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Abstract

Different base language model families—such
as Llama and Qwen—exhibit divergent behav-
iors during post-training with reinforcement learn-
ing (RL), especially on reasoning-intensive tasks.
What makes a base language model suitable for
reinforcement learning? Gaining deeper insight
into this question is essential for developing RL-
scalable foundation models of the next gener-
ation. In this work, we investigate how mid-
training strategies shape RL dynamics, focusing
on two representative model families: Qwen and
Llama. Our study reveals that (1) high-quality
mathematical corpora, such as MegaMath-Web-
Pro, significantly improve both base model and
RL performance, while lower-quality alternatives
(e.g., FineMath-4plus) fail to do so; (2) further
adding QA-style data, particularly long chain-
of-thought (CoT) reasoning examples, enhances
RL outcomes, and instruction tuning further am-
plifies this effect; (3) while long-CoT improves
reasoning depth, it can also induce verbosity
of model responses and unstability of RL train-
ing, underscoring the importance of data format-
ting; (4) scaling mid-training consistently leads to
stronger downstream RL performance. Building
on these insights, we introduce a two-stage mid-
training strategy—Stable-then-Decay—in which
base models are first trained on 200B tokens with
a constant learning rate, followed by 20B tokens
across three CoT-focused branches with learning
rate decay. This yields OctoThinker, a family
of models demonstrating strong RL compatibility
and closing the performance gap with more RL-
friendly model families, i.e., Qwen. We hope our
work can inform pre-training strategies for foun-
dation models in the RL era, and we contribute
open-source models and our corpora to support
further research.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1. Introduction
Incentivizing large language models (LLMs) to think deeply
through the chain of thought (CoT (Wei et al., 2022)) be-
fore giving the final answer with large-scale reinforcement
learning (RL) is driving significant progress on the challeng-
ing reasoning tasks, i.e., solving competition-level mathe-
matics problems, as demonstrated by OpenAI’s o1 (Ope-
nAI et al., 2024) and o3 (OpenAI, 2025). This also un-
derscores a growing attention centered on RL as a means
of boosting LLMs’ reasoning performance. DeepSeek-R1-
Zero (Guo et al., 2025) showcases a range of powerful
and intriguing reasoning behaviors by directly applying
large-scale RL to base language models, i.e., DeepSeek-
V3-Base (Liu et al., 2024). In line with this trend, several
methods such as SimpleRL (Zeng et al., 2025) and Open-
Reasoner-Zero (Hu et al., 2025) have explored RL training
on smaller base models—particularly the Qwen series (Yang
et al., 2025)—achieving notable improvements in reasoning
ability. However, despite these advances, replicating the
success of R1-Zero-style training on other general-purpose
base models, such as Llama series (Meta et al., 2024), has
proven difficult, also evidenced by recent studies (Gandhi
et al., 2025; Liu et al., 2025). This naturally raises a funda-
mental question: What underlying factors cause the base
models to exhibit divergent behaviors during RL training?
Understanding this could shed light on the scientific founda-
tions that connect pre-training and the scalability of RL for
reasoning, and may guide the design of future base models
more amenable to reasoning-oriented RL.

In this work, we explore this question through the lens
of mathematical reasoning and begin by observing a key
difference in RL dynamics between two prominent model
families: Qwen and Llama. Specifically, our preliminary
studies reveal that Qwen models are much more amenable
to RL scaling, while the Llama model tends to predict final
answers prematurely and produce repetitive outputs during
RL training. To better understand this discrepancy, we con-
ducted a series of large-scale and controlled mid-training
interventions on Llama models, followed by RL training.
Our findings highlight that the quality of mathematical pre-
training corpora is critical for successful RL performance.
For instance, we found that MegaMath-Web-Pro (Zhou et al.,
2025) offers significantly greater benefits for RL scaling
than corpora like FineMath-4plus (Allal et al., 2025). On top
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of a high-quality mathematical pre-training corpus, incorpo-
rating QA-style data yields further improvements, and intro-
ducing a small amount of instruction-following data helps
enhance RL effectiveness even more. We also observed that
injecting long chain-of-thought data during mid-training
introduces instability into the RL phase. To address this, we
refined the RL prompt and adopted a progressive maximum
response length scheduler to stabilize training and ensure
consistent behavior. To support large-scale mid-training, we
also constructed a reasoning-intensive mathematical corpus
exceeding 70 billion tokens, namely MegaMath-Web-Pro-
Max , with data quality on par with MegaMath-Web-Pro. In
extended mid-training experiments on this dataset—scaling
up to 100 billion tokens—we observed that increasing the
mid-training budget can lead to noticeable improvements in
downstream RL performance. Interestingly, these gains are
often not immediately reflected in the standard evaluations
of the mid-trained base model, highlighting a gap between
base model evaluation metrics and RL-stage capabilities.

