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Abstract

Knowledge distillation (KD) addresses model compression by distilling knowledge
from a large model (teacher) to a smaller one (student). The existing distillation
approaches mainly focus on using different criteria to align the sample represen-
tations learned by the student and the teacher, while they fail to transfer the class
representations. Good class representations can benefit the sample representation
learning by shaping the sample representation distribution. On the other hand, the
existing approaches enforce the student to fully imitate the teacher while ignoring
the fact that the teacher is typically not perfect. Although the teacher has learned
rich and powerful representations, it also contains unignorable bias knowledge
which is usually induced by the context prior (e.g., background) in the training
data. To address these two issues, in this paper, we propose comprehensive, in-
terventional distillation (CID) that captures both sample and class representations
from the teacher while removing the bias with causal intervention. Different from
the existing literature that uses the softened logits of the teacher as the training
targets, CID considers the softened logits as the context information of an image,
which is further used to remove the biased knowledge based on causal inference.
Keeping the good representations while removing the bad bias enables CID to have
a better generalization ability on test data and a better transferability across different
datasets against the existing state-of-the-art approaches, which is demonstrated by
extensive experiments on several benchmark datasets1.

1 Introduction

The superior performances of deep neural networks (DNNs) are accompanied with large amounts
of memory and computation requirements, which seriously restricts their deployment on resource-
limited devices. An effective and widely used solution to this issue is knowledge distillation [19, 37]
that compresses a large network (teacher) to a compact and fast network (student) by knowledge
transfer. To this end, the student obtains a significant performance boost.

The original knowledge distillation (KD) [19] uses the softened logits generated by a teacher as the
targets to train a student. Ever since then, substantial efforts including [37, 45] have been made on
aligning the sample representations learned by the student with those learned by the teacher using
different criteria. However, almost all the existing approaches [45, 49, 58] have overlooked the class
representations. Good class representations are beneficial to sample representation learning, since they
can shape the sample representation distribution. To address this issue, we propose comprehensive
distillation to incorporate the class representations learned by the teacher into the distillation process.

On the other hand, as the teacher has learned rich and powerful representations, the existing ap-
proaches enforce the student to fully mimic the behavior of the teacher. However, fully imitating

1Code: https://github.com/Xiang-Deng-DL/CID
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Figure 1: Misclassification caused by context prior in the training dataset.

the representations of the teacher may not be optimal, since the bias contained in the teacher is also
transferred to the student. The bias is usually caused by the context prior in the training data. For
example, as shown in Figure 1, the dogs in the training dataset are usually on green grasses and the
cats are in a room, which misleads the trained classifier to classify the cats on green grasses in the
test dataset as dogs and the dogs in a room as cats due to the bias induced by the context. Similar
cases can also happen on the attributes of data samples, e.g., when the colors of the dogs in the
training dataset are mostly black, the black cats in the test dataset may be wrongly classified as dogs.
Transferring this kind of the bias contained in the pretrained teacher to the student hurts the student.

Since the biased knowledge in the teacher is caused by the training data, we assume that the training
data used by the teacher and those used by the student are from the same distribution. This is not a
strong assumption in knowledge distillation literature as almost all the existing work uses the same
dataset when training a teacher and a student, which obviously satisfies the assumption. Contrary to
this assumption, when the training data for the teacher and the student are from different distributions,
two issues arise. First, the teacher may not be able to teach the student anymore due to the data
distribution discrepancy. Second, new biases will be introduced in the distillation process from the
new training dataset. We leave these questions for the future work.

Under the above assumption, we formulate the causal relationships [32] among the pretrained teacher,
the samples, and the prediction in a causal graph as shown in Figure 4(a). More details are given in
Section 3.2.1. We then use the softened logits learned by the teacher as the context information of an
image to remove the biased knowledge based on backdoor adjustment [14]. To this end, we propose
a simple yet effective framework (i.e., CID) to achieve comprehensive distillation and bias removal.

We summarize our contributions and the differences from the existing approaches as follows:

• We propose a novel knowledge distillation framework, i.e., CID, which captures comprehen-
sive representations from the teacher while removing the bias with causal intervention. To
our best knowledge, this is the first work to study how to use causal inference to address
KD-based model compression.

