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Abstract
Traditionally, natural language processing001
(NLP) models often use a rich set of features002
created by linguistic expertise. A typical ex-003
ample is the semantic representation, which004
turns a text into a structured graph representing005
the relations among the concepts and entities006
mentioned in the text. However, in the era of007
large language models (LLMs), more and more008
tasks are turned into a generic, end-to-end se-009
quence generation problem. In this paper, we010
investigate the question – are the linguistically-011
grounded semantic representations of text still012
needed for NLP tasks? Specifically, we explore013
five diverse NLP tasks and provide a compre-014
hensive analysis of cases where semantic rep-015
resentations are needed or not for task perfor-016
mance. We incorporate extensive text feature017
analyses to understand both cases and conduct018
case studies to inspect the in-depth reasons be-019
hind them. Our study provides some insights020
and suggestions for future NLP researchers to021
look at the role of the traditional semantic rep-022
resentations in the era of LLMs.1023

1 Introduction024

Establishing a richer structure of language beyond025

the raw text sequence is a fundamental pursuit026

in linguistics. Semantic representations, such as027

the abstract meaning representation (AMR) (Ba-028

narescu et al., 2013), are an effort to distill the029

semantic information of text to a graph, and then030

transform operations mentioned in the text into031

graph operations involving entities and their re-032

lations. Many existing studies have shown the033

benefits of this transformation across a variety of034

natural language processing (NLP) tasks, such as035

paraphrase detection (Issa et al., 2018), machine036

translation (Song et al., 2019), event extraction037

(Garg et al., 2015), code generation (Yin and Neu-038

big, 2017), and many others (Dohare and Kar-039

1Our code has been uploaded to the submission system,
and will be open-sourced upon acceptance.
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Figure 1: Many fields have long been looking for symbolic
languages with better representation power. Analogous to
Arabic numbers to math, AMR is usually considered a better
representation for text, because for many tasks, the AMR of
the sentence makes the computation to the output easier, as
shown in the upper half of this figure. Existing work tests the
representation power given the assumption that the models
are trainable to optimize for the given representation (text or
AMR), whereas we look into the practical setup given fixed
pre-trained LLMs, as shown in the bottom part of the figure.
Our key research question is in the red bubble.

nick, 2017; Jangra et al., 2022; Wolfson et al., 040

2020; Kapanipathi et al., 2021). In Figure 1, we 041

draw an analogy between Arabic numerals, which 042

have greatly improved mathematical representa- 043

tions and made calculations much more convenient, 044

and AMR, which aims to enhance language repre- 045

sentation and simplify reasoning over language. 046

However, although it is a meaningful research direc- 047

tion to explore and evaluate various representations 048

for language (for which we can train new mod- 049

els specific to the proposed representation), there 050
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might be a different situation when it comes to prac-051