Can we turn Llama into a foundation model well-suited for
RL scaling by further scaling up its mid-training? Build-
ing on the insights above, we explored this question by
adopting a two-stage (stable-then-decay) mid-training strat-
egy. In the first stable stage, we train Llama models on a
high-quality mixture of pre-training corpus for 200B tokens
using a constant learning rate. In the second decay stage,
we annealed the learning rate and introduced distinct data
mixtures—short CoT, long CoT, and a hybrid of both—to
mid-train three separate branches. These branches are later
refined through RL training, equipping them with stronger
reasoning capabilities. Inspired by the multi-armed nature
of an octopus, we name this model family OctoThinker.
Experiments across all model sizes and 13 mathematical
reasoning benchmarks demonstrate the effectiveness of our
approach: both stages of mid-training lead to substantial
performance gains, especially the first stage, which consis-
tently delivers 10–20% improvement. Building on these
stronger base models, subsequent RL training further boosts
performance, with each branch showing distinctive behav-
ior patterns. Notably, our models post-RL achieve perfor-
mance on par with Qwen2.5 of the same size, effectively
narrowing the gap between Llama and other RL-friendly
model families. These results confirm the power of scaled-
up, reasoning-intensive mid-training in transforming Llama
into a suitable base model for RL scaling. To foster open
research, we will release our curated data, models, and train-
ing scripts. We hope OctoThinker offers a meaningful step
toward the next generation of reasoning-capable AI systems.

2. Preliminaries
We begin by identifying a key difference in RL dynam-
ics between two prominent model families—Qwen and

Llama—through the lens of mathematical reasoning. This
observation offers a concrete and measurable foundation
that grounds our systematic investigation.

2.1. Experiment Setup

RL Setup We performed RL experiments based on
the verl (Sheng et al., 2024) framework and utilized the
GRPO (Shao et al., 2024) algorithm. For RL training
prompts, we adopted the MATH8K dataset due to its mod-
erate difficulty and concise composition. The maximum
response length is set to 4,096 tokens. See § A.1 for more
details. Unless otherwise specified, we employed a sim-
ple prompt template of “Question:{}\nAnswer:{}”
to format training examples. We employed Llama-3.2-3B-
Base and Qwen2.5-3B-Base to perform R1-Zero styled RL
training given the moderate model size. We adopted the
few-shot prompting evaluation for base language models
and employed zero-shot evaluation for RL-tuned models.

2.2. Observations
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Figure 1: Training dynamics comparison (downstream per-
formance and the average length of correct responses) be-
tween Llama-3.2-3B-Base and Qwen2.5-3B-Base. The
dashed line indicates the few-shot evaluation performance
and average length of correct responses of the correspond-
ing base models. Ditto for subsequent figures.

During RL training on Llama-3.2-3B-Base and Qwen-2.5-
3B-Base, we observed notably different and intriguing train-
ing dynamics regardless of their performance (see Fig-
ure 1). Specifically, the length of correct responses from
Qwen increases steadily and reasonably throughout training,
whereas Llama exhibits abnormal behavior—its average
response length escalated dramatically, reaching up to 4K.
Upon closer inspection of Llama’s output, we found that
it typically begins with “\boxed:{}”, followed by ex-
tremely obvious repetition until hitting the max response
length, in stark contrast to Qwen’s coherent and natural rea-
soning output. The evaluation results further highlights the
divergence: Qwen achieved substantial improvements over
its base model across a wide spectrum of benchmarks, from
simple to complex math reasoning tasks. Meanwhile, Llama
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experienced only marginal gains—or even regressions, as
seen on GSM8K—likely due to the distributional gap be-
tween the RL training set (e.g., MATH8K) and GSM8K.
The above observations motivate us to attribute the reason
to their potential divergence of pre-training despite their
opaque details.

These observations also further prompt a more fundamen-
tal question: Can we intervene during the pre-training
phase of Llama (e.g., via mid-training) to make it more
amenable to RL scaling? Specifically, in this work, we
would like to explore a range of mid-training intervention
strategies—methods that adjust the pre-training trajectory
of LLMs—to examine their downstream impact on RL dy-
namics.

2.3. What is Mid-training?

Mid-training is a mid-stage whose computational and
data (token) requirements are intermediate between pre-
training and post-training. It aims to achieve specific objec-
tives—such as domain and language expansion (Dou et al.,
2025), long-context extension (Abdin et al., 2024b;a), im-
proving data quality (Hu et al., 2024a; OLMo et al., 2025),
leveraging large-scale synthetic data (Yang et al., 2024b;a;
2025), and preparing for post-training, among others—by
significantly altering data quality and distribution (Dubey
et al., 2024; Wake et al., 2024) (and/or modifying model ar-
chitecture to improve inference efficiency (Bercovich et al.,
2024; 2025)).1

3. Digging Deeper: Exploring Key Factors
through Controllable Mid-training

We investigated the impact of several factors during mid-
training on RL performance through head-to-head experi-
ments. Specifically, we examine the effects of data quality
of math web corpora, the inclusion or exclusion of QA-
format data, the nature of the QA data itself, the presence of
general instruction-following data in mid-training, as well
as the pre-training token budget. These systematic analyses
help us gain a deeper understanding of the connection be-
tween pre-training and RL dynamics and figure out suitable
recipes for scaled-up mid-training.

3.1. Experimental Setup

Mid-training setup By default, we perform mid-training
with Llama-3.2-3B-Base on diverse datasets and training

1In the absence of a precise or widely agreed-upon definition,
here, we aim to introduce a concise and rigorous definition of mid-
training within this context. The term was reportedly first men-
tioned in an OpenAI job description in mid-2024. A detailed blog
for this term is available at https://vintagedata.org/
blog/posts/what-is-mid-training.

configurations within a 20B-token training budget. We use a
cosine learning rate scheduler without warmup, with a peak
learning rate of 3e-5 and a minimum learning rate set to
one-tenth of the peak. The default sequence length is 8192,
and the batch size is 4 million tokens. Training is conducted
using the Huggingface’s Nanotron framework.

