a novel loss term to explicitly encourage monotonicity.

2.3 MONOTONICITY LOSS

To encourage our k-SAE to learn monotone features, we introduce an additional contrastive loss
term inspired by Bhatt et al. (2024). Concretely, we sample hEterogeneous and hoMogeneous sets
E,M ⊂ V , define a margin function ∆(E|M) which measures how much more diverse E is than M ,
and instantiate an unweighted FB-function f(A) =

∑
i∈[dsparse]

log(1 +mi(A)). The monotonicity
loss is defined as

Lmono(E,M) = |∆(E|M)| · log
(
1 + exp

(
1− f(E)− f(M)

∆(E|M)

))
. (3)

This loss aligns the sign and magnitude of f(E) − f(M) with the margin ∆(E|M). Intuitively,
heterogeneous sets E (sets with more concepts) should achieve higher values of f than homogeneous
sets M (sets with few concepts). Because f(A) =

∑
i log(1 + mi(A)) is concave, repeatedly

increasing already-active features contributes little additional gain; across many sampled pairs, the
most consistent way to reduce the loss is for new concepts in E to activate additional features. This
biases the SAE toward representations that behave monotonically with respect to concept presence.

In practice, the true concept set is unknown, so we approximate ∆(E|M) by defining ∆(E|M) =∑
(x,x′)∈M ⟨x, x′⟩ −

∑
(x,x′)∈E⟨x, x′⟩, the difference in summed pairwise similarities computed in

the original dense representation space. We sample E uniformly at random, and M is obtained
by taking a single element of E and finding its |E| − 1 nearest neighbors in V . The final SAE
is trained with a combination of Lrecons. and Lmono. Refer to Algorithm 1 for pseudocode and
additional implementation details, and to Appendix D for further analysis of how low monotonicity
loss encourages monotone features.

2.4 SUBMODULAR DISTRIBUTION MATCHING

Now that we have provided a framework to learn sparse and monotone features, we turn to the
problem of subset selection. Specifically, we seek to maximize a feature-based (FB) function to
ensure that the final subset maintains a balanced representation of concepts. This section details our
subset selection objective.

Definition 2.1 (Empirical Distribution). Given a ground set of indexing V = [n], any subset
A ⊆ V and design matrix Z ∈ Rn×dsparse

+ , we define a histogram based empirical distribution
p(A) ∈ ∆dsparse−1, such that p(A)i =

mi(A)∑
j∈[dsparse]

mj(A) , where mi(A) ≜
∑

j∈A zji.

Corollary 2.2 (Target Empirical Distribution). Given a ground set of indexing V tar and target
design matrix Ztar, we define target empirical distribution ptar ∈ ∆dsparse−1, such that ptari =

mi(V
tar)∑

j∈[dsparse]
mj(V tar) , where mi(A) ≜

∑
j∈A z

tar
ji .
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Given the target empirical distribution ptar ∈ Rdsparse

+ , our goal is to match it as closely as we can,
by selecting examples from our source distribution. That is, we aim to find A ⊆ V source which
minimizes DKL(p

tar || psource(A)), where psource(A) denotes the empirical distribution of source
for given A ⊆ V , as per definition 2.1. In the following theorem, we show that this problem is an
instance of maximizing a Difference of Submodular (DS) functions (Iyer & Bilmes, 2012).
Theorem 2.3 (Distribution Matching as DS Maximization). Given the target and the source empirical
distribution, minimizing DKL(p

tar || psource(A)) is an instance of optimizing a Difference of
Submodular Functions, where mi(A) =

∑
j∈A z

source
ji .

A∗ = argmin
A⊆V

DKL(p
tar || psource(A)) (4)

= argmax
A⊆V

∑
i∈[dsparse]

ptari log(mi(A))− log

 ∑
j∈[dsparse]

mj(A)

 ≜ argmax
A⊆V

g(A) (5)

Proof. Please refer to the Appendix E.

As eq. (5) is an instance of DS-maximization, there exists no polynomial time approximate algorithm,
unless P = NP . Since direct optimization is intractable, we instead maximize a lower bound on
g(A) obtained by upper-bounding log

(∑
j∈[dsparse]

mj(A)
)

. While tight submodular lower bounds
follow from the existence of modular upper bounds (Nemhauser et al., 1978), computing them
is prohibitive for large ground sets (n ∼ millions). With a budget b in subset selection, we thus
consider cardinality-constrained maximization and employ an approximation that, when optimized
via accelerated greedy methods (Minoux, 2005; Mirzasoleiman et al., 2014), matches the performance
of modular upper-bounds-based algorithms (Iyer & Bilmes, 2012).
Lemma 2.4. Assuming sparse feature map h : X → Z is such that ∥h∥∞ ≤ β and given
that h is an instance of k-SAE, if ĝ(A) ≜

∑
i∈[dsparse]

ptari log(mi(A)) − log (kβ|A|), then
ĝ(A) ≤ g(A). In many scenarios where subset selection is subject to a cardinality constraint,
i.e., |A| ≤ b for a given budget b, the quantity ĝ(A) satisfies the submodular lower bound
ĝ(A) ≥

∑
i∈[dsparse]

ptari log(mi(A))− log(kβb).

Proof. Please refer to the Appendix E. In Appendix F, we validate this approach on a Gaussian
mixture dataset, showing that the omission of the term log (kβb) does not degrade performance.

To encourage β to be low, we use an activity regularization term as discussed in Section 2.2. To
guarantee that the submodular function remains monotone, non-decreasing, and normalized (i.e.,
it evaluates to 0 on the empty set), we replace log(·) with log(1 + ·) in the lemma above. This
modification has negligible effect in practice because mi(A) ≫ 1, as each mi(A) aggregates
millions of samples.

