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ABSTRACT
Despite the advances in Referring Expression Segmentation (RES) benchmarks,
their evaluation protocols remain constrained, primarily focusing on either single
targets with short queries (containing minimal attributes) or multiple targets from
distinctly different queries on a single domain. This limitation significantly hin-
ders the assessment of more complex reasoning capabilities in RES models. We
introduce WildRES, a novel benchmark that incorporates long queries with diverse
attributes and non-distinctive queries for multiple targets. This benchmark spans
diverse application domains, thus enabling more rigorous evaluation of complex
reasoning capabilities in real-world settings. Our analysis reveals that existing
RES models demonstrate substantial performance deterioration when evaluated
on WildRES. To address this challenge, we introduce SynRES, an automated
pipeline generating densely paired compositional synthetic training data through
three innovations: (1) a dense caption-driven synthesis for attribute-rich image-
mask-expression triplets, (2) reliable semantic alignment mechanisms rectifying
caption-pseudo mask inconsistencies via Image-Text Aligned Grouping, and (3)
domain-aware augmentations incorporating mosaic composition and superclass
replacement to emphasize generalization ability and distinguishing attributes over
object categories. Experimental results demonstrate that models trained with Syn-
RES achieve consistent improvements on not only our complex WildRES bench-
mark but also classic RES benchmarks (e.g. RefCOCO/+/g). Code is available at
this link. Dataset will be available upon acceptance.

1 INTRODUCTION

Recent advancements in Large Multimodal Models (LMMs) (Liu et al., 2024b;a) and foundational
segmentation models (Kirillov et al., 2023; Ravi et al., 2025) have significantly enhanced language-
based image segmentation by improving both open vocabulary capability and sentence understanding
for Referring Expression Segmentation (RES) (Lai et al., 2024; Xia et al., 2024; Ren et al., 2024;
Rasheed et al., 2024; Zhang et al., 2024b; Chen et al., 2024; Zhang et al., 2024a). These models
surpass the constraints of traditional RES approaches (Wang et al., 2022; Liu et al., 2023a; Yang
et al., 2022b; Zhao et al., 2023b; Xu et al., 2023; Zou et al., 2023), which rely on completed image-
mask-expression triplet datasets (Yu et al., 2016; Mao et al., 2016; Liu et al., 2023a), by leveraging
diverse data sources such as semantic segmentation (Caesar et al., 2018; Zhou et al., 2017; Neuhold
et al., 2017; Chen et al., 2014; He et al., 2022), referring image segmentation (Yu et al., 2016; Mao
et al., 2016; Liu et al., 2023a), and visual question answering (VQA) (Liu et al., 2024b; Antol et al.,
2015; Liu et al., 2024a). This broader data integration allows these models to effectively interpret
diverse expressions and operate robustly in real-world scenarios.

Furthermore, numerous RES benchmarks (Rohrbach et al., 2016; Yu et al., 2016; Mao et al., 2016;
Liu et al., 2023a) have emerged to evaluate models’ compositional reasoning and generalization
capabilities. Notably, gRefCOCO (Liu et al., 2023a) introduces multi-target or no-target expres-
sions to further assess models’ advanced reasoning abilities. Nevertheless, existing benchmarks
predominantly concentrate on expressions with minimal attributes (Yu et al., 2016; Rohrbach et al.,
2016) or distinctive (countable) expressions (Liu et al., 2023a) within the homogeneous domain of
COCO (Kazemzadeh et al., 2014), as illustrated in Fig. 1-(a. 1, 5). This narrow focus substantially
constrains the assessment of complex reasoning capabilities required in real-world scenarios. In this
paper, we introduce WildRES, a new test benchmark designed to reflect advanced reasoning and
real-world complexity. WildRES incorporates three new elements as shown in Fig. 1-(a. 2-4, 6-8): (1)
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Figure 1: (a) Comparison of existing referring expression segmentation (RES) benchmarks with our
proposed benchmark, WildRES, which demands advanced complex reasoning and scene understand-
ing. Previous RES datasets (Yu et al., 2016; Liu et al., 2023a) primarily emphasize single-target focus
with short queries (1) or distinctive multi-target queries (5) within a similar domain (e.g, images
from COCO (Caesar et al., 2018)). These constraints limit the evaluation of complex queries and
generalization ability of RES models. We propose a new benchmark WildRES, which improves
single-target expressions with diverse attributes (2)-(4) and refines multi-target ones with shared traits
(non-distinctive) and concise phrasing (6)-(8). In addition, WildRES includes in-distribution (col.
2) and domain-shifted subsets (cols. 3, 4) to evaluate generalizability. (b) The state-of-the-art RES
method (LISA (Lai et al., 2024)) experiences notable performance degradation on our benchmark
(highlighted in yellow), which requires advanced reasoning and generalization capability. Our novel
synthetic data generation, SynRES, enhances the model’s compositional reasoning ability.

explicit longer queries containing many attributes, (2) shared (non-distinctive) attribute expressions
for multiple targets, and (3) domain-shifted images from challenging environments including densely
populated scenes (Shao et al., 2018), autonomous driving contexts (Cordts et al., 2016), and robotic
applications (Mitash et al., 2023). Fig. 1-(b) shows the existing RES model (e.g, Lai et al. (2024))
exhibits substantial performance deterioration when evaluated on WildRES.

A natural approach to improving real-world RES is to acquire large-scale training data featuring
comparable complex expressions and domain-shifted imagery as seen in WildRES. However, manual
annotation at this scale is prohibitively costly. For example, crowdsourced datasets like RefCOCO
tend to contain minimal expressions sufficient only for target identification (Fig 1 (a-1)). To address
this limitation, we adopt a transfer learning strategy leveraging automatically generated synthetic
data with compositional queries. Prior works (Wu et al., 2023b; Nguyen et al., 2023; Yang et al.,
2023; Ye et al., 2024) generate synthetic segmentation data conditioned on target masks but lack
referring expressions required for RES. Pseudo-RIS (Yu et al., 2024) produces synthetic captions
and pseudo-masks from SAM (Ravi et al., 2025) trained on COCO (Kazemzadeh et al., 2014),
yet does not cater specifically to multi-target or ambiguous queries, resulting in insufficient dense
image-expression pairs. Thus, fundamental questions remain regarding how to effectively generate
and optimally utilize synthetic data for complex, attribute-rich queries across diverse domains.

