
Beyond the Singular: Revealing the Value of Multiple
Generations in Benchmark Evaluation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large language models (LLMs) have demonstrated significant utility in real-world1

applications, exhibiting impressive capabilities in natural language processing and2

understanding. Benchmark evaluations are crucial for assessing the capabilities3

of LLMs as they can provide a comprehensive assessment of their strengths and4

weaknesses. However, current evaluation methods often overlook the inherent5

randomness of LLMs by employing deterministic generation strategies or relying on6

a single random sample, resulting in unaccounted sampling variance and unreliable7

benchmark score estimates. In this paper, we propose a hierarchical statistical8

model that provides a more comprehensive representation of the benchmarking9

process by incorporating both benchmark characteristics and LLM randomness.10

We show that leveraging multiple generations improves the accuracy of estimating11

the benchmark score and reduces variance. Multiple generations also allow us to12

define P (correct), a prompt-level difficulty score based on correct ratios, providing13

fine-grained insights into individual prompts. Additionally, we create a data map14

that visualizes difficulty and semantics of prompts, enabling error detection and15

quality control in benchmark construction.16

1 Introduction17

In recent years, advanced large language models have demonstrated remarkable versatility across18

a wide range of tasks and domains, with their development continuing to accelerate. To effectively19

track their progress, numerous generative benchmark datasets have been curated to assess both their20

general and specialized capabilities.21

There are two primary ways for generating responses from large language models (LLMs): greedy22

decoding and random sampling [10]. Greedy decoding selects the next token with the highest23

probability, resulting in a deterministic output. In contrast, random sampling, such as nucleus24

sampling [10], incorporates randomness during decoding by sampling a token at each step based on a25

probability distribution. This approach leads to non-deterministic output. Current LLM benchmarks26

typically employ one of these methods; for instance, LiveBench [30] WildBench [15] and OpenLLM27

leaderboard [1] use greedy decoding, while TrustLLM [11], MT Bench [33] and Alpaca Eval [13]28

employ a non-deterministic sampling configuration. During evaluations, LLMs generate a single29

response for each prompt in the benchmark, and the correctness of these responses is determined by30

comparing them to the ground truth answers. The final benchmark score is then calculated as the31

average of these individual scores.32

However, this presents challenges within the current generative-evaluation paradigm. Firstly, deter-33

ministic generation does not align with the real-world application of LLMs, where randomness is34

inherent. This misalignment can lead to biased estimations of LLM performance. Even with random35

generation, relying on a single generation can result in significant variance in benchmark scores,36
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particularly when the sample size is small. Furthermore, a single generation is not sufficiently infor-37

mative for individual prompts, as it cannot address prompt-level questions such as, "Which question38

is more challenging?" This limitation creates obstacles to understanding the overall composition of39

the benchmark data.40

In this paper, we regard the benchmark as an estimation problem characterized by a statistical model41

and highlight the significance of incorporating multiple random generations in a principled way.42

We theoretically demonstrate that increasing the number of generations decreases the variance in43

benchmark score estimation. Moreover, by leveraging multiple samples, we introduce a fine-grained44

difficulty metric, P (correct), derived from the inherent latent parameters of our statistical model, to45

quantify the difficulty of individual prompts. This enables comparisons across different prompts.46

Additionally, we demonstrate that mislabeled or ambiguous prompts can be effectively detected using47

multiple generations, highlighting its potential as a tool in benchmark construction.48

2 Benchmarking Procedure is a Hierarchical Model49

In this section, we show that the benchmark is an estimation problem. Without loss of generality, we50

consider random sampling as the generation strategy where each token is randomly sampled from51

a token distribution conditional on previously generated tokens. We also assume the correctness52

of generations can be obtained using a judgment function, which can be accomplished either by53

comparing the response with ground truth or by determining whether it passes unit tests.54

Given an LLM parameterized by parameters θ, including both model parameters and sampling55

parameters, for example temperature T and top P , etc.), and a benchmark dataset D = {xi}ni=1, we56

can define difficulty of the i-th prompt with respect to the LLM as a random variable drawn from57

the unknown benchmark difficulty distribution P(µ, σ; θ), with mean µ and standard deviation σ.58