2.5 COMBINING DISTRIBUTION MATCHING OBJECTIVE WITH QUALITY MEASURES

While maximizing the above objective helps align the feature distribution of the selected subset
with that of the target, it only considers image features. However, effective data filtering must also
account for the semantic alignment between each image and its corresponding caption. Prior work has
proposed various ways to quantify this alignment—typically by computing the dot product between
the image and text embeddings (Gadre et al., 2023; Wang et al., 2024b; Kim et al., 2024; Fang et al.,
2024; Maini et al., 2024)—and we aim to incorporate this into our distribution matching framework.

A key advantage of using a submodular objective is that it remains submodular even when combined
with a modular function (Bilmes, 2022). Therefore, a simple objective that combines distribution
matching with a metric that measures quality would be f(A) ≜ ĝ(A) +

∑
a∈A q(a) where ĝ(A)

is the previously defined distribution matching objective and q(a) measures how well a caption
corresponds to image a. However, this solution has a few shortcomings. First of all, the gain of
the overall objective can be expressed as f(v|A) = ĝ(v|A) + q(v) for v ∈ V \ A but only g(v|A)
decreases as |A| gets larger. Therefore, q(v) may dominate the value of f(v|A) which diminishes
the overall objective’s ability to jointly consider distributional similarity and quality. Furthermore,
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existing measures of quality are noisy and may not be useful in expressing finegrained preferences.
In other words, q(i) > q(j) does not necessarily imply that i is preferable to j when q(i) − q(j)
is small. Therefore, we devise a novel technique to combine a quality score with our distribution
matching objective that (1) improves the overall objective’s ability to consider both functions during
selection and (2) only uses coarse-grained preferences of the quality score.

Instead of using q directly, we create a feature-based function based on a quantized version of q
which can be expressed as follows:

q′(A) =
∑
i∈[ℓ]

ui log

1 +
∑
j∈A

I[q(j) ∈ [bi−1, bi)]

 (6)

where {b0, b1, . . . , bℓ} denote bin edges, such that bin i corresponds to the interval [bi−1, bi) and
ui is a weight that expresses the degree of preference we have for bin i. Note that since q′ has a
form similar to g, it is easy to show that maximizing q′(A) is minimizing the KL-divergence to a
distribution u if

∑
i∈ℓ ui = 1.

Overall Objective Since the optimization is cardinality constrained, for distribution matching,
we can use

∑
i∈[dsparse]

ptari log(mi(A)) as a proxy, since log (kβ|A|) is constant. We can now
combine the distribution matching with a quantized version of the quality score, which we call SDM
(Submodular Distribution Matching).

Definition 2.5 (SDM). Given ground sets and design matrices V source, Zsource, modular
function msource

i (A) ≜
∑

j∈A z
source
ji for any subset A ⊆ V source and i ∈ [dsparse] (similarly

for the target).
Let the target empirical distribution be defined as ptar ∈ ∆dsparse−1, where

ptari ≜
mtar

i (V tar)∑
j∈[dsparse]

mtar
j (V tar)

Furthermore, given ℓ bins {b0, b1, . . . , bℓ} over a quality metric q, along with bin weight vector
u, a trade-off parameter λ ∈ [0, 1], and a selection budget b, SDM optimizes:

argmax
A⊆V source

|A|=b

λ
∑

i∈[dsparse]

ptari log
(
1 +msource

i (A)
)

︸ ︷︷ ︸
distribution matching

+ (1− λ)
∑
i∈[ℓ]

ui log
(
1 +

∑
j∈A

1{q(j) ∈ [bi−1, bi)}
)

︸ ︷︷ ︸
quality weighting

(7)

3 EXPERIMENTS

In our experiments, our primary goal is to determine the most effective subset selection strategy for
training a CLIP-style model in the DataComp-medium benchmark (Gadre et al., 2023).

3.1 SETUP

Datasets We use the image-caption dataset associated with the DataComp-medium benchmark
(128M image-caption pairs) for all training. All subset selection strategies in this section are designed
to identify the best subset from DataComp-medium for training a CLIP-style model. The resulting
models are evaluated based on zero-shot performance on a suite of 38 zero-shot tasks proposed
by Gadre et al. (2023) which includes ImageNet-1K (Deng et al., 2009), several classification datasets
from VTAB (Zhai et al., 2019), and retrieval benchmarks such as MS-COCO (Chen et al., 2015).

CLIP Training We adopt the DataComp-medium training configuration for all experiments. Fol-
lowing the selection of a subset via a given filtering approach, training is conducted using a CLIP-B/32
model under a standardized compute regime where the total number of training steps is fixed to
128M, regardless of dataset size. Each training run requires 40 A100 hours.
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SAE Configuration We train an SAE on the CLIP ViT-L/14 image embeddings (din = 768), with
dsparse = 98, 304. The SAE is trained on the unfiltered DataComp-medium dataset; no external data
sources are used. Note that the image encoder parameters are frozen, so we are able to train the SAE
on precomputed image embeddings.

Submodular Objective and Optimization By default, our submodular objective uses negCLI-
PLoss (Wang et al., 2024b) as a measure of quality. We quantize this into three equally sized bins,
and assign weights of 0, 0.01, 0.99 to the low, medium, and high values respectively. We use the
training set of ImageNet-1K as the target distribution unless otherwise stated. To maximize this
objective, we use the stochastic greedy algorithm (Mirzasoleiman et al., 2014) (shown in Algorithm 2)
with ϵ = 0.001. We run stochastic greedy 5 times to select subsets and compute the intersection
between them to get the final subset (see Appendix K for an ablation on this). Selecting a subset of
25M samples from a pool of 128M takes approximately 1 hour on a CPU using stochastic greedy
with Bilmes (2025); the total time required to compute the final summary aggregated over 5 stochastic
greedy results is 5 hours though this can be fully parallelized across separate CPU’s.

Computational Cost Overall, our method requires 60 A100 hours to compute the initial features,
5 A100 hours to compute the quality scores, 15 A100 hours to train the SAE, and 5 CPU hours to
run stochastic greedy. Importantly, both feature extraction (a shared bottleneck across all methods)
and NegCLIPLoss scoring scale linearly with the size of the candidate pool. In contrast, the SAE
training cost can remain fully independent of the pool size. Training CLIP on DataComp-medium
requires 40 A100 hours.