We propose SynRES, which automatically generates densely paired synthetic referring expressions
with many attributes and corresponding images and masks triplets via generative models. As
illustrated in Fig. 3, SynRES produces images containing identical objects with heterogeneous
attributes, which will subsequently be utilized to train models capable of discriminating between
various attribute combinations. SynRES consists of three key steps: 1) generating distinctive synthetic
expressions with different attributes for the same object and their corresponding images, 2) grouping
semantically similar expressions and aligning them with corresponding synthetic masks, and 3)
domain-aware image augmentation and semantic text augmentation to reduce domain gaps in each
modality. In step 1, we utilize real images and masks along with image captioning models to create
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distinctive captions (Yu et al., 2024). Unlike minimal human expressions these synthetic expressions
incorporate rich attributes to improve performance under challenging scenarios (see Fig. 5). These
concatenated expressions are then used as input for Text-to-Image (T2I) models to generate synthetic
images encompassing all expression features. Step 2 addresses potential inaccuracies in pseudo-masks
of the generated images. To resolve such issues, we group related expressions and create segmentation
masks aligned with these groups. Finally, in step 3, we enhance the synthetic image-expression-mask
triplets through data augmentation techniques tailored for RES in the wild. These include mosaic
augmentation for multi-target scenarios and superclass replacement text semantic augmentation to
focus on detailed target descriptions rather than single-word references.

Integrating our proposed SynRES yields substantial performance gains for referring expression seg-
mentation (RES) across diverse model architectures and benchmarks. For instance, on the in-domain
WildRES-ID benchmark, SynRES improves LISA by +2.0 to +2.8 gIoU, with similar gains observed
for GSVA and GLaMM. Furthermore, the method boosts cross-domain generalization, improving
performance on the domain-shifted WildRES-DS benchmark by 3.8–6.2 gIoU and consistently out-
performing existing baselines. Finally, our comprehensive ablation studies demonstrate that both the
textual and visual augmentation components of SynRES are critical to its success.
Our contributions are summarized as follows:

1. We propose WildRES, a novel benchmark for Referring Expression Segmentation in real-
world scenarios, covering single-target many-attribute cases and multi-target shared-attribute.
WildRES includes diverse domain.

2. We introduce SynRES, an automated pipeline for generating densely paired synthetic datasets
with diverse attributes and precise pseudo-masks, enabling effective data augmentation
without manual annotation.

3. Experiments demonstrate that SynRES is model-agnostic and enhances existing RES models,
showing improvements in wild scenarios and classic benchmarks.

2 RELATED WORK

Referring Expression Segmentation with Large Multimodal Models. The introduction of
LISA (Lai et al., 2024), which leveraged the visual-language capabilities of Large Multimodal
Models (LMMs) for the Referring Expression Segmentation (RES) task using <SEG> tokens, has
significantly influenced the development of advanced LMM-based RES models (Xia et al., 2024; Ren
et al., 2024; Rasheed et al., 2024; Zhang et al., 2024b; Chen et al., 2024; Zhang et al., 2024a). Notably,
GSVA (Xia et al., 2024) and PixelLM (Ren et al., 2024) have improved multi-target segmentation
accuracy by employing strategies such as multiple <SEG> tokens or introducing target refinement
loss. To train these models effectively, large-scale datasets from diverse domains are utilized. Exam-
ples include semantic segmentation datasets (Caesar et al., 2018; Zhou et al., 2017; Neuhold et al.,
2017; Chen et al., 2014; He et al., 2022), classic RES datasets (Yu et al., 2016; Mao et al., 2016), and
Visual Question Answering datasets (Liu et al., 2024b; Antol et al., 2015; Liu et al., 2024a). These
datasets are adapted for RES tasks using prompt-based transformations or integrated into training
pipelines. Such adaptations enhance vocabulary comprehension and reasoning capabilities. Some
models employ specialized datasets tailored for generalized RES tasks. For instance, GSVA (Xia
et al., 2024) and SAM4LMM (Chen et al., 2024) incorporate gRefCOCO (Liu et al., 2023a) into their
training data. Other notable datasets include ReasonSeg (Lai et al., 2024) and GranD (Rasheed et al.,
2024), which are derived from automatically annotated SA-1B (Kirillov et al., 2023) or GranD-f
(based on Flickr-30K (Young et al., 2014), RefCOCOg (Mao et al., 2016), and PSG (Yang et al.,
2022a)). Existing models exhibit performance degradation when evaluated on our more challenging
benchmark, WildRES. Our model-agnostic approach, SynRES, significantly enhances the complex
reasoning capabilities of these models.

Synthetic Data and Augmentation for Referring Expression Segmentation. Early efforts on
synthetic datasets for segmentation leveraged GANs (Zhang et al., 2021; Li et al., 2022). With
the advent of diffusion models (Ho et al., 2020; Song et al., 2021), recent methods generate class-
targeted images paired with pseudo-segmentation masks (Nguyen et al., 2023; Yang et al., 2023),
and also synthesize masks with corresponding high-fidelity images (Ye et al., 2024), extending to
instance and panoptic settings (Zhao et al., 2023a; Fan et al., 2024; Xie et al., 2024b; Tu et al.,
2025). However, these approaches predominantly yield image–mask pairs and do not explicitly align
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textual descriptions with mask semantics. In parallel, multimodal data augmentation has advanced
joint image–text learning (Hao et al., 2023; Liu et al., 2023b; Jin et al., 2024; Wu et al., 2023a),
while RES-specific augmentation remains comparatively underexplored. NeMo (Ha et al., 2024)
forms mosaics from semantically related but non-redundant images, and Pseudo-RIS (Yu et al.,
2024) leverages pseudo masks and diverse captions to enable weakly supervised training. Yet these
techniques only partially capture the interplay among image content, referring expressions, and
segmentation masks, which is critical for RES. We address this gap by generating densely aligned
image–mask–text triplets—covering the same objects with diverse attributes and reliable pseudo-
masks—and by introducing augmentation strategies that jointly operate on all three modalities to
reduce domain discrepancies, enforce semantic consistency across transformations, and improve
generalization in RES.

3 REFERRING EXPRESSION SEGMENTATION IN THE WILD

3.1 PROBLEM DEFINITION

In RES, given an input image ximg and an input language query xtxt, the goal is to produce the
corresponding binary segmentation mask M. In addition to this traditional RES, we aim to address
the three key aspects: i) using referring expressions with diverse attributes to pinpoint a single precise
target in Fig. 1-(a, 2-4), ii) identifying specific multiple targets with shared attributes in Fig. 1-(a,
6-8), and iii) extending these two aspects to other domains, as demonstrated in Fig. 1-(a, 3, 4, 7,
8). For multi-target scenarios, we select images containing at least three objects and design the
referring expressions so that only a subset of these objects satisfies the specified attributes. Detailed
descriptions emphasize unique characteristics of individual objects, compelling segmentation models
to discern both shared and distinct features.

