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ABSTRACT

We propose a novel framework for few-shot learning by leveraging large-scale
vision-language models such as CLIP (Radford et al., 2021). Motivated by uni-
modal prototypical networks for few-shot learning, we introduce PROTO-CLIP
that utilizes image prototypes and text prototypes for few-shot learning. Specifi-
cally, PROTO-CLIP adapts the image and text encoder embeddings from CLIP in
a joint fashion using few-shot examples. The embeddings from the two encoders
are used to compute the respective prototypes of image classes for classification.
During adaptation, we propose aligning the image and text prototypes of the cor-
responding classes. Such alignment is beneficial for few-shot classification due
to the reinforced contributions from both types of prototypes. PROTO-CLIP has
both training-free and fine-tuned variants. We demonstrate the effectiveness of our
method by conducting experiments on benchmark datasets for few-shot learning,
as well as in the real world for robot perception. Code will be released upon
acceptance.

1 INTRODUCTION

We believe that few-shot learning (Wang et al., 2020) is a promising paradigm to enable autonomous
machines, such as robots, to recognize a large number of objects. The appeal lies in the ease of data
collection—just a few example images is sufficient for teaching a robot a novel object. On the contrary,
object model-based approaches build 3D models of objects and then use these 3D models (Calli
et al., 2015) for object recognition. Object category-based approaches focus on recognizing category
labels of objects such as 80 categories in the MSCOCO dataset (Lin et al., 2014). The limitation of
model-based object recognition is the difficulty of obtaining a large number of 3D models for many
objects in the real world. Current 3D scanning techniques cannot deal well with metal objects (e.g.,
knife) or transparent objects (e.g., glass cup). For category-based object recognition, it is difficult
to obtain a large number of images for each category in robotic settings. Large-scale datasets for
object categories such as ImageNet (Deng et al., 2009) and Visual Genome (Krishna et al., 2017)
are collected from the Internet. These Internet images are not very suitable for learning object
representations for robot manipulation due to domain differences. Thus, if a robot can learn to
recognize a new object from a few images of the object, it is likely to scale up the number of objects
that the robot can recognize overcoming the limitations of model-based and category-based object
recognition.

The main challenge in few-shot learning is how to achieve generalization with very limited training
examples. Learning good visual representations is the key to achieve good performance in few-shot
learning (Tian et al., 2020). Although the Internet images are quite different from robot manipulation
settings, they can be used to learn powerful visual representations. Recently, the CLIP (Contrastive
Language–Image Pre-training) model (Radford et al., 2021) trained with a large number of image-text
pairs from the Internet achieves promising zero-shot image recognition performance. Using the visual
and language representations from CLIP, several few-shot learning approaches (Zhou et al., 2022;
Gao et al., 2021; Zhang et al., 2022) are proposed to improve the zero-shot CLIP model. Gao et al.
(2021); Zhang et al. (2022) adapt the CLIP image encoder to learn better feature representations,
while Zhou et al. (2022) learns prompts for the CLIP model. On the other hand, few-shot learning
approaches are studied in the meta-learning framework (Finn et al., 2017). These approaches are
aimed at generalizing to novel classes after training. A notable method is Prototypical Network (Snell
et al., 2017) and its variants (Triantafillou et al., 2019; Doersch et al., 2020), which demonstrate
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Figure 1: Our PROTO-CLIP model learns a joint embedding space of images and text, where image
prototypes and text prototypes are learned and aligned using support sets for few-shot classification.

effective performance for few-shot learning. However, these methods do not leverage the powerful
feature representation of CLIP.

These observations motivate us to leverage CLIP in prototypical networks for few-shot learning.
We notice that existing methods for adapting CLIP models in few-shot learning adapt the image
encoder (Gao et al., 2021; Zhang et al., 2022) or the text encoder (Zhou et al., 2022) in CLIP. We argue
that if we can use both the image encoder and the text encoder for classification and jointly adapt the
visual and textual features using few-shot training images and prompts, we can improve the few-shot
classification performance. To achieve this goal, we propose PROTO-CLIP, a new model motivated
by the traditional unimodal Prototypical Networks (Snell et al., 2017). PROTO-CLIP utilizes image
prototypes and text prototypes computed from CLIP encoders for classification. In addition, we
propose to align the image prototype and the text prototype of the same class during adaptation.
In this way, both the image encoder and the text encoder can contribute to the classification while
achieving agreement between their predictions. Fig. 1 illustrates the concept of learning the joint
embedding space of images and text from PROTO-CLIP.

To verify the effectiveness of PROTO-CLIP, we have conducted experiments on commonly used
benchmarks for few-shot image classification, as well as the FEWSOL (P et al., 2023) dataset
introduced for few-shot object learning in robotic environments. In addition, we have built a robotic
system that integrates Automatic Speech Recognition (ASR), few-shot object recognition using
PROTO-CLIP and robotic grasping to demonstrate the robotic application of PROTO-CLIP.

2 RELATED WORK

In the context of image recognition, few-shot learning indicates using a few images per image
category. The problem is usually formulated as “N -way, K-shot”, i.e., N classes with K images per
class. In the traditional image classification setup, these NK images are used as training images.
Once a model is trained, it can be used to test images among N classes. Recent CLIP-based few-shot
learning methods fall into this setting.

CLIP-based Few-Shot Learning. The CLIP (Radford et al., 2021) model applies contrastive learning
to image-text pairs from the Internet. It consists of an image encoder and a text encoder for the
extraction of features from images and text, respectively. Its training objective is to maximize the
similarity between the corresponding image and text in a pair in a high-dimensional joint feature
space. After training, CLIP can be used for zero-shot image classification by comparing image
features with text embeddings of novel class names. This model is denoted as zero-shot CLIP. When a
few training images are available for each class, several approaches are proposed to improve zero-shot
CLIP. The linear-probe CLIP model (Radford et al., 2021) trains a logistic regression classifier using
CLIP image features. CoOp (Zhou et al., 2022) proposes to use learnable vectors as a prompt for
the CLIP text encoder for few-shot learning. CLIP-Adapter (Gao et al., 2021) learns two layers of
linear transformations on top of the image encoder and the text encoder with residual connections,
respectively, to adapt CLIP features for few-shot learning. Tip-Adapter (Zhang et al., 2022) builds a
key-value cache model, where keys are CLIP image features and values are one-hot vectors of the
class labels. Given a query image, its image feature is compared with the cache keys to combine the
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Method Use Support Sets Adapt Image Embedding Adapt Text Embedding Align Image and Text
Zero-shot CLIP (Radford et al., 2021) ✗ ✗ ✗ ✓
Linear-probe CLIP (Radford et al., 2021) ✓ ✓ ✗ ✗
CLIP-Adapter (Gao et al., 2021) ✓ ✓ ✓ ✗
CoOp (Zhou et al., 2022) ✓ ✗ ✓ ✗
Tip-Adapter (Zhang et al., 2022) ✓ ✓ ✗ ✗
Sus-X (Udandarao et al., 2022) ✓ ✓ ✗ ✗

PROTO-CLIP (Ours) ✓ ✓ ✓ ✓

Table 1: Comparison between our proposed method with existing CLIP-based methods for few-shot
learning. “Use Support Sets” indicates if a method uses support training sets for fine-tuning. “Adapt
Image/Text Embedding” indicates if a method adapts the image/text embeddings from CLIP. “Align
Image and Text” indicates if a method specifically aligns images and corresponding text in the feature
space.

value labels for classification. Tip-Adapter can also fine-tune the keys by treating them as learnable
parameters, which further improves the few-shot classification accuracy. Sus-X (Udandarao et al.,
2022) leverages the power of Stable Diffusion (Rombach et al., 2022) to create support sets and aims
to address the issue of uncalibrated intra-modal embedding distances in TIP-Adapter (Zhang et al.,
2022) by utilizing inter-modal distances as a connecting mechanism.

Table 1 compares our proposed method with existing CLIP-model-based few-shot learning methods.
By using the image prototypes and text prototypes for classification, our method can adapt both
the image embeddings and text embeddings from CLIP. In addition, the model aligns the image
prototypes and the text prototypes, which serves as a regularization term in adapting the feature
embeddings. We empirically verify our model by conducting experiments on benchmark datasets for
few-shot learning.