Without loss of generality, with k generations per prompt, we can then regard the benchmarking59

procedure as a hierarchical model as follows:60

pi ∼ P(µ, σ; θ) for i = 1, · · · , n,
yi,j ∼ Bernoulli(pi) for j = 1, · · · , k, (1)

where prompt difficulty pi is sampled from P(µ, σ; θ) and pi represents the probability that the LLM61

can correctly answer the i-th prompt., i.e., P (A generated answer to i-th prompt is correct) = pi.62

This represents a latent difficulty of prompts, We denote the he k-th generation of the i−th prompt as63

zi,j and then yi,j is the correctness indicator for it, where yi,j = 1 if it’s correct otherwise yi,k = 0.64

Here both benchmark distribution P(µ, σ;D) and pi are unknown and needs to be estimated.65

To estimate pi and µ, we can use a straight forward method of moment estimators p̂i =
∑k

j=1 yi,j

k ,66

µ̂ =
∑n

i=1 p̂i

n =
∑n

i=1

∑k
j=1 yi,j

nk . We observe that a widely used item response theory [21, 16, 5],67

employed to model the difficulty of prompts, represents a specific parametrization of P(µ, σ;D).68

Further elaboration on this can be found in Appendix C.69

Note that, when k = 1, the benchmark score computed based on a single random generation is an70

estimation of µ, which only utilizes a single generation which leads to a large variance. We can show71

this by explicitly calculating the variance of our estimators.72

Lemma 2.1. Given the hierarchical model in (1) and the moment estimators µ̂ =
∑n

i=1

∑k
j=1 yi,j

nk .73

Then µ̂ is an unbiased estimator for µ and its variance equals:74

Var(µ̂) =
1

nk

(
µ− µ2 − σ2

)
︸ ︷︷ ︸

Withth-prompt Variance

+
1

n
σ2︸︷︷︸

Between-prompt Variance

. (2)

75 Here, Var(µ̂) can be decomposed into within-prompt variance and between-prompt variance. Both76

terms decrease as the number of benchmark data n increases. However, since benchmark data is77

typically fixed, we analyze the influence of sampling in terms of k. Within-prompt variance captures78

the randomness in sampling yij conditional on the i−th prompt, and it can be effectively reduced79

by increasing the number of samples k, converging to 0 as k → ∞. The between-prompt variance80

term, on the other hand, captures the variability of prompt difficulty pi across groups, reflecting the81

randomness of difficulty distribution P(µ, σ; θ), and thus remains unaffected by k.82
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Figure 1: Distribution of P (correct) of 4 benchmarks.

We can further plug in sample variance σ̂2 = 1
n−1

∑n
i=1(p̂i −

∑n
i=1 p̂i

n )2 and µ̂ into (2) to get V̂ar(µ̂).83

Finally, based on the central limit theorem, a 95% confidence interval is: µ̂± 1.96

√
V̂ar(µ̂).84

2.1 Prompt Level Difficulty: P (correct)85

Our goal is to develop a granular, quantifiable measure of prompt difficulty, enabling us to gain a86

deeper understanding of their relative complexities. By quantifying prompt difficulty at the individual87

level, we can address fundamental questions such as: ‘Which prompts are most challenging?’ and88

‘How do different prompts compare in terms of difficulty?’ A fine-grained understanding of prompt89

difficulty will provide valuable insights into the strengths and weaknesses of language models, as well90

as the composition of benchmark datasets, ultimately informing the development of more effective91

models and evaluation frameworks.92

We refer to P (correct) = pi in (1) and its estimation P̂ (correct) = p̂i =
∑k

j=1 yi,j

k . When the number93

of generations k increases, it will converge to the true P (correct) and therefore more fine-grained.94

The probability of correctness pi can be interpreted as a difficulty score at the prompt level: the higher95

the pi, the easier the prompt since the language model has a higher probability of generating a correct96

response. We demonstrate the use of difficulty scores in the analysis section.97

3 Experiments98

Benchmark. We choose multiple benchmarks: MMLU-Pro [29], GSM8K [3], MuSR [24], IFEval99

[34]. For MMLU-Pro, GSM8K, and MUSR, we use accuracy as the metric, while for IFEval, we100

utilize instance-level strict accuracy. More details of benchmarks are in Appendix D.101

LLM and Setup. We utilize four widely-used open-source LLMs: Llama 3.1 (8B and 70B Instruct)102

