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Abstract—Designing robots for dynamic, unstructured environ-
ments is a challenging task. Both the robot’s mechanical design
and control policy must be optimized for the environment. In
this study, we explore the design of a transformable-wheel robot
that can drive on smooth wheels and extend its legs to crawl over
obstacles. We use reinforcement learning to train a policy for
the robot that uses proprioception, namely motor velocity, body
acceleration, and body orientation, to determine when to extend
its legs. Our results indicate that this proprioception alone may
be sufficient to control transformable wheels. In simulation, the
robot was able to climb over a single step obstacle using only
proprioception, though it was better able to do so with a collision
sensor.

I. INTRODUCTION

Robots are being designed for increasingly more complex
environments. For example, uneven and unstructured terrain
such as rocky hillsides, sand dunes, and forest floors. Much of
the work in this area is focused on legged robots. In this study,
however, we focus on transformable-wheel robots (see Fig. 1).

Fig. 1: Our transformable-wheel robot prototype, shown
climbing up a step with its legs extended.

Transformable-wheel robots are able to both drive on regular,
smooth wheels and also extend “legs” radially so that the
robot can crawl over obstacles. Fig. 2 shows our robot in both
configurations. These robots are inherently more stable than
legged robots, as they do not require complex dynamically
stable gaits for locomotion, and can shift to become even more

Fig. 2: A depiction of the transformable wheel with the leg
extensions not extended (top) and extended (bottom).

stable in the wheeled state. They are also more capable than
wheeled robots, with legs that enable them to traverse a more
diverse set of terrain.

The main challenge with transformable-wheel robots is in
controlling wheel transformations. Specifically, deciding when
and how far the robot should extend its legs. When the robot
is on a relatively flat surface, it is more effective to drive on
smooth wheels—there is no need to suffer the poorer sensor
readings and increased wear and tear on the system in such
cases. However, when the robot encounters an obstacle, it is
important to extend its legs. The question is then: how should
the robot determine when to extend its legs, and what sensory
input should it use?

In this study, we propose a solution to this problem using rein-



forcement learning (RL). Our robot will use limited sensing—
primarily proprioception—to determine when to extend its legs.
Recent simulation packages (e.g., [12]) make it possible to
train robots in a variety of configurations in a relatively short
amount of time (i.e., hours or days instead of weeks), and
recent advances in the area of sim2real make it more possible
to transfer such policies to real-world robots [4].

We use PPO [10] to train a policy for the robot. The
implementation is based on that provided by ManiSkill3,
which is optimized to work with the accompanying simulation
environment [12]. The policy controls both the speed of the
wheel motors and the amount of leg extension.

In this study, we first use only proprioception. Transformable-
wheel robots are more stable than legged robots, requiring less
robustness from the controller. In addition, they provide good
opportunities for inferring state information from proprioceptive
data, as they are able to stably tilt, indicating the presence of
obstacles or uneven terrain. This makes these robots a good fit
for proprioception-based locomotion. To begin, our policy must
learn to control the wheel motors and leg extensions using
only encoder readings for each actuator and the robot’s inertial
measurement unit (IMU), which provides body acceleration
and orientation data. Later, we include a simple collision sensor
so that the robot knows when it is in contact with an obstacle.

The contributions of this work are a new transformable-wheel
robot design, preliminary results of proprioceptive locomotion
for that design, and an exploration of the sensor requirements
for our transformable-wheel robot. Our results indicate that
proprioception alone may be sufficient for controlling the
transformable wheels.

II. RELATED WORK

a) Transformable-Wheel Robots: Several studies have explored
the design of transformable-wheel robots (a specific type
of reconfigurable robots). Some have used unconventional
methods of transforming between states. Chen et al. created a
wheel that splits into two halves, aligning them to become a leg
[2]. On the larger scale, Lee et al. developed a human-drivable
vehicle with origami-based transformable wheels [6].

Many have used designs which incorporate leg extensions
that fold out from a central wheel. Cao et al. developed a
mechanism where each wheel “unfolds” into a legged-wheel
[1]. Their design also includes rollers on each wheel similar to
a Mecanum wheel. Similarly, Mertyüz et al. designed a wheel
in which “fingers” fold in to form the wheel rim and out to
act as a legged-wheel [14]. Zheng and Lee developed a similar
wheel that passively actuates its legs in response to added load
on the wheels [13].