RL setup We follow the exact same RL setup as described
above in Section 2, unless stated otherwise.

Table 1: Statistics and types of different datasets we used

Dataset Type # Tokens (B)

FineMath-4plus (Allal et al., 2025)
Math Web Documents

9.57
MegaMath-Web-Pro (Zhou et al., 2025) 13.00
MegaMath-Web-Pro-Max (Ours) 73.80

MegaMath-QA (Zhou et al., 2025) QA (Short-CoT) 5.94
OpenR1-Math-220K (HuggingFace, 2025) QA (Long-CoT) 1.05

TULU3-sft⋄ (Lambert et al., 2024a) General Instruction
Following

0.01
WildChat (Zhao et al., 2024) 0.29
UltraChat-220K (Ding et al., 2023a) 0.51

Datasets The datasets used to support our controllable
experiments are summarized in Table 1. For the OpenR1
dataset, we concatenated the question and the think pro-
cess enclosed within <think> and </think> using a
line break. For the general instruction following datasets,
we only retained high-quality conversations, such as those
derived from GPT-4, and formated the conversations as
“User:{}\nAssistant:{}”. We curated MegaMath-
Web-Pro-Max to support large-scale ablation studies and
mid-training. The corpus was constructed by leveraging
an efficient classifier to recall documents from MegaMath-
Web (Zhou et al., 2025), followed by refinement using a
powerful instruction-following LLM. See § A.2 for details.

3.2. On the Inclusion and Data Quality of Math Web
Corpora

Web corpora provide a solid foundation during pre-training.
We believe that math web corpora, along with their data qual-
ity, continue to play a crucial role during mid-training. We
began our systematic analysis by performing mid-training
on different math web corpora and holding other factors
being constant. As shown in the Figure 2, mid-training on
math web data improves performance over the base model,
with MegaMath-Web-Pro and MegaMath-Web-Pro-Max
showing slightly better gains than Finemath-4plus. After RL
training, we found that mid-training on math web corpora
improves RL performance to varying degrees. MegaMath-
Web-Pro and MegaMath-Web-Pro-Max bring significant
gains for Llama in RL training, while Finemath-4plus yields
only marginal improvements—highlighting the clear differ-
ences in data quality. Furthermore, we observed that models
trained on FineMath-4plus exhibited abnormal behavior,
with response lengths rapidly increasing until reaching the
maximum limit of 4,096 tokens. The outputs typically be-
gan with “\boxed{}” and devolved into repetitive “So-
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lution” statements. Given these observations, we selected
MegaMath-Web-Pro as our default mathematical corpus and
also MegaMath-Web-Pro-Max for scaled mid-training.
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Figure 2: The effect of different math web corpora during
mid-training (20B tokens training budget each).

3.3. On the Inclusion and Nature of QA-Format Data
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Figure 3: Impact of incorporating CoT data with varying
characteristics during mid-training (9:1 mixture ratio).

Intuitively, introducing QA data into pre-training and mid-
training improves model performance, as previously exam-
plified in Bi et al. (2024) and Hu et al. (2024b). We fur-
ther investigated this using a 9:1 web-to-QA data mix. We
hypothesize that QA data’s short Chain-of-Thought (short-
CoT, from MegaMath-QA) and long-CoT (from OpenR1-
Math-220K) reasoning, which may include self-reflection
and backtracking, enhance base model performance and RL
training. Maximum response lengths were 8,192 tokens for
long-CoT models and 4,096 for others.

As shown in Figure 3, incorporating QA data into mid-
training generally yields performance gains for the base
model, though these gains are marginal, as indicated by
dashed lines. After RL training, incorporating short-CoT
data into mid-training shows no improvements compared
to mid-training on web data alone, possibly due to the data
distribution gap, while long-CoT data brings significant per-
formance gains. However, incorporating long-CoT data
introduces challenges with unstable RL training, evidenced

by sudden performance drops and sharp increases in re-
sponse length. We also explored methods for stabilizing RL
training, which we discuss in the following sections.

3.4. On the Inclusion of Instruction-following Data

Incorporating instruction-following data into earlier-stage
training has become an increasingly common practice.
Works such as MiniCPM (Hu et al., 2024b) demonstrate
that including high-quality unlabeled data and instruction-
following data significantly improves downstream perfor-
mance. We believe this inclusion is critically important for
enhancing the base model’s ability to follow instructions,
which may be a potential key determining factor for success-
ful RL training. We incorporated instruction-following data
alongside web data and QA data in a 1:89:10 ratio. For this,
we combined these high-quality datasets with appropriate
filtering and formatting: TULU3-sft-personas-instruction-
following (Lambert et al., 2024b), WildChat (Zhao et al.,
2024), and UltraChat-200K (Ding et al., 2023b), totaling
approximately 0.8B tokens.
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Figure 4: Impact of incorporating instruction-following data
during mid-training with a mixture of web, short-CoT and
instruction data in a ratio of 89 : 10 : 1. The max. response
length is 4,096.

Incorporating instruction-following data into the short-
CoT mid-training mixture. As shown in Figure 4, after
RL training, incorporating instruction-following data, un-
locks the potential of short-CoT data, showing performance
advantages over the exclusion case after 200 steps. Addi-
tionally, this inclusion helps stabilize response length, re-
sulting in smoother increases compared to when instruction-
following data is excluded.

