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ABSTRACT

Model inversion attacks (MIAs) aim to reconstruct the private training data by
accessing a public model, raising concerns about privacy leakage. Black-box
MIAs, where attackers can only query the model and obtain outputs, are closer
to real-world scenarios. The latest black-box attacks have outperformed the
state-of-the-art white-box attacks, and existing defenses cannot resist them ef-
fectively. To fill this gap, we propose Stealthy Shield Defense (SSD), a post-
processing algorithm against black-box MIAs. Our idea is to modify the model’s
outputs to minimize the conditional mutual information (CMI). We mathemati-
cally prove that CMI is a special case of information bottlenecks (IB), and thus
inherits the advantages of IB—making predictions less dependent on inputs and
more dependent on ground truths. This theoretically guarantees our effective-
ness, both in resisting MIAs and preserving utility. For minimizing CMI, we for-
mulate a convex optimization problem and solve it via the water-filling method.
Adaptive rate-distortion is introduced to constrain the modification to the out-
puts, and the water-filling is implemented on GPUs to address computational
cost. Without the need to retrain the model, our algorithm is plug-and-play and
easy to deploy. Experimental results indicate that SSD outperforms existing de-
fenses, in terms of MIA resistance and model’s utility, across various attack al-
gorithms, training datasets, and model architectures. Our code is available at
https://github.com/ZhuangQu/Stealthy—-Shield-Defensel

1 INTRODUCTION

Deep neural networks (DNNs) have driven widespread deployment in multiple mission-critical do-
mains, such as computer vision (He et al., 2016)), natural language processing (Devlin et al., [2019)
and dataset distillation (Zhong et al., |2024bza). However, their integration with sensitive training
data has raised concerns about privacy breaches. Recent studies (Fang et al.l [2024bja; |2025) have
explored various attack methods to probe these privacy, such as gradient inversion (Fang et al., 2023
Yu et al.} [2024b) and membership inference (Hu et al., [2022). Among the emergent threats, model
inversion attacks (MIAs) aim to reconstruct the private training data by accessing a public model,
posing the greatest risk (Qiu et al., 2024c). For instance, consider a face recognition access control
system with a publicly accessible interface. Through carefully crafted malicious queries, model in-
version attackers can infer the sensitive facial images stored in the system, along with the associated
user identities.

MIAs are divided into white-box and black-box (Fang et al., [2024c). White-box attackers know
the details of the model, whereas black-box attackers can only query the model and obtain outputs.
Black-box MIAs become more threatening than white-box because: (1) Black-box scenarios are
more common. As models grow larger nowadays, they are mostly stored on servers and can only be
accessed online, which are typical black-box scenarios. (2) Black-box attacks are more powerful.
The latest soft-label attack RLBMI (Han et al., |2023) and hard-label attack LOKT (Nguyen et al.,
2024) have outperformed the state-of-the-art white-box attacks. (3) Existing defenses cannot resist
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black-box attacks effectively. Existing defenses focus on modifying the weights and structure of
the model, but black-box attackers only exploit the outputs, and thus are less susceptible.

To address these concerns, we propose Stealthy Shield Defense (SSD), a post-processing algorithm
against black-box MIAs. As shown in Figure[I] the idea of SSD is to modify the model’s outputs
to minimize the conditional mutual information (CMI) (Yang et al., 2024). CMI quantifies the
dependence between inputs and predictions when ground truths are given. In Theorem [I] we prove
that CMI is a special case of information bottlenecks (IB), and thus inherits the advantages of IB—
making predictions less dependent on inputs and more dependent on ground truths. Under this
theoretical guarantee, SSD achieves a better trade-off between MIA resistance and model’s utility.
Without the need to retrain the model, SSD is plug-and-play and easy to deploy.
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Figure 1: An overview of Stealthy Shield Defense. The probability simplex is a triangle when the
number of classes is three. CMI is defined as Z(X; Y'|Y'). According to our Theorem|l| minimizing

CMI makes the mutual information Z(X;Y") minimized and Z(Y;Y) maximized. As shown by
Yang et al.[(2024)), minimizing CMI makes the outputs more concentrated class-wisely.

The contributions of this paper are:

* We introduce CMI into model inversion defense for the first time, and theoretically prove
its effectiveness.

* We propose a post-processing algorithm to minimize CMI without retraining models. In
our algorithm, temperature is introduced to calibrate the probabilities and adaptive rate-
distortion is introduced to constrain the modification to the outputs. We speed up our
algorithm by GPU-based water-filling method as well.

* Qur experiments indicate that we outperform all competitors, in terms of MIA-resistance
and model’s utility, exhibiting good generalizability across various attack algorithms, train-
ing datasets, and model architectures.

