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Abstract

Traditionally, natural language processing
(NLP) models often use a rich set of features
created by linguistic expertise. A typical ex-
ample is the semantic representation, which
turns a text into a structured graph representing
the relations among the concepts and entities
mentioned in the text. However, in the era of
large language models (LLMs), more and more
tasks are turned into a generic, end-to-end se-
quence generation problem. In this paper, we
investigate the question — are the linguistically-
grounded semantic representations of text still
needed for NLP tasks? Specifically, we explore
five diverse NLP tasks and provide a compre-
hensive analysis of cases where semantic rep-
resentations are needed or not for task perfor-
mance. We incorporate extensive text feature
analyses to understand both cases and conduct
case studies to inspect the in-depth reasons be-
hind them. Our study provides some insights
and suggestions for future NLP researchers to
look at the role of the traditional semantic rep-
resentations in the era of LLMs.!

1 Introduction

Establishing a richer structure of language beyond
the raw text sequence is a fundamental pursuit
in linguistics. Semantic representations, such as
the abstract meaning representation (AMR) (Ba-
narescu et al., 2013), are an effort to distill the
semantic information of text to a graph, and then
transform operations mentioned in the text into
graph operations involving entities and their re-
lations. Many existing studies have shown the
benefits of this transformation across a variety of
natural language processing (NLP) tasks, such as
paraphrase detection (Issa et al., 2018), machine
translation (Song et al., 2019), event extraction
(Garg et al., 2015), code generation (Yin and Neu-
big, 2017), and many others (Dohare and Kar-
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Figure 1: Many fields have long been looking for symbolic
languages with better representation power. Analogous to
Arabic numbers to math, AMR is usually considered a better
representation for text, because for many tasks, the AMR of
the sentence makes the computation to the output easier, as
shown in the upper half of this figure. Existing work tests the
representation power given the assumption that the models
are trainable to optimize for the given representation (text or
AMR), whereas we look into the practical setup given fixed
pre-trained LLMs, as shown in the bottom part of the figure.
Our key research question is in the red bubble.

nick, 2017; Jangra et al., 2022; Wolfson et al.,
2020; Kapanipathi et al., 2021). In Figure 1, we
draw an analogy between Arabic numerals, which
have greatly improved mathematical representa-
tions and made calculations much more convenient,
and AMR, which aims to enhance language repre-
sentation and simplify reasoning over language.

However, although it is a meaningful research direc-
tion to explore and evaluate various representations
for language (for which we can train new mod-
els specific to the proposed representation), there



might be a different situation when it comes to prac-
tical aspects nowadays. Due to economic concerns,
there is a growing trend to utilize readily avail-
able pre-trained large language models (LLMs) in
various application scenarios, without allocating
additional resources for training or fine-tuning the
models. This shift towards outsourcing model train-
ing presents a significant challenge for the semantic
representations community, leading to the question:

What is the role of semantic representa-
tions in the era of LLMs, when no train-
ing is involved?

Motivated by this question, refers to propose the
theoretical formulation of representation power,
and what it means by an ideal representation for
text. We highlight that the key to this paradigm
shift is that an ideal representation for language re-
quires optimization of the model with regard to the
representation; however, after fixing the LLM, the
optimal representation becomes one with regard to
this fixed model, which might shift away from the
theoretically optimal representation for language.
In short, an ideal representation for language does
necessarily not mean an ideal representation with
regard to LLMs.

Paired with the theoretical formulation, we conduct
empirical research to understand how good AMR is
as a representation in the era of LLMs. Specifically,
we answer the following three questions: (1) Does
AMR as representation help LLM performance?
(2) On what text data does AMR help and what
not? (3) Why does it help or not?

We conduct our studies on a diverse set of five NLP
tasks, highlighting our findings below. The experi-
ments show that, overall, the contribution of AMR
in the era of LLMs is not as high as that in the
traditional setup where we can optimize the model
for the representation. AMR causes a slight fluctu-
ation of performance by -3 to +1 percentage points.
However, we found that AMR is helpful for a large
portion of samples, especially those with richer
sentence structures such as more adjuncts, and ad-
jective words, as well as a AMR graph with more
depth. Finally, we also find that parser-generated
AMR leads to a reasonable performance, therefore
pushing for more accurate AMR annotations is not
the main aspect to improve when using AMR in
the era of LLLMs. Instead, a potential aspect to
improve might be enhancing the chained step-by-

step reasoning when LLMs first reason over AMR
buy a good understanding of what all its symbols
mean, and then need to consistently translate the
reasoning on AMR back to the task.

In summary, the contributions of our work are as
follows:

1. We are the first to investigate the role of se-
mantic representations in the era of LLMs,
especially looking at the practical situation
where no training is involved;

2. We propose both a thinking framework to for-
mulate the representation power for language,
and comprehensive experimental studies in-
vestigating the whether, when, and why behind
the role of AMR to LLMs;

3. We reveal a set of findings meaningful for the
NLP community to reflect on the contribution
of traditional linguistic structures such as se-
mantic representations in the current wave of
LLMs, and point out potential areas to im-
prove the performance.

2 A Thinking Framework Formalizing
the Representation Power

In this section, we propose a unified thinking frame-
work to formulate representation power both in the
pre-LLM era, where we do not outsource the train-
ing of the models, and the LLM era, where a lot of
practical settings are to optimize the representation
with regard to a given fixed LLMs.

2.1 Notations

Suppose we have a dataset D := {(z;,y;)}¥, con-
sisting of N pairs of input x; and corresponding
output y;. Given the task to learn the x — y map-
ping, we can consider it as a two-stage modeling
process: the first step is to convert the raw input
x into a good representation r by the representa-
tion model M : x — 7, and the second step is to
do the computation that takes the representation r
and predicts the output y by a computation model
C : r — y. In this way, we decompose the result-
ing overall x — y modeling process into

p(ylz) = p(r|z)p(y|r) . )]

2.2 Finding the Ideal Representations for Text

Let us take the math example in Figure 1 as a
source of inspiration. The first representation rq
is the English expression such as “Three hundred



eighty-eight plus twelve,” and the second represen-
tation 5 is the same calculation in Arabic numbers,
“388+12.” A characteristic for the representation
ro to be better than 7 is that the computation for
Cs : rg — y is much “simpler” than the other
function Cy : 1 — y. Here, this simplicity notion
is over a function, for which the formal measure-
ment is called Kolmogorov complexity, or algo-
rithmic entropy (Solomonoff, 1964; Kolmogorov,
1965), which is a theoretical construct of the com-
plexity of an algorithm in bits. Intuitively, we can
imagine that if we write a computer algorithm to
take “Three hundred eighty-eight plus twelve” as
input and “Four hundred” as output, this algorithm
should be much longer than the other one taking
“388+12” as input and “400” as output, since the
former would involve more complicated string ma-
nipulation to achieve the same effect.