[6], Qwen 2.5 (7B Instruct) [31], and Ministral (8B Instruct) [12]. We evaluate both greedy decoding103

and random sampling on these models, with the latter using a temperature of 0.7 and top-p of 1.0. For104

each prompt across all benchmarks, we generate 50 samples (k = 50) using a 0-shot chain-of-thought105

prompting strategy.106

3.1 Main Results107

Results are shown in Figures 1 and Table 1, with the full table available in Appendix Table 2. Key108

takeaways are summarized below.109

Distribution of P (correct) show diffuse density in challenging tasks, behaving like random110

samplers. For the distribution of P (correct), we define stable behavior as a density distribution with111

high concentrations near 0 and 1, and lower density in between. Conversely, a distribution with a112

high density between 0 and 1 indicates high randomness. As shown in Figure 1, when confronted113

with benchmarks that require strong reasoning skills (MMLU-Pro, IFEval, and MuSR), all models114

display a diffuse density distribution over the support [0, 1]. This suggests that LLMs resemble115

random samplers when handling prompts requiring strong reasoning, underscoring the complexity116

and sensitivity of their reasoning processes. In contrast, the simpler task GSM8K display densities117

with more pronounced tails and reduced uncertainty. A plausible explanation is that GSM8K is easier118

and involves shorter reasoning lengths, which in turn decreases the likelihood of diverse reasoning119

paths emerging. Additionally, the Llama 70B model shows the most stable performance across120

benchmarks, indicating that larger models yield more consistent reasoning.121
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Table 1: Results on four benchmark datasets with four open source LLMs. "n" is the number
of prompts, "Greedy" denotes greedy decoding, "Sample (k=50)" is the random sample with 50
generations and "∆ (k = 1)" denotes the performance gap between the best and worst run with 1
generation. We include both benchmark score and SE.

Benchmark n Llama 3.1 8b Instruct Llama3.1 70b Instruct
Greedy Sample (k = 50) ∆(k = 1) Greedy Sample (k = 50) ∆(k = 1)

MMLU-Pro 12, 187 46.2 (0.45) 46.1 (0.39) 10.0 63.8 (0.44) 63.4 (0.40) 3.9
GSM8K 1, 319 86.1 (0.95) 85.6 (0.68) 18.6 95.6 (0.56) 95.3 (0.45) 4.8
IFEval 541 74.5 (1.87) 71.1 (1.51) 8.3 82.6 (1.64) 80.2 (1.42) 5.9
MuSR 756 24.8 (1.65) 29.0 (1.00) 8.2 56.3 (1.80) 57.9 (1.40) 5.4

Estimation differs noticeably between greedy decoding and random sampling, with a single122

random generation being unstable. Table 1 presents the benchmark scores, highlighting the123

performance differences between greedy decoding and random sampling. Notably, for GSM8K and124

MuSR, the absolute differences in benchmark score between these two methods for Llama3 8B are125

3.4 and 4.2, respectively, indicating a relatively large performance gap. This discrepancy can also126

be observed in other models and datasets. Furthermore, we observe considerable variability with127

one generation, characterized by large values of ∆(k = 1). This suggests that random sampling128

with limited generations is ineffective for benchmark evaluation, particularly for small datasets,129

aligning with our Lemma 2.1. We also investigate how sampling parameters influence the P (correct)130

distribution, and results are in Appendix E.2.131

Figure 2: Data map for GSM8K with Llama 70b.

Multiple generations can help detect label-132

ing errors: a case study on GSM8K. Bench-133

mark construction can involve label errors134

or ambiguous prompts, such as the approx-135

imately 5% error rate in GSM8K. Manually136

cleaning large datasets is costly, but we found137

that using multiple generations from advanced138

LLMs can help identify mislabeled or am-139

biguous prompts. Based on multiple gener-140

ations, we can create a data map to visual-141

ize P(correct) against S(consistency), which142

measures the semantic consistency of gener-143

ations. Given a set of k generations and clustering them into C semantic sets, S (consistency) is144

defined as: S (consistency) =
∑C

c=1 Propc log Propc, where Propc measures the proportion of gener-145

ations in group c and its empirical estimator P̂ropc =
# generations in set c

k . This can be seen as negative146

semantic set entropy; the larger, the more consistent. Semantic clusters in GSM8K can be derived147

from final answers and can be extended to more open-ended QA by embeddings or LLMs as judges.148