2 RELATED WORK

2.1 MODEL INVERSION ATTACKS AND DEFENSES

Model inversion attacks (MIAs) are a serious privacy threat to released models (Fang et al.| 2024c).
MIAs are categorized as white-box (Zhang et al., |2020; |Chen et al.| 2021} [Struppek et al., 2022}
Yuan et al., 2023}, |Q1u et al., [2024a) and black-box. We focus on black-box MIAs, where attackers
can only query the model and obtain outputs. In this scenario, BREP (Kahla et al., 2022) utilizes
zero-order optimization to drive the latent vectors away from the decision boundary. Mirror (An
et al., [2022)) and C2F (Ye et al, |2023) explore genetic algorithms. LOKT (Nguyen et al., [2024)
trains multiple surrogate models and applies white-box attacks to them.

To address the threat of MIAs, a variety of defenses have been proposed. MID (Wang et al.,|[2021),
BiDO (Peng et al., [2022)) and LS (Struppek et al., 2024) change the training losses, TL (Ho et al.,
2024) freezes some layers of the model, and CA-FaCe (Yu et al.,2024a)) change the structure of the
model. However, black-box attackers only exploit the outputs, and thus are rarely hindered. The
defense against black-box MIAs is still limited.
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In this paper, we propose a novel black-box defense based on post-processing, without retraining
the model. Experimental results indicate that we outperform the existing defenses.

2.2 INFORMATION BOTTLENECK AND CONDITIONAL MUTUAL INFORMATION

Tishby et al.| (1999) proposed the Information Bottleneck (IB) principle: a good machine learning
model should compress the redundant information in inputs while preserving the useful information
for tasks. They later highlighted that information is compressed layer-by-layer in DNNs (Tishby
& Zaslavsky, 2015} |[Shwartz-Ziv & Tishby} [2017). |Alemi et al.| (2017) proposed Variational Infor-
mation Bottleneck (VIB) to estimate the bounds of IB, and [Wang et al.|(2021)) applied VIB in their
Mutual Information-based Defense (MID).

Yang et al.|(2024)) proposed to use conditional mutual information (CMI) as a performance metric for
DNN:gs, providing the calculation formula and geometric interpretation of CMI. By minimizing CMI,
they improve classifiers (Yang et al., [2025) and address class imbalance (Hamidi et al.| 2024). By
maximizing CMI, they improve knowledge distillation (Ye et al., 2024) and address nasty teachers
(Yang & Yel 2024).

In this paper, we theoretically prove that CMI is a special case of IB and thus inherits the advantages
of IB. Furthermore, we propose a novel model inversion defense based on CMI.

3 PRELIMINARY

3.1 NOTATION

Let f: X — Y be a neural classifier, X € X be the input to f, Y € Y be the ground truth
label, Y € Y be the label predicted by f, and Z € Z be the intermediate feature in f. Note that
Y - X — Z — Y is a Markov chain. Let P be the probabilitx function and, for brevity, let
P(z) =P{X =z}, Ply) = P{Y =y}, Pz, gly) = P{X =2,Y =g [ Y =y}, etc.

Let AY be the probability simplex with |Y| vertices. Let f(x) € AY be the output from the softmax
layer of f when z is input to f, and f;(x) be the g-th component of f(z), § € Y. Note that

f(z) = argmax fy().
yeyY

3.2 MODEL INVERSION ATTACKS

Let D C X x Y be the dataset learned by f. MIAs aim to reconstruct D as close to D as possible.
According to the access to f, MIAs are categorized as:

Hard-label: Attackers can query any = € X and obtain f(x) € Y.
Soft-label: Attackers can query any o € X and obtain f(z) € AY.
White-box: Attackers know the details of f.

Hard-label and soft-label, collectively called black-boxE] are what we aim to defend against.

3.3 DEFENSE VIA MUTUAL INFORMATION

Wang et al.| (2021)) proposed Mutual Information-based Defense (MID). The mutual information
between X and Y is defined as

- . P,y
I(X;Y) =Y Y P(x,§)log P(:]Ey()) (1)

zeXgeY Yy
Z(X; f’) quantifies the dependence between X and Y. They minimize it to prevent attackers from
obtaining the information about D. However, minimizing Z(X;Y") hurts the model’s utility. Es-

pecially, Z(X; }A/') = 0iff X and Y are independent, in which case f is immune to any attack but
useless at all.

'Some literature refer to hard-label as label-only, and soft-label as black-box.
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As an alternative, they introduced information bottlenecks (IB), which is defined as
I(X;Z) = A I(Z;Y), (2)

where A > 0. They use as a regularizer to train f, minimizing Z(X; Z) to resist MIAs while
maximizing Z(Z;Y") to preserve model’s utility.

4 METHODOLOGY

4.1 DEFENSE VIA CONDITIONAL MUTUAL INFORMATION

We aim to resist black-box MIAs, so we still focus on Y rather than Z. Furthermore, we observe
that all MIA algorithms target one fixed label during attacking. Formally, let

DY ={reX|(x,y) € D}

be the sub-dataset whose ground truth label is y. Given y € Y, all MIA algorithms aim to reconstruct
DY as close to DY as possible. Against their intention, we propose to minimize

Pz, gly)
X; Y|Y = P 7A. 3
OV =)= 2, 2 Pl i) o8 5 o ®

Z(X;Y|Y = y) quantifies the dependence between X and ¥ when Y = y. We minimize it to
prevent attackers from obtaining the information about DY. Minimizing (3) on each y € Y is
equivalent to minimizing the conditional mutual information (CMI), which is defined as

I(X;YY) =Y Ply) - I(X;Y|Y =y). 4)
yeY

Theorem 1. CMI is a special case of information bottlenecks (IB) when Z = Yand A\ =1, ie.