• CID is different from the existing approaches in two aspects. First, CID is able to transfer
the class representations which are largely ignored by the existing literature. Second, CID
uses softened logits as sample context information to remove biases with causal intervention,
which differs from the existing literature that uses the softened logits as the training targets
to train a student. Keeping the good knowledge while removing the bad bias enables CID to
have a better generalization on test data and a better transferability on new datasets.

• Extensive experiments on several benchmark datasets demonstrate that CID outperforms the
state-of-the-art approaches significantly in terms of generalization and transferability.

2 Related Work

Knowledge Distillation. Hinton et al. [19] propose the original KD that trains a student by using the
softened logits of a teacher as targets. Compared to one-hot labels, the logits provide extra information
learned by the teacher [19, 13]. However, KD fails to transfer the powerful representations learned
by the teacher. Ever since then, many efforts have been made on aligning the sample representations
learned by a student and a teacher. FitNet [37] aligns the sample representations learned by a student
with those learned by a teacher through regressions. AT [56] distills sample feature attention from a
teacher into a student. CRD [45] maximizes the mutual information between sample representations
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learned by a student and a teacher. SRRL [21] aligns the sample representations of a teacher and a
student by using the teacher’s classifier. CC [35] and SP [46] transfer the sample correlation over
the whole dataset to the student, which may contain redundant and irrelevant information as pointed
out in [7]. Similarly, other approaches [52, 20, 22, 25, 42, 48, 17, 8, 2, 23, 1, 40, 45, 49, 21, 12] use
different criteria to align the sample representations. We notice that almost all these approaches only
transfer the sample representations while largely ignoring the class representations which can benefit
the sample representation learning by shaping the sample representation distribution.

Causal Inference. Causal inference [33, 34, 38] aims to explore the cause-effect relationships
between different variables. It can not only be used to interpret a particular phenomenon [6, 26],
but also serve as a tool to address problems by determining and using the causal effects [3, 5, 29].
Recently, it has been introduced to machine learning [4] and has been used in different applications,
including but not limited to domain adaptation [15, 27], imitation learning [10], image captioning
[51], scene graph generation [44], visaul dialog [36], few-shot learning [54], imbalance classification
[43], semantic segmentation [53, 57], VQA [28], and unsupervised learning [47]. In this work, we
provide an interventional framework for knowledge distillation to remove the biased knowledge in
the teacher.

3 Comprehensive, Interventional Distillation

In this section, we first describe the comprehensive distillation which takes both the sample and
class representations into account. We then present interventional distillation to remove the biased
knowledge with causal intervention and thus achieve comprehensive, interventional distillation (CID).

3.1 Comprehensive Representation Distillation

CID considers both sample and class representations and thus achieves comprehensive distillation.

Which layer’s sample representations are transferred? Many approaches [37, 45] transfer the
intermediate or the last few layers’ feature representations. In contrast, CID only distills the feature
vectors in the last layer (before the classifier), since only these vectors are directly involved in making
the final prediction. We empirically validate this point in Section 4.1.

The criterion to align representations. We slightly modify the mean square error (MSE) as the
criterion to align the sample representations. MSE is used in FitNet [37] for transferring the sample

Figure 2: Feature norm distribution
of ResNet32×4 on CIFAR-100.

representations. However, we find that MSE has a disadvan-
tage that it biases towards the samples that have large-norm
features. For example, for MSE(Va, Vb)=||Va − Vb||2 where
Va and Vb are the variable and target, respectively, when Va

= [0.02, 0.02] and Vb = [0.01,−0.01], the gradient is only
2(Va − Vb) = [0.02, 0.06]. It is observed that Va and Vb have
totally different directions and are orthogonal, but the gradient
is very small due to the small norms of the two vectors. In
contrast, for large vectors Va = [10, 20] and Vb = [9.5, 19.5],
the gradient is [1, 1] which is much larger than [0.02, 0.06],
even if the two vectors are very close in terms of both direc-
tions and norms. The inherent disadvantage of MSE makes
the samples with different feature norms contribute differently
to the student, which induces biases. As shown in Figure 2,
the norms of the sample features learned by the teacher are across a wide range and have a noticeable
variance. One natural idea to address this issue is to use the MSE of the normalized vectors, i.e.,
|| Va

||Va||2 −
Vb

||Vb||2 ||
2. However, this loss only aligns the directions of the two vectors and the minimum

point is not necessarily Va = Vb anymore, e.g., Va = [1, 1] and Vb = [100, 100] are a solution to this
loss due to the same vector direction although they are different substantially. To address this issue,
we propose Normalized MSE (NM_MSE):