Incorporating instruction-following data into the long-
CoT mid-training mixture. Similar to the challenges
encountered earlier in RL training with the long-CoT mid-
trained base model, as shown in Figure 5, incorporating
instruction-following data showed performance improve-
ments after 150 steps. However, this addition failed to
prevent the overall decline in RL performance and the rapid
increase in response length. Note that we set the maximum

4
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Figure 5: Impact of incorporating instruction-following
data during mid-training with a mixture of web, long-CoT
and instruction data in a ratio of 89:10:1. The maximum
response length is 8,192.

response length to 8,192 tokens for these experiments.

Given the challenges encountered during RL training on the
base model mid-trained on long-CoT data, we explored
strategies to stabilize RL training by modifying the RL
prompt template and maximum length scheduler.
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Figure 6: Impact of different RL prompt templates.

Effect of RL prompt template The default template is
“Question:{}\nAnswer:{}”, which we refer to as
“Simple Template”. Here, we introduce an alternative, the
“Complex Template”, adapted from the prompt design in
Open-Reasoner-Zero (Hu et al., 2025) (see Figure 14).

We also controlled the maximum response length as 8,192
tokens. As shown in Figure 6, we found this complex tem-
plate could clearly stabilize RL training compared to the
simple template, as evidenced by a smoother, more gradual
increase in mean response length, as opposed to the sharp
spikes observed with the simple template. Despite this sta-
bilization, performance across evaluation benchmarks still
deteriorates during the later stages of RL training, indicat-
ing need more exploring. Note that we adopt the complex
template as the default for all subsequent RL experiments.

Effect of the maximum response length The default max-
imum context length is set to 8,192 tokens for long-CoT
mid-trained models. Intuitively, we can delay the sharp rise
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Figure 7: Impact of the progressive max. length scheduler.

in response length by gradually increasing the maximum
response length in multiple stages. Specifically, we started
with a limit of 2,048 tokens for the first 200 steps, increased
it to 4,096 tokens from step 200 to step 320, and then fur-
ther expanded to the full 8,192-token context length from
step 320 to step 400. As shown in Figure 7, this progres-
sive scheduling strategy significantly stabilizes RL training
up to 400 steps, while consistently improving performance
across benchmarks. In addition, the response lengths grow
steadily and appropriately, highlighting the effectiveness of
the progressive length scheduler.
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Figure 8: Impact of scaling up the mid-training budget.

3.5. On the Issue of Mid-training Budget

Could further scaling up mid-training improve RL perfor-
mance? To explore this, we conducted a 100B-token mid-
training run on MegaMath-Web-Pro-Max using a default
cosine learning rate scheduler. We selected three interme-
diate checkpoints—trained on 20B, 70B, and 100B tokens,
respectively—and performed RL training. When evaluating
the base models, we observed that the 70B and 100B check-
points achieved comparable performance, both significantly
outperforming the 20B model. After RL training, interest-
ingly, we found that increasing the mid-training token count
consistently leads to improvements on RL performance de-
spite varying degrees, whether moving from 20B to 70B
or from 70B to 100B tokens. These findings highlight the
importance of further scaling up the mid-training budget to
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unlock additional gains in downstream RL performance.

4. OctoThinker-Base: Branching Reasoning
Foundations via 2-Stage Mid-training

Building upon the insights above, a natural question arises:
Can we turn Llama into a foundation model well-suited
for RL scaling by scaled-up mid-training? We ultimately
adopt a two-stage (stable-then-decay) mid-training strat-
egy to achieve both: (1) steady improvements in mathe-
matical reasoning ability in the first stage; (2) diversified
model behaviors through branching in the second (decay)
stage. Multi-stage pre-training has been validated as effec-
tive in prior work (Hu et al., 2024b; OLMo et al., 2025).
The stable-then-decay setup offers flexibility: the decay
phase can begin at any point, enabling checkpoint selection
independent of a fixed schedule. This also supports fair
comparisons across different mid-training configurations.
Importantly, decaying the learning rate in the second stage
amplifies the effect of injected data, helping shape model
behaviors more efficiently. Since the decay stage used for
shifting model behaviors (in other words data distribution)
is typically shorter, this approach also reduces the overall
training cost in general.

What does “OctoThinker” mean? “Octo” is derived
from “octopus,” symbolizing our base model family, which
branches into variants trained with different strategies.
“Thinker” reflects the model’s final stage—reinforcement
learning—where it is trained to think and reason, exhibiting
frequent self-reflection and strong reasoning capabilities.

4.1. Recipe for the First Stage: Building Strong
Reasoning Foundations

Although the previous analysis has revealed several factors
that are critical to building strong reasoning models, our mid-
training resource table (see Table 1) clearly shows that truly
high-quality tokens are still scarce at this moment. There-
fore, in the first phase, we adopted a relatively conservative
strategy—primarily relying on high-quality web corpora
such as MegaMath-Web-Pro-Max and DCLM-Baselines (Li
et al., 2024), supplemented with a small portion of synthetic
data—to enable the model to improve steadily at scale. Fol-
lowing the training settings used in MegaMath-Llama (Zhou
et al., 2025), we reduced the proportion of synthetic data
and adopted a WSD-style (Hu et al., 2024b) learning rate
scheduler, replacing the cosine learning rate with a con-
stant learning rate and training for 200B tokens. We pro-
vide specific training configurations, i.e., data mixture and
training hyper-parameters of the first-stage in Table 5 and
Table 6. We refer to the resulting mid-training models as
OctoThinker-Base-Stable.