3.2 WILDRES: A NEW RES BENCHMARK FOR ADVANCED REASONING AND
GENERALIZATION

0 5 10 15 20 25
Attribute Numbers

RefCOCO/+/g

WildRES
(Many Attribute)

WildRES
(Shared Attribute)

D
at

as
et

Distribution of Attribute Numbers

Figure 2: Number of attributions in classic
RES datasets vs. WildRES. Using GPT-4o-
mini (Achiam et al., 2023), we counted the number
of attributes shown in Table C. Single-target ex-
pressions in WildRES often exceed 11 attributes
to specify a target, while multi-target expres-
sions have fewer attributes, similar to classic RES
datasets.

We introduce WildRES, an evaluation bench-
mark designed to evaluate segmentation mod-
els in complex, real-world contexts with 724
images and 941 expressions. WildRES does
not contain the training set, only the valida-
tion and test set. WildRES includes both in-
distribution images (WildRES-ID) sourced from
MSCOCO (Caesar et al., 2018) and domain-
shifted images (WildRES-DS) representing un-
seen scenes from datasets such as CrowdHu-
man (Shao et al., 2018), Cityscapes (Cordts
et al., 2016), and ARMBench (Mitash et al.,
2023), all aimed at assessing model robustness
in challenging environments.

WildRES is divided into two subsets: Many At-
tribute (MA) and Shared Attribute (SA). MA
subsets comprise images that contain at least 5 objects, with each caption manually reviewed to
ensure precise alignment with its corresponding segmentation mask. SA subsets focus on images
featuring multiple, referable objects from the same class that exhibit distinct attributes, thereby evalu-
ating fine-grained segmentation capabilities. In WildRES-ID, both subsets are present; in contrast,
within WildRES-DS, datasets are categorized according to their dominant features—CrowdHuman,
which contains numerous individuals, corresponds to the Many Attribute subset, while Cityscapes
and ARMBench, featuring multiple objects with shared attributes, align with the Shared Attribute
subset. The exact quantity for each image and expression constituting WildRES is described in detail
in Appendix A.

Existing RES datasets often lack diversity in their attributes. To systematically analyze this limitation,
we categorized referring expressions into 8 distinct attributions (more details of each attributions are
in Appendix B). Utilizing GPT-4o-mini (Achiam et al., 2023), we classified referring expressions
from these datasets into the predefined categories. Fig. 2 illustrates the results of this analysis. We
observed that expressions from traditional RES datasets are composed of simple and easily targetable
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put the knot behind the ear

women's hair braided

woman with hair tied up in a bun

woman with braided hairstyles from
front in green striped jumper 

Distinctive Image Captioning T2I Generation
Image & text alinged grouping w/ synthetic mask

real image and mask

Step 1

put the knot behind the ear

women's hair braided

woman with hair tied up in a bun

woman with braided hairstyles from
front in green striped jumper 

Step 2

Figure 3: Overview of the step 1 and 2 in SynRES. The process begins by creating distinctive n
synthetic expressions for target objects from real images and masks. These expressions are then
concatenated and input into a pre-trained text-to-image generative model to produce m synthetic
images. Finally, a grouping step is performed to generate reliable synthetic masks by associating
appropriate l segmentation masks with their corresponding expressions, yielding densely paired
image-mask-expression triplets for objects with diverse attributes, thereby facilitating the learning of
distinctive attribute combinations across objects.

samples, with a mean attribute count below 4. In contrast, WildRES’s Many Attribute expressions
exceed an average of 11 attributes, while maintaining a consistent number of attributes in expressions
when referring to multiple targets sharing attributes. Detailed differences from previous datasets (Liu
et al., 2023a; You et al., 2025) are described in Appendix C.

4 OUR METHOD: SYNRES

We propose SynRES, a fully automated synthetic dataset generation and augmentation pipeline for
challenging RES, as shown in Fig. 3. As existing data generation approaches (Yang et al., 2023; Yu
et al., 2024) do not produce densely paired image-mask-expression triplets, they could be suboptimal
for developing models capable of discriminating between objects based on diverse attribute queries
extracted from synthetic data. SynRES generates densely paired distinctive synthetic expressions
and their corresponding images in Step 1. We obtain reliable pseudo semantic segmentation masks
with image-text aligned grouping in Step 2. Our synthetic dataset is subsequently enhanced with data
augmentation techniques to train models with improved generalization capabilities in Step 3.

4.1 STEP 1: SYNTHETIC DISTINCTIVE REFERRING EXPRESSIONS AND IMAGE GENERATION

We first aim to generate distinctive synthetic expressions with diverse attributes. Motivated by
(Yu et al., 2024), SynRES employs image captioning models to generate distinctive expressions
{xsyn

txt,j}nj=1 for individual referring objects from real image xreal
img and it’s corresponding mask M as

in Fig. 3.

For image synthesis, we construct composite prompts by aggregating the generated expressions to
ensure comprehensive feature representation. For example, by combining the expressions “put the
knot behind the ear” and “women’s hair braided”, the aggregated description “put the knot behind the
ear, women’s hair braided” yields structured inputs with structured template selection per generation
instance (see prompt templates in Appendix D). We leverage SANA (Xie et al., 2024a), a text-to-
image model that efficiently generates high-fidelity synthetic images {xsyn

img,i}mi=1 with different m
seeds while maintaining visual-semantic alignment.

4.2 STEP 2: RELIABLE SYNTHETIC MASK GENERATION WITH IMAGE-TEXT ALIGNED
GROUPING

After the step 1, distinctive synthetic expression may or may not align with identical synthetic
masks. This process establishes aligned groupings between synthetic images {xsyn

img,i}mi=1 and textual
expressions {xsyn

txt,j}nj=1 through semantic-aware mask consensus. This validation process generates
refined segmentation masks Msyn

(i,j) for each semantically aligned group as shown in Fig. 4.

First, we generate n pseudo segmentation masks M̂psd
(i,j) for each synthetic image xsyn

img,i using a
pretrained RES model (Lai et al., 2024), producing m × n candidate masks. An identification
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function I converts continuous mask values into binary masks through confidence thresholding:

Mpsd
(i,j) = I

(
M̂psd

(i,j)

)
=

{
1 if M̂psd

(i,j) ≥ 0.5

0 otherwise
.

This per-image mask generation ensures high-quality pseudo segmentation masks construction as
each synthetic image mostly contains only one primary object (Ha et al., 2024) and at the same time,
pretrained RES models are good at generate the masks of a single target.

synthetic image

put the knot behind the ear

women's hair braided

woman with hair tied up in a bun

woman with braided hairstyles from
front in green striped jumper 

synthetic expression

Pretrained RES model

mIoU > τ mIoU > τ

reliable
synthetic mask

reliable
synthetic mask

mIoU ≤ τ

mean mean

Figure 4: Synthetic images and texts are aligned
via pseudo mask generation, binary conversion,
and pairwise IoU-based clustering into consen-
sus groups (same-colored rectangles represent text-
inferred pseudo masks from synthetic images). Fi-
nal refined masks are computed by per-group av-
eraging and thresholding, ensuring high-quality
alignment.