I(X;Y|Y)=Z(X;Y) - Z(Y;Y).

Our proof is provided in Appendix [A] Theorem [I] proves that CMI inherits the benefits of IB, in-
cluding two aspects:

* Minimizing Z(X; Y) to compress the redundant information in inputs, as well as decreas-
ing the dependence between inputs and predictions. This helps to resist MIAs as shown in
MID (Wang et al., 2021)).

« Maximizing Z(Y;Y') to preserve the useful information for tasks, as well as increasing the
dependence between predictions and ground truths. This helps to improve model’s utility
obviously.

The Z(X; Z) in (2) is challenging to calculate because the input space X and feature space Z are
both high-dimensional. Previous work had to estimate the variational bounds of IB (Tishby et al.|
1999; Tishby & Zaslavskyl 2015; |Alemi et al.| 2017; Shwartz-Ziv & Tishby, [2017)). Fortunately, as
a special case of IB, CMI can be calculated and minimized directly, as described in the next section.

4.2 MINIMIZE CMI VIA POST-PROCESSING

Previous work used CMI as a regularizer and minimized it during training models (Yang et al.,
2024} [Hamidi et al., 2024} [Yang et al., [2025). Unlike them, we propose to minimize CMI via post-
processing.



Published as a conference paper at ICLR 2025

CMI can be calculated as follows:

. P(x, 9 ..
I(X; YY) Z Py Z Z P(z,gly) log (7‘7@, by definitions (3}{4)),

yey zeX geY P(z|y)P(gly)
=SS Pl y) log 792' |7§/)
zeXgeYyeY
—ZP ZP ylx) ZP Jlz,y) log 7(>(|A| :l)j)
zeX yeY geY yly
:ZP ZPMI ZPWE log (] ), by MarkovY — X — Y.
zeX yeyY §eY ( | )

Based on the above mathematical transformation, minimizing Z(X; Y'|Y") is equivalent to minimiz-

ing Z P(ylx) Z P(g|z) log P(y\lwg for each z input to f. However, this objective function is too

complex to optlmlze For simplicity, we sample y € Y with the probability P(y|z) and minimize
> P(g|z) log ggzl‘z; instead, which is equivalent to the original objective in terms of mathematical
gey

expectation. Next, we find a way to calculate P(g|z) and P(|y).

We consider P(j|z) = f;(«) according to the design of neural classifiers. Note that

Pily) =Y P,gly) = > Plaly)P(@lz,y) = > Plaly)P(ilz) = > Plzly) f3(x

zeX zeX zeX zeX
=Exy=ylfsy(X),  gyeY.

By expressing P({|y) as a mathematical expectation, we can estimate it with the sample mean. Note
that the samples in DY are i.i.d. with X |Y = y, so we considelﬂ

P(gly) ~ mean f3(z'), gy €Y.

Let ¢¥ := mean f(z') and qg be the ¢-th component of g¥, § € Y. We have

x' €DV
S P(gle) lox - =3 5t 5@ _ (52 1gv),

geY y

where KL is the Kullback-Leibler divergence, a binary convex function.

To minimize KL( f(x)||qY), we fix gV for simplicity and modify f(x). Letp € AY be the modified
output, and then our objective is KL(p||g¥). To preserve the model’s utility, we add constrain
lp — f(x)|l1 < e where € > 0 is the distortion bound.

In rate-distortion theory (Shannon, [1959), minimizing mutual information under bounded distortion
constraint is for signal compression. If a signal has less information, it is easier to compress, and
a stricter distortion bound can be applied. Inspired by their work, we introduce the normalized
Shannon entropy to quantify the information in f(x), which is defined as

Az = ﬁ y% £ () log f(x).

Smaller 7 (z) implies less information in f(z), and a stricter distortion bound can be applied. So
we constraint |p — f(z)||; < e - H(x) to further control the distortion. Note that the old constraint
lp — f(x)|l1 < e still holds due to the property of 0 < H(z) < 1. This practice is called adaptive
rate-distortion.

2We use the validation set as DY in practice, because neural networks tend to overfit the training samples,
leading to inaccurate estimates.
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To determine the sampling probability P(y|x), a simple idea is to consider
P(ylz) = P(y|z) = fy(z) fory =gy € Y.

But|Guo et al.|(2017) have demonstrated that it is inaccurate for modern neural networks. Inspired
by their work, we introduce temperature mechanism to calibrate it.

Our defense is summarized as Algorithm[I} Note that the gV, y € Y can be calculated and stored in
advance, which helps to reduce the computational cost and protect privac

Algorithm 1: Our post-processing to minimize CMI.

Input: original output f(z), temperature 7', distortion bound ¢, validation set D.
Output: modified output p.
f(x)

y < Sample in Y with the probability of softmax (< );
Yo .
q"  mean £(r');
H(w)  rogfer Lgev fa(@) log f3(2);
Solve the convex optimization problem and return the optimal p:
min KL(p||q"),

st lp— fla) <e-H(x), )
peAY.