We also use this notion of Kolmogorov complexity
to quantify the power of representations for lan-
guage. Suppose the computation model C' can be
any from a hypothesis space C, the ideal represen-
tation r* should satisfy

r* = argminargmin K (C : r —y), (2)
r cecC
given the optimal computation model C' with the
minimal Kolmogorov complexity K.

If a function has low Kolmogorov complexity, it
usually results in several good properties, such as
that learning C' requires fewer data samples, has
smaller empirical risks, and results in more robust-
ness.

This explains the common framework to show
AMR as a better representation than the raw text
sequence by demonstrating its better performance
(Turian et al., 2010), fewer data (Liu et al., 2021),
or better robustness and domain transferability (Li
etal., 2016). A property of these studies is that they
train models customized explicitly for the AMR
representation, namely running the optimization of
C over the hypothesis space C.

2.3 Representation Power in the Era of LLMs

As mentioned previously, in the era of LLMs, we
are moving towards the paradigm where the model
is usually fixed, and thus the optimization of the
representation is

rigv = argmin K(Cypm i r—=y), ()
T

where we cannot have double optimization of the
best model C' over the hypothesis space C for each
r, but rather take the existent Cy,\, and find the
best representation for it. Note that this framework
can also be used to to explain the success of chain-
of-thought (CoT) prompting in terms of how the
new representation generated by CoT unleashes the
power of LLMs better.

Comparing Eq. (2) and Eq. (3), we can see that the
ideal best representation r* does not necessarily
equal the representation 77 ;  that works well with
LLMs, so there remain needs for experiments to
fill in this gap of knowledge.

2.4 Additional Practical Concerns

From Eq. (1), we can also see that, when decom-
posing to this two-stage process, it is likely to accu-
mulate cascading error from the representation step
p(r|z), where we might not have an oracle text-to-
AMR model, to the computation step p(y|r), which
needs to be base on that representation. We make
special efforts to address this concern by additional
experiments later in section Section 6.1.

3 Designing the AMRCOT Experiments

3.1 Dataset Setup

We include a diverse set of tasks and datasets,
spanning across paraphrase detection (Zhang et al.,
2019), machine translation (Bojar et al., 2016), log-
ical fallacy detection (Jin et al., 2022), event ex-
traction (Garg et al., 2015), and text-to-SQL gen-
eration (Yu et al., 2018). We describe in Table 1
an overview of the tasks and datasets. For each
dataset, the size that is reasonable for querying
LLMs is several thousand, which is within a rea-
sonable computational budget and can be relatively
large enough to make the results representative. To
compile the test data for our study, we first take the
entire test set of the original data, and if the size is
not large enough, we also add the development and
training set. The resulting statistics of the data is in
Table 1. See the evaluation metrics and setup for
each dataset in Appendix A.2.

3.2 AMRCOT Prompt Design

As our study is interested in the representation
power in the era of LLMs, we explore how well
AMR as the representation works with pre-trained
LLMs. We draw inspirations from the CoT prompt
design, which enable models to answer an origi-
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Figure 2: Performance of BASE (in purple) and AMRCOT (in red) on five datasets across the five model versions, from

text-davinci-001, -002, -003, to GPT-3.5 and GPT-4.

Dataset Task Test Size
PAWS Paraphrase Detection 8,000
WMT Translation 5,999
Logic Logical Fallacy Detection 2,449
Pubmed45 Event Extraction 5,000
SPIDER Text2SQL Code Generation 8,034

Table 1: Statistic of each dataset, their corresponding task, and
the test data size for our study later.

nally difficult question with the help of assistive
representations that makes the task easier.

In this work, we propose AMRCOT, which supple-
ments the textual input with its AMR, and condi-
tions the answer generation based on the semantic
representation which should make the task easier.

BASE Please classify the following text into one of the
logical fallacies:
Text: { sentencel}

Which is the fallacy type present in the text?

AMRCOT You are given a text and its AMR.
Text: {sentencel}
AMR: {amrl}
Based on the text and its AMR, please classify it into
one of the logical fallacies.
Which is the fallacy type present in the text?

Table 2: Example BASE and AMRCOT prompt (on the logical
fallacy dataset).

In our experiments, we contrast AMRCOT with the
baseline of directly querying the LLMs, denoted
as BASE. We show an example prompt pair in
Table 2, and list all the prompts for all datasets in
Appendix A.1.

3.3 Language Models

Since our experiments require models that can
reasonably understand the symbols in AMRs as
well as reason over them, we find that only the
instruction-tuned GPT models, from text-davinci-
001 to GPT-4 are capable of doing it, but not the
open-sourced models such as LL.aMa and Alpaca,

at the time we conducted our research. For re-
producibility, we set the text generation temper-
ature to O for all the models, and we use the
model checkpoints on June 13, 2023 for GPT-
3.5 and GPT-4, namely gpt -3 .5-turbo-0613
and gpt-4-0613.

3.4 Research Question Overview

With all the experimental setup, we explore the
following three questions to comprehensively ad-
dress the role of semantic representations in the
era of LLMs: First, can AMR help LLMs when
performing different tasks? Second, when does it
help/harm and when not? Third, why is it so? We
explore each question with three substudies, which
we will introduce in the following sections.

4 Q1: Does AMR Help LLMs?

First, we are interested in the overall representa-
tion power of semantic representations like AMR
to LLMs. Specifically, we answer the following
subquestions: what is the overall effect of AMR
as a representation on LLMs’ performance? (Sec-
tion 4.1), does the effect vary case by case? (Sec-
tion 4.2), and how does the effect change on dif-
ferent LLMs with different levels of capabilities?
(Section 4.3)

4.1 Overall Effect of AMR

We first look into the overall effect of AMR as a
representation to assist LLMs. Table 3 compares
the performance of the BASE method of directly
querying LLMs and the AMRCOT method, we can
see that AMR does not have an overall positive
impact on the performance of LLMs. In most of
the cases, it makes the performance fluctuate a bit,
between a slight increase (e.g., +0.61 in the case of
Text-to-SQL code generation) and slight drop (e.g.,
-1 to -3 in most other tasks).



Dataset Task BASE  AAMRCOT
PAWS Paraphrase Detection ~ 78.25 -3.04
WMT Translation 32.85 -1.27
Logic Fallacy Detection 55.56 -3.4
Pubmed45  Event Extraction 39.65 -3.87
SPIDER Text2SQL 43.78 0.61

Table 3: Performance of BASE and AMRCOT on all the five
tasks using GPT-4.