3.2 MAIN RESULTS

Table 1: Main Results. Performance of filtering strategies on medium-scale evaluation tasks. Bold values
indicate the best in each column, and underlined values indicate the second best. For all methods, we report
results at their best-performing data fraction.

Filtering Strategy Size IN1K IN1K Shifts VTAB Retrieval Avg

No Filter 128M 17.6% 15.2% 25.9% 21.9% 25.8%
Basic Filtering (Gadre et al., 2023) 30M 22.6% 19.3% 28.4% 25.1% 28.5%
Text-Based (Gadre et al., 2023) 31M 25.5% 21.5% 32.8% 24.9% 30.7%
Image-Based (Gadre et al., 2023) 29M 26.8% 21.3% 31.9% 25.6% 31.2%
CLIP-Score (Gadre et al., 2023) 38M 27.3% 23.0% 33.8% 25.1% 32.8%
Image-Based ∩ CLIP-Score (Gadre et al., 2023) 14M 29.7% 23.9% 34.6% 23.1% 32.8%

D2 Pruning (Maharana et al., 2024) 26M 24.1% 20.6% 30.6% 19.6% 29.8%

negCLIPLoss (NCL) (Wang et al., 2024b) 33M 28.8% 23.8% 35.4% 25.3% 34.4%
NCL ∩ NormSim (IN1K) (Wang et al., 2024b) 22M 32.8% 26.8% 36.2% 26.5% 35.3%
NCL ∩ NormSim (Target) (Wang et al., 2024b) 22M 32.7% 26.5% 37.5% 26.5% 35.7%

SDM (ours) 18M 35.2% 27.1% 38.6% 26.8% 36.4%

Figure 4: Different Sizes. We test SDM at different sizes to
the best baseline (NCL ∩ NormSim) which uses 22M samples.

In this section, we focus on the setting
where only a single model (specifically
CLIP ViT-L/14) is available for generating
embeddings. We argue that this setting is
the most general because (1) training a new
dedicated model for data selection for a spe-
cific domain is often prohibitively expen-
sive—sometimes costing more than train-
ing the primary model itself (Fang et al.,
2024; Kim et al., 2024), and (2) approaches
that score data using multiple embedding sources or models (Maini et al., 2024; Yu et al., 2023) are
not always feasible, especially in domains where such models are unavailable, such as biomedical
image/caption datasets (Ikezogwo et al., 2023; Lozano et al., 2025).
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In Table 1, we evaluate several baselines. CLIP-Score (Gadre et al., 2023) selects the image-
caption pairs whose corresponding image and text embeddings have the highest dot product. Image-
Based (Gadre et al., 2023) performs k-means clustering on the image embeddings and selects
samples which belong to clusters that are close to embeddings of training images from ImageNet.
Image-Based ∩ CLIP-Score Gadre et al. (2023) simply takes the set intersection between the
sets selected by the two methods. D2 Pruning (Maharana et al., 2024) constructs an undirected
graph initialized with CLIP scores and selects data by jointly optimizing for sample difficulty and
diversity. NCL (Wang et al., 2024b) is similar to CLIP-Score but assesses sample quality based
the CLIP loss (Radford et al., 2021) - a batch wise measure that considers semantic alignment and
specificity. NormSim measures how similar an image is to a target dataset in terms of p-norm. By
default, we always consider p =∞ which was the highest performing variant in Wang et al. (2024b),
and consider two target datasets (1) the Imagenet-1k training set or (2) Target which is the training
sets of 24 different downstream tasks. NCL ∩ NormSim combines the two prior approaches by
taking a set intersection of the resulting subsets. This method was previously the state of the art
data selection technique among those that only use CLIP ViT-L/14 (Wang et al., 2024b).We find
that SDM consistently delivers substantial performance improvements over state-of-the-art data
selection methods. On ImageNet-1K, SDM outperforms both variants of NCL ∩ NormSim by 2.5%
on ImageNet-1K, and achieves a 0.7% gain in average performance.

Notably, in Figure 4, we find that our method is especially effective at smaller dataset scales: with
33% fewer samples, SDM still outperforms NCL ∩ NormSim by nearly 2% on ImageNet. We
attribute this advantage to SDM’s ability to reduce redundancy in the selected subsets.

3.3 ALTERNATE BACKBONES AND QUALITY SCORES
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Figure 5: SDM vs. NormSim. We test both SDM and Norm-
Sim with different quality scores and backbones, and find that
SDM consistently achieves better zero-shot performance.

NormSim (Wang et al., 2024b) and SDM
are both target-aware data selection meth-
ods that can be applied with different fea-
ture extractors and quality scoring func-
tions. Figure 5 compares their perfor-
mance across several backbone architec-
tures (CLIP ViT-L/14, ViT-B/32, and DFN-
P) and quality scores (CLIPScore (Gadre
et al., 2023) and NegCLIPLoss).

In each case, we assume access to a sin-
gle embedding model, as in the previous
section. Across all backbones and scoring
functions, SDM consistently outperforms
NormSim, both on ImageNet and in the
average performance. This demonstrates that distribution-aware selection is more effective than
evaluating samples individually.