(3) is a convex optimization problem that can be solved by optimizers. Furthermore, we provide
an efficient solution in Appendix [C]and evaluate its time cost in Appendix [D} Without the need to
retrain the model, our algorithm is plug-and-play and easy to deploy.

5 EXPERIMENT

5.1 EXPERIMENT SETTINGS

Datasets. Following the previous work of MIAs, we use FaceScrub (Ng & Winkler, 2014) and
CelebA (Liu et al., 2015)) as private datasets. FaceScrub consists of 530 identities. CelebA contains
10177 identities and we only take 1000 identities with the most images (Kahla et al., [2022). All
images are cropped and resized to 64 x 64 pixels. We use 80% of the data as the training set, and
10% as the validation and test sets. The validation set is used to select the model and adjust the
hyperparameters of the defenses.

Models. For target models, we employ VGG-16 (Simonyan & Zisserman, 2014) and IR-152 (He
et al., [2016), both of which are trained with different defense methods. We select FaceNet (Cheng
et al.,[2017) as the evaluation model.

Model inversion attacks. We focus on four state-of-the-art black-box MIAs, including BREP
(Kahla et al., [2022), Mirror (An et al., 2022), C2FMI (Ye et al., [2023)) and LOKT (Nguyen et al.,
2024)). We attack the first 100 classes in the private dataset, reconstructing 5 images for each class.
For BREP and LOKT attacks, we use the FFHQ (Karras et al., [2020) dataset to train GANs and
surrogate models under official settings. For Mirror and C2FMI, we adopt the pre-trained 256 x 256
GANs with FFHQ prior provided by (Karras et al., [2020). The generated images will be center-
cropped to 176 x 176 and then resized to 64 x 64.

Metrics. To measure the MIA robustness and model’s utility, we consider the following metrics:

» Attack Accuracy. The metric is used to imitate a human to determine whether recon-
structed images correspond to the target identity or not. Specifically, we employ an evalu-
ation model trained on the same dataset as the target model to re-classify the reconstructed
images. We compute the top-1 and top-5 classification accuracies, denoted as Acc@1 and
Acc@b5, respectively.

31f the owner of the model and the executor of the post-processing are different, the owner only needs to
provide the ¢¥, y € Y instead of D, protecting the privacy of the owner.
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* Feature Distance. The feature is extracted from the second-to-last layer of the model. This
distance metric measures the average l» distance between the features of reconstructed im-
ages and the nearest private images. Consistent with previous research, we use both the
evaluation model and a pre-trained FaceNet (Schroff et al.,[2015) to generate the features.
The corresponding feature distances are denoted as 0¢yq; and o yqce. A lower feature dis-
tance indicates a closer semantic similarity between the reconstructed images and private
samples.

* Test Accuracy. The top-1 classification accuracy on the private test set. This metric is used
to evaluate the utility of the target model with defense.

* Prediction Bias. This metric is used to quantify the modification to the predicted proba-
bility vectors by defense methods. We take the L; distance between the outputs with and
without defense. Avg L; is the average over private test samples, and Max L is the largest
one. Lower values of both suggest that the defense method causes less modification to the
outputs.

All experiments are conducted by MIBench (Qiu et al.| 2024b)).

5.2 COMPARISON WITH PREVIOUS STATE-OF-THE-ART DEFENSES

In this section, we evaluate the robustness of our defense by comparing it against an undefended
model and prior state-of-the-art defenses, including MID (Wang et al., 2021)), BiDO (Peng et al.,
2022)), LS (Struppek et al., [2024)) and TL (Ho et al.} 2024). We adhere to the official configurations
for each defense method, and the corresponding hyperparameters are detailed in Appendix [B]

We evaluate the MIA robustness under various black-box MIAs, including both soft-label and hard-
label attacks. We conduct experiments on different target models and private datasets to demonstrate
that our approach performs effectively across diverse scenarios.

For soft-label attacks, we compare our method with previous defense strategies under the Mirror
and C2FMI attacks. The attack results are listed in Table[ll We can observe that our SSD achieves
significant improvements over existing defense strategies, especially when the attack has a strong
performace. Specifically, under the Mirror attack against IR-152 trained on the FaceScrub dataset,
our method reduces the attack accuracy from 52.4% to 19.4%, achieving a 3.6% greater reduction
compared to the previous SOTA method TL. For C2FMI attacks against VGG16 models trained on
the FaceScrub dataset, our method reduces the attack accuracy to approximately 1/9 of that without
defense, which is only a quarter of the accuracy achieved under the TL defense.

Table 1: MIA robustness against soft-label attacks.