M(Va, Vb) =
MSE(Va, Vb)

||Vb||2
=
||Va − Vb||2

||Vb||2
(1)

where ||.||2 denotes the square of L2 norm. NM_MSE can be considered as a sample-wise weighted
MSE and the weights 1

||Vb||2 for different samples are negatively related to their target feature vector
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Figure 3: Class representation transfer.
norms, which mitigates the bias and makes different samples equally contribute to the student.
Although this is a slight modification to the original MSE, we empirically find that it performs much
better than MSE on benchmark datasets.

Class representations. The existing approaches only enable the student to capture the sample
representations from the teacher while overlooking the class representations. CID incorporates this
part into the distillation process. CID uses the class shapes to represent the class representations. As
shown in Figure 3, the shape of a class is a graph with all the samples in the class as the nodes. The
weight between two nodes is defined as the representation similarity between the two nodes. We
adopt the cosine similarity and thus the class representation of class i is expressed as:

Ci = [
hi
1

||hi
1||2

,
hi
2

||hi
2||2

, ..,
hi
k

||hi
k||2

]T [
hi
1

||hi
1||2

,
hi
2

||hi
2||2

, ..,
hi
k

||hi
k||2

] (2)

where hi
j denotes the feature vector of sample j in class i; k is the total number of samples in class

i; superscript T means transpose; ||.||2 denotes L2 norm. The class representation is different from
the sample-class relation defined in [7] which only captures sample-to-class-center similarity while
failing to capture sample-to-sample relations and thus cannot well represent a class.

The objective for comprehensive representation distillation. CID transfers comprehensive knowl-
edge consisting of both sample and class representations from a teacher to a student, and thus the
objective for comprehensive distillation is written as:

Lrep(S, T ) = αM(hT
s W,ht) + β

m∑
i=1

||CS
i − CT

i ||2 (3)

whereM is the proposed NM_MSE; hs ∈ Rms and ht ∈ Rmt are the sample representations learned
by student S and teacher T, respectively; W ∈ Rms×mt is a linear transformation for converting hs

to the space with dimension mt; CS
i and CT

i are the ith class representations learned by S and T,
respectively; m is the total number of classes; α and β are two balancing weights.

3.2 Interventional Distillation

Although a teacher has learned good representations, it is typically not perfect. Comprehensive
distillation enables the student to inherit the superior representations from the teacher while it also
introduces the bias to the student. To address this issue, we use causal intervention to remove the bias.

3.2.1 Structural Causal Model

In knowledge distillation, the pretrained teacher with the context information in training data can
be considered as the prior knowledge for training the student. We illustrate the causalities among
prior knowledge K, sample X , and prediction Y in Figure 4(a), where A→ B denotes that A is the
causer of B. We describe the causal relationships among these variables in the following.

K →X: the context prior in K determines where the object appears in an image X , e.g., the context
prior in the training dataset in Figure 1 puts the dog object in green grasses instead of rooms.

K → J ← X: J is the context-based representation of X by using the context bases in K. This
relationship exists due to the fact that even for the same image, its context representation under
different dataset contexts or with different pretrained teachers can differ substantially.
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Figure 5: Interventional Distillation. A network can be represented as an encoder f() followed by a
linear classifier g() so that teacher T (X) = gt(ft(X)) and student S(X) = gs(fs(X)).

(a) Causal model (b) Intervention

Figure 4: Causal model and intervention.

X → Y ← J: Besides the regular X → Y , the predic-
tion is also affected by the prior knowledge K through
mediation J . For example, in Figure 1, the cats in the test
dataset are misclassified to dogs, since the context prior in
K misleads the model to focus on the grass feature in X .

Therefore, the prior knowledge K is a confounder of
X and Y . The existing approaches that directly learn
P (Y |X) from the teacher bring the bias to the student
model. We propose to model P ((Y |do(X)) with causal
intervention [33] to remove the bias.