Meta-learning-based Few-Shot Learning. In parallel with these efforts to adapt CLIP for few-shot
learning, meta-learning-based approaches are also proposed for few-shot learning. While previous
CLIP-based models are tested on the same classes in training, the focus here is to learn a model
on a set of training classes Ctrain that can generalize to novel classes Ctest in testing. Each class
contains a support set and a query set. During training, the class labels for both sets are available.
During testing, only the class labels of the support set are available, and the goal is to estimate
the labels of the query set. Meta-learning-based approaches train a meta-learner with the training
classes Ctrain that can be adapted to the novel classes Ctest using their support sets. Non-episodic
approaches use all the data in Ctrain for training such as k-NN and its ‘Finetuned’ variants (Gidaris &
Komodakis, 2018; Qi et al., 2018; Chen et al., 2019; Tian et al., 2020). Episodic approaches construct
episodes, i.e., a subset of the training classes, to train the meta-learner. Representative episodic
approaches include Prototypical Networks (Snell et al., 2017), Matching Networks (Vinyals et al.,
2016), Relation Networks (Sung et al., 2018), Model Agnostic Meta-Learning (MAML) (Finn et al.,
2017), Proto-MAML (Triantafillou et al., 2019) and CrossTransformers (Doersch et al., 2020). The
Meta-Dataset (Triantafillou et al., 2019) was introduced to benchmark few-shot learning methods in
this setting. In this work, we consider training and testing in the same classes following previous
CLIP-based few-shot learning methods (Zhou et al., 2022; Gao et al., 2021; Zhang et al., 2022).

3 METHOD

We consider the N -way K-shot classification problem. In few-shot settings, K ≪ N . The image
set with class labels is considered as the support set: S = {xs

i , y
s
i }Mi=1, where xs

i denotes a support
image, ysi ∈ {1, 2, . . . , N} denotes the class label of the support image, and M is the size of the
support set. In N -way K-shot settings, M = NK. The goal of few-shot classification is to classify
the query set Q = {xq

j}Lj=1, i.e., L test images without class labels. Specifically, we want to estimate
the conditional probability P (y = k|xq,S) that models the probability distribution of the class label
y given a query image xq and the support set S.

Our PROTO-CLIP model (Fig. 2). We propose to leverage both the image encoder and the text
encoder in the CLIP model (Radford et al., 2021) to estimate the conditional probability of class label
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Figure 2: Overview of our proposed PROTO-CLIP model. The CLIP image encoder and text encoder
are frozen during training. The image memory, the text memory and the adapter network are learned.
Given a class name, τi returns the ith out of K̃ predefined text prompts.

as
P (y = k|xq,S) = αP (y = k|xq,Sx)︸ ︷︷ ︸

image probability

+(1− α)P (y = k|xq,Sy)︸ ︷︷ ︸
text probability

, (1)

where Sx = {xs
i}Mi=1 and Sy = {ysi }Mi=1 denote the image set and the label set of the support set

S, respectively, and α ∈ [0, 1] is a hyper-parameter to combine the two probabilities. To model the
probability distributions conditioned on Sx or Sy , we leverage the prototypical networks (Snell et al.,
2017):

P (y = k|xq,Sx) =
exp(−β∥gw1(x

q)− cxk∥22)∑N
k′=1 exp(−β∥gw1

(xq)− cxk′∥22)
, (2)

P (y = k|xq,Sy) =
exp(−β∥gw1

(xq)− cyk∥22)∑N
k′=1 exp(−β∥gw1

(xq)− cyk′∥22)
, (3)

where gw1(·) denotes the CLIP image encoder plus an adapter network with learnable parameters w1

used to compute the feature embeddings of query images. The CLIP image encoder is pretrained and
then frozen. cxk and cyk are the “prototypes” for class k computed using images and text, respectively.
β ∈ R+ is a hyperparameter to sharpen the probability distributions. We have the prototypes as

cxk =
1

Mk

∑
ys
i=k

ϕImage(x
s
i ), cyk =

1

M̃k

M̃k∑
j=1

ϕText(Promptj(y
s
i = k)), (4)

where Mk is the number of examples with label k, and M̃k is the number of prompts for label k. To
compute text embeddings, we can either directly input the class names such as “mug” and “plate”
into the text encoder, or convert the class names to phrases such as “a photo of mug” and “a photo
of plate” and then input the phrases into the text encoder. These phrases are known as prompts
of the vision-language models. We can use multiple prompts for each class label. ϕImage(x

s
i ) and

ϕText(Promptj(y
s
i = k)) denote the image embedding and the jth text embedding of the image-label

pair (xs
i , y

s
i ) computed using the CLIP image encoder and the text encoder, respectively. These

embeddings with dimension C of the support set form the image memory and the text memory, as
shown in Fig. 2. They are learnable embedding vectors initialized by the computed embeddings using
the CLIP image encoder and text encoder. We use cxk and cyk to denote the mean of the embeddings
of the images and the prompts for class k, respectively. Since the image embeddings and the text
embeddings are of the same dimension, we can compute the distance between the text prototype
cyk and the image embedding gw1

(xq) in Eq. 3. As we can see, our model leverages prototypical
networks with image encoder and text encoder from CLIP. We name it “PROTO-CLIP”.

Learning the memories and the adapter. During training, we can construct a support set S =
{xs

i , y
s
i }Mi=1 and a query set with ground truth labels Q = {xq

j , y
q
j}Lj=1. Then we can use S and Q
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Figure 3: Two designs of the adapters. (a) A Multi-layer perceptron-based adapter as in (Gao et al.,
2021). (b) A convolution-based adapter that we introduce. The feature dimension is for CLIP
ResNet50 backbone.

to learn the weights in PROTO-CLIP. First, the support set is used to initialize the image memory
Wimage and the text memory Wtext. Second, the weights in the adapter network applied to the
query images gw1

(·) need to be learned. Fig. 3 shows two designs of the adapter network, i.e., an
MLP-based adapter as in (Gao et al., 2021) and a convolution-based adapter that we introduce. The
convolution-based adapter has fewer weights to learn compared to the MLP-based one. We found
that the two adapters have their own advantages on different datasets in our experiments. Finally,
motivated by the CLIP-Adapter (Gao et al., 2021), we do not fine-tune the weights in the image
encoder and text encoder by freezing these weights during training. In this way, we can reuse the
weights of CLIP trained on a large number of image-text pairs and adapt the image embeddings and
the text embeddings.

Loss Functions. The first loss function is the negative log-probability of the true label for a query
image: L1(Wimage,Wtext,w1) = − logP (yq = k|xq,S), where P (yq = k|xq,S) is defined in
Eq. 1. Minimizing L1 learns the weights to classify the query images correctly. Second, we propose
aligning the image prototypes and the text prototypes in training. Let {cx1 , cx2 , . . . , cxN} be the image
prototypes computed from the image embeddings for the N classes and {cy1, c

y
2, . . . , c

y
N} be the

corresponding text prototypes. We would like to learn the model weights such that cxk is close to cyk
and far from other prototypes in the embedding space. We utilize the InfoNCE loss for contrastive
learning (Oord et al., 2018):

Lk
2(c

x
k, {c

y
k′}Nk′=1) = − log

exp(cxk · cyk)∑N
k′=1 exp(c

x
k · cyk′)

,Lk
3(c

y
k, {c

x
k′}Nk′=1) = − log

exp(cyk · cxk)∑N
k′=1 exp(c

y
k · cxk′)

(5)
for k = 1, . . . , N , where · indicates dot-product. Here, Lk

2(c
x
k, {c

y
k′}Nk′=1) compares an image

prototype cxk with the text prototypes {cyk′}Nk′=1, while Lk
3(c

y
k, {cxk′}Nk′=1) compares a text prototype

cyk with the image prototypes {cxk′}Nk′=1. In this way, we can align the image prototypes and the text
prototypes for the N classes. This alignment can facilitate classification, since the class conditional
probabilities are computed using the image prototypes and the text prototypes as in Eqs. 2 and 3. The
total loss function for training is:

L = − 1

L

L∑
j=1

logP (yqj = k|xq
j ,S) +

1

N

N∑
k=1

(
Lk
2(c

x
k, {c

y
k′}Nk′=1) + Lk

3(c
y
k, {c

x
k′}Nk′=1)

)
(6)

for a query set Q = {xq
j , y

q
j}Lj=1. Following previous CLIP-based few-shot learning methods (Zhou

et al., 2022; Gao et al., 2021; Zhang et al., 2022), the support set and the query set are the same
during training in our experiments, i.e., S = Q meaning any of the support samples can act as a
query sample during training.