Model Mirror C2FMI

Datasct Defense

L Acc@l | Acc@5 1 6evar TOface 4 AccQl | Acc@5 1 0epar T Oface

None 10.0% 18.8% 2526 1.31 3.6% 8.0% 2521 1.36

MID 9.0% 17.6% 2448 1.23 0.2% 0.4% 2382 1.56

IR-152 BiDO 4.8% 11.4% 2758 1.17 0.8% 3.8% 2598 1.31

CelebA LS 3.2% 7.8% 2602 1.33 1.4% 4.2% 2536 1.39

TL 6.6% 14.4% 2613 1.27 2.6% 7.0% 2528 1.37

SSD 1.2% 3.0% 2527 1.56 0% 0.4% 2377 1.67

None 52.4% 74.6% 1893 0.79 27.0% 49.8% 1952 0.98

MID 43.6% 63.4% 2067 0.86 3.0% 9.6% 2754 1.44

IR-152 BiDO 27.6% 53.0% 2132 0.99 14.2% 24.4% 2242 1.20

FaceScrub LS 33.4% 56.6% 2153 0.88 21.8% 46.8% 2022 1.02

TL 23.0% 47.2% 2155 0.95 6.8% 16.8% 2191 1.23

SSD 19.4% 28.2% 2415 1.31 2.0% 6.4% 2517 1.49

None 8.0% 15.0% 2577 0.78 23.8% 37.0% 2315 0.93

MID 6.4% 12.2% 2627 0.79 18.4% 31.8% 2239 0.93

VGG-16 BiDO 11.4% 21.0% 2530 0.79 10.6% 19.2% 2552 0.94

FaceScrub LS 10.2% 18.4% 2526 0.75 17.0% 29.2% 2424 0.95

TL 6.8% 12.0% 2624 0.88 10.4% 17.6% 2602 1.03

SSD 5.6% 10.6% 2665 0.80 8.8% 15.2% 2681 1.07
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In hard-label scenarios with BREP and LOKT attacks, we provided a quantitive results in Table
Note that LOKT is the SOTA black-box attack method. It demonstrates very high attack perfor-
mance across various kinds of settings. While previous defenses only showed limited defensive
capabilities, our SSD almost completely defeats this attack. Especially in the attack against IR-152
with FaceScrub dataset, without any defense, LOKT showed an attack accuracy of up to 83.0%.
However, our defense method reduce it to only 1.8%, making it almost impossible to launch a suc-
cessful attack. Moreover, our defense largely enhance the feature distance o fqc. from 0.66 to 1.53,
which indicate that our defense method make the attack failed to capture the privacy characteristics.

Table 2: MIA robustness against hard-label attacks.

Model BREP LOKT

Dataset Defense

L Acc@1 | Acc@5 1 6evar TOface 4 AccQl | Acc@5 1 0epar T Oface

None 7.2% 24.4% 1654 0.95 51.6% 74.4% 1469 0.85

MID 12.6% 28.8% 1973 1.28 29.8% 51.0% 1713 1.04

IR-152 BiDO 13.0% 30.6% 1670 1.03 48.4% 66.8% 1551 0.95

CelebA LS 15.6% 40.0% 1584 0.97 52.0% 73.6% 1489 0.88

TL 10.2% 27.2% 1643 1.05 56.4% 74.6% 1510 0.92

SSD 0.4% 1.6% 2362 1.61 0.2% 1.0% 2321 1.54

None 32.8% 56.6% 2161 1.00 83.0% 93.2% 1488 0.66

MID 34.0% 51.0% 2178 1.06 54.0% 74.4% 1856 0.82

IR-152 BiDO 24.2% 39.4% 2235 1.07 59.8% 77.6% 1694 0.77

FaceScrub LS 22.8% 45.8% 2384 1.07 60.0% 77.6% 1748 0.74

TL 14.2% 27.2% 2353 1.15 62.6% 78.2% 1682 0.73

SSD 3.4% 7.0 % 2622 1.51 1.8% 4.4 % 2694 1.53

None 33.6% 56.6% 2327 0.94 93.8% 98.0% 1359 0.57

MID 37.4% 58.2% 2249 0.90 82.4% 92.8% 1526 0.60

VGG-16 BiDO 30.4% 51.8% 2349 0.96 78.8% 87.4% 1567 0.63

FaceScrub LS 29.6% 49.0% 2402 0.94 78.2% 88.6% 1573 0.65

TL 29.0% 47.8% 2381 0.98 58.2% 74.0% 1771 0.71

SSD 9.8% 15.0% 2586 1.45 12.6% 21.4% 2370 1.18

Label
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Figure 2: Visual comparison of reconstructed images using various black-box attack methods against
an IR-152 model trained on CelebA, evaluated under different defense strategies. The top row
displays the images of the target class from the private train dataset for reference.
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Visualization results of the reconstructed images with different defenses under different black-box
attacks are shown in Fig. 2] Compared to previous approaches, our SSD produces reconstructed
images that deviate more significantly from the private images, demonstrating its effectiveness in in-
creasing the challenge for attackers to extract sensitive visual features and thereby enhancing privacy
protection.

Table 3: Evaluation results on model’s utility.