tical aspects nowadays. Due to economic concerns,052

there is a growing trend to utilize readily avail-053

able pre-trained large language models (LLMs) in054

various application scenarios, without allocating055

additional resources for training or fine-tuning the056

models. This shift towards outsourcing model train-057

ing presents a significant challenge for the semantic058

representations community, leading to the question:059

What is the role of semantic representa-060

tions in the era of LLMs, when no train-061

ing is involved?062

Motivated by this question, refers to propose the063

theoretical formulation of representation power,064

and what it means by an ideal representation for065

text. We highlight that the key to this paradigm066

shift is that an ideal representation for language re-067

quires optimization of the model with regard to the068

representation; however, after fixing the LLM, the069

optimal representation becomes one with regard to070

this fixed model, which might shift away from the071

theoretically optimal representation for language.072

In short, an ideal representation for language does073

necessarily not mean an ideal representation with074

regard to LLMs.075

Paired with the theoretical formulation, we conduct076

empirical research to understand how good AMR is077

as a representation in the era of LLMs. Specifically,078

we answer the following three questions: (1) Does079

AMR as representation help LLM performance?080

(2) On what text data does AMR help and what081

not? (3) Why does it help or not?082

We conduct our studies on a diverse set of five NLP083

tasks, highlighting our findings below. The experi-084

ments show that, overall, the contribution of AMR085

in the era of LLMs is not as high as that in the086

traditional setup where we can optimize the model087

for the representation. AMR causes a slight fluctu-088

ation of performance by -3 to +1 percentage points.089

However, we found that AMR is helpful for a large090

portion of samples, especially those with richer091

sentence structures such as more adjuncts, and ad-092

jective words, as well as a AMR graph with more093

depth. Finally, we also find that parser-generated094

AMR leads to a reasonable performance, therefore095

pushing for more accurate AMR annotations is not096

the main aspect to improve when using AMR in097

the era of LLMs. Instead, a potential aspect to098

improve might be enhancing the chained step-by-099

step reasoning when LLMs first reason over AMR 100

buy a good understanding of what all its symbols 101

mean, and then need to consistently translate the 102

reasoning on AMR back to the task. 103

In summary, the contributions of our work are as 104

follows: 105

1. We are the first to investigate the role of se- 106

mantic representations in the era of LLMs, 107

especially looking at the practical situation 108

where no training is involved; 109

2. We propose both a thinking framework to for- 110

mulate the representation power for language, 111

and comprehensive experimental studies in- 112

vestigating the whether, when, and why behind 113

the role of AMR to LLMs; 114

3. We reveal a set of findings meaningful for the 115

NLP community to reflect on the contribution 116

of traditional linguistic structures such as se- 117

mantic representations in the current wave of 118

LLMs, and point out potential areas to im- 119

prove the performance. 120

2 A Thinking Framework Formalizing 121

the Representation Power 122

In this section, we propose a unified thinking frame- 123

work to formulate representation power both in the 124

pre-LLM era, where we do not outsource the train- 125

ing of the models, and the LLM era, where a lot of 126

practical settings are to optimize the representation 127

with regard to a given fixed LLMs. 128

2.1 Notations 129

Suppose we have a dataset D := {(xi, yi)}Ni=1 con- 130

sisting of N pairs of input xi and corresponding 131

output yi. Given the task to learn the x 7→ y map- 132

ping, we can consider it as a two-stage modeling 133

process: the first step is to convert the raw input 134

x into a good representation r by the representa- 135

tion model M : x 7→ r, and the second step is to 136

do the computation that takes the representation r 137

and predicts the output y by a computation model 138

C : r 7→ y. In this way, we decompose the result- 139

ing overall x 7→ y modeling process into 140

p(y|x) = p(r|x)p(y|r) . (1) 141

2.2 Finding the Ideal Representations for Text 142

Let us take the math example in Figure 1 as a 143

source of inspiration. The first representation r1 144

is the English expression such as “Three hundred 145
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eighty-eight plus twelve,” and the second represen-146

tation r2 is the same calculation in Arabic numbers,147

“388+12.” A characteristic for the representation148

r2 to be better than r1 is that the computation for149

C2 : r2 7→ y is much “simpler” than the other150

function C1 : r1 7→ y. Here, this simplicity notion151

is over a function, for which the formal measure-152

ment is called Kolmogorov complexity, or algo-153

rithmic entropy (Solomonoff, 1964; Kolmogorov,154

1965), which is a theoretical construct of the com-155

plexity of an algorithm in bits. Intuitively, we can156

imagine that if we write a computer algorithm to157

take “Three hundred eighty-eight plus twelve” as158

input and “Four hundred” as output, this algorithm159

should be much longer than the other one taking160

“388+12” as input and “400” as output, since the161

former would involve more complicated string ma-162

nipulation to achieve the same effect.163

We also use this notion of Kolmogorov complexity164

to quantify the power of representations for lan-165

guage. Suppose the computation model C can be166

any from a hypothesis space C, the ideal represen-167

tation r∗ should satisfy168

r∗ = argmin
r

argmin
C∈C

K(C : r 7→ y) , (2)169

given the optimal computation model C with the170

minimal Kolmogorov complexity K.171

If a function has low Kolmogorov complexity, it172

usually results in several good properties, such as173

that learning C requires fewer data samples, has174

smaller empirical risks, and results in more robust-175

ness.176

This explains the common framework to show177

AMR as a better representation than the raw text178

sequence by demonstrating its better performance179

(Turian et al., 2010), fewer data (Liu et al., 2021),180

or better robustness and domain transferability (Li181

et al., 2016). A property of these studies is that they182

train models customized explicitly for the AMR183

representation, namely running the optimization of184

C over the hypothesis space C.185

2.3 Representation Power in the Era of LLMs186

As mentioned previously, in the era of LLMs, we187

are moving towards the paradigm where the model188

is usually fixed, and thus the optimization of the189

representation is190

r∗LLM = argmin
r

K(CLLM : r 7→ y) , (3)191

where we cannot have double optimization of the 192

best model C over the hypothesis space C for each 193

r, but rather take the existent CLLM, and find the 194

best representation for it. Note that this framework 195

can also be used to to explain the success of chain- 196

of-thought (CoT) prompting in terms of how the 197

new representation generated by CoT unleashes the 198

power of LLMs better. 199

Comparing Eq. (2) and Eq. (3), we can see that the 200

ideal best representation r∗ does not necessarily 201

equal the representation r∗LLM that works well with 202

LLMs, so there remain needs for experiments to 203

fill in this gap of knowledge. 204

2.4 Additional Practical Concerns 205

From Eq. (1), we can also see that, when decom- 206

posing to this two-stage process, it is likely to accu- 207

mulate cascading error from the representation step 208

p(r|x), where we might not have an oracle text-to- 209

AMR model, to the computation step p(y|r), which 210

needs to be base on that representation. We make 211

special efforts to address this concern by additional 212

experiments later in section Section 6.1. 213

3 Designing the AMRCOT Experiments 214

3.1 Dataset Setup 215

We include a diverse set of tasks and datasets, 216

spanning across paraphrase detection (Zhang et al., 217

2019), machine translation (Bojar et al., 2016), log- 218

ical fallacy detection (Jin et al., 2022), event ex- 219

traction (Garg et al., 2015), and text-to-SQL gen- 220

eration (Yu et al., 2018). We describe in Table 1 221

an overview of the tasks and datasets. For each 222

dataset, the size that is reasonable for querying 223

LLMs is several thousand, which is within a rea- 224

sonable computational budget and can be relatively 225

large enough to make the results representative. To 226

compile the test data for our study, we first take the 227

entire test set of the original data, and if the size is 228

not large enough, we also add the development and 229

training set. The resulting statistics of the data is in 230

Table 1. See the evaluation metrics and setup for 231

each dataset in Appendix A.2. 232

3.2 AMRCOT Prompt Design 233

As our study is interested in the representation 234

power in the era of LLMs, we explore how well 235

AMR as the representation works with pre-trained 236

LLMs. We draw inspirations from the CoT prompt 237

design, which enable models to answer an origi- 238
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Figure 2: Performance of BASE (in purple) and AMRCOT (in red) on five datasets across the five model versions, from
text-davinci-001, -002, -003, to GPT-3.5 and GPT-4.

Dataset Task Test Size
PAWS Paraphrase Detection 8,000
WMT Translation 5,999
Logic Logical Fallacy Detection 2,449
Pubmed45 Event Extraction 5,000
SPIDER Text2SQL Code Generation 8,034

Table 1: Statistic of each dataset, their corresponding task, and
the test data size for our study later.

nally difficult question with the help of assistive239

representations that makes the task easier.240

In this work, we propose AMRCOT, which supple-241

ments the textual input with its AMR, and condi-242

tions the answer generation based on the semantic243

representation which should make the task easier.