4 EXPERIMENTS

Datasets and Evaluation Metric. Following previous CLIP-based few-shot learning methods (Zhou
et al., 2022; Gao et al., 2021; Zhang et al., 2022), we conduct experiments on the following datasets for
evaluation: ImageNet (Deng et al., 2009), StandfordCars (Krause et al., 2013), UCF101 (Soomro et al.,
2012), Caltech101 (Fei-Fei et al., 2004), Flowers102 (Nilsback & Zisserman, 2008), SUN397 (Xiao
et al., 2010), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), FGVCAircraft (Maji et al.,
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Figure 4: Barnes-Hut t-SNE visualization (Van Der Maaten, 2014) using the FewSOL dataset (P
et al., 2023). (a) Image and text prototypes from zero-shot CLIP, which are not aligned. (b) Aligned
image and text prototypes from PROTO-CLIP-F .

2013), OxfordPets (Parkhi et al., 2012), and Food101 (Bossard et al., 2014). In addition, we also
include the FewSOL dataset (P et al., 2023) recently introduced for few-shot object recognition in
robotic environments in order to improve object classification for robot manipulation tasks. In the
N -way K-shot classification setting, K images for each class will be sampled from each dataset for
training. A validation set of each dataset is reserved for hyper-parameter tuning, and a test set is used
for evaluation. Following related works, we report the classification accuracy of the test set as the
evaluation metric.

Choosing the Hyper-parameters: α and β. From the experiments, we found that the two hyper-
parameters α in Eq. 1 and β in Eq. 2 and Eq. 3 play a critical role in classification accuracy. Therefore,
for each dataset, we conducted a grid search of the two parameters using the validation set. Then we
finalize their values for all the runs in our experiments.

PROTO-CLIP Variants. i) “PROTO-CLIP”: we do not train the image memory and the text memory
and do not use any adapter in PROTO-CLIP (Fig. 2), we directly run inference using the pre-trained
CLIP features. We term this variant the “training-free” version because it does not require training.
This offers a convenient way to quickly test new datasets without the complexities of training,
although it comes with the caveat of potential misalignment between visual and textual features. ii)
“PROTO-CLIP-F ”: we train the image memory and/or the text memory with the adapter. During
training, for all the query images, we precompute their CLIP image features and directly use these
stored features for training. This variant can be trained more quickly w.r.t. the following variant.
Therefore, we use it for our ablation studies. iii) “PROTO-CLIP-F -QT ”: During training, for each
query image, we apply random data augmentation operations such as cropping and horizontal flip.
Then we compute CLIP image features for the transformed query images during training.

4.1 ABLATION STUDIES

Adapter Types and Learnable Text Memory. Since the 12 datasets have different characteristics,
we found that varying adapter types and whether to learn the text memory or not affect performance.
Table 2 summarizes the result of this ablation study. Visual data plays a crucial role in image
recognition when compared to textual information. Therefore, visual memory keys are consistently
trained, regardless of the circumstances. The architectures of the MLP-based adapter and the
convolution-based adapter are illustrated in Fig. 3. “2xConv” indicates using 2 convolution layers
as shown in Fig. 3, while “3xConv” uses 3 convolution layers in the adapter where we add a
32@3 × 3 × 32 convolution layer in the middle. By checking the best accuracy for each dataset,
we can observe that there is no consensus on which adapter and trainable text memory setup to
use among these datasets. Therefore, we select the best configuration on the adapter and learnable
text memory for each dataset in the following experiments. Learning both image memory and text
memory can help to yield aligned image-text prototypes. Fig. 4 visualizes the image-text prototypes in
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the FewSOL dataset (P et al., 2023) before and after training. For PROTO-CLIP-F , unless specified
otherwise, both the adapter and the visual memory keys are trained in all scenarios.

Adapter Train-Text-Memory ImageNet FGVC Pets Cars EuroSAT Caltech101 SUN397 DTD Flowers Food101 UCF101 FewSOL
MLP ✗ 61.06 35.31 85.61 72.19 83.47 92.58 68.54 63.89 95.01 74.05 76.16 28.65
MLP ✓ 61.06 37.56 85.72 73.61 83.53 92.13 69.71 63.89 96.06 74.05 76.16 32.87

2xConv ✗ 65.75 34.38 89.62 75.25 81.85 93.40 71.94 67.85 94.76 79.09 77.50 27.13
2xConv ✓ 58.60 35.82 89.21 74.34 81.78 93.02 69.79 67.32 95.82 78.06 76.37 27.13
3xConv ✗ 65.37 34.41 88.74 75.25 82.21 93.43 71.63 67.67 94.40 79.11 77.50 29.78
3xConv ✓ 59.63 36.15 87.93 72.68 81.57 92.74 68.64 68.56 95.78 78.61 77.03 35.22

Table 2: Results of ablation study of various query adapter types and textual memory bank training
using the CLIP ResNet50 backbone with K = 16 on PROTO-CLIP-F . In case of a tie, the underlined
setup was selected randomly.

Loss functions. We have introduced three different loss functions in Sec. 3: L1,L2,L3. We analyze
the effects of these loss functions in Table 3. We can see that i) the L1 loss function is essential
since it drives the classification of the query images; ii) Overall, both L2 and L3 loss functions for
prototype alignment contribute to the performance, which verifies our motivation of aligning image
and text prototypes for few-shot classification.

Loss ImageNet FGVC Pets Cars EuroSAT Caltech101 SUN397 DTD Flowers Food101 UCF101 FEWSOL
L1 62.67 20.34 73.21 73.77 78.98 92.25 68.34 66.49 96.14 77.39 76.66 34.57
L2 62.29 4.71 0.00 0.00 38.95 0.28 66.93 67.38 10.31 77.71 57.41 32.70
L3 62.27 4.14 0.00 0.00 38.09 0.24 64.86 67.38 10.27 77.69 57.55 20.22

L1 + L2 65.39 36.24 88.58 75.39 82.78 93.71 71.65 68.09 96.06 78.69 77.29 33.48
L2 + L3 62.33 3.87 0.00 0.00 36.86 0.24 64.84 68.32 8.20 77.35 57.52 19.61
L1 + L3 65.43 36.84 88.58 75.51 82.84 93.35 71.44 68.32 96.14 78.80 77.53 33.43

L1 + L2 + L3 65.75 37.56 89.62 75.25 83.53 93.43 71.94 68.56 96.06 79.09 77.50 35.22

Table 3: Ablation study of various Loss functions using the CLIP ResNet50 backbone and K = 16.
The best performing model architectures for each dataset from Table 2 are used here.

Backbones. Table 4 shows the results of using different backbone networks on the FewSOL
dataset (P et al., 2023). In general, better backbones can learn more powerful feature representations
and consequently improve the classification accuracy. CLIP vision transformer backbones achieve
better performance than CLIP ResNet backbones.

Model Adapter Train-Text-Memory Backbone
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14

Zero-Shot-CLIP (Radford et al., 2021) - - 25.91 32.96 40.70 41.87 54.57
Tip (Zhang et al., 2022) - - 29.74 37.43 47.00 41.48 56.78

Tip-F (Zhang et al., 2022) - - 32.52 41.43 50.17 45.48 60.17
PROTO-CLIP-F MLP ✗ 33.48 39.04 47.96 41.91 58.65
PROTO-CLIP-F MLP ✓ 34.83 40.74 47.43 42.13 58.91
PROTO-CLIP-F 2xConv ✗ 35.04 41.04 50.83 46.52 63.74
PROTO-CLIP-F 2xConv ✓ 35.04 42.52 49.26 43.43 61.61
PROTO-CLIP-F 3xConv ✗ 34.13 42.83 51.91 46.87 62.35
PROTO-CLIP-F 3xConv ✓ 35.22 44.09 50.39 46.57 60.39

Table 4: Backbone ablation study. Dataset=FEWSOL-52 (P et al., 2023). K = 16.