4.2. Branching at the Second Stage: Seeking Perfect
Blend for RL Scaling

4.2.1. PILOT STUDIES

Building on prior experiments, we identified dataset quality
and quantity as key drivers of effective mid-training and
strong base model development. Before entering the decay
stage, we conducted a series of controlled 10B-token mid-
training experiments on the OctoThinker-3B-Base-Stable
model—each followed by RL training—to investigate how
different QA datasets affect downstream performance.

Data Composition and Its Impact on RL We experi-
mented with three QA datasets—MegaMath-QA, OpenR1-
Math-220K, and OpenMathInstruct-2 (OMI2)—in varying
proportions (10%, 20%, 30%, and 40%) while holding con-
stant 5% DCLM-Baselines data, 10% instruction data, and
the remainder from MegaMath-Web-Pro. Ablation stud-
ies (see Figure 15) revealed that the origin of QA data
plays a critical role. Specifically, OpenR1-Math-220K and
OMI2 are derived from structured downstream datasets (e.g.,
GSM8K, MATH), while MegaMath-QA is sourced from
less curated web documents. These differences in data
source and distribution substantially impact downstream
RL performance, highlighting the importance of distri-
butional alignment between mid-training data and down-
stream tasks. In light of this, we adopt OpenMathInstruct-2,
OpenR1-Math-220K (and further adopt the a-m-team’s dis-
tilled dataset2), and NuminaMath-1.53 as our primary QA
datasets for the decay stage, due to their closer resemblance
to competition-style, reasoning-intensive benchmarks.

Identifying the Optimal QA Ratio Across our ablation
studies (also see Figure 15), we observed a consistent trend:
increasing the QA data ratio leads to improved RL perfor-
mance, which aligns with expectations due to the format
similarity with RL objectives. However, gains began to
plateau beyond a 30% QA mix, with 40% showing dimin-
ishing returns across most benchmarks. We attribute this to
token redundancy and lack of diversity at higher QA propor-
tions. As a result, we adopted 30% QA as the optimal ratio,
balancing performance and data efficiency.

4.2.2. FINAL DECAY RECIPE

For the decay stage, we explored two learning rate (LR)
scheduler variants: (1) constant LR decay, where the LR
remains fixed at 10% of the final LR used in the stable
stage; (2) Cosine decay to 10%, where the LR gradu-
ally decays to 10% of the stable-stage final LR. Based on
mid-training evaluation results, the cosine decay strategy

2https://huggingface.co/datasets/
a-m-team/AM-DeepSeek-Distilled-40M

3https://huggingface.co/datasets/AI-MO/
NuminaMath-1.5
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demonstrated more consistent performance. We therefore
adopted it as the default scheduler for the decay stage, with
hyperparameters detailed in Table 8. During the decay
stage, we branched the mid-training into three distinct vari-
ants based on data composition: OctoThinker-Long (long-
reasoning data), OctoThinker-Short (short-reasoning data),
OctoThinker-Hybrid (a mix of both) with decayed learning
rate. The corresponding data mixtures are shown in Table 7.

4.3. Evaluation on OctoThinker-Base Series

We evaluated the performance of each branch on 14 math-
ematical benchmarks, alongside the original Llama base
model and the model after stable-stage mid-training. As
shown in Table 2,3,4, across all sizes, each OctoThinker
branch demonstrates a noticeable 10%-20% improvement
over the original base model and consistent gains over the
stable-stage model. Notably, random and poor performance
on challenging competition benchmarks highlights the ne-
cessity of post-training. Overall, these results reinforce
our view that OctoThinker-Base series provide a strong
foundation for studying RL scaling with solid reasoning
capabilities.

Table 2: Evaluation results on OctoThinker-1B series.

Benchmarks Llama-3.2-1B
OctoThinker-1B-Base

Stable Long Hybrid Short

Core

GSM8K (8-shot) 7.66 30.93 37.15 42.38 44.88
MATH500 (4-shot) 4.60 17.40 16.40 26.40 27.80
Olympiad Bench (4-shot) 0.89 2.96 3.41 5.48 3.85
AMC23 (0-shot) 0.00 10.00 7.50 10.00 10.00

Average 3.29 15.32 16.12 21.07 21.63

Other

MATH (4-shot) 4.34 18.26 21.74 28.50 29.98
SAT MATH (4-shot) 12.50 46.88 31.25 56.25 46.88
MathQA (8-shot) 12.20 24.80 33.20 36.90 36.70
MMLU STEM (4-shot) 19.90 35.59 36.45 38.60 37.91
OCW Course (4-shot) 4.41 6.25 4.04 6.25 6.62
MAWPS (8-shot) 43.05 79.47 83.15 88.57 88.09
SVAMP (8-shot) 20.90 47.10 55.80 63.20 61.20
ASDiv (8-shot) 34.53 69.96 72.55 75.30 75.26
TabMWP (8-shot) 24.40 45.10 50.10 51.60 51.20

Average 19.58 41.49 43.14 49.46 48.20

Table 3: Evaluation results on OctoThinker-3B series.