BASE Please classify the following text into one of the
logical fallacies:
Text: {sentence1}
Which is the fallacy type present in the text?

AMRCOT You are given a text and its AMR.
Text: {sentence1}
AMR: {amr1}
Based on the text and its AMR, please classify it into
one of the logical fallacies.
Which is the fallacy type present in the text?

Table 2: Example BASE and AMRCOT prompt (on the logical
fallacy dataset).

244

In our experiments, we contrast AMRCOT with the245

baseline of directly querying the LLMs, denoted246

as BASE. We show an example prompt pair in247

Table 2, and list all the prompts for all datasets in248

Appendix A.1.249

3.3 Language Models250

Since our experiments require models that can251

reasonably understand the symbols in AMRs as252

well as reason over them, we find that only the253

instruction-tuned GPT models, from text-davinci-254

001 to GPT-4 are capable of doing it, but not the255

open-sourced models such as LLaMa and Alpaca,256

at the time we conducted our research. For re- 257

producibility, we set the text generation temper- 258

ature to 0 for all the models, and we use the 259

model checkpoints on June 13, 2023 for GPT- 260

3.5 and GPT-4, namely gpt-3.5-turbo-0613 261

and gpt-4-0613. 262

3.4 Research Question Overview 263

With all the experimental setup, we explore the 264

following three questions to comprehensively ad- 265

dress the role of semantic representations in the 266

era of LLMs: First, can AMR help LLMs when 267

performing different tasks? Second, when does it 268

help/harm and when not? Third, why is it so? We 269

explore each question with three substudies, which 270

we will introduce in the following sections. 271

4 Q1: Does AMR Help LLMs? 272

First, we are interested in the overall representa- 273

tion power of semantic representations like AMR 274

to LLMs. Specifically, we answer the following 275

subquestions: what is the overall effect of AMR 276

as a representation on LLMs’ performance? (Sec- 277

tion 4.1), does the effect vary case by case? (Sec- 278

tion 4.2), and how does the effect change on dif- 279

ferent LLMs with different levels of capabilities? 280

(Section 4.3) 281

4.1 Overall Effect of AMR 282

We first look into the overall effect of AMR as a 283

representation to assist LLMs. Table 3 compares 284

the performance of the BASE method of directly 285

querying LLMs and the AMRCOT method, we can 286

see that AMR does not have an overall positive 287

impact on the performance of LLMs. In most of 288

the cases, it makes the performance fluctuate a bit, 289

between a slight increase (e.g., +0.61 in the case of 290

Text-to-SQL code generation) and slight drop (e.g., 291

-1 to -3 in most other tasks). 292
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Dataset Task BASE ∆AMRCOT
PAWS Paraphrase Detection 78.25 -3.04
WMT Translation 32.85 -1.27
Logic Fallacy Detection 55.56 -3.4
Pubmed45 Event Extraction 39.65 -3.87
SPIDER Text2SQL 43.78 0.61

Table 3: Performance of BASE and AMRCOT on all the five
tasks using GPT-4.

4.2 Helpfulness of AMR in Some Cases293

There could be several possibilities behind the fluc-294

tuating performance: (1) AMR does not add much295

beyond the plain text input for LLMs, or (2) AMR296

affects a large number of samples, just that the297

positive effect and negative effect cancels out each298

other, so we do not see a big change on the overall299

statistics.300

To explore which of the two actually happens be-301

hind the scene, we calculate the “flip rate” before302

and after using the AMRCOT. In Table 4, we count303

a sample as helped by AMR if its prediction im-304

proves (i.e., changing from incorrect to correct for305

classification tasks, or having a score increase for306

text generation tasks), and hurt if its prediction307

changed vice versa; the rest of the samples are308

considered unchanged.

Dataset % Helped % Hurt % Unchanged
PAWS 16.48 20.16 63.36
WMT 44.75 47.28 7.97
Logic 22.33 26 51.67
Pubmed45 4.84 11.66 83.5
SPIDER 4.94 4.33 90.72

Table 4: Percentage of samples that are helped (% Helped),
hurt (% Hurt), or unchanged (% Unchanged) when we change
from BASE to AMRCOT using GPT-4.