4.2 Helpfulness of AMR in Some Cases

There could be several possibilities behind the fluc-
tuating performance: (1) AMR does not add much
beyond the plain text input for LLMs, or (2) AMR
affects a large number of samples, just that the
positive effect and negative effect cancels out each
other, so we do not see a big change on the overall
statistics.

To explore which of the two actually happens be-
hind the scene, we calculate the “flip rate” before
and after using the AMRCOT. In Table 4, we count
a sample as helped by AMR if its prediction im-
proves (i.e., changing from incorrect to correct for
classification tasks, or having a score increase for
text generation tasks), and hurt if its prediction
changed vice versa; the rest of the samples are
considered unchanged.

Dataset 9% Helped % Hurt % Unchanged
PAWS 16.48 20.16 63.36
WMT 44.75 47.28 7.97
Logic 22.33 26 51.67
Pubmed45 4.84 11.66 83.5
SPIDER 4.94 4.33 90.72

Table 4: Percentage of samples that are helped (% Helped),
hurt (% Hurt), or unchanged (% Unchanged) when we change
from BASE to AMRCOT using GPT-4.

As we can see in Table 4, AMR causes a high
flip rate on the correctness of the answers. The
percentage of answers improved by AMRCOT oc-
cupies 44.75% in WMT data, 22.33% in Logic, and
16.48% in PAWS. These are impressive statistics
to see, and the remaining question is what features
on these text samples causes the performance im-
provement or drop by AMR, which we will explore
in the following Sections 5 and 6.

4.3 AMR’s Effect on Models with Different
Capabilities

We also add an additional experiment to extend the
observation in this section to more models. We
show in Figure 2 the performance of BASE and
AMRCOT across five LLMs with different levels
of capability: from text-davinci-001, -002, -003, to
GPT-3.5 and GPT-4.

We can see that, overall, this fluctuation phe-
nomenon exists across all models. Note that in
some cases, the less capable models experience a
higher drop by AMR, which might be due to its
limited ability to comprehend AMR and do reason-
ing over these special symbols. This is consistent
with our other observation that none of the non-
instruction-tuned earlier GPT models, and the less
capable models such as LLaMa and Alpaca, can
comprehend AMR representations well.

5 Q2: When Does AMR Help/Hurt?

The previous section shows that AMR is helpful or
harmful for different samples. Now we continue to
decode the condition when the help or harm hap-
pens, and attribute it to features of the input text.
In this section, we first illustrate a case study in
Section 5.1, where the lack of the ability of AMR
to capture the semantic equivalence of multi-word
expressions (MWESs) hinders paraphrase detection.
Then, beyond proposing each hypothesis and veri-
fying it for each single phenomenon on each task,
we suggest two systematic interpretability studies:
for the first method, we treat linguistic features as
our hypotheses, and extract features with high cor-
relation with AMR helpfulness in Section 5.2; and
for the second method, we directly train classifiers
to learn AMR helpfulness as a task, and decode
what text input leads to it in Section 5.3.

5.1 Case Study: AMR’s Shortcoming on
MWEs

AMR has its unique advantages and limitations,
from which we can interpret what cases it can help,
and what cases not. One such limitation of AMR is
its lack of ability to capture MWEs such as slangs,
which makes it overlook certain semantic equiva-
lence for paraphrase detection. As in the example
below, if an input sentence of paraphrase detection
has an MWE, such as “Her swan song disappointed
her fans.”, where the proper of paraphrase for the
MWE swan song is not “bird song,” but “final per-
formance.” However, when we show the AMRs for
all the three sentences below, we can see that the
wrong pair (“swan song” and “bird song”) looks
more like a paraphrase relation, compared with the
correct pair (‘“swan song” and “final performance”).

Given this intuition, we quantitatively verify
this hypothesis by running AMRCOT on a self-
composed dataset of paraphrase detection involv-



Original Sentence with MWE
Her swan song disappointed her fans.

(z0 / disappoint-01
:ARGO (z1 / song
:mod (z2 / swan)
:poss (z3 / she))
:ARG1 (z4 / fan
poss z3))

Paraphrase Candidate 1
(X Not a paraphrase.)

Her bird song disappointed
her fans.
(z0 / disappoint-01
:ARGO (z1 / song
:mod (z2 / bird)
:poss (z3 / she))
:ARGI1 (z4 / fan
:poss z3))

Paraphrase Candidate 2
(v A paraphrase.)

Her final performance
disappointed her fans.
(z0 / disappoint-01
:ARGO (z1 / perform-02
:ARGO (z2 / she)
:mod (z3 / final))
:ARG1 (z4 / fan
poss z2))

ing slangs. Since our experiments need annotations
for both slang paraphrase pairs and AMRs, we
compose two datasets, GoldSlang-ComposedAMR,
and GoldAMR-ComposedSlang. For GoldSlang-
ComposedAMR, we use the curated slang para-
phrase pairs by Tayyar Madabushi et al. (2021),
and generate their AMRs with an off-the-shelf
parser (Drozdov et al., 2022). For the other dataset,
GoldAMR-ComposedSlang, we use gold AMRs
from the LDC AMR 3.0 corpus (Banarescu et al.,
2013), and compose slang paraphrases using a com-
bination of human efforts and assistance from GPT-
4. The data curation steps and data statistics are in
Appendix B.1.

Dataset BASE  AAMRCOT
GoldSlang-ComposedAMR  86.83 -6.63
GoldAMR-ComposedSlang ~ 77.69 -8.78

Table 5: AMRCOT causes a large drop in performance on
slang-involved paraphrase detection data.

We show the evaluation results in Table 5, where
AMRCOT causes a large drop of performance com-
pared with the BASE method, which are more sub-
stantial than the slight fluctuation of -3 to +1 on
general NLP datasets previously in Table 3. It is
very likely that, due to the shortcoming of AMR on
MWEs, AMRCOT leads to distraction in the input
that makes the model perform worse.

5.2 Large-Scale Text Feature Analysis

The case study above provides a precise insight into
a special case when AMR does not work. There
could be many other reasons out there, some sup-
porting cases where AMR helps, and others ex-
plaining cases where AMR hurts. To systematize

such analyses, we avoid the manual effort of ver-
ifying each hypotheses, but seeks to scale up the
study in a data-driven away.

To enable the systematic analysis, we formulate the
contribution of AMR as the AMR helpfulness score,
which is the difference of the performance by AM-
RCOT vs. BASE. As all the performance score
are in percentage, the AMR helpfulness score is
usually a number between -100% and 100%, where
a negative value means that AMR hurts the perfor-
mance of the sample, and positive value means that
AMR improves the performance of that sample.