Defense IR-152 & CelebA IR-152 & FaceScrub VGG-16 & FaceScrub

TAcc JAvg L; [Max L, TAcc JAvg L; [Max L, TAcc JAvgL; [Max L,

None 94.2% 0 0 98.6% 0 0 97.9% 0 0
MID 88.9% 0.44 193 96.5% 0.32 196  95.1% 0.36 1.78
BiDO 88.2% 0.37 1.96  94.0% 0.58 195 94.3% 0.27 1.90
LS 90.1% 0.37 1.99  94.9% 0.18 1.96  94.9% 0.19 1.88
TL 89.1% 0.35 1.84  95.3% 0.33 1.97  94.5% 0.15 1.96
SSD 90.3 % 0.15 0.95 96.7% 0.06 094 96.3% 0.05 0.74

The evaluation results for the target model’s utility are presented in Table 3] The results indicate
that our SSD holds the best utility, outperforming all competitors across different metrics, training
datasets and model structures. According to our bounded distortion constraint, our Max L; < ¢
always holds strictly, where the competitors’ are close to the maximum of 2. In particular, our
Avg Ly is only 1/5 to 1/2 of the competitors’.

5.3 ABLATION STUDIES

In this section, we conduct ablation experiments to explore the effects of the temperature and distor-
tion bound in our SSD. The target model is IR-152 trained on FaceScrub. The results are shown in

Figure[3]
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Figure 3: Ablation Study on temperature 7" and distortion bound €.

Figure (a)(b) show the results on temperature 7", where the attack accuracy is measured on BREP.
It can be seen that as the temperature 7' rises, our MIA robustness becomes stronger. This is be-
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cause the sampling probability in Algorithm [I]is closer to the uniform distribution, which makes
it easier to return misleading labels to hard-label attackers. However, high temperature impairs the
model’s utility. In particular, the “w/o T.” in Figure (a)(b) represents the case without temperature
mechanism. In that case, neither MIA robustness nor model’s utility is good, which demonstrates
the necessity of introducing a temperature mechanism.

For the distortion bound, the results are displayed in Figure (c)(d). The attack accuracy is measured
on Mirror. As the distortion bound goes up, our defense can make more modifications to the output,
resulting in better MIA robustness. It can be seen that relaxing the distortion bound mainly affects
the maximum distortion Max L;, while having almost no effect on the average distortion Avg L.
Especially, without the adaptive mechanism, our Avg L; would become as high as other defenses.
This demonstrates the necessity of introducing the adaptive mechanism.

6 CONCLUSION

In contrast to previous researches on model inversion defense with focus on white-box attacks, we
conduct a specific study on black-box attacks. Specifically, we investigate the impact of conditional
mutual information (CMI) and develop a CMI-based defense strategy. We conduct our defense in
the post-processing stage, instead of re-training the model. Our method modify the model output by
reducing the dependence between model inputs and outputs. To further reduce the modifications to
outputs, we introduce an adaptive rate-distortion framework and optimize it by water-filling method.
Experimental results demonstrate that our defense method achieves state-of-the-art (SOTA) perfor-
mance against black-box attacks. We hope that our findings will help shift attention towards robust
defense mechanisms in black-box settings and inspire further research in this area.
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A PROOF OF THEOREM

I(X; YY)
_ N P(z,9ly) .
= %P(y) TEZX%P(CE» Jly) log Pl P@ly) by definitions (3}f),
og Plz,y)
_%%%nyyl P(|)
—Zzzpwyy logp(lz| z) by Markov chain Y — X — Y,
rzeXgeY yeyY P(y| )
P(z.9) /P@,y)
S22 2 Pl ves (5 /)
_ (2 G P(3,y)
"2 2 2 il (2 / 7))
_ x o P(T’:g) N o P(g),y)
"2 2 P lr pryp gy~ 2 2 PR g
=I(X;Y)—Z(Y;Y), by definition (T).

B THE HYPERPARAMETERS FOR EACH DEFENSE

Table 4: The hyperparameters for each defense.

Defense IR-152 & CelebA IR-152 & FaceScrub VGG-16 & FaceScrub
MID B = 0.005 £ =0.01 5 =0.02
BiDO Az = 0.001, Ay =0.01  X; =0.002, A\, =0.02 A, =0.002, A\, = 0.02

LS a=—0.05 a=-0.1 a=-0.1
TL Freeze the first 50% of the layers.
SSD T=003e=1 T=0.05¢e=1 T=03,e=1

C OUR WATER-FILLING ALGORITHM TO OPTIMIZE (3))

For brevity, let q .= ¥, f := f(z), and € := ¢ - H(z). The problem (5) is restated as

min KL(p||q),
s.t. [|[p— flli <e, (6)
peAY.

Note that Kullback-Leibler divergence is a metric. KL(p||qg) > 0 always holds and KL(p||q) = 0

iff p = q. Trivially, when ||g — f||1 < ¢, the optimal solution is p = q.

When ||g — f||1 > &, the optimal p must be between f and g due to the properties of KL, i.e.
Either f; < p; < gq;or f; > p; > q;,foreachi € Y. 7

Furthermore, due to f,p € AY, there must be

Y om—fi= ), fi—pizg- ()

i€Y: fi<qi i€Y:fi>qi
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In the following we consider the case f; < ¢; (another is symmetric). Assuming that f; < g; iff

i €{1,2,...,n}, a semi-problem of (6} is
min > p;log =,
Z: OB qi
i=1
- £
s.t. ;Pi —fi=3
1=

i > fis 1=1,2,...,n.