309

As we can see in Table 4, AMR causes a high310

flip rate on the correctness of the answers. The311

percentage of answers improved by AMRCOT oc-312

cupies 44.75% in WMT data, 22.33% in Logic, and313

16.48% in PAWS. These are impressive statistics314

to see, and the remaining question is what features315

on these text samples causes the performance im-316

provement or drop by AMR, which we will explore317

in the following Sections 5 and 6.318

4.3 AMR’s Effect on Models with Different319

Capabilities320

We also add an additional experiment to extend the321

observation in this section to more models. We322

show in Figure 2 the performance of BASE and323

AMRCOT across five LLMs with different levels324

of capability: from text-davinci-001, -002, -003, to325

GPT-3.5 and GPT-4.326

We can see that, overall, this fluctuation phe- 327

nomenon exists across all models. Note that in 328

some cases, the less capable models experience a 329

higher drop by AMR, which might be due to its 330

limited ability to comprehend AMR and do reason- 331

ing over these special symbols. This is consistent 332

with our other observation that none of the non- 333

instruction-tuned earlier GPT models, and the less 334

capable models such as LLaMa and Alpaca, can 335

comprehend AMR representations well. 336

5 Q2: When Does AMR Help/Hurt? 337

The previous section shows that AMR is helpful or 338

harmful for different samples. Now we continue to 339

decode the condition when the help or harm hap- 340

pens, and attribute it to features of the input text. 341

In this section, we first illustrate a case study in 342

Section 5.1, where the lack of the ability of AMR 343

to capture the semantic equivalence of multi-word 344

expressions (MWEs) hinders paraphrase detection. 345

Then, beyond proposing each hypothesis and veri- 346

fying it for each single phenomenon on each task, 347

we suggest two systematic interpretability studies: 348

for the first method, we treat linguistic features as 349

our hypotheses, and extract features with high cor- 350

relation with AMR helpfulness in Section 5.2; and 351

for the second method, we directly train classifiers 352

to learn AMR helpfulness as a task, and decode 353

what text input leads to it in Section 5.3. 354

5.1 Case Study: AMR’s Shortcoming on 355

MWEs 356

AMR has its unique advantages and limitations, 357

from which we can interpret what cases it can help, 358

and what cases not. One such limitation of AMR is 359

its lack of ability to capture MWEs such as slangs, 360

which makes it overlook certain semantic equiva- 361

lence for paraphrase detection. As in the example 362

below, if an input sentence of paraphrase detection 363

has an MWE, such as “Her swan song disappointed 364

her fans.”, where the proper of paraphrase for the 365

MWE swan song is not “bird song,” but “final per- 366

formance.” However, when we show the AMRs for 367

all the three sentences below, we can see that the 368

wrong pair (“swan song” and “bird song”) looks 369

more like a paraphrase relation, compared with the 370

correct pair (“swan song” and “final performance”). 371

372

Given this intuition, we quantitatively verify 373

this hypothesis by running AMRCOT on a self- 374

composed dataset of paraphrase detection involv- 375
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Original Sentence with MWE
Her swan song disappointed her fans.
(z0 / disappoint-01

:ARG0 (z1 / song
:mod (z2 / swan)
:poss (z3 / she))

:ARG1 (z4 / fan
:poss z3))

Paraphrase Candidate 1 Paraphrase Candidate 2
(✗ Not a paraphrase.) (✓ A paraphrase.)

Her bird song disappointed
her fans.

Her final performance
disappointed her fans.

(z0 / disappoint-01
:ARG0 (z1 / song

:mod (z2 / bird)
:poss (z3 / she))

:ARG1 (z4 / fan
:poss z3))

(z0 / disappoint-01
:ARG0 (z1 / perform-02

:ARG0 (z2 / she)
:mod (z3 / final))

:ARG1 (z4 / fan
:poss z2))

ing slangs. Since our experiments need annotations376

for both slang paraphrase pairs and AMRs, we377

compose two datasets, GoldSlang-ComposedAMR,378

and GoldAMR-ComposedSlang. For GoldSlang-379

ComposedAMR, we use the curated slang para-380

phrase pairs by Tayyar Madabushi et al. (2021),381

and generate their AMRs with an off-the-shelf382

parser (Drozdov et al., 2022). For the other dataset,383

GoldAMR-ComposedSlang, we use gold AMRs384

from the LDC AMR 3.0 corpus (Banarescu et al.,385

2013), and compose slang paraphrases using a com-386

bination of human efforts and assistance from GPT-387

4. The data curation steps and data statistics are in388

Appendix B.1.389

Dataset BASE ∆AMRCOT
GoldSlang-ComposedAMR 86.83 -6.63
GoldAMR-ComposedSlang 77.69 -8.78

Table 5: AMRCOT causes a large drop in performance on
slang-involved paraphrase detection data.

We show the evaluation results in Table 5, where390

AMRCOT causes a large drop of performance com-391

pared with the BASE method, which are more sub-392

stantial than the slight fluctuation of -3 to +1 on393

general NLP datasets previously in Table 3. It is394

very likely that, due to the shortcoming of AMR on395

MWEs, AMRCOT leads to distraction in the input396

that makes the model perform worse.397

5.2 Large-Scale Text Feature Analysis398

The case study above provides a precise insight into399

a special case when AMR does not work. There400

could be many other reasons out there, some sup-401

porting cases where AMR helps, and others ex-402

plaining cases where AMR hurts. To systematize403

such analyses, we avoid the manual effort of ver- 404

ifying each hypotheses, but seeks to scale up the 405

study in a data-driven away. 406

To enable the systematic analysis, we formulate the 407

contribution of AMR as the AMR helpfulness score, 408

which is the difference of the performance by AM- 409

RCOT vs. BASE. As all the performance score 410

are in percentage, the AMR helpfulness score is 411

usually a number between -100% and 100%, where 412

a negative value means that AMR hurts the perfor- 413

mance of the sample, and positive value means that 414

AMR improves the performance of that sample. 415

And for each text sample, we compose a large-scale 416

comprehensive set of linguistics features, including 417

139 text features on the text representation, and 4 418

AMR-related features. For the over 100 features 419

text, we obtain 55 features using the Text Charac- 420

terization Toolkit (TCT) (Simig et al., 2022), which 421

is specifically designed to facilitate the analysis of 422

text dataset properties, 17 different part-of-speech 423

(POS) tags, 44 dependency tags, and 61 other hand- 424

crafted features, which characterizes the semantic 425

and syntactic complexity of the input text, such as 426

the number of arguments vs. adjuncts (Haspelmath, 427

2014). 428

Feature Name Correlation Coefficient
# Named Entities 0.0552
# Adjuncts 0.0387
Adj POS Tag Frequency 0.0382
Max Word Complexity 0.0291
AMR Graph Depth 0.0286

Table 6: The Pearson correlation between each linguistic fea-
ture and AMR helpfulness. The top five correlated features are
the number of named entities (# Named Entities), the number
of adjuncts (# Adjuncts), the frequency of adjectives among
all the words (Adj POS Tag Frequency), maximum word com-
plexity level by the age of acquisition (Kuperman et al., 2012),
and the maximum length of a direct path in the AMR graph
(AMR Graph Depth).