And for each text sample, we compose a large-scale
comprehensive set of linguistics features, including
139 text features on the text representation, and 4
AMR-related features. For the over 100 features
text, we obtain 55 features using the Text Charac-
terization Toolkit (TCT) (Simig et al., 2022), which
is specifically designed to facilitate the analysis of
text dataset properties, 17 different part-of-speech
(POS) tags, 44 dependency tags, and 61 other hand-
crafted features, which characterizes the semantic
and syntactic complexity of the input text, such as
the number of arguments vs. adjuncts (Haspelmath,
2014).

Feature Name Correlation Coefficient

# Named Entities 0.0552
# Adjuncts 0.0387
Adj POS Tag Frequency 0.0382
Max Word Complexity 0.0291
AMR Graph Depth 0.0286

Table 6: The Pearson correlation between each linguistic fea-
ture and AMR helpfulness. The top five correlated features are
the number of named entities (# Named Entities), the number
of adjuncts (# Adjuncts), the frequency of adjectives among
all the words (Adj POS Tag Frequency), maximum word com-
plexity level by the age of acquisition (Kuperman et al., 2012),
and the maximum length of a direct path in the AMR graph
(AMR Graph Depth).

We analyze the Pearson correlation between each
linguistic feature and the AMR helpfulness score
in Table 6. This per-feature analysis is a more
fair reflection of the contribution of each feature,
regardless of the potential correlation among mul-
tiple features. As we can see, AMR is helpful for
samples with features such as more named entities,
adjuncts, adjective words, difficult words, and the
AMR graph with more depth.



5.3 AMR Helpfulness Prediction as a
Learning Task

Apart from the correlation analysis of the large set
of linguistic features, we also explore a learning
approach to treat AMR helpfulness as a predic-
tion task. Since this is a challenging learning task,
we set it up as a binary classification, where the
positive class is the cases where AMR helps, and
the negative class is the rest. Merging all the five
datasets together, we have a binary classification
dataset of 18,365 training samples, 2,962 develop-
ment samples, and 2,962 test samples, with positive
labels composing 13.85% of the dataset.

Model F1 Acc P R
Random Baseline 22.54 4895 14.81 47.11
Using Linguistic Features

Random Forest 31.32 7812 25.00 41.92
XGBoost 2832 59.84 1798 66.67
Ensemble 33.12 7423 2396 53.61
Using the Free-Form Text Input

BERT 45.65 77.65 37.02 59.53
RoBERTa 46.02 78.70 38.32 57.60

Table 7: Classification performance of various models on
AMR helpfulness. We report the F1, precision (P), and recall
(R) of the positive class, as well as the accuracy (Acc). See
the implementation details of the models in Appendix A.3.

As shown in the classification results in Table 7,
classifiers based on the linguistic features achieve
an F1 score of up to 33.12%. After utilizing the
entire free-form text input, the BERT-based deep
learning models achieve an improvement by up to
12.9 points of the F1 score, as well as substantial
increases in both precision and recall.

To increase more interpretability, we also run
the SHAPIley (Fryer et al., 2021) interpretability
method, and find that words that signal the exis-
tence of clauses tend to have a high importance for
the classifier, such as what, how, said, and says.

6 Q3: Why Does AMR Help/Hurt?

After inspecting the conditions when AMR helps or
hurts the LLM performance, now we move to more
in-depth causal analysis of why AMR demonstrates
the current representation power with regard to
LLMs. Specifically, we look into the following
subquestions: (1) how does parser-generated AMR
work compared with gold AMR? (Section 6.1) (2)
what is the representation power of AMR versus
text when being ablated? (Section 6.2) And (3)
how does AMR help in each step of the reasoning
process? (Section 6.3)

The findings in this section are specifically helpful
for understanding the key aspects to work on in
the future to improve the performance of AMR
on LLMs. For example, parser-generated AMR
also leads to a reasonable performance, therefore
pushing for more accurate AMR annotations is not
the main aspect to improve when using AMR in
the era of LLMs. Instead, a potential aspect to
improve might be the enhancing chained step-by-
step reasoning when LL.Ms first reason over AMR
buy a good understanding of what all its symbols
mean, and then need to consistently translate the
reasoning on AMR back to the task.

6.1 Gold vs. Parser-Generated AMR

Our first investigation is whether there exists cas-
cading error before the CoT process (as introduced
in Section 2.4), due to the parser-generated AMR
by Drozdov et al. (2022) (whose reported perfor-
mance is 83% on AMR 3.0) being not perfect
enough. What would the performance have been
had the AMRs were perfect? — This is the question
we address in this subsection.

To check this question, we take the gold text-to-
AMR pairs with official annotation from the AMR
3.0 dataset (Banarescu et al., 2013). The challenge
is to find a downstream task using the same text
input as this AMR dataset with gold annotation. To
this end, we look into the source data where the
text of the AMR data originates from, and identi-
fied that it has certain overlap with the OntoNotes
5.0 dataset (Pradhan et al., 2011). Hence, we
take the intersection of the AMR 3.0 dataset and
this OntoNotes 5.0 dataset, using the widely used
named entity recognition (NER) task. In this way,
we make a unique contribution aligning the two
datasets, and obtain a precious dataset, AMR-NER,
consisting of 131 samples with both gold AMR and
gold NER annotations.

Dataset BASE AMR AAMRCOT
Gold +0.03
AMR-NER  60.51 Parser +1.91

Table 8: Model performance on the AMR-NER data using the
gold AMR (Gold) and parser-generated AMR (Parser). We
report the BASE performance, and the change of performance
by AMRCOT (AAMRCOT) in terms of F1 scores.

Using this AMR-NER dataset, we are able to com-
pare the performance of gold AMR versus parser-
generated AMR on the same task, NER, in Table 8.
We can see that both AMRS lead to similar results,



where there is a slight improvement on the perfor-
mance, echoing with the previous text feature anal-
ysis in Section 5.2 that samples with more named
entities tend to be helped by AMR more. Inter-
estingly, the parser-generated AMR actually leads
to more improvement, which might be due to its
more generic symbols and thus inducing fewer in-
frequent special tokens that LLMs might not be
familiar with.

6.2 Ablating the AMR/Text Representation

As introduced to previously in Section 2, AMR and
text representations are two different surface forms
to express the same semantics. Either is a sufficient
representation containing the complete information
of the semantics of the text for LLMs to rely on
to complete the task, just that they have different
representation power.

With this spirit, we conduct an ablation study to
check the reliance of LLM performance on each
form of representation. To avoid the additional
effect from the parsing process, we use the AMR-
NER dataset with the gold AMR.

We first test three variations: providing both text
and AMR to LLMs leads to 60.54%, providing
only text leads to 60.51% performance, and pro-
viding only AMR gives 25.58%. This shows that,
no matter how the representation power is in the
ideal conditions (as introduced in Section 2.2), if
limiting to the pre-trained LLMs (as inSection 2.3),
to be a better representation, although AMR can
help in marginal cases.