Shots. Table 5 displays the results of using different numbers of shots on ImageNet (Deng et al.,
2009) and FEWSOL (P et al., 2023). With more shots for training, the classification accuracy is
improved accordingly. The choice of K=16 for our experiments aligns with the prevalent practice
in the field of vision-language few-shot learning. This specific value has been widely adopted, as
evidenced in various scholarly works such as (Gao et al., 2021; Zhou et al., 2022; Zhang et al.,
2022) Moreover, given our specific emphasis on the few-shot context, it appeared prudent to exercise
caution when surpassing a particular threshold, specifically 16 in our case.

As a result, we embarked on an ablation study involving the ImageNet (Deng et al., 2009) dataset.
This particular dataset holds the largest number of classes (1000) and thus provided a suitable platform
for investigating shots values beyond 16, such as 32 and 64. Despite our intention to explore 128
shots, our experimental hardware’s memory limitations prohibited us from pursuing this avenue.
Additionally, FEWSOL is valuable for few-shot object learning, especially in robotics. We capped
shots at 16 for FEWSOL as average number of samples per class in FEWSOL hovers around 15.
Consequently, we conjectured that going beyond might yield diminishing learning returns. These
insights are detailed in Table 5.
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Dataset Method 1 2 4 8 16 32 64

ImageNet (Deng et al., 2009)

Tip (Zhang et al., 2022) 60.70 60.96 60.98 61.45 62.01 62.51 62.88
PROTO-CLIP 60.31 60.64 61.30 62.12 62.77 62.98 63.23
Tip-F (Zhang et al., 2022) 61.13 61.69 62.52 64.00 65.51 66.58 67.96
PROTO-CLIP-F 60.32 60.64 61.30 63.92 65.75 66.47 65.36
PROTO-CLIP-F -QT 59.12 60.48 61.80 64.03 65.91 66.71 66.90

FEWSOL-52 (P et al., 2023)

Tip (Zhang et al., 2022) 27.30 26.22 28.70 29.22 28.87 ✗ ✗
PROTO-CLIP 27.09 28.35 29.13 29.83 29.96 ✗ ✗
Tip-F (Zhang et al., 2022) 27.91 27.43 29.13 32.43 34.04 ✗ ✗
PROTO-CLIP-F 22.22 26.17 27.09 33.26 35.22 ✗ ✗
PROTO-CLIP-F -QT 21.65 25.91 30.30 32.70 34.70 ✗ ✗

Table 5: Shots ablation results. Backbone=‘CLIP ResNet50’. Since average number of samples in
training classes are ≈ 15 in FEWSOL-52, K > 16 are not considered for FEWSOL-52.

4.2 COMPARISON WITH OTHER METHODS

Table 6 shows the performance of PROTO-CLIP compared to the state-of-the-art methods using CLIP
for few-shot learning in the literature: Linear-Probe CLIP (Radford et al., 2021), CoOp (Zhou et al.,
2022), CLIP-Adapter (Gao et al., 2021) and Tip-Adapter (Zhou et al., 2022). We follow these methods
and use CLIP’s ResNet50 backbone for this comparison. The fine-tuned variant of Tip-Adapter
“Tip-F” is the most competitive method compared to ours. The performance of PROTO-CLIP on
very few shots, i.e., 1 shot and 2 shots is inferior compared to Tip-F. When the number of shots
increases to 4, 8 and 16, the fine-tuned variants of PROTO-CLIP outperform Tip-F. The enhanced
performance of our proposed PROTO-CLIP method can be attributed to its reliance on robust image
and textual prototypes, which subsequently leads to improved classification accuracy. Therefore, our
model benefits from more than 4 shots, while it is not as good as Tip-F when using 1 shot and 2
shots. PROTO-CLIP-F -QT performs better than PROTO-CLIP-F on most datasets by using the data
augmentation of query images during training. Please see the appendix for more details.

Dataset ImageNet FGVC Pets Cars EuroSAT Caltech101 SUN397 DTD Flowers Food101 UCF101 FEWSOL
# classes 1000 100 37 196 10 100 397 47 102 101 101 52
Zero-shot CLIP (Radford et al., 2021) 60.33 17.10 85.83 55.74 37.52 85.92 58.52 42.20 66.02 77.32 61.35 25.91

1 shot
Linear-Probe CLIP (Radford et al., 2021) 22.07 12.89 30.14 24.64 51.00 70.62 32.80 29.59 58.07 30.13 41.43 -
CoOp (Zhou et al., 2022) 57.15 9.64 85.89 55.59 50.63 87.53 60.29 44.39 68.12 74.32 61.92 -
CLIP-A (Gao et al., 2021) 61.20 17.49 85.99 55.13 61.40 88.60 61.30 45.80 73.49 76.82 62.20 -
Tip (Zhang et al., 2022) 60.70 19.05 86.10 57.54 54.38 87.18 61.30 46.22 73.12 77.42 62.60 27.30
Tip-F (Zhang et al., 2022) 61.13 20.22 87.00 58.86 59.53 89.33 62.50 49.65 79.98 77.51 64.87 27.91
PROTO-CLIP 60.31 19.59 86.10 57.29 55.53 87.99 60.81 46.04 76.98 77.36 63.15 27.09
PROTO-CLIP-F 60.32 19.50 85.72 57.34 54.93 88.07 60.83 35.64 77.47 77.34 63.07 22.22
PROTO-CLIP-F -QT 59.12 16.26 83.62 52.77 61.95 88.48 61.43 32.27 68.53 75.16 62.44 21.65

2 shots
Linear-Probe CLIP (Radford et al., 2021) 31.95 17.85 43.47 36.53 61.58 78.72 44.44 39.48 73.35 42.79 53.55 -
CoOp (Zhou et al., 2022) 57.81 18.68 82.64 58.28 61.50 87.93 59.48 45.15 77.51 72.49 64.09 -
CLIP-A (Gao et al., 2021) 61.52 20.10 86.73 58.74 63.90 89.37 63.29 51.48 81.61 77.22 67.12 -
Tip (Zhang et al., 2022) 60.96 21.21 87.03 57.93 61.68 88.44 62.70 49.47 79.13 77.52 64.74 26.22
Tip-F (Zhang et al., 2022) 61.69 23.19 87.03 61.50 66.15 89.74 63.64 53.72 82.30 77.81 66.43 27.43
PROTO-CLIP 60.64 22.14 87.38 60.01 64.89 89.05 63.12 51.06 83.39 77.34 67.46 28.35
PROTO-CLIP-F 60.64 22.14 87.38 60.04 64.86 89.09 63.20 49.88 83.52 77.34 67.49 26.17
PROTO-CLIP-F -QT 60.48 20.01 85.28 60.02 63.59 89.49 65.46 45.69 81.20 76.15 68.83 25.91

4 shots
Linear-Probe CLIP (Radford et al., 2021) 41.29 23.57 56.35 48.42 68.27 84.34 54.59 50.06 84.80 55.15 62.23 -
CoOp (Zhou et al., 2022) 59.99 21.87 86.70 62.62 70.18 89.55 63.47 53.49 86.20 73.33 67.03 -
CLIP-A (Gao et al., 2021) 61.84 22.59 87.46 62.45 73.38 89.98 65.96 56.86 87.17 77.92 69.05 -
Tip (Zhang et al., 2022) 60.98 22.41 86.45 61.45 65.32 89.39 64.15 53.96 83.80 77.54 66.46 28.70
Tip-F (Zhang et al., 2022) 62.52 25.80 87.54 64.57 74.12 90.56 66.21 57.39 88.83 78.24 70.55 29.13
PROTO-CLIP 61.30 23.25 87.19 63.33 68.67 89.57 65.51 55.91 88.23 77.58 69.50 29.13
PROTO-CLIP-F 61.30 23.31 86.95 63.34 68.52 89.62 65.57 57.21 88.27 77.58 69.55 27.09
PROTO-CLIP-F -QT 61.80 27.63 87.11 66.24 80.64 91.81 68.09 56.86 89.85 76.94 70.16 30.30