3.2.2 Interventional Distillation via Backdoor Adjustment

After determining the cause-effect relationships, we use causal intervention P (Y |do(X)) instead of
P (Y |X) as the classifier, which pursues the true causality from X to Y by removing the effects of
confounder K. Physical intervention, i.e, collecting samples with objects in all possible contexts
evenly, is impossible [57]. Thanks to backdoor adjustment, we can model P (Y |do(X)) by cutting
off K → X , which is achieved by stratifying the confounder into pieces K = {k1, k2, ..., k|K|}, so
that K is not a confounder of X and Y anymore as shown in Figure 4(b). The de-confounded student
is expressed as:

P (Y |do(X)) =

|K|∑
i=1

[P (Y |X, J = g(X, ki))P (ki)] (4)

where g() is a function which we define later for generating context representation J from X and ki.

As there are m classes which can be considered as m different context items [54], we set each item
ki of the prior knowledge to a class ci, i.e., K = {ci}mi=1. The m context base vectors are set to the
class centers. Since different samples in a class have different probabilities of containing the object
ci, we use the the weighted average of sample features as the class center.

c̄i =

∑k
j=1 P (ci|xj)hj∑k
j=1 P (ci|xj)

(5)

where k is the total number of samples in class ci. P (ci|xj) is set to the teacher learned probability.

With context base vectors, we define the sample-specific context representation J as a linear com-
bination of the context base vectors. As the logits learned by the teacher contain sample-to-class
similarities, we use the softened logits to approximate the context coefficients to provide context infor-
mation. The coefficient learned by the teacher for sample X on base c̄i is written as ati = σ(T (X)

τ )[i],
where τ is temperature to soften the logits and σ is the softmax function. J can thus be expressed
as: J = g(X, ci) = aic̄i. Since the teacher has learned appropriate context information, we enforce
the student to learn the context information from the teacher, which leads to the final interventional
distillation objective:

Linv = P (Y |do(X)) +K(asi , ati) =
m∑
i=1

[P (Y |fs(X)&(asi c̄i))P (ci)] +K(asi , ati) (6)
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where & denotes the concatenation operation; K is a metric to force the student to learn the context
information from teacher. The learned context information is then used in the first term (for causal
intervention) to make the final prediction through a linear classifier. we set K to KL-divergence in
this paper. We simply set the weight for K() to 1 as we find that it works very well. P (ci) is set to
the percentage of the samples in class ci, e.g., in balanced datasets, P (ci) = 1

m . We summarize the
interventional distillation in Figure 5.

The
∑

operation in (6) makes the forward cost of the final linear classifier linearly increase with the
number of classes. This issue can be addressed by adopting the normalized weighted geometric mean
[50] as an approximation:

Linv ≈ P (Y |fs(X)&

m∑
i=1

[P (ci)asi c̄i]) +K(asi , ati) (7)

The complete objective of CID. CID aims to achieve comprehensive knowledge distillation while
removing the bad bias with causal intervention. Thus, its final objective is written as:

LCID = Linv + αM(hT
s W,ht) + β

m∑
i=1

||CS
i − CT

i ||2 (8)

4 Experiments

In this section, we first conduct ablation studies and then compare CID with SOTA approaches.

4.1 Ablation Studies

The ablation studies are conducted on CIFAR-100 by using WRN-40-2 and WRN-16-2 as the teacher
and the student, respectively.

Effects of different components of CID. We use w/o SR, w/o CR, and w/o INV to denote CID
without the sample representation distillation, without the class representation distillation, and without
the intervention P (Y |do(X)) by using the regular P (Y |X), respectively. As shown in Figure 6,
the performances drop significantly without any of these terms. Specifically, as expected, sample
representations play the most important role with performance gain 1.51%, since sample representa-
tions are directly involved in making final predictions and are further used in class representation
distillation and causal intervention for removing biases. The improvement of the class representation
distillation is 0.65%, which suggests that good class presentations benefit the sample representation
learning and thus benefit the performance. On the other hand, by using the proposed P (Y |do(X))
instead of P (Y |X) to pursue the true causality from X to Y , the student obtains 0.70% improvement,
which demonstrates the effectiveness and necessity of the interventional distillation.