We also extend this analysis to more granularity in
Figure 3, where we ablate each of text and AMR by
every 20% tokens, and show the effect on the task
performance. Similarly to the previous observation,
we find that adding more text largely increase the
performance of LLMs, showing the higher impor-
tance of text as a representation to LLMs.

6.3 Checking the Step-By-Step Reasoning

We further conduct a close-up look at the step-
by-step reasoning process produced by AMRCOT.
We randomly selected 50 samples from the PAWS
dataset, and manually annotated the correctness
of each step in the reasoning process. Basically,
we have (1) the provided AMR in the prompt to
LLMs, which we obtain using the structure BART
model (Drozdov et al., 2022), with a reported per-
formance of 82.6 SMATCH scores on the AMR

Text
—=— AMR

| | | |
0 20 40 60 80 100
AMR/Text Tokens (%) Kept in the Prompt

Task Performance (%)

30

Figure 3: Ablation studies of AMR and text representations in
the prompt on the AMR-NER dataset using ChatGPT. Start-
ing from the AMRCOT prompt with the complete text and
AMR, we randomly drop out a certain portion of tokens in the
text/AMR, and see the effect on the task performance.

3.0 dataset; (2) then for the paraphrase detection
task, the LLMs reason about the commonalities
and differences between the two AMRSs, where we
evaluate GPT-4’s performance to be 97% F1 scores
on listing all the AMR commonalities and differ-
ences, with a precision of 95%, and recall of 98%;
and (3) finally, the LLM draws conclusion on the
paraphrase detection task based on the previous rea-
soning across the two AMRs, where we evaluate
the judgment in this step has a 80% consistency
with the reasoning conclusion in step (2).

Overall, one potential reason behind the limitations
of AMR for helping the LLM performance could
be its several steps in the reasoning are all non-
trivially challenging for LLMs, and chaining them
together explains why overall AMRCOT achieves a
performance of 75.21% on PAWS, which is a slight
drop from the BASE performance of 78.25%.

7 Conclusion

In this work, we analyze the role of semantic rep-
resentations in the era of LLMs. In response to
the ongoing paradigm shift in the NLP community,
we show that AMR in general is not yet a rep-
resentation immediately fit for pre-trained LLMs.
However, our study show that AMR still help a
large portion of text samples, especially those with
complicated linguistic structures. We also suggest
that a potential direction to enhance AMR’s contri-
bution to LLMs is to improve the understanding of
LLMs over the schemes and symbols of AMR, and
map it to the reasoning of the NLP task. This work
presents an effort to bridge the traditionally rich
linguistic structures with the strength of LLMs.



Limitations

In this work, we explore one form of linguistic rep-
resentation of text. And we welcome the method-
ology in this work to be applied to explore this
question on more other linguistic representations.

Ethical Considerations

The datasets used in this paper are existing public
datasets on general NLP tasks without any user-
sensitive information. We are not aware of specific
ethical concerns with the analysis in this study,
which is a neutral investigation to understand the
role of traditional linguistic structures such as se-
mantic representations in the era of LLMs.

References

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight,
Philipp Koehn, Martha Palmer, and Nathan Schneider.
2013. Abstract meaning representation for sembank-
ing. In Proceedings of the 7th Linguistic Annotation
Workshop and Interoperability with Discourse, LAW-
ID@ACL 2013, August 8-9, 2013, Sofia, Bulgaria, pages
178-186. The Association for Computer Linguistics. 1,
6,7, 11

Ond rej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, Anto-
nio Jimeno Yepes, Philipp Koehn, Varvara Logacheva,
Christof Monz, Matteo Negri, Aurelie Neveol, Mari-
ana Neves, Martin Popel, Matt Post, Raphael Rubino,
Carolina Scarton, Lucia Specia, Marco Turchi, Karin
Verspoor, and Marcos Zampieri. 2016. Findings of the
2016 conference on machine translation. In Proceed-
ings of the First Conference on Machine Translation,
pages 131-198, Berlin, Germany. Association for Com-
putational Linguistics. 3

Tiangi Chen and Carlos Guestrin. 2016. XGBoost:
A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pages 785-794. ACM.
11

Shibhansh Dohare and Harish Karnick. 2017. Text sum-
marization using abstract meaning representation. 1

Andrew Drozdov, Jiawei Zhou, Radu Florian, Andrew
McCallum, Tahira Naseem, Yoon Kim, and Ramén
Astudillo. 2022. Inducing and using alignments for
transition-based AMR parsing. In Proceedings of the
2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, pages 1086—1098, Seattle, United
States. Association for Computational Linguistics. 6, 7,
8, 11

Daniel Vidali Fryer, Inga Striimke, and Hien D. Nguyen.

2021. Shapley values for feature selection: The good,
the bad, and the axioms. CoRR, abs/2102.10936. 7

Sahil Garg, A. G. Galstyan, Ulf Hermjakob, and Daniel
Marcu. 2015. Extracting biomolecular interactions
using semantic parsing of biomedical text. ArXiv,
abs/1512.01587. 1, 3

Martin Haspelmath. 2014. Arguments and adjuncts as
language-particular syntactic categories and as compar-
ative concepts. Linguistic Discovery, 12:3—11. 6

Fuad Issa, Marco Damonte, Shay B. Cohen, Xiaohui
Yan, and Yi Chang. 2018. Abstract meaning representa-
tion for paraphrase detection. In North American Chap-
ter of the Association for Computational Linguistics.
1

Anubhav Jangra, Preksha Nema, and Aravindan Raghu-
veer. 2022. T-STAR: Truthful style transfer using AMR
graph as intermediate representation. In Proceedings of
the 2022 Conference on Empirical Methods in Natural
Language Processing, pages 8805—-8825, Abu Dhabi,
United Arab Emirates. Association for Computational
Linguistics. 1

Zhijing Jin, Abhinav Lalwani, Tejas Vaidhya, Xiaoyu
Shen, Yiwen Ding, Zhiheng Lyu, Mrinmaya Sachan,
Rada Mihalcea, and Bernhard Schélkopf. 2022. Log-
ical fallacy detection. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2022,
pages 7180AfA¢A¢a€3A-A¢a,~A“~7198, Abu Dhabi,
United Arab Emirates. Association for Computational
Linguistics. 3

Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravis-
hankar, Salim Roukos, Alexander Gray, Ramoén Fernan-
dez Astudillo, Maria Chang, Cristina Cornelio, Saswati
Dana, Achille Fokoue, Dinesh Garg, Alfio Gliozzo,
Sairam Gurajada, Hima Karanam, Naweed Khan, Di-
nesh Khandelwal, Young-Suk Lee, Yunyao Li, Fran-
cois Luus, Ndivhuwo Makondo, Nandana Mihindukula-
sooriya, Tahira Naseem, Sumit Neelam, Lucian Popa,
Revanth Gangi Reddy, Ryan Riegel, Gaetano Rossiello,
Udit Sharma, G P Shrivatsa Bhargav, and Mo Yu. 2021.
Leveraging Abstract Meaning Representation for knowl-
edge base question answering. In Findings of the As-
sociation for Computational Linguistics: ACL-IJCNLP
2021, pages 3884—-3894, Online. Association for Com-
putational Linguistics. 1

Andrei N Kolmogorov. 1965. Three approaches to the
quantitative definition of information. Problems of in-
formation transmission, 1(1):1-7. 3

Victor Kuperman, Hans Stadthagen-Gonzilez, and
Marc Brysbaert. 2012. Age-of-acquisition ratings for
30,000 english words. Behavior Research Methods,
44:978-990. 6

Yitong Li, Trevor Cohn, and Timothy Baldwin. 2016.
Learning robust representations of text. In Proceedings
of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1979—-1985, Austin,
Texas. Association for Computational Linguistics. 3


https://aclanthology.org/W13-2322/
https://aclanthology.org/W13-2322/
https://aclanthology.org/W13-2322/
http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://api.semanticscholar.org/CorpusID:260498172
https://api.semanticscholar.org/CorpusID:260498172
https://api.semanticscholar.org/CorpusID:260498172
https://doi.org/10.18653/v1/2022.naacl-main.80
https://doi.org/10.18653/v1/2022.naacl-main.80
https://doi.org/10.18653/v1/2022.naacl-main.80
http://arxiv.org/abs/2102.10936
http://arxiv.org/abs/2102.10936
http://arxiv.org/abs/2102.10936
https://api.semanticscholar.org/CorpusID:2493954
https://api.semanticscholar.org/CorpusID:2493954
https://api.semanticscholar.org/CorpusID:2493954
https://api.semanticscholar.org/CorpusID:17426509
https://api.semanticscholar.org/CorpusID:17426509
https://api.semanticscholar.org/CorpusID:17426509
https://api.semanticscholar.org/CorpusID:17426509
https://api.semanticscholar.org/CorpusID:17426509
https://api.semanticscholar.org/CorpusID:44104104
https://api.semanticscholar.org/CorpusID:44104104
https://api.semanticscholar.org/CorpusID:44104104
https://doi.org/10.18653/v1/2022.emnlp-main.602
https://doi.org/10.18653/v1/2022.emnlp-main.602
https://doi.org/10.18653/v1/2022.emnlp-main.602
https://arxiv.org/abs/2202.13758
https://arxiv.org/abs/2202.13758
https://arxiv.org/abs/2202.13758
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
https://api.semanticscholar.org/CorpusID:22137152
https://api.semanticscholar.org/CorpusID:22137152
https://api.semanticscholar.org/CorpusID:22137152
https://doi.org/10.18653/v1/D16-1207

Zhiyuan Liu, Yankai Lin, and Maosong Sun. 2021. Rep-
resentation learning for natural language processing.
CoRR, abs/2102.03732. 3

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In Proceedings of the 40th
Annual Meeting of the Association for Computational
Linguistics, pages 311-318, Philadelphia, Pennsylvania,
USA. Association for Computational Linguistics. 11

Sameer Pradhan, Lance Ramshaw, Mitchell Marcus,
Martha Palmer, Ralph Weischedel, and Nianwen Xue.
2011. CoNLL-2011 shared task: Modeling unrestricted
coreference in OntoNotes. In Proceedings of the Fif-
teenth Conference on Computational Natural Language
Learning: Shared Task, pages 1-27, Portland, Oregon,
USA. Association for Computational Linguistics. 7

Daniel Simig, Tianlu Wang, Verna Dankers, Peter Hen-
derson, Khuyagbaatar Batsuren, Dieuwke Hupkes, and
Mona Diab. 2022. Text characterization toolkit (TCT).
In Proceedings of the 2nd Conference of the Asia-Pacific
Chapter of the Association for Computational Linguis-
tics and the 12th International Joint Conference on
Natural Language Processing: System Demonstrations,
pages 72—87, Taipei, Taiwan. Association for Computa-
tional Linguistics. 6

Ray J Solomonoff. 1964. A formal theory of inductive
inference. part ii. Information and control, 7(2):224—
254. 3

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo Wang,
and Jinsong Su. 2019. Semantic neural machine trans-
lation using AMR. Transactions of the Association for
Computational Linguistics, 7:19-31. 1

Harish Tayyar Madabushi, Edward Gow-Smith, Car-
olina Scarton, and Aline Villavicencio. 2021. AStitchln-
LanguageModels: Dataset and methods for the explo-
ration of idiomaticity in pre-trained language models.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 3464-3477, Punta Cana,
Dominican Republic. Association for Computational
Linguistics. 6, 11

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In Proceedings of
the 48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 384-394, Uppsala, Sweden.
Association for Computational Linguistics. 3

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gardner,
Yoav Goldberg, Daniel Deutch, and Jonathan Berant.
2020. Break it down: A question understanding bench-
mark. CoRR, abs/2001.11770. 1

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation. In
Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), pages 440—450, Vancouver, Canada. Associa-
tion for Computational Linguistics. 1

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,

10

Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning
Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev.
2018. Spider: A large-scale human-labeled dataset for
complex and cross-domain semantic parsing and text-
to-SQL task. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing,
pages 3911-3921, Brussels, Belgium. Association for
Computational Linguistics. 3

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
Paws: Paraphrase adversaries from word scrambling. 3,
12


http://arxiv.org/abs/2102.03732
http://arxiv.org/abs/2102.03732
http://arxiv.org/abs/2102.03732
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/W11-1901
https://aclanthology.org/W11-1901
https://aclanthology.org/W11-1901
https://aclanthology.org/2022.aacl-demo.9
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.18653/v1/2021.findings-emnlp.294
https://doi.org/10.18653/v1/2021.findings-emnlp.294
https://doi.org/10.18653/v1/2021.findings-emnlp.294
https://doi.org/10.18653/v1/2021.findings-emnlp.294
https://doi.org/10.18653/v1/2021.findings-emnlp.294
https://aclanthology.org/P10-1040
https://aclanthology.org/P10-1040
https://aclanthology.org/P10-1040
http://arxiv.org/abs/2001.11770
http://arxiv.org/abs/2001.11770
http://arxiv.org/abs/2001.11770
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
http://arxiv.org/abs/1904.01130

A Implementation Details

A.1 Prompts

We list the prompts for BASE and AMRCOT of all
datasets in Tables 9 and 10, as well as the system
prompts in Table 11.