Most studies in this area focus on the mechanical design of the
robot, and less on decision making (i.e., when to transform the
wheels). Our design is similar to past robots that use folding leg
extensions, particularly [14], though our transformable wheel
can rotate in both directions and is designed so that it can

be quickly transformed to help the robot get unstuck. It also
uses a differential coaxial shaft mechanism to drive its legs,
differing from most past transformable wheels that directly
drive their extensions, with a motor onboard the wheel.
b) Reinforcement Learning for Unconventional Mechanisms:
Recently, some studies have explored the use of RL for con-
trolling unconventional robots, including transformable-wheel
robots. Park et al. developed an algorithm for transformable-
wheel motion planning based on RL [8]. The algorithm is able
to plan a transformation based on a model of the environment.
Simohn et al. presented a energy-based reward function for
learning how to control their RSTAR robot, which sprawls to
control its center of mass and shape, so that it could climb over
steps [11]. Chen et al. developed a wheel-legged robot that used
RL to maneuver around obstacles using visual observations [3].
Unlike these studies, our focus is on simple proprioception.
c) Blind Locomotion: A recent body of work has explored
the use of RL for controlling legged robots, particularly with
proprioception. This blind locomotion relies on internal sensor
measurements to the robot, rather than external observations
of its surroundings, to navigate the world. For example, Lee
et al. developed a blind locomotion policy for controlling a
quadrupedal robot in diverse environments, highlighting the
possibilities of using only proprioceptive sensor data [7]. Kumar
et al. developed rapid motor adaptation algorithm on top of PPO
to control a quadrupedal robot, robust to different environments
as well as changing robot conditions, such as leg damage
or added mass [5]. Their reward function is heavily based
on the robot’s cost of transport. Radosavovic et al. explored
proprioceptive control for humanoid robots [9]. We aim to
extend this work to an unexplored domain, transformable-wheel
robots.

III. METHODS

a) Physical Robot: The robot developed for this study is shown
in Fig. 1. The robot chassis is 23 cm long and 16 cm wide. The
robot has 4 wheels, each of which are 3.8 cm in radius 0.5 cm
thick. Each wheel has three legs that can extend radially, with
two wheel plates enclosing them. The wheels are lined with
Dycem non-slip material to increase friction with the ground.

Each transformable wheel is driven by two motors, one that
drives the wheel speed, and a second that controls the leg
extension. Legs are “extended” (rotated) by differentially
driving the two motors at different speeds. For example, if the
leg motor is driven at a higher rate than the wheel motor, the
three corresponding legs will gradually rotate outward. The
motors are geared to coaxial shafts, enabling both motors to
be placed on the body of the robot, rather than placing one
on the wheel itself. Between the two plates of each wheel,
the internal shaft of the leg extension motor is connected to a
gearing system to drive the legs, shown in Fig. 3.

An encoder is attached to each motor (both the wheel and
leg motors) for determining and controlling their speeds.
Additionally, the robot is equipped with an inertial measurement
unit (IMU) for measuring its orientation and acceleration.



Fig. 3: The gearing mechanism of the transformable wheel.
One motor is attached to the wheel, with the other attached to
a coaxial shaft driving the legs.

In both simulation and on the real device, we measure the
orientation, angular velocities, and linear accelerations, which
are derived from IMU readings.
b) Simulation: Our simulation is based on the ManiSkill3
package [12]. The main advantage of this package is in its
ability to simulate many different scenarios in parallel. Using an
NVIDIA Tesla P100 (16GB), we are able to simulate close to
20 million steps per hour, where each step simulates 0.01 s for
a single environment. We developed two custom environments
(see Fig. 4) and modeled our robot using the package’s facilities.
c) Reinforcement Learning: We are using a standard RL
training loop for our experiments. The robot action space
consists of the wheel and leg motor speeds (8 real-valued
numbers). The observation spaces consists of the wheel encoder
readings and IMU readings, i.e. orientation, angular velocities,
and linear accelerations (18 real-valued numbers). The reward
is a continuous function based on the robot’s speed and the
amount of leg extension.

r(t) =
(1− tanh(5ve(t))) + (1− tanh(et(t)))
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where r(t) is the reward at time t, ve(t) is the robot’s velocity
error (the different between the robot’s current velocity and
the desired velocity) and et is the amount of leg extension.
The reward is normalized to be between 0 and 1, and the goal
is to drive the robot at the desired speed while minimizing the
amount of leg extension.