Effects of NM_MSE. The proposed NM_MSE is modified from MSE by using a personalized weight
for each sample to remove the feature norm biases of the teacher so that each sample contributes
equally to the student model. Despite its simplicity, it is observed in Figure 6 that NM_MSE (i.e., CID)
substantially outperforms MSE (i.e., CIDmse), which demonstrates the superiority of NM_MSE.

Which layer’s representations should be transferred? CID transfers the last layer’s feature vectors
of the teacher to the student with the motivation that these features are directly involved in making
the final prediction. We check the effects of distilling the representations in different layers. We
report the results in Figure 7. It is observed that the sample representations in the last layer are more
effective than those in the other layers, and even better than the combination of the representations in
all the layers, The reason can be that as the representations in the intermediate layers are not directly
used for the final prediction, enforcing the student to imitate these representations hurts the learning
ability and flexibility of the student which has a small capacity.

4.2 Comparison Settings with SOTA Approaches

We compare CID with SOTA approaches across varieties of (a) benchmark datasets (i.e., CIFAR-10
[24], CIFAR-100 [24], Tiny ImageNet 2, and ImageNet [11]), (b) network architectures (i.e., ResNet

2https://tiny-imagenet.herokuapp.com
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Figure 6: Effects of different components of
CID.

Figure 7: Effects of distilling the sample represen-
tations in different layers.

Table 1: Test accuracies (%) on CIFAR-10.

Teacher
(#Params)

WRN-16-4
(2.75M)

ResNet-56
(0.86M)

ResNet-56
(0.86M)

WRN-16-4
(2.75M)

ResNet-110
(1.73M)

Student
(#Params)

WRN-16-1
(0.18M)

ResNet-14
(0.18M)

ResNet-8
(0.08M)

ResNet-14
(0.18M)

WRN-16-1
(0.18M)

Teacher 95.04 93.87 93.87 95.04 94.00
Vanilla Student 91.32 91.33 88.55 91.33 91.32

KD 92.55±0.10 91.88±0.22 88.70±0.18 92.33±0.23 91.52±0.16
FitNet 92.51±0.26 91.74±0.19 88.74±0.15 92.55±0.14 91.46±0.17
CC 92.54±0.23 92.09±0.27 88.71±0.16 92.54±0.18 91.66±0.29
RKD 92.77±0.18 92.10±0.14 88.14±0.08 92.60±0.29 91.81±0.21
AB 92.39±0.30 92.14±0.19 88.85±0.18 92.40±0.09 91.31±0.21
CRD 90.96±0.20 90.41±0.13 88.40±0.09 91.17±0.14 90.27±0.20
SRRL 92.56±0.14 91.87±0.12 88.76±0.20 92.30±0.25 91.83±0.15
CID 92.95±0.10 92.31±0.20 89.42±0.13 92.87±0.24 92.36±0.18

[16], WRN [55], VGG [41], and MobileNet [39]), (c) settings (i.e., the teacher and the student share
the architecture or use different architectures), (d) cases (i.e., regular cases, across-dataset cases, and
data-limited cases). The competitors include FitNet [37], AT [56], SP [46], CC [35], PKT [31], AB
[18], VID [2], RKD [30], CRD [45], SRRL [21], and CSKD [7]. Since CID uses the logits of teacher
to provide context information for each sample, for a fair comparison, the KD [19] loss is added to
all the competitors. We omit "+KD" for simplicity when denoting these competitors plus KD, e.g.,
"FitNet+KD" is abbreviated to "FitNet". On the other hand, since CID does intervention with the
assistance of a linear layer, we also try to add an extra linear layer to the competitors, but we find that
it hurts their performances due to overfitting, which we report in Appendix.

4.3 Model Compression

CIFAR-10: Table 1 reports the comparison results on CIFAR-10. We adopt the teacher and the
student with the same architecture or different architectures. It is observed that CID consistently
outperforms all the baselines significantly across different architectures on both settings, while there
is no baseline consistently as the second best, since these baselines show their advantages in different
architectures. These results demonstrate the superiority of CID.

CIFAR-100: We further report the comparison results on CIFAR-100 in Table 2. For a fair compari-
son, we adopt the architectures from the SOTA approaches (CRD [45] and SRRL [21]). As shown in
Table 2, for compressing the large models to the smaller ones, CID obtains the best performances in
different settings, which demonstrates the effectiveness of CID for model compression. The superior
performances of CID are due to its ability to distill comprehensive knowledge and remove biases.