Benchmarks Llama-3.2-3B
OctoThinker-3B-Base

Stable Long Hybrid Short

Core

GSM8K (8-shot) 30.48 55.95 56.10 64.37 63.31
MATH500 (4-shot) 7.40 22.40 25.80 30.80 31.40
Olympiad Bench (4-shot) 2.07 3.41 4.74 4.00 4.74
AMC23 (0-shot) 2.50 5.00 7.50 10.00 2.50

Average 10.61 21.69 23.54 27.29 25.49

Other

MATH (4-shot) 8.24 24.86 29.98 31.76 32.70
SAT MATH (4-shot) 25.00 59.38 65.63 59.38 53.13
MathQA (8-shot) 18.20 39.50 45.40 47.50 49.80
MMLU STEM (4-shot) 38.63 46.32 48.11 49.73 48.87
OCW Course (4-shot) 5.51 11.40 11.40 8.46 9.19
MAWPS (8-shot) 79.90 89.69 91.67 94.24 93.51
SVAMP (8-shot) 52.40 68.40 69.10 78.00 77.30
ASDiv (8-shot) 60.09 79.59 79.91 82.80 82.26
TabMWP (8-shot) 48.30 55.60 56.40 57.80 60.00

Average 37.36 52.75 55.29 56.63 56.31

Table 4: Evaluation results on OctoThinker-8B series.

Benchmarks Llama-3.1-8B
OctoThinker-8B-Base

Stable Long Hybrid Short

Core

GSM8K (8-shot) 55.11 71.27 72.48 77.41 77.10
MATH500 (4-shot) 20.80 34.40 37.80 42.60 38.60
Olympiad Bench (4-shot) 3.56 9.78 11.85 4.74 10.07
AMC23 (0-shot) 5.00 0.00 5.00 5.00 7.50

Average 21.12 28.86 31.78 32.44 33.32

Other

MATH (4-shot) 21.36 37.00 41.98 44.82 38.54
SAT MATH (4-shot) 53.13 81.25 81.25 87.50 87.50
MathQA (8-shot) 36.00 58.20 62.80 60.50 62.80
MMLU STEM (4-shot) 54.44 62.03 63.75 64.08 64.38
OCW Course (4-shot) 12.87 18.38 16.18 15.07 13.97
MAWPS (8-shot) 90.75 93.08 94.43 95.98 95.54
SVAMP (8-shot) 70.50 79.50 82.40 86.10 86.40
ASDiv (8-shot) 72.10 83.79 83.57 84.47 85.33
TabMWP (8-shot) 63.10 67.90 70.10 68.90 71.60

Average 52.69 64.57 66.27 67.49 67.34

5. OctoThinker-Zero Families: RL Scaling
with Diverse Thinking Behaviors

We further trained all OctoThinker base models—spanning
different decay branches and model sizes (1B and
3B)—through a reinforcement learning stage, following
our previously established setup. This yielded a family
of models optimized specifically for mathematical reason-
ing. As in the decay stage, the final RL-tuned models fall
into three categories, each reflecting the data mixture used
during decay and the distinct behaviors shaped during RL:
OctoThinker-Short-Zero, OctoThinker-Hybrid-Zero, and
OctoThinker-Long-Zero. The training dynamics of these
models are shown in Figure 9,10. The OctoThinker-Long
branch tends to produce longer responses—within a con-
trolled range—compared to other branches. While it slightly
underperforms at the 1B scale, it demonstrates stronger per-
formance as model size increases, such as at 3B.
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Figure 9: The RL training dynamics across different
branches for OctoThinker-1B series

OctoThinker vs. Qwen2.5 An important question we in-
vestigate is: To what extent can our OctoThinker models
close the performance gap between the Llama-3.2 series
and the stronger Qwen2.5 models in the RL setting? To
demonstrate this, we compare three 3B-scale base mod-
els: Llama-3.2-3B-Base, OctoThinker-Long-3B-Base, and
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Figure 10: The RL training dynamics across different
branches for OctoThinker-3B series.

Qwen2.5-3B-Base. As illustrated in Figure 11, during the
RL phase, OctoThinker-Long-3B consistently outperforms
the original Llama-3.2-3B model. Remarkably, it reaches
performance on par with Qwen2.5-3B, a model known for
its strong reasoning capabilities and extensive pre-training,
while the hybrid and short branches are marginally infe-
rior, especially on challenging benchmarks. Overall, these
results highlight the substantial gains introduced by our mid-
training strategy and confirm that OctoThinker effectively
narrows the performance gap, elevating Llama-3.2 models
to a new level of competitiveness in math reasoning tasks.
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Figure 11: RL dynamics of Llama-3.2-3B, OctoThinker-3B,
and Qwen2.5-3B (see full results in Figure 16).

6. Related Works
Understanding RL along with Language Models Large-
scale RL has driven the major advances in language models
on reasoning-intensive tasks, such as competition-level math
(e.g., AIME), exemplified by OpenAI’s o1 (OpenAI et al.,
2024), o3 (OpenAI, 2025) and DeepSeek’s R1 (Guo et al.,
2025). A wave of follow-up studies (Zeng et al., 2025; Hu
et al., 2025; Yu et al., 2025; Luo et al., 2025) explored RL
on smaller language models (less than 100B parameters),
yet these successes are overwhelmingly limited to Qwen
family. In contrast, replicating such results on other major
model families—e.g., Llama-has proven difficult (Gandhi
et al., 2025; Liu et al., 2025). The opacity of pre-training
pipelines hinders our understanding of how pre-training in-
teracts with RL scaling, prompting some unconventional
investigations (Wang et al., 2025; Shao et al., 2025). For

instance, Wang et al. (2025) showed that even one-shot
prompting can enhance reasoning in Qwen, but yields mini-
mal gains in Llama. The underlying science remains essen-
tial but largely unexplored. Our work takes a step toward
filling this gap by performing controlled mid-training in-
terventions on Llama models, revealing key factors that
enable effective RL scaling. Building on these insights, we
introduce OctoThinker via a two-stage mid-training strat-
egy (over 200B tokens), followed by RL training, yielding
models that match Qwen’s performance at the same scale.