Next, we compute pairwise Intersection-over-
Union (IoU) scores between all binary mask
pairs Mpsd

(i,j1)
and Mpsd

(i,j2)
derived from different

textual expressions for the same image. The
mean IoU (mIoU) across all images for each
expression pair is:

mIoU(j1, j2) =
1

m

m∑
i=1

IoU
(
Mpsd

(i,j1)
,Mpsd

(i,j2)

)
.

Expression pairs achieving mIoU scores exceed-
ing threshold τ are clustered into consensus
groups Gk, while singleton expressions below
this threshold are discarded. We then compute
refined masks through per-group averaging:

M̂syn
(i,j) =

1

|Gk|
∑
j∈Gk

M̂psd
(i,j),

where Gk denotes the consensus group contain-
ing expression xsyn

txt .

Finally, we apply the identification function to
these refined masks:

Msyn
(i,j) = I

(
M̂syn

(i,j)

)
,

yielding binary masks where pixels with aver-
aged values > 0.5 are assigned 1, and 0 other-
wise. For ease of notation, Msyn

(i,j) is denoted
Msyn

k where k ranges from 1 to l.

By proceeding these things, we generated syn-
thetic triplets consisting of images, text expressions, and segmentation masks: {xsyn

img,i}mi=1,
{xsyn

txt,j}nj=1, and {Msyn
k }lk=1, respectively. These were derived from a single real image and its

corresponding mask, denoted as xreal
img and Mreal (see Appendix H.1 for before and after image-text

aligned grouping images).

4.3 STEP 3: DOMAIN-AWARE AUGMENTATION FOR IMAGES-MASKS AND TEXT

Multi-Target aimed Image-mask Augmentation. In RES in the wild, it is important for a model
to distinguish the same objects with different attributes. We apply mosaic augmentation (Xie et al.,
2024b; Ha et al., 2024) by constructing composite arrangements with synthetic images and masks to
facilitate multi-object/target segmentation as shown in Fig. 5. In this process, each mosaic randomly
adopts either a 2× 2 grid (1 real image xreal

img + 3 synthetic xsyn
img,i) or 3× 3 grid (1 real + 8 synthetic),

with corresponding masks Mreal and Msyn
i . This approach facilitates the accommodation of multiple

target objects within a single augmented scene. Simultaneously, integrating real and synthetic
images creates composite visuals that effectively mitigate the domain gap between real-world and
synthetically generated images.

Debiased Text Augmentation. We observe that training data commonly demonstrates a significant
bias toward specific object class terminology. This systematic bias results in segmentation failures

6
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Augmented image

Human expression
woman replace prob p

person

Augmented mask

False negative mask

Synthetic expression
woman with hair tied up in a bun person with hair tied up in a bun

replace prob p

woman with braied hairstyle from front
in green striped jumper

person with braied hairstyle from front
in green striped jumper

Synthetic expression

Augmented image

rabbit with a pink bow

Human expression
bunny

animal with a pink bow
replace prob p

replace prob p animal

Augmented mask

rabbit wearing pink ribbon
around his ears

animal wearing pink ribbon
around his ears

False negative mask

Figure 5: Augmented examples in the step 3. Mosaic augmentation is applied using synthetic images
and masks containing one original real image (blue border) and masks. Specific words (e.g, woman)
are replaced with their superclass (e.g, person), a broader concept, with a probability of p, which
could effectively mitigate model bias toward specific terminology and facilitate the learning of
broader vocabulary associations. This substitution process may potentially produce false negative
masks (magenta arrows) when other objects belonging to the same superclass exist within the image.
Although this frequently exists in human expressions (e.g, RefCOCO+), we manually mitigate this
challenge by generating isolated single objects within our synthetic data.

when processing input queries containing alternative synonymous expressions. We apply the text
augmentation that probabilistically replaces head and sub-nouns with their corresponding superclasses.
For instance, the phrase “woman with hair tied up in a bun” is transformed into “person with hair
tied up in a bun” with probability p, thereby shifting the emphasis toward the action and mitigating
gender bias (see Appendix E for superclass and original words). This approach is especially useful
for our synthetic data, as implementing such augmentation with conventional RES datasets (e.g.,
RefCOCO) would present significant challenges: these collections typically contain multiple objects
and provide only minimal discriminative cues necessary for precise target identification. Consequently,
modifying expressions with superclass terminology could inadvertently introduce non-distinctive
queries, potentially resulting in imprecise segmentation masks through the inclusion of non-target
objects (False negative masks in Fig. 5).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Network Architectures. To demonstrate the effectiveness of our approach, we applied our method
to RES models using large multimodal models LISA-7B, 13B Lai et al. (2024), GSVA-7B Xia
et al. (2024), and GLaMM-8B Rasheed et al. (2024). These implementations were selected because
they provide fully open-sourced training code, datasets, and pre-trained weights. For other architec-
tural components requiring hyperparameters (e.g, projection layer dimensions), we adhered to the
configurations specified in the original papers.

Implementation Details. We utilized 4 NVIDIA A6000 48G GPUs for training. Other settings,
including the optimizer and learning rate scheduler, were consistent with those of the network
architecture. Specifically, we generated m = 6 synthetic images per referring target and up to n = 5
synthetic expressions based on RefCOCO+. This resulted in a total of 129,552 synthetic images,
78,263 expressions, and 151,116 masks. The default mIoU threshold τ in SynRES step 2 was set to
0.65, and the replacement probability p for expression data augmentation was set to 0.7.

Evaluation Metrics. We employed two evaluation metrics: gIoU and cIoU. The gIoU metric
represents the average IoU values calculated per image, whereas cIoU is computed as the cumulative
intersection over the cumulative union. Given cIoU’s high sensitivity to large-area objects and
higher-resolution images, gIoU was primarily used for evaluation Lai et al. (2024).