IV. RESULTS

We trained policies for three different environments: (1) a flat
plane with no obstacles, (2) a plane with a single step obstacle,
and (3) a plane with a single step obstacle and a collision
sensor.

The first policy (trained on a flat plane) will serve as a baseline
for the other two. The policy was able to drive the robot at the
desired speed without extending its legs and achieve a near
perfect reward. The policy was then evaluated in the second
environment (a plane with a single step obstacle), where it was
unable to get past the obstacle.

The second policy (trained on a plane with a single step
obstacle) was able to drive the robot at the desired speed
and extend its legs when needed to climb over the obstacle.
However, once the legs were extended, the robot did not learn
to retract them. This is likely due to the noisy sensor readings
caused by the robots extended legs, as well as the fact that the
training episodes ended shortly after the robot overcame the
step. We suspect that if the robot were trained over episodes
longer than 4 s, the policy would learn to retract the legs once
the robot was over the obstacle.

The final policy (trained on a plane with a single step obstacle
and a collision sensor) was able to drive the robot at the desired
speed and extend its legs when needed. Moreover, it was able
to partially retract its legs when they were not needed. This
policy is shown controlling the robot in Fig. 4.

Fig. 5 shows the training results for each of the three
experiments. We see a large jump in average reward for the
policy trained without an obstacle. In early training steps, the
policy prioritizes speed over retracting the extensions, and an
obvious way to increase speed is to extend the extensions,
which effectively increases the radius of each wheel. Around
step 0.6× 107 the policy learns to retract the extensions while
maintaining the target velocity.

V. CONCLUSION

Our experiments indicate that proprioception alone may be
sufficient for controlling the transformable wheels. The robot
was able to climb over a single step obstacle using only
proprioception, though it was better able to do so with a
collision sensor.

We will continue this work by exploring a few different
directions. First, we will optimize both the policy and the design
of the robots. For example, we will optimize the number of legs
per wheel, the shape of each leg, and the chassis dimensions.
At the same time we will also optimize environment parameters
to match real-world conditions. We also plan to improve reward
design, accounting for more factors in evaluating performance
of our controllers. In exploring these, we may take a co-design
approach, co-optimizing wheel and leg parameters along with
controller design to produce an optimal system.

Second, we will randomize the environment for each training
episode. Specifically, the number of obstacles, their size, and



(a) Fully retracted extensions. (b) Fully extended extensions. (c) Partially retracted extensions.

Fig. 4: Our simulation environment, with the robot climbing over a step obstacle. The robot is unable to climb the obstacle
without the extensions.
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Fig. 5: Training results for our three experiments.

their location. This will help the policy generalize to different
environments. We will also randomize the goal velocity of the
robot to determine how it adapts to different speed requirements.
Finally, we will set the robot to track randomized trajectories,
rather than velocities, to increase its capabilities for deployment.

Third, we will explore more challenging terrain. Complex
environments, such as those shown in Fig. 6, will make
relying on proprioception alone more difficult. We will train
the policy with randomized continuous terrains, implementing
an adaptive curriculum to increase the difficulty of the terrains
as the policy improves. If proprioception alone proves to be
insufficient, we will also explore the use of cameras to better
identify environmental features. This may include running
simple computer vision models to gain simple insights about the
terrain ahead, rather than attempting to observe full terrain maps.
This will align with our goals of reducing sensor complexity and

Fig. 6: Complex, continuous terrain for the robot to navigate.
Terrain was generated using Blender.

primarily relying on proprioception. Finally, we will customize
the policy training process to better suit the robot’s design.
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