Curation of Math Pre-training Corpora Pre-training
corpora are foundational to language models, especially for
math reasoning tasks where large-scale mid-training is infea-
sible without high-quality, domain-specific data. Early open-
source efforts—such as OpenWebMath (Paster et al., 2024),
MathPile (Wang et al., 2024), InfiMM-Web-Math (Han
et al., 2024), and FineMath (Allal et al., 2025)—have made
meaningful progress but remain constrained in scale, typi-
cally under 100B tokens. The release of MegaMath (Zhou
et al., 2025) marked a turning point, enabling scalable mid-
training in this work. Building on its foundation, we curated
a new reasoning-intensive and carefully refined math cor-
pus, MegaMath-Web-Pro-Max , which exceeds 70B tokens
and matches the quality of MegaMath-Web-Pro. This cor-
pus powers the first stage of our mid-training and will be
released to support the broader open-source community.

7. Conclusion and Future Work
In this work, we investigated why base models like Llama
and Qwen exhibit divergent behaviors during reinforce-
ment learning for reasoning and demonstrated that mid-
training plays a decisive role. Our findings show that high-
quality, reasoning-intensive corpora—especially those like
MegaMath-Web-Pro—can substantially improve RL sta-
bility and effectiveness. Building on these insights, we
introduced a two-stage mid-training strategy that transforms
Llama into a more RL-scalable foundation model. The re-
sulting OctoThinker models achieve strong performance
across mathematical reasoning tasks, closing the gap with
RL-friendly model families. We hope this work provides a
foundation for designing future base models better aligned
with the demands of reasoning-centric RL.

Furthermore, we will actively explore more in the future,
include: (1) curating higher-quality math corpora to fur-
ther enhance mid-training; (2) designing RL-friendly base
models using open recipes without distillation from those
powerful long CoT reasoning models; (3) disentangling QA
format and content to better understand their individual con-
tributions; and (4) extending the OctoThinker families with
additional branches, such as tool-integrated reasoning. We
believe these efforts will provide deeper insights into the
interplay between pre-training and reinforcement learning.

8
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Details for Preliminaries
A.1. Details for RL Setup

We performed RL experiments based on the verl (Sheng et al., 2024) framework and utilized the GRPO (Shao et al.,
2024) algorithm. For RL training prompts, we adopted the MATH8K4 dataset due to its moderate difficulty and concise
composition. The maximum response length is set to 4,096 tokens. We configured the global training batch size to 128, set
the number of rollout responses per query to 16, and used a PPO mini-batch size of 64. The sampling temperature is set to
1.0, with a maximum output length of 4096 tokens. We used a learning rate of 1×10−6 and set the KL loss coefficient to 0 in
the verl configuration. Empirically, we found that setting the ratio between sampling and gradient updates to 2 leads to more
stable RL training. Unless otherwise specified, we employed a simple prompt template of “Question:{}\nAnswer:{}”
to format training examples.

For evaluation, we employ GSM8K (Cobbe et al., 2021), MATH500 (Lightman et al., 2023), OlympiadBench (He
et al., 2024), and AMC23 as indicator tasks to analyze RL dynamics. To assess base model performance, we further
include MATH (Hendrycks et al., 2021), SAT-MATH (Azerbayev et al., 2024) , MathQA (Amini et al., 2019), MMLU-
STEM (Hendrycks et al., 2021), OCW Course (Lewkowycz et al., 2022), MAWPS (Koncel-Kedziorski et al., 2016),
SVAMP (Patel et al., 2021), ASDiv (Miao et al., 2020), and TabMWP (Lu et al., 2023).

A.2. Details for The Curation of MegaMath-Web-Pro-Max

Scoring Prompt of Usefulness for Studying Mathematics

Evaluate the following text extract for its potential usefulness for studying mathematics up to high school and early
undergraduate levels. Use the following 5-point scoring system described below. Points are accumulated based on the
satisfaction of each criterion:
- Add 1 point if the extract contains some mathematical content, even if it’s not very useful for studying, or if it contains
non-academic content such as advertisements and generated pages for converting weight and currencies.
- Add another point if the extract touches on mathematical topics, even if it’s poorly written if it’s too complex such as
an academic paper that is too advanced.
- Award a third point if the extract demonstrates problem solving or logical reasoning in a mathematical context, even if
it lacks step-by-step explanations.
- Grant a fourth point if the extract is at an appropriate level (up to high school and early undergraduate levels) and
contains clear mathematical deductions and step-by-step solutions to mathematical problems. It should be similar to a
chapter from a textbook or a tutorial.
- Give a fifth point if the extract is outstanding in its educational value for teaching and studying mathematics in middle
school and high school. It should include very detailed and easy to follow explanations.
Question-answer formats (e.g., from educational websites or forums) are acceptable if they meet the criteria.
The text extract:
‘‘
<document>
’’
After examining the extract:
- Briefly justify your total score, up to 100 words.
- Conclude with the score using the format: Final score: <total points>.

Figure 12: Scoring prompt in FineMath (Allal et al., 2025) of usefulness for studying mathematics.