We analyze the Pearson correlation between each 429

linguistic feature and the AMR helpfulness score 430

in Table 6. This per-feature analysis is a more 431

fair reflection of the contribution of each feature, 432

regardless of the potential correlation among mul- 433

tiple features. As we can see, AMR is helpful for 434

samples with features such as more named entities, 435

adjuncts, adjective words, difficult words, and the 436

AMR graph with more depth. 437
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5.3 AMR Helpfulness Prediction as a438

Learning Task439

Apart from the correlation analysis of the large set440

of linguistic features, we also explore a learning441

approach to treat AMR helpfulness as a predic-442

tion task. Since this is a challenging learning task,443

we set it up as a binary classification, where the444

positive class is the cases where AMR helps, and445

the negative class is the rest. Merging all the five446

datasets together, we have a binary classification447

dataset of 18,365 training samples, 2,962 develop-448

ment samples, and 2,962 test samples, with positive449

labels composing 13.85% of the dataset.450

Model F1 Acc P R
Random Baseline 22.54 48.95 14.81 47.11
Using Linguistic Features
Random Forest 31.32 78.12 25.00 41.92
XGBoost 28.32 59.84 17.98 66.67
Ensemble 33.12 74.23 23.96 53.61
Using the Free-Form Text Input
BERT 45.65 77.65 37.02 59.53
RoBERTa 46.02 78.70 38.32 57.60

Table 7: Classification performance of various models on
AMR helpfulness. We report the F1, precision (P), and recall
(R) of the positive class, as well as the accuracy (Acc). See
the implementation details of the models in Appendix A.3.

As shown in the classification results in Table 7,451

classifiers based on the linguistic features achieve452

an F1 score of up to 33.12%. After utilizing the453

entire free-form text input, the BERT–based deep454

learning models achieve an improvement by up to455

12.9 points of the F1 score, as well as substantial456

increases in both precision and recall.457

To increase more interpretability, we also run458

the SHAPley (Fryer et al., 2021) interpretability459

method, and find that words that signal the exis-460

tence of clauses tend to have a high importance for461

the classifier, such as what, how, said, and says.462

6 Q3: Why Does AMR Help/Hurt?463

After inspecting the conditions when AMR helps or464

hurts the LLM performance, now we move to more465

in-depth causal analysis of why AMR demonstrates466

the current representation power with regard to467

LLMs. Specifically, we look into the following468

subquestions: (1) how does parser-generated AMR469

work compared with gold AMR? (Section 6.1) (2)470

what is the representation power of AMR versus471

text when being ablated? (Section 6.2) And (3)472

how does AMR help in each step of the reasoning473

process? (Section 6.3)474

The findings in this section are specifically helpful 475

for understanding the key aspects to work on in 476

the future to improve the performance of AMR 477

on LLMs. For example, parser-generated AMR 478

also leads to a reasonable performance, therefore 479

pushing for more accurate AMR annotations is not 480

the main aspect to improve when using AMR in 481

the era of LLMs. Instead, a potential aspect to 482

improve might be the enhancing chained step-by- 483

step reasoning when LLMs first reason over AMR 484

buy a good understanding of what all its symbols 485

mean, and then need to consistently translate the 486

reasoning on AMR back to the task. 487

6.1 Gold vs. Parser-Generated AMR 488

Our first investigation is whether there exists cas- 489

cading error before the CoT process (as introduced 490

in Section 2.4), due to the parser-generated AMR 491

by Drozdov et al. (2022) (whose reported perfor- 492

mance is 83% on AMR 3.0) being not perfect 493

enough. What would the performance have been 494

had the AMRs were perfect? – This is the question 495

we address in this subsection. 496

To check this question, we take the gold text-to- 497

AMR pairs with official annotation from the AMR 498

3.0 dataset (Banarescu et al., 2013). The challenge 499

is to find a downstream task using the same text 500

input as this AMR dataset with gold annotation. To 501

this end, we look into the source data where the 502

text of the AMR data originates from, and identi- 503

fied that it has certain overlap with the OntoNotes 504

5.0 dataset (Pradhan et al., 2011). Hence, we 505

take the intersection of the AMR 3.0 dataset and 506

this OntoNotes 5.0 dataset, using the widely used 507

named entity recognition (NER) task. In this way, 508

we make a unique contribution aligning the two 509

datasets, and obtain a precious dataset, AMR-NER, 510

consisting of 131 samples with both gold AMR and 511

gold NER annotations. 512

Dataset BASE AMR ∆AMRCOT

AMR-NER 60.51 Gold +0.03
Parser +1.91

Table 8: Model performance on the AMR-NER data using the
gold AMR (Gold) and parser-generated AMR (Parser). We
report the BASE performance, and the change of performance
by AMRCOT (∆AMRCOT) in terms of F1 scores.

Using this AMR-NER dataset, we are able to com- 513

pare the performance of gold AMR versus parser- 514

generated AMR on the same task, NER, in Table 8. 515

We can see that both AMRs lead to similar results, 516
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where there is a slight improvement on the perfor-517