3.4 IMPACT OF MONOTONICITY LOSS

We study the effect of adding the loss term Lmono to the standard reconstruction loss Lrecons. when
training a k-SAE. We introduce two metrics to evaluate SAE quality: the Monosemanticity Score
(MS Score) and the Monotonicity Score (MT Score). MS Score captures semantic consistency of
neurons (Zhang et al., 2025). For each neuron i ∈ [dsparse], we compute the average pairwise cosine
similarity among images activating that neuron, and then average over all neurons. A higher score
indicates that images activating the same neuron are semantically aligned. MT Score measures how
well features behave like “counts.” For each neuron i, we sort images by activations Z[:, i], yielding
permutation σi with σi[1] denoting the strongest activation. If n is the dataset size, the neuron-level
score is 1

n−1

∑n−1
j=1 < xσi[j], xσi[j+1] >. We average the neuron-level score across all neurons, to

report the MT Score. Intuitively, adjacent images with similar activations for feature i should also
exhibit similar concept counts, resulting in higher similarity. Finally, we evaluate the impact of Lmono

within SDM, following the same procedure as before but performing distribution matching with a
different set of features. We report both zero-shot ImageNet-1K accuracy and the average zero-shot
accuracy across all 38 evaluation tasks. Please refer to Appendix I for more details.
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Table 2: Impact of Lmono on SAE training; MS: Monosemanticity Score (↑), MT: Monotonicity Score (↑).

DataComp Small ImageNet-1K Accuracy

MS Score MT Score MS Score MT Score ImageNet-1K Avg

Lrecons. 0.55 0.60 0.58 0.60 34.80% 35.00%
Lrecons. + Lmono 0.62 0.66 0.63 0.65 35.20% 36.40%

In Table 2, we show that adding Lmono yields consistent improvements across all metrics. Although
our study focuses on applying SAEs to data selection, the substantial gains in both MS and MT
Scores highlight the potential relevance of this approach to the broader interpretability community.

3.5 COMPONENT-WISE ABLATION

In this section, we disentangle the contributions of two components in our approach: (1) using
SAE-derived sparse features, and (2) using a submodular objective. To isolate the effect of using
sparse feataures, we construct the feature-based objective directly on dense CLIP embeddings (after
applying a ReLU to ensure nonnegativity). To isolate the effect of submodularity, we remove the
log() function from both components in Theorem 2.5, which eliminates diminishing returns. We
report results on ImageNet-1K as well as the average performance across 38 downstream datasets
in Table 3. The results demonstrate the using sparse features is critical to downstream performance -
using dense CLIP features results in a 12% drop in ImageNet performance and 9% overall. We also
find that removing the concave function substantially diminishes overall performance, by 1.3%.

Table 3: Effect of Sparse Features and Submodularity. Performance on ImageNet-1K (left) and the average
over 38 datasets (right) under two ablations: (i) using dense CLIP features instead of SAE-derived sparse features,
and (ii) removing the concave log term that induces submodularity.

ImageNet-1K (%)

Submodular No Submodular

Sparse 35.2 34.6
Dense 24.1 23.7

Average Over 38 Datasets (%)

Submodular No Submodular

Sparse 36.4 35.1
Dense 29.1 28.9

3.6 COMBINATION WITH OTHER SELECTION APPROACHES

Table 4: Results w/ External Models. Performance of filtering
strategies on ImageNet and overall average when using external
data and models. Bold = best, underline = second best.

Filtering Strategy IN1K Avg

TMARS + SSFT (Maini et al., 2024) 33.8% 36.2%
HYPE (Kim et al., 2024) 34.6% 37.3%
DFN (Fang et al., 2024) 37.1% 37.3%
NCL + DFN + HYPE (Wang et al., 2024b) 38.2% 38.8%
M-FLYT + SCS (Shechter & Carmon, 2025b) 40.1% 37.7%
Metagradient Descent (Engstrom et al., 2025) 27.0% 40.2%

SDM + (Wang et al., 2024b) (ours) 39.2% 39.2%

We also integrate SDM with the
highest-performing method on
DataComp-medium that publicly
releases its indices, namely the
NCL + DFN + HYPE ensemble
proposed by Wang et al. (2024b).
Their approach constructs the dataset
by taking the disjoint union of three
independently selected subsets; any
sample that appears in k subsets is
upweighted by being duplicated k
times in the final collection. To incor-
porate SDM, we define a submodular
objective that encourages quality in
a manner analogous to our earlier
formulation and apply the same upweighting scheme. To further boost performance, we instantiate
SDM objectives using SAE features derived from two embedding models—CLIP ViT-L/14 and
DINOv2. Full details of this procedure are provided in Appendix J.

As shown in Table 4, this hybrid approach achieves substantial gains over the base method and
ranking 2nd based on average performance out of all methods on the DataComp-medium leaderboard.
The only method outperforming SDM is Metagradient Descent (Engstrom et al., 2025), which is

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

prohibitively expensive and attains 12.2% lower zero-shot accuracy on ImageNet-1K. Please refer to
Appendix B, which discusses how SDM requires over 5x less GPU hours than the Metagradients
approach.

4 RELATED WORK

Targeted Data Selection. Targeted data selection is a broader field that has been explored in other
settings as well. Wallingford et al. (2023); Udandarao et al. (2023) propose similarity based data
selection methods for few-shot adaptation of VLMs, which also evaluate the utility of each sample
independently. Some recent work also explores using submodularity to select samples that are diverse
and relevant to a target (Das et al., 2025; Kothawade et al., 2021; Kumari et al., 2024; Agarwal et al.,
2024) in various contexts. However, these methods are difficult to scale due to their reliance on
pairwise similarity matrices. Finally, there has also work that uses the regularized optimal transport
objective (Liu et al., 2024) in addition to kernel density-based estimation to promote diversity.
However, these methods cannot include a quality score trade-off and can still be O(n log n), even
ignoring the subset selection cost, where n is the size of the dataset to select from. Our work
approximates the distribution matching objective with a tractable submodular function, and can
easily handle additional quality score(s).

SAE’s in Data Selection. Two recent works have explored the use of SAE’s for data selection for
supervised finetuning of LLMs. Yang et al. (2025) introduced the first approach in this direction,
proposing SAE-GreedSelect, which greedily builds a subset by repeatedly selecting the sample that
covers the largest number of previously uncovered concepts. However, this strategy is ill-suited to
our setting, where dsae is much smaller than the target summary size, causing the pool of concepts to
be exhausted prematurely. Moreover, Yang et al. (2025) do not provide mechanisms to (1) combine
diversity and quality—essential when working with highly uncurated multimodal datasets—or (2)
assign relative importance to different concepts, both of which are addressed by SDM. More recently,
Ma et al. (2025) proposed a method similar to NormSim (Wang et al., 2024b), for a task-aware
selection method that uses SAE-derived representations to construct a more robust similarity metric.