Tiny ImageNet: We further evaluate CID in more challenging datatset Tiny ImageNet. Table 3 shows
that CID beats all the SOTA approaches substantially in terms of both Top-1 and Top-5 accuracies on
the challenging dataset, which validates the usefulness and superiority of CID on different datasets.

ImageNet: To investigate the performance of CID on large scale datasets, we follow CRD by adopting
ImageNet and using ResNet-34 and ResNet-18 as the teacher and the student, respectively. As shown
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Table 2: Test accuracies (%) on CIFAR-100.

Teacher
(#Params)

WRN-40-4
(8.97M)

WRN-40-2
(2.26M)

ResNet-56
(0.86M)

ResNet-50
(23.71M)

ResNet-50
(23.71M)

Student
(#Params)

WRN-16-2
(0.73M)

WRN-16-2
(0.73M)

ResNet-20
(0.29M)

MobileNetV2
(1M)

VGG-8
(4M)

Teacher 79.50 75.61 72.34 79.34 79.34
Vanilla Student 73.26 73.26 69.06 64.60 70.36

KD 74.52±0.20 74.92±0.28 70.66±0.24 67.35±0.32 73.81±0.13
FitNet 74.48±0.27 75.12±0.33 70.70±0.24 66.96±0.24 73.24±0.27
AT 74.70±0.13 75.32±0.15 71.08±0.34 66.13±0.23 74.01±0.25
SP 74.79±0.31 74.98±0.28 70.66±0.12 68.54±0.35 73.52±0.25
CC 74.48±0.19 75.09±0.23 71.30±0.31 68.95±0.15 73.48±0.29
VID 74.83±0.10 75.14±0.15 71.18±0.09 68.34±0.31 73.46±0.25
RKD 74.66±0.26 74.89±0.20 70.93±0.25 68.66±0.34 73.51±0.33
PKT 75.21±0.22 75.33±0.18 71.53±0.26 68.41±0.14 73.61±0.28
CRD 75.49±0.28 75.64±0.21 71.63±0.15 69.54±0.39 74.58±0.27
SRRL 75.96±0.21 75.96±0.25 71.44±0.18 69.45±0.29 74.46±0.25
CSKD 74.66±0.35 75.11±0.15 71.30±0.26 68.80±0.36 73.61±0.17
CID 76.40±0.15 76.55±0.19 71.90±0.27 69.68±0.26 74.75±0.17

Table 3: Test accuracies (%) on Tiny ImageNet.

Teacher: WRN-40-2, Student: WRN-16-2 Teacher: VGG-13, Student: VGG-8

Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

Teacher 61.84 84.11 61.62 81.71
Vanilla Student 56.13 79.96 55.46 78.15

KD 58.27±0.17 82.10±0.15 60.21±0.19 81.61±0.28
FitNet 59.58±0.24 82.59±0.18 60.11±0.13 82.11±0.16
SP 58.52±0.36 82.10±0.15 60.94±0.24 82.42±0.20
CC 60.12±0.12 83.08±0.10 61.11±0.34 82.44±0.28
VID 59.91±0.10 83.16±0.17 61.35±0.17 82.61±0.23
RKD 59.29±0.23 82.99±0.07 60.54±0.25 82.39±0.16
CRD 59.86±0.29 83.18±0.15 61.98±0.27 82.64±0.19
SRRL 59.90±0.25 82.98±0.21 61.30±0.21 82.31±0.26
CID 60.51±0.19 83.52±0.20 62.86±0.18 83.81±0.13

in Table 4, CID outperforms these competitors significantly, which demonstrates the applicability
and effectivness of CID on large scale datasets.

4.4 Transferability Comparison

An important goal of representation learning is to learn general representations which can be trans-
ferred to different datasets. We investigate the across-dataset generalization ability of CID. For a fair
comparison, we follow the settings of CRD. Specifically, we freeze the feature encoder of the student
and train a linear classifier on STL-10 [9] or TinyImageNet. WRN-40-2 and WRN-16-2 are adpoted
as the teacher and the student, respectively.