mance, echoing with the previous text feature anal-518

ysis in Section 5.2 that samples with more named519

entities tend to be helped by AMR more. Inter-520

estingly, the parser-generated AMR actually leads521

to more improvement, which might be due to its522

more generic symbols and thus inducing fewer in-523

frequent special tokens that LLMs might not be524

familiar with.525

6.2 Ablating the AMR/Text Representation526

As introduced to previously in Section 2, AMR and527

text representations are two different surface forms528

to express the same semantics. Either is a sufficient529

representation containing the complete information530

of the semantics of the text for LLMs to rely on531

to complete the task, just that they have different532

representation power.533

With this spirit, we conduct an ablation study to534

check the reliance of LLM performance on each535

form of representation. To avoid the additional536

effect from the parsing process, we use the AMR-537

NER dataset with the gold AMR.538

We first test three variations: providing both text539

and AMR to LLMs leads to 60.54%, providing540

only text leads to 60.51% performance, and pro-541

viding only AMR gives 25.58%. This shows that,542

no matter how the representation power is in the543

ideal conditions (as introduced in Section 2.2), if544

limiting to the pre-trained LLMs (as inSection 2.3),545

to be a better representation, although AMR can546

help in marginal cases.547

We also extend this analysis to more granularity in548

Figure 3, where we ablate each of text and AMR by549

every 20% tokens, and show the effect on the task550

performance. Similarly to the previous observation,551

we find that adding more text largely increase the552

performance of LLMs, showing the higher impor-553

tance of text as a representation to LLMs.554

6.3 Checking the Step-By-Step Reasoning555

We further conduct a close-up look at the step-556

by-step reasoning process produced by AMRCOT.557

We randomly selected 50 samples from the PAWS558

dataset, and manually annotated the correctness559

of each step in the reasoning process. Basically,560

we have (1) the provided AMR in the prompt to561

LLMs, which we obtain using the structure BART562

model (Drozdov et al., 2022), with a reported per-563

formance of 82.6 SMATCH scores on the AMR564
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Figure 3: Ablation studies of AMR and text representations in
the prompt on the AMR-NER dataset using ChatGPT. Start-
ing from the AMRCOT prompt with the complete text and
AMR, we randomly drop out a certain portion of tokens in the
text/AMR, and see the effect on the task performance.

3.0 dataset; (2) then for the paraphrase detection 565

task, the LLMs reason about the commonalities 566

and differences between the two AMRs, where we 567

evaluate GPT-4’s performance to be 97% F1 scores 568

on listing all the AMR commonalities and differ- 569

ences, with a precision of 95%, and recall of 98%; 570

and (3) finally, the LLM draws conclusion on the 571

paraphrase detection task based on the previous rea- 572

soning across the two AMRs, where we evaluate 573

the judgment in this step has a 80% consistency 574

with the reasoning conclusion in step (2). 575

Overall, one potential reason behind the limitations 576

of AMR for helping the LLM performance could 577

be its several steps in the reasoning are all non- 578

trivially challenging for LLMs, and chaining them 579

together explains why overall AMRCOT achieves a 580

performance of 75.21% on PAWS, which is a slight 581

drop from the BASE performance of 78.25%. 582

7 Conclusion 583

In this work, we analyze the role of semantic rep- 584

resentations in the era of LLMs. In response to 585

the ongoing paradigm shift in the NLP community, 586

we show that AMR in general is not yet a rep- 587

resentation immediately fit for pre-trained LLMs. 588

However, our study show that AMR still help a 589

large portion of text samples, especially those with 590

complicated linguistic structures. We also suggest 591

that a potential direction to enhance AMR’s contri- 592

bution to LLMs is to improve the understanding of 593

LLMs over the schemes and symbols of AMR, and 594

map it to the reasoning of the NLP task. This work 595

presents an effort to bridge the traditionally rich 596

linguistic structures with the strength of LLMs. 597
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Limitations598

In this work, we explore one form of linguistic rep-599

resentation of text. And we welcome the method-600

ology in this work to be applied to explore this601

question on more other linguistic representations.602

Ethical Considerations603

The datasets used in this paper are existing public604

datasets on general NLP tasks without any user-605

sensitive information. We are not aware of specific606

ethical concerns with the analysis in this study,607

which is a neutral investigation to understand the608

role of traditional linguistic structures such as se-609

mantic representations in the era of LLMs.610
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A Implementation Details774