5 CONCLUSION AND FUTURE WORK

Overall, we propose SDM, a novel submodular framework for filtering multimodal datasets using
a distribution-matching objective based on SAE features, combined with a quality-based objective.
When filtering the DataComp-medium pool, and only using CLIP embeddings, SDM achieves SOTA
accuracy on both ImageNet-1K and average performance across 38 downstream tasks. On the full
benchmark, SDM delivers performance within 1% of the SOTA while using over 5× fewer GPU
hours than the leading approach. There are several promising directions for future work. First, our
framework is modality/domain-agnostic and can be readily applied to other tasks which we plan to
explore in the future. Second, while our main experiments fixed the target dataset to ImageNet, we
include in Appendix K an ablation in which we vary the target dataset. This analysis shows that
performance can be sensitive to the choice of target, suggesting that careful selection of the target
distribution is important. Exploring principled strategies for target selection, such as using strategies
inspired by data mixture optimization (Xie et al., 2023), remains an exciting direction for future work.
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A TABLE OF NOTATION

Here we provide a list of notations we used throughout this work.

Notation Description

V = V source = [n] Source data indices (ground set)
V tar Target data indices
X ⊆ Rdin

+ Input image feature space
Z ⊆ Rdsparse

+ Sparse representation space
Zsource Source design matrix
Ztar Target design matrix
Zsource

j ≜ henc(xsource
j )T Encoded rep. of j-th source input

henc : X → Z Sparse autoencoder encoder
∆d−1 d-dimensional simplex
I[·] Indicator function
ϕ Concave function
m(A) Modular function on A ⊆ V
I Image space
T Caption space
Dsource Source image-caption pairs
q(k) Quality score for index k
Dtar Target image set
Dtrain Selected training subset

Table 5: Summary of Notations

B ADDITIONAL RELATED WORK

DataComp The DataComp paper introduces a benchmark that fixes the training and evaluation
procedures for VLMs to measure the effect of data filtering techniques on model performance Gadre
et al. (2023). Since then, many new data filtering techniques have emerged and can broadly be
categorized into two types: (1) approaches that rely exclusively on off-the-shelf CLIP embeddings
while refining how those embeddings are employed Gadre et al. (2023); Maharana et al. (2024);
Wang et al. (2024b); (2) methods that use curated external data sources to either enhance the CLIP
model Fang et al. (2024) itself or incorporate wholly different external models to guide the data-
selection process Kim et al. (2024); Yu et al. (2023); Maini et al. (2024). Generally, the latter
outperform the former but demand substantially more development resources—often exceeding those
required to train the VLM itself. Our work falls in the former category, but can be easily combined
with methods in the latter.

Comparison with Metagradients Engstrom et al. (2025) frames data-subset selection as gradient-
based hyperparameter tuning, where each datapoint’s weight in the loss is treated as a hyperparameter.
However, this approach requires “backpropagation through the entire training sequence”, which
naively incurs a prohibitive memory cost of O(T ), where T is the number of training steps. To
mitigate this, the paper introduces a O(k log T ) space algorithm using a lazy k-ary tree, akin to the
island algorithm (Binder et al., 1997). Beyond memory, the method still necessitates substantial
computation: training on the DataComp dataset for 40 steps (Fig. 6 from their paper, assuming they
require a similar number of steps for DataComp Medium, since they only report experiments on the
DataComp Small dataset) translates to 40× 5 = 200 A100-hours on NVIDIA A100 GPUs, assuming
5 A100-hours per metagradient step. In contrast, our approach trains at most 2 SAEs, requiring only
40 hours. Thus, SDM is approximately 5× faster than the Metagradients-based approach.
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C PRIMER ON SUBMODULAR FUNCTIONS

In this section, we formally describe submodular functions. For a given ground set V = [n] ≜
{1, . . . , n}, a set function f : 2V → R is submodular if and only if it satisfies f(A∪ {v})− f(A) ≥
f(B ∪{v})− f(B) for subsets A ⊆ B ⊆ V and v ∈ V \B, where f(v|A) ≜ f(A∪{v})− f(A) is
often referred to as gain of adding a new element v. In case when f(v|A) = f({v}), then the function
is referred to as a modular function, and in such case for any A ⊆ V , it can be decomposed as
f(A) =

∑
j∈A f({j})+f(∅). Diminishing returns allows submodular functions to effectively model

notions of diversity and coverage Bilmes (2022). When set functions are monotone non-decreasing
(f(A) ≤ f(B),∀A ⊆ B ⊆ V ) and normalized (f(∅) = 0), they are referred to as polymatroid
functions. In general, maximizing submodular functions is NP-Hard, however, polymatroid functions
can be approximately-maximized subject to a variety of constraints from set cardinality, to knapsack,
to a bigger and theoretically interesting class of matroid rank constraints. For cardinality constraints,
a greedy algorithm achieves an approximation guarantee of 1− e−1 (Feige, 1998; Minoux, 2005;
Nemhauser et al., 1978); for other constraints, please refer to Badanidiyuru & Vondrák (2014).

D ANALYSIS OF MONOTONICITY LOSS

The goal of this section is to show that minimizing the monotonicity loss Lmono on carefully
constructed (E,M) pairs, together with the margin function ∆(E |M), results in learned features
that are monotone with respect to a set of concepts.
Definition D.1 (Monotonicity). Let C be a finite set of concepts. For each item v ∈ V associate a
concept vector ψ(v) ∈ [0, 1]|C |. Given nonnegative features z ∈ R|V |×d

+ , we say that z is monotone
with respect to C if for every c ∈ C there exists a nonempty index set Gc ⊆ [d] and a constant η ≥ 0
such that, for any two items v, v′ ∈ V with ψc(v) > ψc(v

′),∑
i∈Gc

(
zvi − zv′i

)
≥ η

(
ψc(v)− ψc(v

′)
)
.