5.2 WILDRES: RES IN THE WILD

Experimental Settings. For LISA, GSVA, and GLaMM, we fine-tune the officially released pre-
trained weights augmented with SynRES. LISA and GSVA use datasets originally designed for
semantic segmentation (Zhou et al., 2017; Caesar et al., 2018; Ramanathan et al., 2023; Chen et al.,
2014; He et al., 2022), RefCOCO(+/g) (Yu et al., 2016; Rohrbach et al., 2016; Mao et al., 2016),
VQA (Liu et al., 2024b;a), and ReasonSeg (for LISA). For GSVA, we additionally incorporate
gRefCOCO (Liu et al., 2023a) during fine-tuning. We set a 9:3:3:1:4 data ratio across semantic

7
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Model Training data val test
overall many attribute shared attribute overall

real synthetic gIoU cIoU gIoU cIoU gIoU cIoU gIoU cIoU

LISA-7B
✓ ✗ 37.1 40.3 30.1 25.0 39.3 36.0 34.5 32.5
✓ ✓ FreeMask Yang et al. (2023) 38.8 42.0 25.8 25.3 37.1 36.4 31.6 33.3
✓ ✓ SynRES (Ours) 41.3 46.1 29.4 26.3 43.6 43.3 36.5 38.1

LISA-13B ✓ ✗ 44.0 45.1 35.9 31.6 36.9 37.8 37.7 36.0
✓ ✓ SynRES (Ours) 47.7 51.8 36.5 33.4 44.7 43.9 40.5 40.8

GSVA-7B ✓ ✗ 38.8 42.8 32.6 26.1 37.7 34.8 34.8 32.0
✓ ✓ SynRES (Ours) 41.3 46.5 32.4 26.3 43.6 41.5 38.0 36.9

GLaMM-8B ✓ ✗ 38.6 41.4 34.8 29.7 38.3 36.8 36.0 34.4
✓ ✓ SynRES (Ours) 42.0 44.6 38.0 31.1 38.9 38.9 39.6 37.5

Table 1: WildRES-ID segmentation results among SynRES (ours) and baselines. Models trained only
with real data use an additional 5K fine-tuning steps on the validation set of WildRES-ID.

Model Training data Domain source average
CrowdHuman Cityscapes ARMBench

real synthetic gIoU cIoU gIoU cIoU gIoU cIoU gIoU cIoU

LISA-7B
✓ ✗ 25.6 26.3 37.1 39.4 26.9 26.0 29.9 30.6
✓ ✓ FreeMask Yang et al. (2023) 23.5 26.0 34.4 36.9 24.5 26.1 27.5 29.7
✓ ✓ SynRES (Ours) 24.8 27.3 40.5 43.2 35.8 33.3 33.7 34.6

LISA-13B ✓ ✗ 26.6 29.4 34.1 34.8 28.3 26.9 29.7 30.4
✓ ✓ SynRES (Ours) 28.8 30.0 39.9 43.6 39.1 37.7 35.9 37.1

GSVA-7B ✓ ✗ 19.8 24.6 35.9 36.5 25.1 23.6 26.9 28.2
✓ ✓ SynRES (Ours) 21.4 25.5 41.2 44.7 33.6 32.6 32.1 34.2

GLaMM-8B ✓ ✗ 35.0 32.2 20.0 24.4 32.4 29.3 29.1 28.6
✓ ✓ SynRES (Ours) 35.5 34.3 28.7 30.5 36.4 33.8 33.5 32.9

Table 2: WildRES-DS segmentation results among SynRES (ours) and baselines. All models trained
with additional 5K fine-tuning steps on the validation set of WildRES-ID.

segmentation, classic RES, VQA, ReasonSeg, and SynRES. For GLaMM, following the original
setting, we fine-tune on RefCOCO(+/g) and SynRES with a 3:4 ratio.

All experiments use official pretrained weights for each RES model, training for 5,000 steps with
WildRES-ID validation every 100 steps regardless of synthetic data inclusion. Notably, the WildRES-
DS remains unused during validation.

Results. Tab. 1 shows that real data with SynRES yields consistent, architecture-agnostic gains
on the WildRES-ID validation split, mirrored on the held-out test set (including multi-target and
attribute-sharing regimes). With validation used for selection and the test set reserved for final
reporting, the improvements reflect genuine generalization rather than split-specific tuning.

Tab. 2 evaluates cross-domain robustness on WildRES-DS with CrowdHuman, Cityscapes (au-
tonomous driving), and ARMBench (robotics), where SynRES-added models outperform real-only
baselines across all architectures. Gains are especially pronounced on ARMBench and raise the
overall averages, indicating resilience to distribution shifts without reliance on a single source domain.

Results show that simply adding more synthetic data does not solve RES. FreeMask, though beneficial
for semantic segmentation with real data, lowered performance across domains on WildRES-DS.
In contrast, SynRES consistently improved results, showing that RES requires careful handling of
synthetic images, text, and masks—an approach realized by SynRES.

We compared the output masks of the LISA fine-tuned with SynRES and the LISA without SynRES
on the WildRES dataset, as shown in Fig. 6. The visualization shows that fine-tuning the model with
SynRES reduces false negatives by capturing ground truth objects in multi-target scenarios involving
shared attributes. Additionally, it prevents false positives by accurately understanding the meaning of
each words in cases with many attribute expressions.

5.3 ADDITIONAL ANALYSIS

5.3.1 WILDRES VS. EXISTING RES BENCHMARKS

Under identical protocols, WildRES presents substantially greater challenges than canonical RES
benchmarks. Models achieve only 20–50 gIoU on WildRES, a stark contrast to the 60–80 gIoU
on single-target RefCOCO/+/g and 70–80 gIoU on multi-target gRefCOCO and RefZOM. This
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Figure 6: Qualitative results on WildRES, comparing LISA trained w/o and w/ SynRES.

performance gap persists even when applying SynRES, which indicates that WildRES demands more
advanced capabilities—specifically, fine-grained disambiguation in multi-target scenes and robust
attribute grounding—that are not fully captured by prior benchmarks. For detailed results across
different architectures and datasets, see Appendix F.

5.3.2 ABLATION STUDY

Model w/
LISA-7B

Modifications WildRES-ID val
Step 2. Mosaic Aug. Text Aug. gIoU cIoU

SynRES ✓ ✓ ✓ 41.3 46.1
✓ ✓ ✗ 40.1 44.0
✗ ✓ ✓ 39.1 41.9
✓ ✗ ✗ 35.5 38.3

Only Real ✗ ✗ ✗ 37.1 40.3

Table 3: Ablation study on the core designs of Syn-
RES. ✓ means the employment of the component
while ✗ means not.

Tab. 3 presents an ablation study evaluating each
component in SynRES. The results show a grad-
ual decline in performance, with the gIoU de-
creasing from 41.3 to 40.8 and 35.5 when text
augmentation and mosaic augmentation were ex-
cluded, respectively. Notably, when both vision
and text augmentations were omitted, the per-
formance fell below the baseline value of 37.1,
which was obtained without training on the syn-
thetic dataset. This performance degradation
can be attributed to two primary factors: first, the absence of vision augmentation restricts the model
to the Wild RES task, which lacks multiple targets, leading to poor outcomes in the Shared Attribute
portion; second, a domain gap between synthetic and real images further degrades performance.