8 shots
Linear-Probe CLIP (Radford et al., 2021) 49.55 29.55 65.94 60.82 76.93 87.78 62.17 56.56 92.00 63.82 69.64 -
CoOp (Zhou et al., 2022) 61.56 26.13 85.32 68.43 76.73 90.21 65.52 59.97 91.18 71.82 71.94 -
CLIP-A (Gao et al., 2021) 62.68 26.25 87.65 67.89 77.93 91.40 67.50 61.00 91.72 78.04 73.30 -
Tip (Zhang et al., 2022) 61.45 25.59 87.03 62.93 67.95 89.83 65.62 58.63 87.98 77.76 68.68 29.22
Tip-F (Zhang et al., 2022) 64.00 30.21 88.09 69.25 77.93 91.44 68.87 62.71 91.51 78.64 74.25 32.43
PROTO-CLIP 62.12 27.63 88.04 64.93 69.42 90.22 67.37 59.34 92.08 77.90 71.08 29.83
PROTO-CLIP-F 63.92 31.32 88.55 70.35 78.94 92.54 69.59 62.35 93.79 78.29 74.81 33.26
PROTO-CLIP-F -QT 64.03 35.82 87.46 71.50 81.89 92.62 70.02 64.01 94.28 78.61 75.34 32.70

16 shots
Linear-Probe CLIP (Radford et al., 2021) 55.87 36.39 76.42 70.08 82.76 90.63 67.15 63.97 94.95 70.17 73.72 -
CoOp (Zhou et al., 2022) 62.95 31.26 87.01 73.36 83.53 91.83 69.26 63.58 94.51 74.67 75.71 -
CLIP-A (Gao et al., 2021) 63.59 32.10 87.84 74.01 84.43 92.49 69.55 65.96 93.90 78.25 76.76 -
Tip (Zhang et al., 2022) 62.02 29.76 88.14 66.77 70.54 90.18 66.85 60.93 89.89 77.83 70.58 28.87
Tip-F (Zhang et al., 2022) 65.51 35.55 89.70 75.74 84.54 92.86 71.47 66.55 94.80 79.43 78.03 34.04
PROTO-CLIP 62.77 29.67 88.61 68.11 72.95 91.08 68.09 61.64 92.94 78.11 73.35 29.96
PROTO-CLIP-F 65.75 37.56 89.62 75.25 83.53 93.43 71.94 68.56 95.78 79.09 77.50 35.22
PROTO-CLIP-F -QT 65.91 40.65 89.34 76.76 86.59 93.59 72.19 68.50 96.35 79.34 78.11 34.70

Table 6: Few-shot classification results of various CLIP based few shot learning methods on different
datasets across various shots using the CLIP ResNet50 backbone.

8



Under review as a conference paper at ICLR 2024

4.3 REAL WORLD EXPERIMENTS

1. mustard bottle (96.98%)
2. wipes bottle (0.37%)
3. mold star bottle (0.28%)
4. glue bottle (0.22%)
5. sunscreen bottle (0.19%)

1. instant noodle packet (30.05%)
2. tofu package (19.28%)
3. tuna can (15.25%)
4. meat can (9.33%)
5. sponge (2.34%)

1. cracker box (97.59%)
2. food bag (0.27%)
3. muffin mix box (0.23%)
4. jello box (0.14%)
5. cereal box (0.13%)

1. power drill (97.27%)
2. lighter (0.58%)
3. screwdriver (0.19%)
4. flashlight (0.14%)
5. hammer (0.13%)

RGB Image from Fetch

Unseen Object Segmentation

Speech-To-Text + 
Action & Noun Detection Pick the mustard bottle

Match the ObjectProto-CLIP

2. Grasping the desired Object

1. Motion Planning Setup

3. Action Execution for Placement

User command 

(Audio)

Figure 5: Results for the real world setup with top-5 predictions from the PROTO-CLIP-F (ViT-
L/14) model trained on FEWSOL-198 (P et al., 2023). The Speech-To-Text is performed via
Whisper (Radford et al., 2022).

As an application, we have built a robotic system to verify the effectiveness of PROTO-CLIP for
object recognition in the real world. Fig. 5 illustrates our pipeline for the system. It takes human
instruction in the form of voice commands as input such as “pick something” or “grasp something”.
The system first applies Automatic Speech Recognition (ASR) to convert voice input to text using
OpenAI Whisper (Radford et al., 2022). Then the system grounds the noun in the human instruction
into a target object observed from an input image. This is achieved by joint object segmentation and
classification. We utilize unseen object instance segmentation (Lu et al., 2022) to segment objects
in cluttered scenes and then classify each segmented object with PROTO-CLIP. By matching the
noun with the class labels, the system can ground the target in the image. Once the target object is
recognized, we use Contact-GraspNet (Sundermeyer et al., 2021) for grasp planning and MoveIt
motion planning toolbox (Chitta et al., 2012) to pick and place the target. Please see the supplementary
material for more real-world results.

5 LIMITATIONS

PROTO-CLIP performs poorly in low-shot regimes, as is evident from Table 6. A hyperparameter
grid search is necessary for each new dataset, following the methodology of Tip-Adapter. This
requirement applies to every combination of the new dataset and the backbone. Embracing the
diversity of datasets, our system thrives on the need for different set-ups. When encountering a
new dataset, we actively compare the effectiveness of F and F -QT to determine the optimal choice.
This dynamic approach transforms the potential weakness into a strength, allowing us to adapt and
maximize performance for every unique dataset. During our observations, we discovered that data
transformations play a crucial role in building the memory model.

6 CONCLUSION AND FUTURE WORK

We have introduced a novel method for few-shot learning based on the CLIP (Radford et al., 2021)
vision-language model. Our method learns image prototypes and text prototypes from few-shot
training examples and aligns the corresponding image-text prototypes for classification. The model is
equipped with learnable image memory and text memory for support images and a learnable adapter
for query images. Compared to previous CLIP-based few-shot learning methods, our method is
flexible in configuring these learnable components, resulting in powerful learned models.

Good feature representation is the key in few-shot learning. Future work includes how to further
improve feature representation learning compared to CLIP models. One idea is to adapt more
powerful vision-language models such as GPT variants. The FEWSOL (P et al., 2023) dataset also
provides multiview and depth information about objects. Exploring this 3D information in few-shot
object recognition is also a promising direction.
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REPRODUCIBILITY STATEMENT

In accordance with the commitment to transparency and reproducibility, we provide the following
information to ensure the replicability of our research:

Code Availability: We are committed to making our code available upon acceptance. Currently, it is
not in an anonymized state, but we will swiftly share it to facilitate replication of our experiments.

Python Package Toolkit: To enable the execution of real-world robot experiments as described in
our paper, we will provide a dedicated Python package toolkit. This toolkit will include both the
original code and additional resources necessary for conducting the experiments. Please see the
supplementary videos showcasing our real-world experiments on a Fetch Robot.

Random Number Seeds: We have employed seeds for random number generation throughout our
experiments to ensure reproducibility. These seeds will be clearly documented and shared to facilitate
the recreation of our results.

Dataset Splits: For the experiments involving FEWSOL P et al. (2023), we have supplied a splits file
as for all the other 11 datasets splits files were available as shared by Tip-Adapter (Zhang et al., 2022).
We emphasize the importance of using this splits file to maintain the principles of reproducibility and
to ensure a fair and transparent comparison with prior methodologies. Further details can be found in
the appendix.

We believe that these measures, along with the comprehensive information provided in the main
paper, appendix, and supplementary materials, will empower researchers to effectively replicate and
build upon our work. Our commitment to reproducibility aligns with the standards of ICLR, and we
are dedicated to supporting the scientific community in advancing the field.
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APPENDIX

A EXPERIMENTS

A.1 NK SETUP

Our research focuses on addressing the N -way K-shot classification problem, which involves the
classification of data into N classes using K samples per class. In our approach, we organize the
problem into episodes, with each episode comprising a set of N classes and K samples from each
class. In contrast to the methodology employed in Tip-Adapter (Zhang et al., 2022), where all classes
are considered for episode composition, we adopt a random sampling technique for the selection
of classes to form the episodes. This sampling protocol ensures that all the classes are encountered
within a single epoch of the training process.