We hypothesize that prompts with low P(correct) and high S(consistency) may be mislabeled or149

ambiguous due to contradicting with the self-consistency [28]. Self-consistency [28, 18] leverages the150

intuition that a challenging reasoning problem typically admits multiple reasoning paths leading to its151

unique correct answer. To verify our hypothesis, we utilize the data map of Llama3 70B for GSM8K152

and selected prompts with P(correct) ≤ 0.1 and S(consistency) ≥ −0.8, totaling 18 prompts. After153

manually reviewing the selected prompts, we found that 44.4% prompts were either mislabeled or154

ambiguous (having multiple valid interpretations of a question). Examples are shown in the Appendix155

Figure 5. Our results demonstrate the potential of data maps for dataset cleaning, extending prior156

work [26] from classification to generative models. Notably, our approach only utilizes a single157

LLM and a simple semantic metric, underscoring future research opportunities to enhance accuracy158

through multiple models and improved semantic metrics.159

4 Conclusion160

In this paper, we investigate the value of multiple generations in LLM benchmark evaluation. By161

leveraging a hierarchical model, we show that multiple generations help quantify prompt difficulty,162

reduce variance, and detect labeling errors, making evaluations more robust and informative. Future163

research could explore the minimal number of generations required for robust evaluation or consider164

incorporating the covariance structure into the estimation process.165
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A Related Work272

A.1 LLM Benchmark Evaluation273

Recent benchmark evaluations have significantly enhanced our understanding of Large Language274

Models (LLMs) and have driven further advancements in the field. Notable benchmarks like MMLU275

[9], HELM [14], and BIG-bench [25] have expanded assessments to include language generation,276

general knowledge understanding, and complex reasoning. Several other benchmarks assess the277

trustworthiness of large language models (LLMs) [27, 11, 32] in terms of safety, bias, privacy,278

and hallucination, etc. Leaderboards like the OpenLLM Leaderboard [1] facilitate performance279

comparisons across LLMs by evaluating a range of tasks, each targeting different capabilities, to280

provide a comprehensive assessment of LLMs. However, most benchmark evaluations, even on281

leaderboards, rely on a single output per example, either greedy decoding or random sampling.282

Song et al. [23] also examines the performance gap between the two types of generation strategies283

and highlights the importance of randomness. There is also concurrent work by Miller [17] that284

mentions using multiple generations to reduce variance, but their contribution is primarily conceptual.285

In contrast, we provide both theoretical support and empirical results. Additionally, we propose286

several benefits of using multiple generations, such as difficulty quantification and mislabeled prompt287

detection, which distinguish our work from theirs.288

A.2 Prompt Difficulty in Benchmark289

Understanding prompt-level difficulty is crucial for analyzing benchmark composition and some290

benchmark datasets include difficulty scores for each prompt provided by humans. For example, the291

MATH dataset [8] offers a variety of high-school-level problems with a broad five-level difficulty292

rating. Similarly, the GPQA dataset [22] contains graduate-level multiple-choice questions rated on a293

4-point scale by two experts. Recent studies [5, 20] also attempted to estimate difficulty scores of294

individual prompts using item response theory [2, 19] or Glicko-2 [7], based on offline evaluation295

results from a pool of large language models (LLMs) or human participants. This approach seeks296

to provide an objective difficulty score by encompassing a diverse range of testers, including both297

humans and LLMs. However, this can lead to misalignment when focusing solely on a target LLM. A298

question that is easy for one model might be difficult for others, highlighting the inherently subjective299

nature of difficulty [4]. Therefore, it is more relevant to consider the subjective difficulty specific to300

the target LLM.301

B Limitation302

While using multiple generations in benchmark evaluation is promising, it demands more compu-303

tational resources during inference time. Future research could explore the minimal number of304

generations required for robust evaluation, potentially reducing within-prompt variance. Additionally,305

our statistical model assumes that all prompts are independently sampled from the benchmark diffi-306

culty distribution, which may not be accurate in practice, as prompts can originate from the same307

subjects or resources. Future work should consider incorporating the covariance structure into the308

estimation process. Another drawback is the detection of mislabeled prompts. Although our method309

efficiently reduces the effort needed to filter samples, the true positive rate is not high (around 50%).310