Introducing Lagrange multipliers A € RY and v € R, the KKT conditions are

(pi — fi)hi =0,
1+log&fvf)\,;:0,
qi

where ¢ = 1,2,...,n. Eliminating A\; > 0 yields

(pi — fi) (1+log2;—v> =0,

K2

1+10g&21}.

K2

When v > 1 + log %, implies p; > f;, and implies p; = ¢; exp(v — 1).

When v <1+ log %, p; > f; implies (1 + log % — v) > 0 that against , sop; = fi.

In summary, the optimal solution is

fi
iexp(v—1) v >1+log—
L 84, i=12...n,
fi other
where v is determined by the constraint 2?21 pi— fi=5.
Let w := exp(v — 1) € Rs and is simplified to

p; = max(f;, wq;), i=1,2,...,n.

9

(10)
(1)

(12)

(13)

(14)

(15)

We propose Algorithm [2] to calculate (15) efficiently. Our algorithm is known as “water-filling”,

because w is like a rising water level and 5

is O(nlogn) due to the sorting at the beginning.

is like the maximum volume of water. Its time complexity

Algorithm 2: Water-filling on CPU. Algorithm 3: Water-filling on GPU.
Input: f;,q;fori=1,2,... n. Input: PyTorch tensors f, q of size n.
Output: p; fori =1,2,...,n. Qutput: PyTorch tensor p of size n.
Reindex f;, g; so that % < (fl—; <...< %; Reindex f, g by torch.sort(%);
1+ 1;
Sfsum < 0; Sfoum < f.cumsum();
Gsum < 0; Gsum < g.cumsum();

. fi f .
while gyt — fum < 5 do mask < gumy — fam < 53

i1+ 1; 1 <— mask.argmax();

Soum — foum + fis
Gsum < Qsum + Qi3

end
fsum+% fﬂum[l]“i’%
W W
qSle qsum [Z]
Reindex f;, g; back to the original, Reindex f, g back to the original;
return max(f;, wg;) fori = 1,2,...,n; return torch.max(f, wq);
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To further speed up, we also propose Algorithm[3] a GPU-based water-filling. Specifically, we man-
age to eliminate the loop and branch in Algorithm 2] making it completely sequential and suitable for
GPUs. By utilizing the operators of PyTorch tensors, we fully leverage the parallelism capabilities
of GPUs.

D EXPERIMENTS ON COMPUTATIONAL COST

We quantitatively demonstrate the efficiency of our post-processing Algorithm |1| by experiments.
The target models, training sets, and defense settings are consistent with Table We take a
batch with 512 test samples and let the model infer 100 times on it. We record the time cost by
torch.profiler, an official tool provided by PyTorch. We exclude the time for I/O (i.e. the time from
disk to memory, and from CPU to GPU), and only include the time for forward propagation on GPU.
Our experiment is conducted on one NVIDIA GeForce RTX 3090. The results are in Table[5]

Table 5: The time cost of our post-processing algorithm.
IR-152 & CelebA  IR-152 & FaceScrub  VGG-16 & FaceScrub

Time without defense 18.63 s 17.70 s 5.65s
Time with our defense 19.22 s 18.16 s 6.07 s
Percent of increased time 3.1% 2.5% 7.4%

It can be seen that we only increase the time by 2.5% to 7.4%. The higher percent on VGG is due
to the shallower model structure. In absolute terms, modifying 512 predictions for 100 times only
needs 0.5 seconds. If we take the I/O time into account, the percents will be small enough to be
ignored.

We further investigate the relationship between |Y| and the time cost of our Algorithm 3] We gen-
erate s € R/l ~ N(0,T) and let r < softmax(10s). It is observed that the = generated in this
way is close to the real probability distributions. We use these r to simulate the real f(z) and ¢¥,
and let our GPU-based water-filling to find the optimal solution p. We take a batch with 256 pairs
(f(z),g¥) and solve in parallel. The time costs are shown in Table|6]

Table 6: The relationship between |Y| and the time cost of our GPU-based water-filling.
Y| 10! 10? 103 10* 10° 10°
Time 131ms 132ms 143ms 163ms 249 ms 1301 ms

It shows that even when |Y| reaches a million, solving 256 convex optimization problems only
takes 1.3 seconds. We believe that at this point, our post-processing will not be the performance
bottleneck, but the slow inferring and massive parameters of the target model will be.

E EXPERIMENTS UNDER RLB ATTACK

We evaluate the all defenses’” MIA robustness against RLB (Han et al., |2023), a SOTA soft-label
attack method. All settings are consistent with Tables[T}4] where the target model is IR-152 and the
private dataset is CelebA. The first 10 classes of CelebA are attacked and each class reconstructed 5
images. The results are shown in Table
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Table 7: The MIA robustness of all defense under RLB attack.