Remark D.2 (Monotonicity vs. Monosemanticity). It is important to distinguish monotonicity from
monosemanticity. Monotonicity requires that some coordinates consistently increase as the presence
of a concept grows, but it does not require a one-to-one mapping between concepts and features. A
single feature may still respond to multiple concepts, as long as its activation is nondecreasing in
each relevant direction. By contrast, monosemanticity typically implies that each feature should be
specialized to a single concept.

Definition D.3 (Feature Sums and Aggregator). For z ∈ R|V |×d
+ and subset A ⊆ V , define

mi(A) =
∑
j∈A

zji, ∀i ∈ [d], f(A) =

d∑
i=1

log
(
1 +mi(A)

)
.

Definition D.4 (Concept Margin). For subsets E,M ⊆ V of equal size, define

∆(E |M) = ∥ψ(E)− ψ(M)∥1,
which measures the total excess of concepts in E compared to M .
Definition D.5 (Monotonicity Loss). For a pair (E,M), the contrastive loss is

Lmono(E,M) = ∆(E |M) · log
(
1 + exp

(
1− f(E)−f(M)

∆(E|M)

))
.

Given a dataset T = {(Et,Mt)}nt=1, the total loss is

J (z) =
∑
t∈T
Lmono(Et,Mt).

Definition D.6 (Per-Concept Partition). For each concept c ∈ C , define

Tc =
{
(Et,Mt) ∈ T : Et,Mt differ only in concept c

}
.

Let
Γc =

∑
t∈Tc

∆(Et |Mt), Jc(z) =
∑
t∈Tc

Lmono(Et,Mt).
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Theorem D.7 (Low Loss Implies Average-Case Concept Monotonicity). Suppose for every c ∈ C
the per-concept average loss is small:

1

Γc
Jc(z) ≤ ε.

Then for each c there exists a nonempty Gc ⊆ [d] such that

1

Γc

∑
t∈Tc

∑
i∈Gc

(
mi(Et)−mi(Mt)

)
≥ 1

d (1− ε).

In particular, on average across dataset pairs differing only in c, features in Gc grow proportionally
with ψc, with margin η = 1

d (1− ε).

Proof. Fix c ∈ C and write ∆t = ∆(Et |Mt). Define

ρt(z) =
f(Et)− f(Mt)

∆t
, ∆t > 0.

Then
Jc(z) =

∑
t∈Tc

∆t · log
(
1 + exp(1− ρt)

)
.

Since log(1 + eu) ≥ u, taking u = 1− ρt gives

Jc(z) ≥
∑
t∈Tc

∆t(1− ρt) = Γc −
∑
t∈Tc

∆tρt.

Dividing by Γc and applying the loss bound,

1

Γc

∑
t∈Tc

∆tρt ≥ 1− ε. (1)

By definition,
ρt =

f(Et)−f(Mt)
∆t

.

Thus (1) implies
1

Γc

∑
t∈Tc

(
f(Et)− f(Mt)

)
≥ 1− ε. (2)

Now, note that for any x, y ≥ 0,

log(1 + x)− log(1 + y) ≤ x− y.
Applying this coordinatewise,

f(Et)− f(Mt) ≤
d∑

i=1

(
mi(Et)−mi(Mt)

)
. (3)

Combining (2) and (3),

1

Γc

∑
t∈Tc

d∑
i=1

(
mi(Et)−mi(Mt)

)
≥ 1− ε. (4)

Equation (4) states that, averaged over pairs differing only in concept c, the total feature mass
increases in line with ψc. Averaging across coordinates,

1

d

d∑
i=1

( 1

Γc

∑
t∈Tc

(
mi(Et)−mi(Mt)

))
≥ 1

d (1− ε).

Hence at least one coordinate (and thus some nonempty Gc) satisfies the same bound, proving the
claim.
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E PROOFS FROM THE MAIN PAPER

For completeness, we re-state the statement of the theorem
Theorem E.1 (Distribution Matching as DS Maximization). Given the target and the source empirical
distribution, minimizing DKL(p

tar || psource(A)) is an instance of optimizing a Difference of
Submodular Functions.

A∗ = argmin
A⊆V

DKL(p
tar || psource(A)) (8)

= argmax
A⊆V

∑
i∈[dsparse]

ptari log(mi(A))− log

 ∑
j∈[dsparse]

mj(A)


≜ argmax

A⊆V
g(A) (9)

where mi(A) =
∑

j∈A z
source
ji .

Proof. We begin by expanding the definition of the KL divergence.

DKL(p
tar || psource(A)) =

∑
i∈[dsparse]

ptari log

(
ptari

psource(A)i

)
(10)

= −H(ptar)−
∑

i∈[dsparse]

ptari log (psource(A)i) (11)

Where H(·) refers to the shannon entropy function. Since entropy of target distribution is not a
function of A, we can focus on the second term, and aim to maximize it.

argmin
A⊆V

DKL(p
tar || psource(A)) = argmax

A⊆V

∑
i∈[dsparse]

ptari log (psource(A)i) (12)

Now we use the fact that

psourcei ≜
mi(A)∑

j∈[dsparse]
mj(A)

Plugging above yields

argmax
A⊆V

∑
i∈[dsparse]

ptari log (psource(A)i) = argmax
A⊆V

∑
i∈[dsparse]

ptari log(mi(A))− log

 ∑
j∈[dsparse]

mj(A)



Lemma E.2. Assuming a sparse feature map h : X → Z is such that ∥h∥∞ ≤ β and given that h
is an instance of k-SAE, if ĝ(A) ≜

∑
i∈[dsparse]

ptari log(mi(A))− log (kβ|A|), then ĝ(A) ≤ g(A).
Moreover, ĝ(A) is submodular for any A ⊆ V .