We curated MegaMath-Web-Pro-Max to support large-scale ablation studies and mid-training. The corpus was constructed
by leveraging an efficient classifier to recall documents from MegaMath (Zhou et al., 2025), followed by refinement using a
powerful instruction-following LLM. Specifically, we uniformly and randomly sampled millions of documents from the
MegaMath-Web corpus, stratified by publication year, and annotated them using Llama-3.1-70B-instruct. Each document
was graded for its usefulness in studying mathematics on a scale from 0 to 5 using a grading prompt (see Figure 12). We

4https://hf.co/datasets/hkust-nlp/SimpleRL-Zoo-Data/tree/main/simplelr_qwen_level3to5
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heuristically extracted scores from the model’s critiques: documents scoring below 3 were labeled as negative examples,
while those scoring 3 or above were considered positive. To improve the classifier’s ability to recall reasoning-intensive
content, we supplemented the positive seed set with more than 200K long CoT examples from OpenR1-Math-220K, using
only the detailed deep thinking steps without their summaries. We balanced the distribution of positive and negative
examples, totalling about 2.5 million samples. We observed that existing classifiers, such as finemath-classifier,
are highly sensitive to the choices of text extractors during data curation. This motivated us to train our own classifier,
selecting fasttext for its efficiency. Consistent with the findings of Zhou et al. (2025), we found preprocessing to be
critical for recall performance. Our preprocessing pipeline included lowercasing text, filtering excessively long words,
and removing line breaks and extraneous non-alphanumeric characters. Given the noisy and poorly structured nature
of many documents, we employed Llama-3.1-70B-instruct to refine the text using a prompt (see Figure 13) inspired by
MegaMath-Web-Pro. The resulting dataset, MegaMath-Web-Pro-Max , contains approximately 5.5 times more tokens
than MegaMath-Web-Pro. Empirical evaluations during pre-training indicate that MegaMath-Web-Pro-Max maintains
comparable data quality, making it a strong candidate as a foundational corpus for large-scale mid-training.

Web Text Refinement Prompt

Task:
- Carefully analyze the provided text to extract key facts, concrete details, important numbers, and core concepts.
- Remove any irrelevant or noisy information, and reorganize the content into a logically structured, information-dense,
and concise version that is easy to learn from. Output only the refined text.
- Strive to maintain the original length as much as possible (avoid excessive shortening).
- Refine multiple choice questions and answers if any.
Text:
<EXAMPLE>
Just output the refined text, no other text.

Figure 13: Web text refinement prompt used in MegaMath-Web-Pro (Zhou et al., 2025)

A.3. Details for Controllable Mid-training Analysis

We provide the complex template for RL training mentioned in § 3.4 in Figure 14.

Complex Template for RL

A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first
thinks about the reasoning process in the mind and then provides the user with the answer. User: You must put your
answer inside \\boxed{} and your final answer will be extracted automatically by the \\boxed{} tag.
{{prompt}}
Assistant:

Figure 14: Complex Template for RL training adapted from the prompt design in Open-Reasoner-Zero (Hu et al., 2025)

A.4. Details for OctoThinker-Base

Tables 5 and 6 detail the data mixture and training hyperparameters for the stable stage, while Tables 7 and 8 present those
for the decay stage. Figure 15 illustrates the effect of different QA data mixtures in the decay stage on the downstream
performance.
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Figure 15: RL dynamics under different QA datasets and mixing ratios during the decay stage.
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Table 5: Dataset composition and weights in the first stage.

Dataset Weight

DCLM-Baseline 0.10
MegaMath-Web-Pro-Max 0.725
MegaMath-Code 0.0125
MegaMath-QA 0.05
MegaMath Trans. Code 0.0125
MegaMath Text Code Block 0.10

Table 6: hyper-parameters in the stable stage.

Hyper-parameter Llama-3.2-1B / 3B / 8B

Context Length 8,192
Batch Size 512
Max Steps 50,000
Warmup Steps 0
Weight Decay 0.1
Optimizer AdamW
LR Scheduler Constant
Learning Rate (LR) 5e-5/2e-5/1e-5

Table 7: Specific data mixture for each branch in the decay stage

(a) Long Branch Mixture

Dataset Weight

DCLM-Baseline 0.05
Instruction Following 0.10
MegaMath-Web-Pro 0.55
Open R1 0.15
AM-DeepSeek-Distilled-40M 0.15

(b) Short Branch Mixture

Dataset Weight

DCLM-Baseline 0.05
Instruction Following 0.10
MegaMath-Web-Pro 0.55
MegaMath-QA 0.025
OpenMathInstruct2 0.175
NuminaMath1.5 0.10

(c) Hybrid Branch Mixture

Dataset Weight

DCLM-Baseline 0.05
Instruction Following 0.10
MegaMath-Web-Pro 0.55
OpenMathInstruct2 0.10
NuminaMath1.5 0.10
Open R1 0.10
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Figure 16: RL training dynamics among Llama-3.2-3B-Base, OctoThinker series and Qwen2.5-Base.

Table 8: Hyper-parameters for decay stage.

Hyper-parameter Llama-3.2-1B / 3B / 8B

Context Length 8,192
Batch Size 512
Max Steps 5,000
Warmup Steps 0
Weight Decay 0.1
Optimizer AdamW

LR Scheduler
Cosine Decay

5e-5→5e-6 / 2e-5→2e-6 / 1e-5→1e-6
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