L Acc@l | Acc@5 1 0evar T dface

No Defense 32% 64% 2006 0.77
MID 30% 48% 2088 0.84
BiDO 16% 28% 2254 0.94

LS 12% 34% 2204 0.85
TL 22% 34% 2107 0.82
SSD (ours) 8% 12% 2480 1.26

It can be seen that our defense has the best MIA robustness against RLB. The models’ utility and
defenses’ settings are consistent with the Tables which shows that we also preserve the best
model’s utility.

F EXPERIMENTS ON HIGH RESOLUTION

To adapt to high resolution, we choose Mirror as the attacker. The prior distribution is StyleGAN2
trained on FFHQ with a resolution of 1024 x 1024. The generated images are center-cropped to
800 x 800, resized to 224 x 224, and inputted to the target model. The target model is ResNet-152,
and the evaluation model is Inception-v3. The first 10 classes of FaceScrub are attacked, and for
each class, we reconstruct 5 images. The attack results are shown in Table[8]and the models’ utility
are shown in Table[0] Although models are more vulnerable on high resolution, our defense still
achieves the best MIA robustness, with a good utility.

Table 8: The MIA robustness of all defenses under Mirror attack on high resolution.

\I, Acc@l \l/ Acc@b T 6eval T 5face

No Defense 70% 94% 195 0.84
MID 62% 90% 183 0.76
BiDO 66% 86% 194 0.90
LS 48% 82% 202 0.87

TL 58% 92% 191 0.80
SSD (ours) 42 % 66% 211 1.13

Table 9: The target models’ utility and defenses’ settings on high resolution.

T Acc | Avgl; |MaxI, Settings
No Defense  98.5% 0 0 -
MID 96.7% 0.30 1.97 B8 = 0.005
BiDO 96.3% 0.09 1.99 Ay =0.15), =15
LS 96.5% 0.11 1.99 a=—0.01
TL 96.7% 0.19 1.99 First 70% layers
SSD (ours) 96.9% 0.07 1.98 T=1e=20

G DISCUSSION ON ADAPTIVE ATTACKS

In this section we discuss adaptive attacks, where attackers are aware of our defense and take targeted
actions.

Firstly, we believe that launching adaptive attacks in black-box scenarios is unrealistic, because
attackers don’t know the target model, and naturally don’t know its defense strategy. If they were
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to guess the defense strategy based on the model’s behavior, they would need to consume a large
number of queries.

Step back and consider, if attackers know our defense, their best strategy is:

1. Query the same z repeatedly and count the frequency of different outputs.
2. Estimate our sampling probability P (y|z) by the frequency they count.

3. Infer our true prediction P(y|x) by the P(y|z) they estimate and the temperature " (as-
suming they know).

If an online server detects such pattern of queries, it can block them. Step back and consider again,
we propose a memory-free and low-cost improvement to block such adaptive attacks:

Design a hash function h : X — N, where X is the input space and N is the set of integers. When
users/attackers query x, we take h(z) as the random seed for sampling, ensuring same-input-same-
output. However, attackers can add subtle perturbations to z, therefore our £ needs to be robust. For
example, it can be

m

h(z) =Y |k~ z(x)], (16)

i=1

where z(x) € R™ is the penultimate layer feature in target model, and k is the sensitivity coefficient.
Note that z(x) are commonly used to evaluate the similarity between two images, i.e., the closer the
two z(z) are, the more similar the two z look. The larger k is, the more numerically sensitive  is,
and the more random our defense is.

How to evaluate and improve h is a new and interesting topic, worth studying deeply in the future.

H COMPARISON ON PURIFIER DEFENSE

Purifier is a black-box defense against membership inference attacks and may have the effect of
resisting MIAs (Yang et al.,2023). We reproduce Purifier, setting A = 0.01 and k¥ = 1. We use the
validation set as the reference set and swap the first and second labels if the L2 distance < 0.0001.

The comparisons on Purifier are aligned with the main experiments in our paper. The target model
is IR-152 and the GANSs are trained on FFHQ. The first 100 classes in FaceScrub are attacked and
each reconstructs 5 images. The results are shown in Table The target model’s utility is
listed in Tabel

Table 10: The target model’s utility.

T Ace | AvgL, | MaxLy

None 98.4% 0 0
Purifier 96.0% 0.14 2.00
SSD 96.5% 0.06 0.95

Table 11: The MIA robustness against C2F.

L Acc@l | Acc@5 T 0evar T Otace

None 28.0% 47.4% 1949 1.01
Purifier 3.8% 7.6% 2655 1.47
SSD 1.8% 3.6% 2518 1.49
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Table 12: The MIA robustness against BREP.

1 Acc@1 | Acc@5 T 0evar T Oface

None 37.4% 54.2% 2150 1.00
Purifier 38.6% 56.8% 2140 1.00
SSD 2.6% 3.8% 2650 1.55

Table 13: The MIA robustness against Mirror.

1 Acc@1 | Acc@5 T 0evar T Oface

None 69.2% 89.0% 1752 0.77
Purifier 62.4% 78.4% 1915 0.99
SSD 22.8% 34.6% 2272 1.21
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