Proof. To arrive at this lower bound, first observe that –∑
j∈[dsparse]

mj(A) =
∑

j∈[dsparse]

∑
i∈A

zij (13)

=
∑
i∈A

∑
j∈[dsparse]

zij (14)

Since the design matrix is generated using a TopK sparse autoencoder features, for every example
i ∈ A, define ξi ≜ {k : k ∈ [dsparse] , zik > 0}; note that |ξi| ≤ k. Since ∥h∥∞ ≤ β, therefore,
zik ≤ β for all i ∈ A and k ∈ ξi. Therefore, we have the following –
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∑
j∈[dsparse]

mj(A) =
∑
i∈A

∑
j∈ξi

zij (15)

≤
∑
i∈A

k β (16)

= |A| k β (17)

Plugging the above relation in the definition of ĝ(A) yields us the desired inequality.

F ILLUSTRATION OF DISTRIBUTION MATCHING

We generate a synthetic dataset by sampling from a mixture of 30 two-dimensional Gaussian com-
ponents with diverse means and covariances, which defines the source distribution. The target
distribution is constructed by selecting 4 of these Gaussians and oversampling from them, concentrat-
ing probability mass on a restricted subset of the mixture. To represent the data, the 2D domain is
partitioned into a fixed 50× 50 grid, yielding 2,500 bins. Each sample activates only the bin it falls
into, and by aggregating counts, we form an empirical distribution over the bins. Figure 6 illustrates
both the source and target datasets.

In this setup, the design matrix Z has one-hot entries along the feature axis. It follows that

∑
j∈[dsparse]

mj(A) =
∑

j∈[dsparse]

∑
i∈A

zij (18)

=
∑
i∈A

∑
j∈[dsparse]

zij (19)

=
∑
i∈A

1 = |A|. (20)

Consequently, the objective function corresponds to Lemma 2.4, with the overall objective:

argmax
A⊆V

∑
i∈[dsparse]

ptari log(mi(A))− log (|A|) ,

where dsparse = 2500. In this setup, the target distribution has an entropy of 5.467. Optimizing only
the first term (excluding log(|A|)) to match the target size results in a sharp decline in KL divergence,
achieving 3.07. In contrast, random subsets of the same size yield a much higher KL divergence,
averaging 23.46± 1.90 across 1000 trials.

Finally, we observe that the supergradient-based approach that optimizes the full difference, including
the log(|A|) term as in Iyer & Bilmes (2012), performs similarly to optimizing only the first term.
This demonstrates the robustness of our method, which is also orders of magnitude faster than
optimizing the full objective.

G ALGORITHM BLOCKS

Here, we include pseudocode for the SAE training procedure used in all experiments (Algorithm 1)
and the stochastic greedy procedure employed to maximize the final submodular objective (Algorithm
2). To train the SAE (Algorithm 1), we use |M| = 50, 000, k = 128, λ1 = 1, λ2 = 0.002 and
λ3 = 10−10. In Algorithm 2, we use ϵ = 10−3.

H COMPLEXITY ANALYSIS

Let N = |V source|, M = |V tar|, b is our budget, and dsparse is the dimensionality of our sparse
encodings with at a time only k entries being non-zero. Our algorithm has two main components:
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Figure 6: Source dataset (left) and target subset (right) derived from a mixture of Gaussians. We
optimize only the first term, as suggested in Lemma 2.4, to obtain a subset that effectively covers the
target components.
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Figure 7: KL divergence reduction over optimization steps, compared to random subsets of size 2000.

(1) generating and storing sparse features, and (2) performing submodular maximization. Sparse
feature generation involves simple matrix multiplication. Since each example has only k non-zero
entries (128 in our case), the space required to store sparse features is O(N) and O(M) for the
source and the target, respectively. Our submodular objective combines a binned quality function
and feature-based diversity terms. Because the quality function is discretized, it can be stored
efficiently using fewer bits than standard floating-point representations. The overall evaluation
cost of the objective is O(N + dsparse). For the maximization step, we employ the stochastic
greedy algorithm Mirzasoleiman et al. (2014) (shown in Algorithm 2), which offers a near-optimal
approximation guarantee 1− 1/e− ε in O(N log 1

ε ), instead of O(bN).

I MORE ON MONOTONICITY AND MONOSEMANTICITY SCORES

To evaluate the effect of Lmono, we compare SAEs trained with and without this loss on two datasets:
ImageNet-1K and DataComp-Small (a 10% subset of DataComp-Medium). These datasets provide
diverse and noisy web-scale images, allowing us to assess robustness.

Monosemanticity Score measures the semantic consistency of neurons (Zhang et al., 2025; Wang
et al., 2024a). For each neuron i ∈ [dsparse], we compute the average pairwise cosine similarity
among images that activate it. A higher score indicates that the neuron consistently responds to
semantically aligned images. We plot histograms of these scores for all neurons, comparing the two
SAEs.

Monotonicity Score quantifies how well features behave like “counts.” For neuron i, we sort
images by activation values Z[:, i], yielding a permutation σi, with σi[1] denoting the strongest
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Algorithm 1 Train Sparse Autoencoder (SAE)
Require: Batch list B, set size k, buffer size B, weights λ = [λ1, λ2, λ3], learning rate η
Ensure: Trained SAE hϕ

1: // Instantiate SAE and buffer for reservoir sampling.
2: M← [ ]
3: hϕ ← INSTANTIATESAE
4: for each batch b ∈ B do
5: M← RESERVOIRSAMPLING(M, b, B)
6: // Compute TopK SAE loss according to eq. 2.
7: LSAE ← TOPKSAELOSS(b, hϕ)
8: Lact-reg ←