Moreover, the performance improvement with text augmentation confirms superclass replacement’s
effectiveness for contextual expression understanding in complex scenes by focusing on the descrip-
tion of the target. These findings underscore the importance of both text and vision augmentation in
enhancing the effectiveness of the SynRES pipeline for complex visual grounding tasks. Additionally,
adopting only domain-aware augmentation without mask refinement in SynRES step 2 shows limited
performance, proving the necessity of refining raw pseudo masks.

6 CONCLUSION

In this study, we introduce a new RES task aimed at addressing more complex reasoning in the
real-world, dynamic scenarios, WildRES. Specifically, we focus on cases where expressions refer
to multiple targets with shared attributes settings or require an increased number of attributes to
identify a single target within such environments. To benchmark this task, we not only developed
WildRES-ID within the same domain as existing RES datasets but also extended its applicability
to autonomous driving and robotics domains through the WildRES-DS. Additionally, we propose a
method to enhance the performance of existing models in WildRES by leveraging densely paired
synthetic image-expression-mask triplet generation and augmentation, SynRES. We hope that our
work broadens the scope of language-based segmentation.

9
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work by providing comprehensive documen-
tation, source code, and data. Our full source code is available via the anonymous link provided in
the abstract.

Methodology and Experiments. Key details of our methodology and experimental setup are located
in the main paper. The proposed SynRES pipeline is described in Section 2, while our complete exper-
imental configuration—including model architectures, data ratios, and primary hyperparameters—is
outlined in Section 5.1.

Implementation Details. Further implementation details are provided in the appendix. This includes
statistics for our new WildRES benchmark (Appendix A), specific prompts for the T2I model (Step 1;
Appendix D), terms for superclass replacement (Step 3; Appendix E), and a sensitivity analysis of
key hyperparameters such as the mask threshold τ and replacement probability p (Appendix G.1).

Code and Data Availability. The currently released code implements our domain-aware augmenta-
tion (Step 3) as configured for the LISA. We plan to update the repository with implementations for
GSVA and GLaMM in the future. Due to file size constraints, the supplementary material includes
the WildRES-ID. The WildRES-DS will be released at a later date.
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I LLMs Usage Clarification 8

A DETAILS OF WILDRES

Tab. A provides a detailed number of the WildRES dataset, which consists of the Wildseg-ID and
Wildseg-DS subsets. The dataset is categorized based on domain, data split (validation/test), and
attribute type (Many Attribute or Shared Attribute). In total, WildRES comprises 724 images and 974
expressions across different domains and attribute types.

B COUNT REFERRING EXPRESSION ATTRIBUTES

Based on (Yu & Li, 2024), we refine eight expression attributes identified in existing datasets: head
noun, sub noun, color, size, absolute location relation, relative location relation, action, and generic
attribute. A detailed example is shown in Tab. C. Using these attributes, we conduct quantitative
analyses comparing the attribute distribution patterns between classic datasets and WildRES. This
counting process is automated using ChatGPT-4o-mini (Achiam et al., 2023). Tab. B shows the
prompt template used for the counting process.
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Type Domain Split Attribute Image Expression

Wildseg-ID MSCOCO

Validation
Many Attribute 100 138
Shared Attribute 104 127

Total 196 265

Test
Many Attribute 108 133
Shared Attribute 115 124

Total 215 257

Wildseg-DS
CrowdHuman

Test
Many Attribute 101 212

Cityscapes Shared Attribute 105 120
Armbench Shared Attribute 107 120

Total 724 974

Table A: Detailed Numbers of WildRES

Here’s an example analysis:
Example sentence: “Standing on the right side of the image, this individual wears a vibrant red jacket
that contrasts sharply against the snowy backdrop. Their black pants provide a stark visual contrast.
The person’s black beanie covers their head, and they appear to be in a relaxed stance. Their body
language suggests a sense of confidence and readiness for outdoor activities.”
Example classification:

“A1 (Head Noun)”: [“individual”, “person”],
“A2 (Sub Noun)”: [“jacket”, “pants”, “beanie”, “head”, “body language”, “stance”, “backdrop”],
“A3 (Color)”: [“red”, “black”, “snowy”],
“A4 (Size)”: [],
“A5 (Absolute Location Relation)”: [“right side of the image”],
“A6 (Relative Location Relation)”: [“on”],
“A7 (Action)”: [“standing”, “wears”, “covers”, “appear”, “suggests”],
“A8 (Generic Attribute)”: [“vibrant”, “relaxed”, “confident”, “ready”],
“Total Attributes Count”: 7

Now, analyze this new sentence and classify its words into the same attributes: Sentence: “{sentence}”
Please classify into these categories:
1. Head noun: The main noun being described
2. Sub noun: Supporting nouns
3. Color: Color words
4. Size: Size-related words
5. Absolute location: Fixed position words
6. Relative location: Relative position words
7. Action: Action words/verbs
8. Generic attribute: Other descriptive words
Return only a JSON object in this exact format:
{{

“A1 (Head Noun)”: [],
“A2 (Sub Noun)”: [],
“A3 (Color)”: [],
“A4 (Size)”: [],
“A5 (Absolute Location Relation)”: [],
“A6 (Relative Location Relation)”: [],
“A7 (Action)”: [],
“A8 (Generic Attribute)”: [],
“Total Attributes Count”: 0

}}

Table B: Prompt for counting attributes
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ID Attribute Word
A1 head noun cat
A2 sub noun bench, boat
A3 color green
A4 size big
A5 absolute location relation the center
A6 relative location relation on, next to, in
A7 action sitting
A8 generic attribute wooden

Table C: Types of attributes and their corresponding words in the referring expression, “the cat sitting
on the bench next to big green wooden boat in the center of the image”

Figure A: Pix2Cap misaligned examples

C DIFFERENCES WITH WILDRES AND PREVIOUS DATASETS

C.1 DIFFERENCES FROM PREVIOUS MULTI-TARGET RES DATASETS

Existing multi-target RES datasets like gRefCOCO (Liu et al., 2023a) and Ref-ZOM (Hu et al.,
2023) predominantly rely on enumeration, conjunctions, and plural head nouns. These datasets
frequently employ numerical references (“Three persons playing baseball”) that assume known
referent quantities—an assumption often disconnected from real-world scenarios where shared
attributes drive identification.

While gRefCOCO incorporates attribute-based expressions (“A except B” or “A that has B”), these
constructions appear infrequently—only 39 and 78 instances in 259,859 expressions—confirming
enumeration dominates. Similarly, Ref-ZOM employs template-based generation that combines
expressions from one-to-one datasets or embeds category information into predefined structures,
sacrificing natural language flexibility for consistency.