The transferability comparison results are reported in Table 5. It is clearly observed that CID beats
the prior work substantially on both datasets, which demonstrates its superior generalization ability
on new data. The reason is that when transferring the knowledge from one dataset to another, the
inherited bias from the teacher can be a disaster to the new dataset. The ability of CID to remove the
biased knowledge mitigates this issue, thus leading to a better generalization on new datasets.

4.5 Data-Limited Distillation Performances

In reality, it happens that when a powerful model is released, only a few data samples are publicly
accessible due to the privacy or confidentiality issues in various domains such as medical and industrial
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Table 4: Comparison results on ImageNet.

Teacher Vanilla Student KD OFD AT SRRL CRD SP CC CID

TOP-1 (%) 73.3 69.8 70.7 71.1 70.7 71.7 71.4 70.2 70.0 71.9
TOP-5 (%) 91.4 89.1 89.9 90.1 90.0 90.6 90.5 89.8 89.2 90.7

Table 5: Transferability performances.

Cross-dataset Teacher Student KD AT FitNet CRD SRRL CID

CIFAR-100 to STL-10 68.6 69.7 70.9 70.7 70.3 72.2 71.0 72.5
CIFAR-100 to Tiny ImageNet 31.5 33.7 33.9 34.2 33.5 35.5 34.3 35.9

Table 6: Comparison results in the data-limited scenario.

Training Data Student KD FitNet SP CC RKD PKT CRD SRRL CID

20% 52.50 59.14 58.41 60.35 58.60 58.95 59.48 59.07 59.30 62.13
40% 61.45 66.89 65.94 66.73 66.27 66.15 66.13 66.84 66.40 68.64
60% 65.57 69.90 69.21 69.70 69.38 69.74 70.18 70.53 70.01 70.85

domains. It is thus necessary for distillation approaches to work on these practical cases. We compare
CID with the existing approaches in the data-limited scenario on CIFAR-100 by using VGG-13 and
VGG-8 as the teacher and the student, respectively. As shown in Table 6, CID outperforms all the
baselines by a large margin in all the three cases with 20%, 40%, and 60% training data. We also
notice that the advantage of CID is more obvious when fewer training data are available, e.g., the
improvement of CID over the second best method is about 2% on 20% or 40% training data cases,
which is much higher than the improvement on 60% training data. The reason is that when fewer data
samples are available, these samples are severely inadequate to represent the real data distribution so
that the biases become more serious. While the existing approaches fail to handle this issue, CID is
able to address it with the interventional distillation, which leads to a better performance.

5 Conclusion, Limitations, and Broader Impact

Conclusion. In this paper, we have proposed comprehensive, interventional distillation (CID) that
captures both sample and class representations while removing the bias by using softened logits as the
context information based on causal intervention. To our best knowledge, CID is the first framework
along the line of using causal inference to address KD-based model compression. To this end, CID is
able to keep the good representations and remove the bad bias. Extensive experiments demonstrate
that CID has a better generalization ability on test data and a better transferability across different
datasets against the existing SOTA approaches.

Limitations. A major assumption in CID is that the training data used by the teacher and the
student are from the same distribution. The assumption is typically satisfied in knowledge distillation
literature as almost all the existing work uses the same data to train the teacher and the student. On
the other hand, when the assumption is violated, new biases will be introduced from the new data.
CID is not designed to solve this problem and we leave this question to the future work. Also, when
the training data used by the student and the teacher differ substantially, the teacher may not be able
to supervise the student anymore. The role of the teacher needs to be changed in this case, which we
leave for the future work.

Broader Impact. There is an increasing interest in implementing DNNs on portable devices such as
smart phones and watches, while DNNs need a large amount of memory and computation, which
highly limits their deployments on these resource-limited devices. CID can be used to address this
issue by compressing large models (teachers) to small and fast ones (students). The advantage of CID
over the other distillation approaches is that it not only enables the students to inherit comprehensive
knowledge from the teachers but also removes the bad biased knowledge, which leads to a better
generalization and transferability. More essentially, in real world, collecting data is very expensive,
while using sparse data points to train a student induces severe biases, which poses challenges to
the existing distillation approaches. CID is able to address this problem with the interventional
distillation. So far, no negative impact has been observed.
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