A.1 Prompts775

We list the prompts for BASE and AMRCOT of all776

datasets in Tables 9 and 10, as well as the system777

prompts in Table 11.778

A.2 Evaluation Metrics779

For evaluation, we report the performance of780

PAWS, Logic, and Pubmed45 by F1 scores,781

the performance of machine translation on782

the WMT dataset by BLEU scores (Papineni783

et al., 2002), and the performance of text-to-784

SQL generation using the official evaluation785

setup at https://github.com/taoyds/786

test-suite-sql-eval. To evaluate the787

generation quality of parser-produced AMRs,788

we report the SMATCH scores using the789

evaluation codes at https://github.com/790

snowblink14/smatch.791

A.3 Implementation Details792

As for the experimental details, for the BERT and793

RoBERTa models, we use the weighted cross en-794

tropy loss, with a batch size of 16, learning rate795

of 1e-5, and dropout of 0.1, and train for five796

epochs until convergence. For the XGBoost classi-797

fier (Chen and Guestrin, 2016), we use the default798

hyperparameters, and set the random seed to 0,799

and the class weight proportional to the class ra-800

tio, namely setting the positive weight to be the801

inverse of the number of samples in the positive802

class divided by that of the negative class.803

B Data Collection804

B.1 Composing the Slang-Involved805

Paraphrase Detection Dataset806

Since our experiments need annotations for both807

slang paraphrase pairs and AMRs, we com-808

pose two datasets, GoldSlang-ComposedAMR,809

and GoldAMR-ComposedSlang. For GoldSlang-810

ComposedAMR, we use the curated slang para-811

phrase pairs by Tayyar Madabushi et al. (2021),812

and generate their AMRs with an off-the-shelf813

parser (Drozdov et al., 2022). For the other dataset,814

GoldAMR-ComposedSlang, we use gold AMRs815

from the LDC AMR 3.0 corpus (Banarescu et al.,816

2013), and compose slang paraphrases using a com-817

bination of human efforts and assistance from GPT-818

4.819

Composing the GoldSlang-ComposedAMR 820

Dataset We adapt a subset of the ASILM (Tay- 821

yar Madabushi et al., 2021), an idiomatic MWE 822

dataset, into a paraphrase detection task. Each 823

sentence in the subset containing idiomatic expres- 824

sions is paired with a paraphrase (where the idiom 825

is replaced with its literal semantic equivalent) and 826

a non-paraphrase (where the idiom is replaced with 827

a phrase of similar superficial meaning but differ- 828

ing semantic meaning). This results in a balanced 829

paraphrase detection dataset with respect to ground 830

truth labels. 831

Composing the GoldAMR-ComposedSlang 832

Dataset A possible error in AMRCOT lies in the 833

imperfection of parser-generated AMRs. To dis- 834

entangle the harm caused by (1) incorrect AMRs 835

produced by the parsers and (2) poor represen- 836

tation of slang expressions by AMRs, we hand- 837

crafted the GoldAMR-Slang-Para dataset. We first 838

extract a subset from LDC-AMR3.0 (Banarescu 839

et al., 2013) that involve slang expressions. Then, 840

for each sentence, we replace the slang expression 841

with an alternative expression of the same mean- 842

ing, and a semantically different expression which 843

seems literally similar, thus creating a paraphrase 844

and non-paraphrase sentence, respectively. The cor- 845

responding AMRs can be derived from the original 846

LDC-AMR3.0 AMRs with minimal modifications. 847

Specifically, we operationalize the process as fol- 848

lows. We first use gpt-3.5-turbo-0613 identify 500 849

samples of slang usage from LDC-AMR3.0 with 850

the following prompt: 851

Please evaluate the following sentence for the pres- 852

ence of slang expressions. A slang expression is 853

a phrase or expression that is in the online slang 854

dictionaries and has a meaning that is very differ- 855

ent from its literal form. For instance, ’raining cats 856

and dogs’ is slang, while ’middle school’ is not. 857

Although ’middle school’ is a compound phrase, it 858

does not carry a meaning beyond its literal inter- 859

pretation. Here is the sentence for your analysis: 860

premise. Please format your response as follows: 861

‘Yes or No, slangs.‘ 862

If there’s no slang used, just answer ’No’. If there 863

are multiple slang expressions, please separate 864

them with a semicolon (’;’). Remember, the idioms 865

we are interested in are those that, when taken lit- 866

erally, would have a completely different semantic 867

meaning. 868
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Then we mannually check whether the extracted869

expressions are slang and are appropriate. Consis-870

tent with the spirit of (Zhang et al., 2019), we use871

the following prompt to query gpt-3.5-turbo-0613872

to generate one paraphrase and one non paraphrase873

of each sentence.874

Rewrite the following sentence in two ways Sen-875

tence: sentence 1. Replacing "slang" with its in-876

tended meaning. 2. Replacing "slang" with its877

literal meaning, such that the sentence loses its878

original meaning. Do not change anything else879

Lastly, for each pair of (origi-880

nal_sentence, (non)paraphrase_sentence),881

we give (original_sentence, original_amr,882

(non)paraphrase_sentence) to gpt-3.5-turbo-0613,883

and ask it to generate (non)paraphrase_amr by884

minimally modifying the original_amr. The885

prompt is as follows:886

"The AMR of the sentence ’og_sentence’ is887

og_amr888

What is the AMR of the sentence ’paraphrase’?889

Modified the given AMR to fit the sentence ’hy-890

pothesis’ and words not present in the sentence891

’hypothesis’ should not appear in your AMR.892

Start you response with ’(’."893

Paraphrase Detection (PAWS)
BASE Paraphrase Detection: Determine if the following two sen-

tences are exact paraphrases (rewritten versions with the
same meaning) of each other.
Sentence 1: {sentence1}
Sentence 2: {sentence2}
Answer [Yes/No] and then provide a brief explanation of
why you think the sentences are paraphrases or not.
Paraphrase:

AMRCOT Paraphrase Detection: You are given two sentences and the
abstract meaning representation (AMR) of each.
Sentence 1: {sentence1}
AMR 1:
{amr1}
Sentence 2: {sentence2}
AMR 2:
{amr2}
Explain what are the commonalities and differences between
the two AMRs. Then determine if the two sentences are
exact paraphrases (rewritten versions with the same meaning)
of each other and provide a brief explanation of why you
think the sentences are paraphrases or not. Use the following
format: Answer: [Yes/No]

logic
BASE Please classify the following text into one of the logical

fallacies:
Text: {sentence1}
Which is the fallacy type present in the text?

AMRCOT You are given a text and its AMR.
Text: {sentence1}
AMR:
{amr1}
Based on the text and its AMR please classify it into one of
the logical fallacies. Which is the fallacy type present in the
text?

newstest
BASE Please translate the following text from English to German.

Text: {sentence1}
Translation:

AMRCOT You are given a text and its abstract meaning representation
(AMR).
Text: {sentence1}
AMR:
{amr1}
Please translate the text from English to German. You can
refer to the provided AMR if it helps you in creating the
translation.
Translation:

pubmed
BASE This question aims to assess your proficiency in validating

relationships between different entities in biomedical text.
You will be presented with a sentence from an article and
asked to determine whether the interaction between the en-
tities mentioned in the sentence is valid or not. You should
respond with a single digit, either "0" if the interaction is
invalid, "1" if it is valid, or "2" if swapping the positions of
any two entities would make the interaction valid. Please
note that you are required to provide only one of these three
responses.
Text: {sentence1}
Interaction: {interaction}

AMRCOT This question aims to assess your proficiency in validating
relationships between different entities in biomedical text.
You will be presented with a sentence from an article and its
abstract meaning representation (AMR) and asked to deter-
mine whether the interaction between the entities mentioned
in the sentence is valid or not. You should respond with a
single digit, either "0" if the interaction is invalid, "1" if it
is valid, or "2" if swapping the positions of any two entities
would make the interaction valid. Please note that you are
required to provide only one of these three responses.
Text: {sentence1}
AMR:
{amr1}
Interaction: {interaction}