By incorporating random sampling of classes, we hope to enhance the diversity and generalizability of
the training episodes. This technique ensures that the model encounters a wide range of classes during
the training phase, facilitating better learning and improved performance on unseen data. By adopting
a sophisticated sampling protocol and incorporating random class selection, our method demonstrates
a robust and comprehensive approach to the N -way K-shot classification problem. Using diverse
training episodes enhances the model’s ability to generalize to new classes and improves its overall
performance on various classification tasks.

A.2 DATASET SPLITS FILE

In accordance with the established practices set forth by Tip-Adapter (Zhang et al., 2022), we adopted
the identical splits file for our experimental analysis, encompassing a total of 11 datasets. Since, we
want to improve object classification for robot manipulation tasks, FEWSOL (P et al., 2023) is one
additional dataset that we have added to the pool of 11 datasets considered in Tip-Adapter (Zhang et al.,
2022) which is highly beneficial for few shot learning in robotic environments. This approach ensures
a fair and meaningful comparison with the findings presented in Tip-Adapter (Zhang et al., 2022) and
FEWSOL (P et al., 2023), where an extensive investigation into the efficacy of CLIP (Radford et al.,
2021) and its variants has been meticulously demonstrated.

A splits file serves as a crucial component, providing comprehensive information regarding the
train/val/test split for each dataset. This information is instrumental in facilitating the training,
hyperparameter search and evaluation processes. We have created new splits file for 4 variants as in
FEWSOL (P et al., 2023): (i) FEWSOL-11 (ii) FEWSOL-41 (iii) FEWSOL-52 (iv) FEWSOL-198.
The C in FEWSOL-C indicates the number of classes in the splits.

By adhering to the utilization of the same splits file, we strive to uphold the principles of reproducibil-
ity and promote a transparent and equitable comparison with previous methodologies.

We highly encourage the adoption of a similar mechanism in future research endeavors within this
domain. Such adherence to consistent practices would not only contribute to the reproducibility of
results but also foster a fair and valid comparison to previous methods. By aligning our methodologies,
the scientific community can effectively build upon existing knowledge and drive the field forward in
a robust and meaningful manner.
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FEWSOL-C Description
FEWSOL-11 Consists of 11 classes overlapping between synthetic 125 classes and real 198 classes
FEWSOL-41 Consists of 41 classes which are not present in synthetic classes
FEWSOL-52 Consists of union of FEWSOL-41 and FEWSOL-11

FEWSOL-198 Consists of all of the real classes with real world testing images as mentioned in Section. D

Table 7: Description of 4 variants of FEWSOL (P et al., 2023) dataset. Splits file of each are shared
with this work. We have considered FEWSOL-52 (P et al., 2023) and FEWSOL-198 (P et al., 2023)
in our experiments.

A.3 HYPERPARAMETERS

Hyperparameter Description
α Controls the contribution from image and text memory bank
β Controls the sharpness of the logits. Acts like a temperature parameter as in (Hinton et al., 2015)
K Shots to be considered for building the visual and textual memory bank

Train-Text-Memory A boolean flag indicating whether to train text memory bank
Adapter The alias of the available adapters in PROTO-CLIP: [‘3xConv’, ‘2xConv’, ‘MLP’]

Backbone The alias of the available CLIP (Radford et al., 2021) backbones: [‘RN50’, ‘RN101’, ‘ViT-B/16’, ‘ViT-B/32’, ‘ViT-L/14’]

Table 8: Description of hyperparameters considered in PROTO-CLIP experiments.

The table provides a comprehensive overview of the hyperparameters considered in the PROTO-CLIP
experiments. These hyperparameters play a crucial role in configuring and fine-tuning the model’s
behavior, allowing researchers to explore different settings and optimize its performance based on
specific requirements and objectives.

α. This hyperparameter controls the contribution from the image and text memory bank. It determines
the balance between visual and textual information during the classification process. By adjusting
the value of α, researchers can emphasize the importance of either modality, enabling the model to
effectively leverage the strengths of both image and text representations.

β. Acting as a sharpness control parameter, β influences the logits’ sharpness in the classification
process. It functions similarly to a temperature parameter, as observed in the work of (Hinton et al.,
2015). By manipulating β, researchers can control the spread of probabilities assigned to different
classes, thus affecting the model’s confidence levels in its predictions.

Adapter. The adapter hyperparameter refers to the alias of the available adapters in PROTO-CLIP.
In the context of PROTO-CLIP, the framework offers a selection of adapters, each associated
with a specific alias. The available aliases for the adapters are as follows: [‘3xConv’, ‘2xConv’,
‘MLP’]. In the main paper, these aliases are further clarified and correspond to the following adapter
configurations:

• 3xConv: This alias represents an adapter configuration consisting of three convolutional
layers. Each layer applies a set of filters to the input data, enabling the model to extract and
learn relevant features through hierarchical transformations. The ‘3xConv’ adapter offers
increased expressive power and potential for capturing intricate patterns within the data.

• 2xConv: This alias denotes an adapter configuration comprising two convolutional layers.
Similar to the ‘3xConv’ adapter, the ‘2xConv’ adapter utilizes convolutional operations
to extract meaningful features from the input data. Although it has a slightly simpler
architecture than the ‘3xConv’ adapter, the ‘2xConv’ adapter still maintains a notable
capacity for capturing and representing essential characteristics of the data.

• MLP: The ‘MLP’ alias refers to the adapter configuration known as MLP, which stands for
Multi-Layer Perceptron. The MLP adapter consists of one hidden layer with a size equal to
D/4, where D represents the embedding size derived from the CLIP backbone. The MLP
adapter employs fully connected layers, allowing for non-linear transformations and the
integration of complex interactions between the input features.

By leveraging these different adapter configurations, researchers can tailor the behavior of PROTO-
CLIP to their specific needs and experiment with various levels of model complexity. Each adapter
variant offers distinct architectural characteristics and capabilities, enabling the model to capture and
utilize different levels of abstraction and contextual information from the input data.
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K. This hyperparameter determines the number of shots considered for building the visual and
textual memory bank. Shots refer to the number of examples available per class in the training set. By
adjusting the value of K, researchers can control the amount of information captured in the memory
bank, potentially influencing the model’s ability to generalize and recognize novel instances of the
classes.

By carefully selecting and adjusting these hyperparameters, researchers can tailor the behavior and
performance of the PROTO-CLIP model to suit their specific research goals. Fine-tuning these
parameters empowers researchers to explore different trade-offs and discover optimal configurations
that maximize classification accuracy, generalization capabilities, and efficiency.

B EXTENDED ABLATION STUDY

B.1 OUT OF DISTRIBUTION EXPERIMENTS

In our evaluation, we assessed the out-of-distribution capabilities of our proposed PROTO-CLIP
models by training them on one and then testing on two different datasets. Specifically, we used
ImageNet (Deng et al., 2009) as the source dataset, providing a 16-shot training set, and conducted
testing on ImageNetV2 (Recht et al., 2019) and ImageNet-Sketch (Wang et al., 2019), which contain
categories similar to ImageNet but with some semantic differences.

The results, as presented in Table 9, demonstrate that PROTO-CLIP exhibits remarkable robustness
when faced with distribution shifts. It outperforms the baselines on ImageNet-V2 and is on par on
ImageNet-Sketch, highlighting the advantages of the alignment in out-of-distribution evaluation.

Datasets Source Target
ImageNet -V2 (Recht et al., 2019) -Sketch (Wang et al., 2019)

Zero-Shot-CLIP (Radford et al., 2021) 60.33 53.27 35.44
Linear Probe CLIP (Radford et al., 2021) 56.13 45.61 19.13
CoOp (Zhou et al., 2022) 62.95 54.58 31.04
CLIP-Adapter (Gao et al., 2021) 63.59 55.69 35.68
Tip (Zhang et al., 2022) 62.03 54.60 35.90
Tip-F (Zhang et al., 2022) 65.51 57.11 36.00
PROTO-CLIP 62.77 55.23 35.62
PROTO-CLIP-F 65.75 56.84 35.29
PROTO-CLIP-F -QT 65.91 57.32 35.99

Table 9: Out of distribution accuracy study using Imagenet-V2 (Recht et al., 2019) and ImageNet-
Sketch (Wang et al., 2019) datasets.