Potential research could leverage more sophisticated semantic metrics and model ensembles to better311

detect mislabeled or ambiguous prompts.312

C IRT is a special parametrization of P (correct)313

P (correct) is closely connected to item response theory. Many studies [21, 16, 5] utilize IRT to314

quantify the difficulty of prompts using multiple LLMs. One variation of the IRT model is the315

one-parameter logistic (1PL) model as defined below:316

P (yli = 1 | θl, bi) =
1

1 + exp−(−θl−bi)
, (3)

where P (yli = 1 | θl, bi) is the probability that LLM l can answer the j-th prompt correctly. θl317

represents the latent ability of LLM l, bi is the difficulty parameter of the j-th prompt.318
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We observe that when we focus on a single LLM, i.e., when LLM l is fixed, P (yli = 1 | θl, bi)319

coincides with the prompt difficulty pi defined in (1). Consequently, the right-hand side of (3) can be320

viewed as a specific parametrization of the prompt difficulty using a logit link function. This implies321

that, theoretically, the maximum likelihood estimator of IRT and our method are equivalent via a322

sigmoid transformation. We use the 1PL model here for illustrative purposes, but this equivalence323

also holds when extended to models with more parameters.324

D Benchmark Details325

MMLU-Pro is a comprehensive benchmark tailored for advanced, multi-disciplinary language326

understanding and reasoning at the proficient level. The GSM8K dataset comprises linguistically327

diverse math word problems from grade school curricula, crafted by human experts. MuSR is a328

specialized dataset designed to assess language models’ performance on multi-step soft reasoning329

tasks presented in natural language narratives. IFEval, meanwhile, provides verifiable instructions to330

test large language models’ ability to follow instructions accurately.331

E Additional Results332

E.1 Benchmark Results333

We further conduct a synthetic analysis to demonstrate the value of multiple generations. Using334

k = 50 as the oracle (i.e., the full set of generated samples), we evaluate k = 1, 5, 10, 20 over 1000335

trials each by sampling with replacement. As shown in Fig. 3, increasing k leads to narrower 95%336

confidence intervals that coverage the true score. In contrast, greedy decoding exhibits a consistent337

performance gap, suggesting that even a modest number of sampled generations better approximates338

P(correct) than greedy decoding.

Table 2: Results on four benchmark datasets with four open source LLMs. "n" is the number
of prompts, "Greedy" denotes greedy decoding, "Sample (k=50)" is the random sample with 50
generations and "∆ (k = 1)" denotes the performance gap between the best and worst run with 1
generation. We include both benchmark score and SE.

Benchmark n Llama 3.1 8b Instruct Llama3.1 70b Instruct
Greedy Sample (k = 50) ∆(k = 1) Greedy Sample (k = 50) ∆(k = 1)

MMLU-Pro 12, 187 46.2 (0.45) 46.1 (0.39) 10.0 63.8 (0.44) 63.4 (0.40) 3.9
GSM8K 1, 319 86.1 (0.95) 85.6 (0.68) 18.6 95.6 (0.56) 95.3 (0.45) 4.8
IFEval 541 74.5 (1.87) 71.1 (1.51) 8.3 82.6 (1.64) 80.2 (1.42) 5.9
MuSR 756 24.8 (1.65) 29.0 (1.00) 8.2 56.3 (1.80) 57.9 (1.40) 5.4

Benchmark n Qwen 2.5 7B Instruct Ministral 8B Instruct
Greedy Sample (k = 50) ∆(k = 1) Greedy Sample (k = 50) ∆(k = 1)

MMLU-Pro 12, 187 53.3 (0.45) 53.0 (0.36) 1.3 39.7 (0.44) 36.3 (0.29) 1.5
GSM8K 1, 319 90.2 (0.82) 90.2 (0.65) 2.3 86.1 (0.95) 84.9 (0.73) 3.1
IFEval 541 72.6 (1.92) 71.2 (1.64) 5.9 51.4 (2.15) 49.8 (1.65) 5.6
MuSR 756 49.2 (1.82) 50.9 (0.98) 8.3 49.7 (1.82) 50.8 (0.91) 8.6