Table 9: Prompts for BASE and AMRCOT for all datasets.
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spider
BASE Write an SQL query that retrieves the requested information

based on the given natural language question. Remember
to use proper SQL syntax and consider any necessary table
joins or conditions.
Question: {sentence1}
Query:

AMRCOT Write an SQL query that retrieves the requested information
based on the given natural language question and its abstract
meaning representation (AMR). Remember to use proper
SQL syntax and consider any necessary table joins or condi-
tions.
Question: {sentence1}
AMR:
{amr1}
Query:

NER
BASE The following is a named entity recognition task. Please

extract all the named entities of the following types from the
given sentence. TYPE="CARDINAL": Numerals that do not
fall under another type, e.g., “one”, “ten” TYPE="DATE":
Absolute or relative dates or periods. E.g., “the summer of
2005”, “recent years” TYPE="EVENT": Named hurricanes,
battles, wars, sports events, etc. E.g., “Olympiad games”
TYPE="FAC": Buildings, airports, highways, bridges, etc.
E.g., “Disney”, “the North Pole” TYPE="GPE": Countries,
cities, states. E.g., “Hong Kong”, “Putian” TYPE="LAW":
Named documents made into laws. E.g., “Chapter 11 of
the federal Bankruptcy Code” TYPE="LOC": Non-GPE
locations, mountain ranges, bodies of water. E.g., “Mai
Po Marshes”, “Asia” TYPE="MONEY": Monetary values,
including unit. E.g., “$ 1.3 million”, “more than $ 500 mil-
lion” TYPE="NORP": Nationalities or religious or political
groups. E.g., “Chinese”, “Buddhism” TYPE="ORDINAL":
E.g., "first", "second", etc. TYPE="ORG": Companies,
agencies, institutions, etc. E.g., “Eighth Route Army”, “the
Chinese Communist Party” TYPE="PERCENT": Percent-
age, including "%". E.g., “25 %” TYPE="PERSON": Peo-
ple, including fictional. E.g., “Zhu De”, “Saddam Hussein”
TYPE="PRODUCT": Objects, vehicles, foods, etc. (Not ser-
vices.) E.g., “iPhone”, “Coke Cola” TYPE="QUANTITY":
Measurements, as of weight or distance. E.g., “23 sq. km”
TYPE="TIME": Times smaller than a day. E.g., “homecom-
ing night” Sentence: {sentence1}
Use json format for the response where each key is an entity
type.

AMRCOT The following is a named entity recognition task. Please
extract all the named entities of the following types from
the given sentence and its abstract meaning representation
(AMR). TYPE="CARDINAL": Numerals that do not fall
under another type, e.g., “one”, “ten” TYPE="DATE": Ab-
solute or relative dates or periods. E.g., “the summer of
2005”, “recent years” TYPE="EVENT": Named hurricanes,
battles, wars, sports events, etc. E.g., “Olympiad games”
TYPE="FAC": Buildings, airports, highways, bridges, etc.
E.g., “Disney”, “the North Pole” TYPE="GPE": Countries,
cities, states. E.g., “Hong Kong”, “Putian” TYPE="LAW":
Named documents made into laws. E.g., “Chapter 11 of
the federal Bankruptcy Code” TYPE="LOC": Non-GPE
locations, mountain ranges, bodies of water. E.g., “Mai
Po Marshes”, “Asia” TYPE="MONEY": Monetary values,
including unit. E.g., “$ 1.3 million”, “more than $ 500 mil-
lion” TYPE="NORP": Nationalities or religious or political
groups. E.g., “Chinese”, “Buddhism” TYPE="ORDINAL":
E.g., "first", "second", etc. TYPE="ORG": Companies,
agencies, institutions, etc. E.g., “Eighth Route Army”, “the
Chinese Communist Party” TYPE="PERCENT": Percent-
age, including "%". E.g., “25 %” TYPE="PERSON": Peo-
ple, including fictional. E.g., “Zhu De”, “Saddam Hussein”
TYPE="PRODUCT": Objects, vehicles, foods, etc. (Not ser-
vices.) E.g., “iPhone”, “Coke Cola” TYPE="QUANTITY":
Measurements, as of weight or distance. E.g., “23 sq. km”
TYPE="TIME": Times smaller than a day. E.g., “homecom-
ing night” Sentence: {sentence1}
AMR:
{amr1}
Use json format for the response where each key is an entity
type.

Table 10: Prompts for BASE and AMRCOT for all datasets.

paws You are an NLP assistant whose purpose
is to perform Paraphrase Identification.
The goal of Paraphrase Identification is
to determine whether a pair of sentences
have the same meaning.

logic You are an expert in logic whose purpose
is to determine the type of logical fallacy
present in a text. The categories are: 1)
Faulty Generalization
2) False Causality
3) Circular Claim
4) Ad Populum
5) Ad Hominem
6) Deductive Fallacy
7) Appeal to Emotion
8) False Dilemma
9) Equivocation
10) Fallacy of Extension
11) Fallacy of Relevance
12) Fallacy of Credibility
13) Intentional Fallacy.

newstest You are an NLP assistant expert in ma-
chine translation from English to Ger-
man.

django You are an NLP assistant expert in trans-
lating natural language instructions to
python code.

spider You are a language model designed to
generate SQL queries based on natural
language questions. Given a question,
you need to generate the corresponding
SQL query that retrieves the requested
information from a database.

pubmed You are a medical professional expert.
NER You are an NLP assistant whose purpose

is to perform named entity recognition
(NER).

Table 11: System prompts for all datasets.
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