B.2 ADAPTER AND TEXT MEMORY BANK ABLATION ON FEWSOL-198 DATASET

Adapter Train-Text-Memory Top-1 Accuracy Ψ
MLP ✗ 68.75 6
MLP ✓ 68.75 3

2xConv ✗ 65.62 12
2xConv ✓ 62.50 57
3xConv ✗ 65.62 3
3xConv ✓ 68.75 1

Table 10: Adapter ablation study. Model=PROTO-CLIP-F . Dataset=FEWSOL-198 (P et al., 2023).
K = 16. Ψ is the number of α, β combinations for which the max accuracy was obtained. Based on
Ψ, MLP without training the text memory is the best configuration for FEWSOL P et al. (2023). Out
of the 6 α, β combinations, we selected one randomly.
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C T-SNE PLOT

Figure 6: t-SNE plot after training PROTO-CLIP-F on FEWSOL-198 (P et al., 2023) using CLIP
ViT-L/14 backbone, where · and + indicate the image and text prototypes of the class displayed by
the object image respectively.

D REAL-WORLD-TESTING AS IN FEWSOL (P ET AL., 2023)

Following FEWSOL (P et al., 2023), in this experiment, we aim to build a few-shot classification
model that works best on real-world perception systems. We train PROTO-CLIP with all real data
from the FEWSOL dataset, i.e 198 classes and then test the trained model in our lab on the task
of joint object segmentation and few-shot classification experiment. The pipeline consists of (i)
Collecting RGB-D images from a Fetch mobile manipulator (ii) Unseen object segmentation using
UCN (Xiang et al., 2021b) and (iii) Few shot classification using PROTO-CLIP. We tested on 32
objects with 4 objects in an image scene.
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1. jello box (98.75%)
2. mms package (0.09%)
3. cereal box (0.09%)
4. chili powder bottle (0.07%)
5. muffin mix box (0.07%)

1. soup can (76.76%)
2. tuna can (10.04%)
3. mug (1.53%)
4. pepper sprinkler (1.52%)
5. meat can (0.62%)

True: water bottle
1. cellphone (31.93%)
2. stapler (12.67%)
3. flashlight (7.08%)
4. battery (3.76%)
5. slipper (3.28%)

1. mustard bottle (95.22%)
2. glue bottle (1.61%)
3. goo gone bottle (0.48%)
4. mold star bottle (0.33%)
5. sunscreen bottle (0.28%)

RGB Image from Fetch Segmented Objects Few-shot-classification

Scene 1

1. cracker box (98.49%)
2. cereal box (0.17%)
3. food bag (0.15%)
4. milk box (0.11%)
5. muffin mix box (0.07%)

1. ball (43.63%)
2. mms package (16.15%)
3. lime (6.67%)
4. golf ball (3.67%)
5. lego block (2.9%)

1. tennis ball (96.02%)
2. football (0.7%)
3. baseball ball (0.55%)
4. golf ball (0.38%)
5. ball (0.21%)

RGB Image from Fetch Segmented Objects Few-shot-classification

1. shampoo bottle (68.04%)
2. soft scrub cleanser bottle (4.93%)
3. rinse aid bottle (3.46%)
4. glue bottle (3.03%)
5. palmolive bottle (2.54%)

Scene 2

1. clock (76.87%)
2. timer (9.66%)
3. watch (1.52%)
4. fig bar box (0.9%)
5. hand sanitizer (0.42%)

1. jello box (95.41%)
2. hand sanitizer (0.43%)
3. strawberry (0.35%)
4. chili powder bottle (0.28%)
5. juice pouch (0.25%)

True: cup
1. coffee bottle (64.16%)
2. water bottle (3.82%)
3. wine bottle (1.95%)
4. camera (1.85%)
5. soda can (1.64%)

1. meat can (19.53%)
2. tape measure (11.47%)
3. tofu package (7.92%)
4. timer (7.14%)
5. tuna can (6.46%)

RGB Image from Fetch Segmented Objects Few-shot-classification

Scene 3

True: air duster can
1. spray bottle (56.63%)
2. glue stick (7.67%)
3. marker (6.12%)
4. glue bottle (5.4%)
5. cleaning brush (2.63%)

1. tuna can (15.14%)
2. cream tube (12.03%)
3. toothpaste (6.96%)
4. pepper sprinkler (6.38%)
5. glue bottle (4.66%)

1. marker (24.4%)
2. pen (24.38%)
3. glue stick (10.61%)
4. battery (8.09%)
5. flashlight (4.11%)

1. knife (95.2%)
2. marker (0.45%)
3. scissors (0.35%)
4. fork (0.3%)
5. umbrella (0.22%)

RGB Image from Fetch Segmented Objects Few-shot-classification

Scene 4

1. game controller (63.93%)
2. football (5.42%)
3. drano dual force bottle (4.41%)
4. shaver (2.49%)
5. camera (1.89%)

1. mouse (89.79%)
2. headphone (1.62%)
3. adapter cable (0.82%)
4. keyboard (0.44%)
5. garlic (0.36%)

True: hand sanitizer
1. shampoo bottle (15.17%)
2. palmolive bottle (14.86%)
3. rinse aid bottle (11.79%)
4. glue stick (7.81%)
5. cream tube (7.03%)

1. keyboard (56.82%)
2. game controller (20.2%)
3. remote controller (5.68%)
4. drano dual force bottle (1.56%)
5. shoe (0.87%)

RGB Image from Fetch Segmented Objects Few-shot-classification

Scene 5

True: folder
1. scale (23.13%)
2. plate (14.21%)
3. sticky notes (13.11%)
4. sponge (10.1%)
5. binder (4.65%)

1. wood block (39.71%)
2. wood box (11.74%)
3. tea tin (3.83%)
4. wood plate (3.48%)
5. mug (3.24%)

True: sticky notes
1. lego block (17.84%)
2. sponge (9.27%)
3. marker (6.98%)
4. toothpaste (5.54%)
5. flash drive (3.42%)

True: stapler
1. flash drive (15.71%)
2. remote controller (12.32%)
3. bulb box (8.66%)
4. fig bar box (8.48%)
5. game controller (5.27%)

RGB Image from Fetch Segmented Objects Few-shot-classification

Scene 6
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1. headphone (29.96%)
2. key (20.28%)
3. goggle (5.06%)
4. shoe (4.17%)
5. padlock (4.11%)

1. umbrella (10.22%)
2. headphone (8.77%)
3. watch (7.97%)
4. key (7.87%)
5. padlock (6.29%)

1. pen (45.83%)
2. toothbrush (19.87%)
3. cream tube (5.07%)
4. fork (2.69%)
5. flash drive (2.41%)

1. book (9.25%)
2. umbrella (6.08%)
3. marker (6.07%)
4. camera (5.08%)
5. pepper sprinkler (4.26%)

RGB Image from Fetch Segmented Objects Few-shot-classification

Scene 7

True: charger
1. flash drive (62.1%)
2. glue stick (4.22%)
3. cellphone (3.85%)
4. adapter cable (2.76%)
5. mouse (2.2%)

1. mug (54.58%)
2. plant vase (4.56%)
3. pitcher (4.43%)
4. handy pot (3.48%)
5. cup (3.42%)

1. spoon (73.48%)
2. marker (3.66%)
3. fork (3.31%)
4. scoop (1.89%)
5. golf ball (1.09%)

1. cellphone (93.61%)
2. camera (0.56%)
3. watch (0.34%)
4. game controller (0.32%)
5. flashlight (0.27%)

RGB Image from Fetch Segmented Objects Few-shot-classification

Scene 8

Figure 6: Top-5 predictions of our PROTO-CLIP-F model trained on FEWSOL-198 for 8 real world
scenes as used in FEWSOL (P et al., 2023).

E FREQUENTLY ASKED QUESTIONS (FAQ)

Q: How many text prompts have been used in the experiments?

A: All datasets except ImageNet (Deng et al., 2009) have a single text prompt template. ImageNet
uses 7. For comparison purpose, this setting has been borrowed from Tip-Adapter (Zhang et al.,
2022). More text prompts can be used.

Q: Why has FEWSOL been used for real world experiments?

A: For a robot to work in human environments like kitchen, living room etc., it has to interact
with various daily objects. FEWSOL (P et al., 2023) comes in handy when thinking of learning
good representations of daily objects for manipulation tasks. Hence, we chose to experiments with
FEWSOL.

Q: Describe the real-world experiments and its outcomes?