∑
x∈b ∥hϕ(x)∥2/|b|

9:
10: // Use a random subset as hEterogeneous set.
11: Sample E ⊂ b such that |E| = k
12: Choose e ∈ E at random
13: // Get k-1 nearest neighbor of e fromM
14: // Use nearest neighbors as hoMogeneous set.
15: M ← {e}∪ NEARESTNEIGHBOR(e,M, k − 1)
16: // Compute set contrastive loss according to eq. 3.
17: Lmono ← SETCONTRASTIVELOSS(E,M, hϕ)
18:
19: Ltotal ← λ1 · LSAE + λ2 · Lmono + λ3 · Lact-reg
20: // Update model using gradient descent.
21: hϕ ← GRADIENTDESCENT(hϕ,Ltotal, η)
22: end for
23: return hϕ

Algorithm 2 Stochastic-Greedy
Require: f : 2V → R+, k ∈ {1, . . . , n}, ε
Ensure: A set A ⊆ V satisfying |A| ≤ k

1: A← ∅
2: for i← 1 to k do
3: R ← a random subset of size

⌈
n
k log 1

ε

⌉
obtained by sampling s random elements from

V \A
4: ai ← argmaxa∈R ∆(a | A)
5: A← A ∪ {ai}
6: end for
7: return A

activation. If n is the dataset size, the score is

1

n− 1

n−1∑
j=1

⟨xσi[j], xσi[j+1]⟩.

Intuitively, adjacent images in this ordering should exhibit similar concept counts, leading to higher
similarity. We again plot histograms of these scores across neurons.

In the main paper, we aggregate these histograms by taking the mean, as reported in Table 2.

J SDM WITH DATACOMP METHODS THAT USE EXTERNAL MODELS

In this section, we describe how we combine SDM with the ensemble method proposed by Wang et al.
(2024b). Overall, we adapt the quality function to incorporate ..., we include per-sample weights, and
finally add another SAE trained on DINOv2 (Oquab et al., 2024) features.

Their approach constructs three distinct subsets of DataComp, each selected by a different strategy.
Let Dk denote the set of samples that appear in exactly k of the three subsets, where k ∈ 0, 1, 2, 3.
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Figure 8: MS Score for DataComp-Small
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Figure 9: MS Score for ImageNet-1K

Figure 10: Impact of Lmono on Monosemanticity Score (higher is better). On both datasets, Lmono

improves semantic consistency, enhancing interpretability.
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Figure 11: MT Score for DataComp-Small
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Figure 12: MT Score for ImageNet-1K

Figure 13: Impact of Lmono on Monotonicity Score (higher is better). Across both datasets, Lmono

improves the count-like interpretability of features, making them better suited for feature-based
submodular functions.

That is, Dk contains all samples jointly selected by k of the methods. We then define a new quality
function, analogous to the one introduced in Section 2.5, as

q(A) ≜
3∑

i=0

ui, log

1 +
∑
j∈A

I[j ∈ Di]

 . (21)

Here, the weights ui determine the relative preference for samples selected by multiple methods. In
particular, we set ui = i which encourages the selection procedure to favor samples that are chosen
by a larger number of the ensemble methods.

To further strengthen SDM, we instantiate this quality function using features from two independently
trained SAEs: one based on CLIP ViT-L/14 embeddings and another based on DINOv2 embeddings.
The SAE trained on DINOv2 uses the same hyperparameters as the original SAE.

Finally, we note that all competitive methods in DataComp use some form of sample reweighting,
where samples may appear multiple times in the final dataset. Since SDM by design selects subsets
rather than multisets, we adopt the reweighting scheme of Wang et al. (2024b), repeating each sample
in Dk k times.
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K ADDITIONAL ABLATIONS

Removing Intersection over 5 runs For each step of the stochastic greedy algorithm, we randomly
sample a subset of V \A (where the size of the subset is controlled by the parameter ϵ) and evaluate
the gain only on these. Occasionally, we may get unlucky and random sampling will select a very
poor candidate set, leading to the addition of a bad sample. To mitigate this, we take the intersection
of multiple stochastic greedy runs, which effectively filters out such suboptimal selections. Moreover,
this procedure is parallelizable across cores, allowing us to perform several runs in parallel with
minimal computational overhead. In Table 6, we show the comparison between a single run and the
intersection over 5 runs in downstream performance.

Table 6: Effect of Intersecting Multiple Runs Comparison of a single run versus intersection over 5
independent stochastic greedy runs of maximizing the SDM objective.

Method IN1K (%) Avg. (%)

Single run 33.5 36.0
Intersection over 5 runs 35.2 36.4

Modifying the Target The choice of target distribution plays a central role in the effectiveness of
SDM. Following prior work (Wang et al., 2024b; Shechter & Carmon, 2025a; Gadre et al., 2023),
our main experiments use ImageNet-1K as the target distribution for subset selection. However,
we also tested a broader target distribution constructed by concatenating the training splits of 24
downstream datasets (including ImageNet), as done in Wang et al. (2024b). Interestingly, this
reduced overall performance as shown in Table 7. We hypothesize that this decrease stems from
(1)severe concept imbalance when merging datasets of different sizes and concept distributions,
and (2) inclusion of low-quality datasets (e.g., CIFAR-10), whose samples degrade performance on
others. Developing more principled strategies for constructing larger target distributions (e.g., via
data mixture optimization (Xie et al., 2023)) remains an interesting direction for future work.

Table 7: Modifying the Target Comparison of performance when changing the target from ImageNet-
1K to a pool of 24 downstream datasets as done in Wang et al. (2024b).

Target IN1K IN1K Shifts VTAB Retrieval Avg

ImageNet-1K 35.2 27.1 38.6 26.8 36.4
24 datasets 33.3 26.7 37.1 26.7 35.8
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L ADDITIONAL SAE VISUALIZATIONS

In this section, we present visualizations of several additional neurons randomly selected from the
SAE trained on CLIP embeddings. For each neuron, we display the top 5, middle 5, and bottom 5
images with nonzero activations, ordered in descending activation value.

Figure 14: Visualization of different k-SAE features. For each row, we display the top 5, middle 5,
and bottom 5 images with nonzero activations for the neuron corresponding to the row, ordered in
descending activation value.
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