WildRES adopts a fundamentally different approach by eliminating explicit numerical references and
plural head nouns. Our dataset relies exclusively on shared attributes with singular head nouns to
indicate multiple objects, creating more context-driven references. We focus on identifying subsets
within categories based on distinctive attributes rather than comprehensive enumeration. For example,
“person holding a camera” may coexist with “person not holding a camera” instances, enabling precise
differentiation without explicitly counting targets. This design better reflects natural language patterns
where speakers rarely enumerate objects explicitly. Unlike gRefCOCO, WildRES excludes no-target
expressions entirely.
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C.2 DIFFERENCE FROM PIX2CAP

Pix2Cap (You et al., 2025) provides longer and more detailed captions from GPT-4V (Hurst et al.,
2024) compared to traditional datasets. However, many captions fail to correspond to their respective
objects accurately.

As illustrated in Fig. A, misalignment issues in the Pix2Cap dataset can be categorized into non-
distinctive expressions and attribute mismatches. Non-distinctive expressions due to multiple objects
(Fig. A (a)) occur when a referring expression corresponds to multiple objects, making the expression
non-distinctive. The red-edged mask represents the Pix2Cap annotation, but additional objects
matching the same description (highlighted in orange) result in incomplete coverage. Attribute
misalignment (Fig. A (b)) arises when certain attributes within a referring expression do not accurately
match the corresponding mask. The red mask represents the Pix2Cap annotation for the given
expression, but the skier is not wearing a red ski jacket, leading to attribute misalignment.

To address these issues, we refined Pix2Cap-generated expressions or created new ones for images
containing three or more objects, constructing an improved dataset with enhanced caption-to-object
alignment while preserving Pix2Cap’s rich linguistic diversity.

D STRUCTURED PROMPTS FOR T2I MODEL

We randomly select one of two prompt structures as input for the T2I model in Sec. 4.1:

• photo of [aggregated description], hyper-realistic, 4k, realism, highly detailed, natural
realistic background

• cinematic scene [aggregated description], hyper-realistic, 4k, realism, highly detailed, natural
realistic background

These prompts bridge the synthetic-real domain gap while avoiding stylistic elements like cartoon or
pixel art

E SUPERCLASS REPLACE WORDS

Tab. D lists superclass replacements for text augmentation. Based on MSCOCO (Caesar et al.,
2018) classes and our superclass taxonomy, we select frequently occurring terms from SynRES’s
synthetic expressions. To maintain expression consistency, gender-specific replacements trigger
corresponding pronoun updates. For example, replacing “boy” with “child” in “The boy holding his
bag” simultaneously changes “his” to “their”, resulting in “The child holding their bag”.

F ADDITIONAL EXPERIMENTS

F.1 CLASSIC RES

Experimental Settings. We leveraged official LISA weights that incorporated the ReasonSeg
validation set during training. Performance was evaluated on the ReasonSeg test set for epoch-wise
model selection. For GSVA, where official weights exclude the ReasonSeg validation set, we perform
model selection using ReasonSeg validation set. Other configurations remain consistent with the
previous section.

Since the gRefCOCO was not included during LISA training, there was significant performance
degradation on no-target expressions, which are part of gRefCOCO, when evaluated on this dataset.
As our goal also included testing multi-target performance on gRefCOCO, no-target expressions were
omitted during gRefCOCO evaluation with LISA. In contrast, GSVA utilized the entire gRefCOCO
training set, ensuring that all data were equally considered during evaluation.

Results. In Tab. E, we observed that using SynRES mostly achieved the best performance across the
not only single-target RefCOCO series but also multi-target and no-target included gRefCOCO. Also,
incorporating FreeMask (Yang et al., 2023) led to a decline in performance. This outcome highlights
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Idx Superclass
Word

Original Word

1 child boy, girl, son, daughter
2 kid boy, girl, son, daughter
3 adult woman, women, man, men, female,

male
4 person woman, women, man, men, female,

male, boy, girl, guy
5 their his, her
6 vehicle car, bus, plane, train, airplane, truck,

boat, motorcycle
7 animal bird, cow, bull, rabbit, bunny, dog,

puppy, cat, zebra, elephant, horse, gi-
raffe

8 fruit apple, banana
9 vegetable broccoli, carrot, cabbage, radish

10 food sandwich, hot dog, pizza, donut, dough-
nut, cake, hamburger

11 electronic tv, television, laptop, computer, key-
board, cell phone, smartphone

12 furniture chair, couch, sofa, bed, desk

Table D: Superclass and original words for text augmentation

Model Training data RefCOCO RefCOCO+ RefCOCOg gRefCOCO
real synthetic val testA testB val testA testB val(U) test(U) val testA testB

CRIS ✓ ✗ 70.5 73.2 66.1 62.3 68.1 53.7 59.9 60.4 56.3 63.4 51.8
LAVT ✓ ✗ 72.7 75.8 68.8 62.1 68.4 55.1 61.2 62.1 58.4 65.9 55.8
ReLA ✓ ✗ 73.8 76.5 70.2 66.0 71.0 57.7 65.0 66.0 63.6 70.0 61.0
X-Decoder ✓ ✗ - - - - - - 64.6 - - - -
SEEM ✓ ✗ - - - - - - 65.7 - - - -

LISA-7B
✓ ✗ 73.4 75.7 70.0 62.3 66.8 56.2 67.3 68.1 - - -
✓ ✓ FreeMask 72.4 74.8 68.3 59.7 65.3 52.9 65.4 66.0 - - -
✓ ✓ SynRES (Ours) 75.5 77.0 72.0 64.8 69.2 58.8 68.5 69.8 - - -

GSVA-7B ✓ ✗ 76.0 77.8 72.7 63.6 68.2 58.3 69.9 70.7 72.6 73.7 66.5
✓ ✓ SynRES (Ours) 76.0 77.5 72.6 64.2 68.2 59.0 70.1 70.9 73.6 74.6 67.9

GLaMM-7B ✓ ✗ 80.3 83.3 77.9 73.9 79.0 68.0 75.3 75.2 - - -
✓ ✓ SynRES (Ours) 80.6 83.0 78.0 74.1 79.5 67.9 75.5 75.9 - - -

Table E: Classic referring segmentation results (gIoU) compared w/ and w/o SynRES on existing
RES baselines. All numbers from LISA and GSVA are reproduced using their official repository and
weights.

that simply adding synthetic datasets does not guarantee improved performance in RES; instead, it
underscores the importance of effectively handling such datasets to achieve positive results.