A: Following the approach taken in FEWSOL (P et al., 2023), we have conducted a comprehensive
study involving 32 real-world objects. Our method achieved top-1 accuracy of 68.75%, while
Tip-Adapter demonstrates a top-1 accuracy of 65.63%. The model used was trained on FEWSOL-
198. For a detailed analysis, kindly refer to the appendix section D. Since the experiments have an
external dependency on a custom segmentation method, the quality of segmentation also affects the
classification performance. Although we conjecture that more classes could make the classification
problem difficult, the current performance of PROTO-CLIP makes room for healthy classification
and future research. Moreover, we have also executed four real-world experiments focusing on
user-command-oriented grasping. These experiments utilized PROTO-CLIP predictions and involved
four objects each time, with a total of 16 objects placed on a tabletop. The supplementary videos
have been updated with video evidence showcasing the efficacy of our approach. We invite you to
review these materials at your convenience. Few key classifications during real world experiments:

• Instance level: Different colored bell peppers identified correctly
• Fine grained: E.g. Lime vs lemon identified correctly
• Clutter: E.g. Scissors on top of umbrella identified correctly
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Q: Any specific observations during inference?

A: Object segmentation and orientation matters. Segmentation is more important as in clutter scenes
a bad segmentation can cause problems in classification. Moreover, lighting conditions also play a
key role as it impacts classification of shiny objects.

Q: What are some potential explanations for the difference in behavior between Tip-Adapter
and PROTO-CLIP?

A: We think that the behaviour difference is due to the mechanisms that are employed in each settings.
Tip-Adapter works by computing support query affinity and then comparing the closeness to the
possible classes in textual form which in turn helps in generating the probability distribution for
classification. Proto-CLIP on the other hand utilizes the prototypes build from the visual and textual
memory banks learned during few shot training and then classifies the incoming query image based
on the probability distribution created by the contribution of visual and textual prototypes w.r.t. to the
given query image.

Q: Why the proposed method perform better when K=4, 8, or 16?

A: The enhanced performance of our proposed PROTO-CLIP method can be attributed to its reliance
on robust image and textual prototypes, which subsequently leads to improved classification accuracy.
In our approach, each embedding within the visual memory bank is computed through multiple
augmentations (typically around 10) of a specific image sample. While we did indeed explore the use
of augmentations, we found that the inclusion of a greater number of sample images yielded superior
outcomes. We hold the perspective that a larger quantity of high-quality samples introduces a richer
array of information encompassing texture, lighting, orientation, color, and shapes. This wealth
of information significantly contributes to the establishment of more resilient prototypes, thereby
fortifying the entire classification process.

Q: How the proposed and baseline methods perform differently across different datasets?

A: As evident from the results in Table 6, in extremely low shot scenarios, e.g. K = 1, PROTO-CLIP
variants show competing results w.r.t. the baseline Tip-Adapter (Zhang et al., 2022). As K increases,
PROTO-CLIP starts to show promising results by outperforming the baseline in more datasets.

• K = 2, outperforms on 5/12.
• K = 4, outperforms on 7/12.
• K = 8, outperforms on 11/12 and on par with the remaining one dataset.
• K = 16, outperforms on 10/12 and on par with the remaining two datasets; which shows

that more shots might not be good for some datasets.

Moreover, Table 2 and 3 show the effect of different query adapters and loss functions across datasets.
Hence, it wouldn’t hurt to say that different datasets have different needs which can be attributed to
its properties.

Q: What is the requirement of PROTO-CLIP when we have SAM (Kirillov et al., 2023a)?

A: SAM (Kirillov et al., 2023a) presents a promising approach, although it is not without its limitations.
It necessitates the provision of prompts (e.g., Points, Bounding Boxes, Text), or alternatively, the
segmentation of all elements within an image. In the former scenario, utilizing any of the prompts
aside from textual cues requires the incorporation of heuristics or well-trained models to get reasonable
point or bounding boxes to avoid inadvertent area mask predictions. Addressing how to accomplish
this in the absence of human input is a distinct question. Regarding text prompts, the SAM paper itself
acknowledges its status as a proof of concept. SAM relies on CLIP embeddings when employing text
prompts, yet the provided sample results also fall short. To achieve reasonably accurate predictions,
supplementary prompts like points or bounding boxes are employed alongside text prompts. In the
latter case, where complete image segmentation is pursued, additional post-processing steps are
essential to obtain pertinent masks from the generated outputs pertaining to over segmentation, under
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segmentation and unwanted masks issue. Consequently, while SAM stands as an impressive model,
its direct application to robotics use cases is not straightforward; it necessitates integration within
a pipeline arrangement. In our endeavors, we incorporated SAM in a cluttered scene setup, yet the
outcomes were less than satisfactory. Therefore, we propose that a lightweight model such as ours
could potentially enhance SAM’s predictions or synergize with analogous methodologies, ultimately
bolstering downstream robotic tasks like manipulation or control. Please see the following Study on
SAM (Kirillov et al., 2023b).

F A STUDY ON SAM (KIRILLOV ET AL., 2023B)

Although the Segment Anything Model (SAM) (Kirillov et al., 2023b) is a great method for seg-
mentation, we feel that it’s too early to show good performance in robotics context. Clutter scene as
shown in Fig. 7 is a prominent example of a robotics environment. A robot will encounter objects in
a cluttered scene more often than clean ones. As we can see here, 2 runs of SAM on the same input
image yield different results. There is over-segmentation as well as under-segmentation. Occlusion
breaks the object connectivity and the masks generated are disjoint. There are several unwanted
masks that need post-processing based on some heuristic in absence of a human. Here, we have used
the segment entire image functionality. In order to use the prompt feature of SAM, we need a point
location or bounding box as prompt which is possible in presence of a human or some mechanism that
can yield good intended masks. In absence of a human, some estimation or approximation method
needs to be used. Thus, directly applying SAM in robotics might not be a good option. However, it
can act as a module in a large robotic pipeline for downstream tasks.

Occlusion 
disconnects object 
(PowerDrill) masks Cellphone mask 

absent
Cellphone mask 

detected

Occlusion 
disconnects object 
(PowerDrill) masks

Input image of a cluttered scene taken from a Fetch Robot Camera

SAM(Input_Image) SAM(Input_Image)

Predicted masks overlaid on the input image Predicted masks overlaid on the input image

Over-Segmentation

examples of unwanted masks which need post 
processing using some heuristic

example of under-segmentation

Non-uniformity of predicted masks over the 
same input image

2 runs of SAM on the same input image yields different results. 

Figure 7: Execution of SAM (Kirillov et al., 2023b) on a sample real world clutter scene created in
our lab.

Our PROTO-CLIP model can join forces with the predictions of SAM for better classification of the
detected masks (after removing the unwanted masks). Unseen object segmentation methods like (Xie
et al., 2021; Xiang et al., 2021a; Xie et al., 2020; Lu et al., 2023) are specifically targetted towards
finding masks of novel objects in different scenes hence we believe that they have an upper hand in
robotics context as they can aid robot manipulation tasks on novel objects. Fig. 7 (Scene:1-8) show
the predictions of SAM (Kirillov et al., 2023b) vs UCN (Xiang et al., 2021a). PROTO-CLIP can be
used in combination with any of these for downstream tasks involving vision-language modalities.
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RGB Image from Fetch SAM Segmentation UCN Segmentation

Scene-1

RGB Image from Fetch SAM Segmentation UCN Segmentation

Scene-2

RGB Image from Fetch SAM Segmentation UCN Segmentation

Scene-3

RGB Image from Fetch SAM Segmentation UCN Segmentation

Scene-4

RGB Image from Fetch SAM Segmentation UCN Segmentation

Scene-5
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RGB Image from Fetch SAM Segmentation UCN Segmentation

Scene-6

RGB Image from Fetch SAM Segmentation UCN Segmentation

Scene-7

RGB Image from Fetch SAM Segmentation UCN Segmentation

Scene-8

Figure 7: 8 real world scenes as used in FEWSOL (P et al., 2023). SAM (Kirillov et al., 2023b)
predicts masks for the entire image in the absence of prompts like points or bounding boxes. Cor-
responding UCN (Xiang et al., 2021a) predictions which are far better in targeting object-centric
masks.
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