A.2 Evaluation Metrics

For evaluation, we report the performance of
PAWS, Logic, and Pubmed45 by F1 scores,
the performance of machine translation on
the WMT dataset by BLEU scores (Papineni
et al., 2002), and the performance of text-to-
SQL generation using the official evaluation
setup at https://github.com/taoyds/
test-suite-sgl-eval. To evaluate the
generation quality of parser-produced AMRs,
we report the SMATCH scores using the
evaluation codes at https://github.com/
snowblinkl4/smatch.

A.3 Implementation Details

As for the experimental details, for the BERT and
RoBERTa models, we use the weighted cross en-
tropy loss, with a batch size of 16, learning rate
of le-5, and dropout of 0.1, and train for five
epochs until convergence. For the XGBoost classi-
fier (Chen and Guestrin, 2016), we use the default
hyperparameters, and set the random seed to O,
and the class weight proportional to the class ra-
tio, namely setting the positive weight to be the
inverse of the number of samples in the positive
class divided by that of the negative class.

B Data Collection

B.1 Composing the Slang-Involved
Paraphrase Detection Dataset

Since our experiments need annotations for both
slang paraphrase pairs and AMRs, we com-
pose two datasets, GoldSlang-ComposedAMR,
and GoldAMR-ComposedSlang. For GoldSlang-
ComposedAMR, we use the curated slang para-
phrase pairs by Tayyar Madabushi et al. (2021),
and generate their AMRs with an off-the-shelf
parser (Drozdov et al., 2022). For the other dataset,
GoldAMR-ComposedSlang, we use gold AMRs
from the LDC AMR 3.0 corpus (Banarescu et al.,
2013), and compose slang paraphrases using a com-
bination of human efforts and assistance from GPT-
4.
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Composing the GoldSlang-ComposedAMR
Dataset We adapt a subset of the ASILM (Tay-
yar Madabushi et al., 2021), an idiomatic MWE
dataset, into a paraphrase detection task. Each
sentence in the subset containing idiomatic expres-
sions is paired with a paraphrase (where the idiom
is replaced with its literal semantic equivalent) and
a non-paraphrase (where the idiom is replaced with
a phrase of similar superficial meaning but differ-
ing semantic meaning). This results in a balanced
paraphrase detection dataset with respect to ground
truth labels.

Composing the GoldAMR-ComposedSlang
Dataset A possible error in AMRCOT lies in the
imperfection of parser-generated AMRs. To dis-
entangle the harm caused by (1) incorrect AMRs
produced by the parsers and (2) poor represen-
tation of slang expressions by AMRs, we hand-
crafted the GoldAMR-Slang-Para dataset. We first
extract a subset from LDC-AMR3.0 (Banarescu
et al., 2013) that involve slang expressions. Then,
for each sentence, we replace the slang expression
with an alternative expression of the same mean-
ing, and a semantically different expression which
seems literally similar, thus creating a paraphrase
and non-paraphrase sentence, respectively. The cor-
responding AMRs can be derived from the original
LDC-AMR3.0 AMRs with minimal modifications.

Specifically, we operationalize the process as fol-
lows. We first use gpt-3.5-turbo-0613 identify 500
samples of slang usage from LDC-AMR3.0 with
the following prompt:

Please evaluate the following sentence for the pres-
ence of slang expressions. A slang expression is
a phrase or expression that is in the online slang
dictionaries and has a meaning that is very differ-
ent from its literal form. For instance, 'raining cats
and dogs’ is slang, while 'middle school’ is not.
Although "middle school’ is a compound phrase, it
does not carry a meaning beyond its literal inter-
pretation. Here is the sentence for your analysis:
premise. Please format your response as follows:
‘Yes or No, slangs.

If there’s no slang used, just answer 'No’. If there
are multiple slang expressions, please separate
them with a semicolon (’;’). Remember; the idioms
we are interested in are those that, when taken lit-
erally, would have a completely different semantic
meaning.


https://github.com/taoyds/test-suite-sql-eval
https://github.com/taoyds/test-suite-sql-eval
https://github.com/taoyds/test-suite-sql-eval
https://github.com/snowblink14/smatch
https://github.com/snowblink14/smatch
https://github.com/snowblink14/smatch

Then we mannually check whether the extracted
expressions are slang and are appropriate. Consis-
tent with the spirit of (Zhang et al., 2019), we use
the following prompt to query gpt-3.5-turbo-0613
to generate one paraphrase and one non paraphrase
of each sentence.

Rewrite the following sentence in two ways Sen-
tence: sentence 1. Replacing "slang" with its in-
tended meaning. 2. Replacing "slang" with its
literal meaning, such that the sentence loses its
original meaning. Do not change anything else

each  pair of  (origi-
nal_sentence, (non)paraphrase_sentence),
we give (original_sentence, original_amr,
(non)paraphrase_sentence) to gpt-3.5-turbo-0613,
and ask it to generate (non)paraphrase_amr by
minimally modifying the original amr. The
prompt is as follows:

Lastly, for

"The AMR of the sentence '0og_sentence’ is
og_amr

What is the AMR of the sentence ’paraphrase’?
Modified the given AMR to fit the sentence 'hy-
pothesis’ and words not present in the sentence
"hypothesis’ should not appear in your AMR.

>

Start you response with ’(’.

12

Paraphrase Detection (PAWS)

BASE Paraphrase Detection: Determine if the following two sen-
tences are exact paraphrases (rewritten versions with the
same meaning) of each other.

Sentence 1: {sentencel}

Sentence 2: {sentence2}

Answer [Yes/No] and then provide a brief explanation of
why you think the sentences are paraphrases or not.
Paraphrase:

AMRCOT Paraphrase Detection: You are given two sentences and the

abstract meaning representation (AMR) of each.

Sentence 1: {sentencel}

AMR 1:

{amrl}

Sentence 2: {sentence?2}

AMR 2:

{amr2}

Explain what are the commonalities and differences between
the two AMRs. Then determine if the two sentences are
exact paraphrases (rewritten versions with the same meaning)
of each other and provide a brief explanation of why you
think the sentences are paraphrases or not. Use the following
format: Answer: [Yes/No]

logic

BASE Please classify the following text into one of the logical
fallacies:

Text: {sentencel}
‘Which is the fallacy type present in the text?
AMRCOT You are given a text and its AMR.
Text: {sentencel}
AMR:
{amrl}
Based on the text and its AMR please classify it into one of
the logical fallacies. Which is the fallacy type present in the
text?

newstest

BASE Please translate the following text from English to German.
Text: {sentencel}

Translation:

AMRCOT You are given a text and its abstract meaning representation

(AMR).