Performance Reproduction in LISA. We reproduced LISA using the official codebase and released
weights. Nevertheless, our results were consistently lower than those reported in the paper (e.g.,
RefCOCO val 74.1), a discrepancy that has been repeatedly noted by other researchers. For example,
the GSVA paper reports a RefCOCO val score of 71.7 for LISA-13B—lower than LISA-7B—with
similar trends on RefCOCO+ and RefCOCOg. Likewise, Issue #162 on the official LISA GitHub
reports RefCOCO val at 72.2 and notes even lower performance for the 7B model. To account for
this variability, we conducted three independent runs for LISA and report the median in our tables. In
contrast, the results for the remaining models closely matched the numbers reported in their original
papers.

F.2 ADDITIONAL BENCHMARKS

We further conducted experiments on Ref-ZOM (Hu et al., 2023) (multi-target datasets, Tab. F left)
and ReasonSeg (Lai et al., 2024) (long and implicit expressions, Tab. F right). Results demonstrate
that SynRES maintains or improves baseline performance across diverse scenarios. On Ref-ZOM,
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Ref-ZOM test

gIoU cIoU

GSVA-7B 72.58 64.40
GSVA-7B+SynRES 73.55 64.65

Model LISA-7B LISA-13B GSVA-7B

base +SynRES base +SynRES base +SynRES

val – – – – 45.13 45.78
test 44.66 44.13 47.62 48.02 40.19 40.72

Table F: Results on Ref-ZOM test set (left) and ReasonSeg (right).

Real Image & Mask Synthetic Image Pseudo Mask Before Grouping Synthetic Mask After Grouping

man with his
daughter sitting on a
bench

people buying
tomatoes - this
woman looks a bit sad

Synthetic Expression

messy bun with loose
waves 

Figure B: Examples of before and after of SynRES step 2.

GSVA-7B+SynRES preserves strong performance with slight gains of +0.97 gIoU (73.55 vs 72.58).
For ReasonSeg, the approach shows consistent stability across model scales: LISA-13B achieves
+0.40 gIoU improvement (48.02 vs 47.62), while GSVA-7B maintains competitive performance with
+0.65 gIoU on validation and +0.53 gIoU on test data.

G DISCUSSIONS

G.1 HYPERPARAMETER CHOICES

p gIoU

0.5 40.8
0.6 40.3
0.7 41.3
0.8 41.0
0.9 40.4

τ gIoU

0.55 40.5
0.6 39.6
0.65 41.3
0.7 40.2
0.75 40.8

Table G: Hyperparameter ablation study results with replace probability p and mIoU Threshold τ .

Tab. G presents the results of experiments conducted by varying the replacement probability p,
a hyperparameter of SynRES, from 0.4 to 0.9. Results demonstrate that the validation set of
WildRES-ID consistently achieves gIoU scores above 40 across all configurations, indicating minimal
performance sensitivity to p variations. Similarly, when testing the mIoU threshold τ within 0.55-0.75,
the minimum observed gIoU remains above 39.6, showing comparable robustness to τ selection.

G.2 PERFORMANCE RELATIVE TO SYNTHETIC DATA QUANTITY

We evaluate LISA’s performance using progressively increasing quantities of synthetic training
images (25%, 50%, 75%, and 100% of full dataset size). As shown in Tab. H, the gIoU metric
demonstrates remarkable stability across data scales, with only 0.6 separating the 25% and 100%
conditions. Notably, the 25% configuration achieves 98.5% of the maximum observed performance,
suggesting efficient data utilization.
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Syn. Images (%) gIoU

25% 40.7
50% 40.8
75% 40.9

100% 41.3

Table H: Performance variations of LISA with SynRES on WildRES-ID validation set across different
quantities of synthetic images.

boy on a skateboard with
helmet

boy in a helmet on a
skateboard

boy skating down street 

carrots, cabbages, radish, mint and salt on
a plate 

chopping fresh carrots, padthai green beans
and all the ingredients 

boy using computer for a computer class

man sitting at a desk using computer

actor as a man with brown hair

man asleep on the bus

man in an grey leather jacket

quilt set - blue floral and red , blue with
white flowers and brown in a single quilt

bed i actually think this is the queen bed
that comes with twin bedding

baby quilt for a twin bed

grilled sandwich on whole
wheat in a large plate
isolated photo - realistic
rendered cut out
illustration high angle
isolated background

grilled sandwich cut to the
slices

coyote , hidden between branches and
berries

coyote hiding behind some bare branches

man in crowd watching person

a man in a black jacket and white shirt
sitting in the audience at an art show

the man who 's on a - man meeting

Figure C: Examples of SynRES generated training data. Blue border is real image and mask. Zoom-in
for closer look.

G.3 COMPUTATIONAL COST

The process of generating the synthetic dataset does not incur additional training costs, as it leverages
off-the-shelf models. However, the generation process does require time: generating synthetic
expressions took approximately 20 hours, creating synthetic images took around 23 hours, and
performing step 2 grouping required about 30 hours, all using four A6000 GPUs. Once the synthetic
dataset is generated, effective results can be achieved with only 5,000 steps of additional fine-
tuning—just 1/10 of the training from scratch.

G.4 LIMITATIONS AND FUTURE WORK

Fig. D demonstrates characteristic failure cases involving over-segmentation beyond ground truth
boundaries. These errors typically occur when visually similar objects appear immediately adjacent
to targets. Our current mosaic augmentation struggles with such proximate object arrangements and
limits composite images to 9 components, restricting training exposure to higher object densities. Im-
plementing targeted copy-and-paste augmentation (Fan et al., 2024) that preserves original attributes
could mitigate these limitations in future work.

H MORE VISUALIZATION

H.1 REFINED SYNTHETIC MASK EXAMPLE BEFORE AND AFTER SYNRES STEP 2

Fig. B show mask refinement results, comparing synthetic segmentation outputs before and after
SynRES in step 2.
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Figure D: Failure Cases

H.2 ADDITIONAL SYNRES EXAMPLES

Fig. C presents SynRES examples demonstrating synthetic dataset generation. Superclass replacement
augmentation applied to these generated expressions following Tab. E.

H.3 EXTENDED QUALITATIVE RESULTS

We present additional visualization results in Fig. E to further demonstrate the effectiveness of the
WildRES task with SynRES.

I LLMS USAGE CLARIFICATION

We used LLMs exclusively for writing assistance and grammar polishing to improve the clarity and
presentation of our methods and content. We did not use LLMs for other purposes, such as identifying
related work or research ideation.
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(a) Visualization of Many Attribute in WildRES-ID

(b) Visualization of Shared Attribute in WildRES-ID

9



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(c) Visualization of CrowdHuman in WildRES-DS

(d) Visualization of Cityscapes in WildRES-DS
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(e) Visualization of ARMBench in WildRES-DS

Figure E: More sampled example from WildRES dataset.
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