339

E.2 Varying Temperature T340

To investigate how temperature influences the P(correct) distribution, we vary the sampling tempera-341

tures T across 0.4, 0.7, and 1.0 for the GSM8K and MUSR datasets using the Llama 8B and 70B342

models. The results are in Figure E.2. We find that for the smaller 8B model, as T increases, the343

distribution becomes more unstable with a more diffuse density. However, for the larger model, the344

P(correct) is less sensitive to changes in T .345

F Semantic Consistency for Responses: S (consistency)346

Apart from the correctness, we can also measure the difficulty of benchmark prompts by examining347

the semantic complexity from multiple generations. This is because analyzing the nature of errors348
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Figure 3: Benchmark score of IFEval over different k.
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Figure 4: Distribution of P (correct) for GSM8K and MUSR when varying temperature T .
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produced by LLMs can provide valuable insights into their decision-making processes. Specifically,349

it can help us determine whether LLMs tend to make consistent or varied mistakes, shedding light on350

their limitations and potential areas for improvement.351

We can group responses into multiple clusters based on their semantic meaning using bidirectional352

entailment predictions from a Natural Language Inference (NLI) model, such as DeBERTa or a353

prompted large language model (LLM).354

One common metric for quantifying consistency is the number of semantic sets, originally developed355

for uncertainty quantification in LLMs. The number of semantic sets assumes that a higher number356

of distinct semantic sets corresponds to lower consistency.357

However, the number of semantic sets only considers the number of clusters, without taking into358

account the proportion of generations within each cluster. For instance, consider two scenarios with 8359

generations and 2 clusters: one where 1 generation falls into the first cluster and 7 into the second,360

versus another where 4 generations fall into each cluster. While these scenarios clearly represent361

different levels of consistency, the semantic set metric fails to distinguish between them, highlighting362

the need for a more nuanced approach to evaluating consistency.363

Here, we utilize a metric called semantic set entropy to better account for the proportions of semantic
clusters. Given a set of k generations and clustering them into C semantic sets, the semantic set
entropy can be represented as:

S (consistency) =
C∑

c=1

Propc log Propc,

where Propc measures the proportion of generations in group c and its empirical estimator P̂ropc =364
# generations in set c

m with finite m samples. This can be seen as negative semantic set entropy, the larger,365

more consistent.366

G Proof of Lemma 2.1367

Restate of Lemma 2.1:368

Given the model369
pi ∼ P(µ, σ; θ) for i = 1, · · · , n

yi,j ∼ Bernoulli(pi) for j = 1, · · · , k, (4)

and the moment estimator µ̂ =
∑n

i=1

∑k
j=1 yi,j

nk . Then µ̂ is an unbiased estimator for µ and its variance370

equals371

Var(µ̂) =
1

nk

(
µ− µ2 − σ2

)
︸ ︷︷ ︸

Withth-prompt Variance

+
1

n
σ2︸︷︷︸

Between-prompt Variance

.

Proof : Firstly we show µ̂ is an unbiased estimation of µ, which can be directly show by the372

expectation:373

E [µ̂] =

∑n
i=1

∑k
j=1 yi,j

nk

=

∑n
i=1 E

[∑k
j=1 yi,j

]
nk

(3)
=

∑n
i=1 E

[
E
[∑k

j=1 yi,j | pi
]]

nk

=

∑n
i=1 kE [pi]

nk

=

∑n
i=1 kµ

nk
= µ,
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where (3) utilizes the law of total expectation. Hence µ̂ is unbiased estimator of µ. The variance of µ̂374

can be further shown:375

Var (µ̂) = Var

(∑n
i=1

∑k
j=1 yi,j

nk

)

=
1

n2k2

 n∑
i=1

Var

 k∑
j=1

yi,j


(3)
=

1

n2k2

 n∑
i=1

E

Var

 k∑
j=1

yij | pi


+ Var

E

 k∑
j=1

yij | pi


=

1

n2k2

(
n∑

i=1

E [kpi (1− pi)] + Var (kpi)

)

=
1

n2k2
(
nk
(
E [pi]− E

[
p2i
])

+ nk2Var (pi)
)

=
1

nk

(
µ− µ2 − σ2

)
︸ ︷︷ ︸

Withth-prompt Variance

+
1

n
σ2︸︷︷︸

Between-prompt Variance

.

where (3) utilizes the low of total variance.376

Figure 5: Examples of detected mislabeled and ambiguous prompts in GSM8K.
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