Text: {sentencel}

AMR:

{amrl}

Please translate the text from English to German. You can
refer to the provided AMR if it helps you in creating the
translation.

Translation:

pubmed

BASE This question aims to assess your proficiency in validating
relationships between different entities in biomedical text.
You will be presented with a sentence from an article and
asked to determine whether the interaction between the en-
tities mentioned in the sentence is valid or not. You should
respond with a single digit, either "0" if the interaction is
invalid, "1" if it is valid, or "2" if swapping the positions of
any two entities would make the interaction valid. Please
note that you are required to provide only one of these three
responses.

Text: {sentencel}
Interaction: {interaction}
AMRCOT This question aims to assess your proficiency in validating

relationships between different entities in biomedical text.
You will be presented with a sentence from an article and its
abstract meaning representation (AMR) and asked to deter-
mine whether the interaction between the entities mentioned
in the sentence is valid or not. You should respond with a
single digit, either "0" if the interaction is invalid, "1" if it
is valid, or "2" if swapping the positions of any two entities
would make the interaction valid. Please note that you are
required to provide only one of these three responses.

Text: {sentencel}

AMR:

{amrl}

Interaction: {interaction}

Table 9: Prompts for BASE and AMRCOT for all datasets.



spider
BASE

AMRCOT

Write an SQL query that retrieves the requested information
based on the given natural language question. Remember
to use proper SQL syntax and consider any necessary table
joins or conditions.

Question: {sentencel}

Query:

Write an SQL query that retrieves the requested information
based on the given natural language question and its abstract
meaning representation (AMR). Remember to use proper
SQL syntax and consider any necessary table joins or condi-
tions.

Question: {sentencel}

AMR:

{amrl}

Query:

NER
BASE

The following is a named entity recognition task. Please
extract all the named entities of the following types from the
given sentence. TYPE="CARDINAL": Numerals that do not
fall under another type, e.g., “one”, “ten” TYPE="DATE":
Absolute or relative dates or periods. E.g., “the summer of
2005”, “recent years” TYPE="EVENT": Named hurricanes,
battles, wars, sports events, etc. E.g., “Olympiad games”
TYPE="FAC": Buildings, airports, highways, bridges, etc.
E.g., “Disney”, “the North Pole” TYPE="GPE": Countries,
cities, states. E.g., “Hong Kong”, “Putian” TYPE="LAW":
Named documents made into laws. E.g., “Chapter 11 of
the federal Bankruptcy Code” TYPE="LOC": Non-GPE
locations, mountain ranges, bodies of water. E.g., “Mai
Po Marshes”, “Asia” TYPE="MONEY": Monetary values,
including unit. E.g., “$ 1.3 million”, “more than $ 500 mil-
lion” TYPE="NORP": Nationalities or religious or political
groups. E.g., “Chinese”, “Buddhism” TYPE="ORDINAL":
E.g., "first", "second", etc. TYPE="ORG": Companies,
agencies, institutions, etc. E.g., “Eighth Route Army”, “the
Chinese Communist Party” TYPE="PERCENT": Percent-
age, including "%". E.g., “25 %" TYPE="PERSON": Peo-
ple, including fictional. E.g., “Zhu De”, “Saddam Hussein”
TYPE="PRODUCT": Objects, vehicles, foods, etc. (Not ser-
vices.) E.g., “iPhone”, “Coke Cola” TYPE="QUANTITY":
Measurements, as of weight or distance. E.g., “23 sq. km”
TYPE="TIME": Times smaller than a day. E.g., “homecom-
ing night” Sentence: {sentencel}

Use json format for the response where each key is an entity
type.

AMRCOT

The following is a named entity recognition task. Please
extract all the named entities of the following types from
the given sentence and its abstract meaning representation
(AMR). TYPE="CARDINAL": Numerals that do not fall
under another type, e.g., “one”, “ten” TYPE="DATE": Ab-
solute or relative dates or periods. E.g., “the summer of
20057, “recent years” TYPE="EVENT": Named hurricanes,
battles, wars, sports events, etc. E.g., “Olympiad games”
TYPE="FAC": Buildings, airports, highways, bridges, etc.
E.g., “Disney”, “the North Pole” TYPE="GPE": Countries,
cities, states. E.g., “Hong Kong”, “Putian” TYPE="LAW":
Named documents made into laws. E.g., “Chapter 11 of
the federal Bankruptcy Code” TYPE="LOC": Non-GPE
locations, mountain ranges, bodies of water. E.g., “Mai
Po Marshes”, “Asia” TYPE="MONEY": Monetary values,
including unit. E.g., “$ 1.3 million”, “more than $ 500 mil-
lion” TYPE="NORP": Nationalities or religious or political
groups. E.g., “Chinese”, “Buddhism” TYPE="ORDINAL":
E.g., "first", "second", etc. TYPE="ORG": Companies,
agencies, institutions, etc. E.g., “Eighth Route Army”, “the
Chinese Communist Party” TYPE="PERCENT": Percent-
age, including "%". E.g., “25 %” TYPE="PERSON": Peo-
ple, including fictional. E.g., “Zhu De”, “Saddam Hussein”
TYPE="PRODUCT": Objects, vehicles, foods, etc. (Not ser-
vices.) E.g., “iPhone”, “Coke Cola” TYPE="QUANTITY":
Measurements, as of weight or distance. E.g., “23 sq. km”
TYPE="TIME": Times smaller than a day. E.g., “homecom-
ing night” Sentence: {sentencel}

AMR:

{amrl}

Use json format for the response where each key is an entity
type.

Table 10: Prompts for BASE and AMRCOT for all datasets.
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paws

logic

newstest

django

spider

pubmed
NER

You are an NLP assistant whose purpose
is to perform Paraphrase Identification.
The goal of Paraphrase Identification is
to determine whether a pair of sentences
have the same meaning.

You are an expert in logic whose purpose
is to determine the type of logical fallacy
present in a text. The categories are: 1)
Faulty Generalization

2) False Causality

3) Circular Claim

4) Ad Populum

5) Ad Hominem

6) Deductive Fallacy

7) Appeal to Emotion

8) False Dilemma

9) Equivocation

10) Fallacy of Extension

11) Fallacy of Relevance

12) Fallacy of Credibility

13) Intentional Fallacy.

You are an NLP assistant expert in ma-
chine translation from English to Ger-
man.

You are an NLP assistant expert in trans-
lating natural language instructions to
python code.

You are a language model designed to
generate SQL queries based on natural
language questions. Given a question,
you need to generate the corresponding
SQL query that retrieves the requested
information from a database.

You are a medical professional expert.
You are an NLP assistant whose purpose
is to perform named entity recognition
(NER).

Table 11: System prompts for all datasets.



