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Abstract

The ability to detect intent in dialogue systems
has become increasingly important in modern
technology. These systems often generate a
large amount of unlabeled data, and manually
labeling this data requires substantial human ef-
fort. Semi-supervised methods attempt to rem-
edy this cost by using a model trained on a few
labeled examples and then by assigning pseudo-
labels to further a subset of unlabeled examples
that has a model prediction confidence higher
than a certain threshold. However, one particu-
larly perilous consequence of these methods is
the risk of picking an imbalanced set of exam-
ples across classes, which could lead to poor
labels. In the present work, we describe Top-K
K-Nearest Neighbor (TK-KNN), which uses a
more robust pseudo-labeling approach based on
distance in the embedding space while main-
taining a balanced set of pseudo-labeled ex-
amples across classes through a ranking-based
approach. Experiments on several datasets
show that TK-KNN outperforms existing mod-
els, particularly when labeled data is scarce on
popular datasets such as CLINC150 and Bank-
ing77. Code is available at https://github.
com/ServiceNow/tk-knn

1 Introduction.

Large language models like BERT [Devlin et al.,
2018] have significantly pushed the boundaries
of Natural Language Understanding (NLU) and
created interesting applications such as automatic
ticket resolution [Marcuzzo et al., 2022]. A key
component of such systems is a virtual agent’s
ability to understand a user’s intent to respond
appropriately. Successful implementation and de-
ployment of models for these systems require a
large amount of labeled data to be effective. Al-
though deployment of these systems often gener-
ate a large amount of data that could be used for
fine-tuning, the cost of labeling this data is high.
Semi-supervised learning methodologies are an ob-
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Figure 1: Example of pseudo label selection when using
a threshold (top) versus the top-k sampling strategy
(bottom). In this toy scenario, we chose k = 2, where
each class is represented by a unique shape. As the
threshold selection strategy pseudo-labels data elements
(shown as yellow) that exceed the confidence level, the
model tends to become biased towards classes that are
easier to predict. This bias causes a cascade of mis-
labels that leads to even more bias towards the majority
class.

vious solution because they can significantly re-
duce the amount of human effort required to train
these kinds of models [Laradji et al., 2021, Zhu and
Goldberg, 2009] especially in image classification
tasks [Zhai et al., 2019, Ouali et al., 2020b, Yalniz
et al., 2019]. However, as well shall see, applica-
tions of these models is difficult for NLU and intent
classification because of the label distribution.

Indeed, research most closely realted to the
present work is the Slot-List model by Basu et al.
[2021], which focuses on the meta-learning as-
pect of semi-supervised learning rather than us-
ing unlabeled data. In a similar vein the GAN-
BERT [Croce et al., 2020] model shows that using
an adversarial learning regime can be devised to
ensure that the extracted BERT features are similar
amongst the unlabeled and the labeled data sets
and substantially boost classification performance.
Other methods have investigated how data augmen-
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tation can be applied to the NLP domain to enforce
consistency in the models [Chen et al., 2020], and
several other methods have been proposed from
the computer vision community. However, a recent
empirical study found that many of these methods
do not provide the same benefit to NLU tasks as
they provide to computer vision tasks [Chen et al.,
2021] and can even hinder performance.

Intent classification remains a challenging prob-
lem for multiple reasons. Generally, the number of
intents a system must consider is relatively large,
with sixty classes or more. On top of that, most
queries consists of only a short sentence or two.
This forces models to need many examples in order
to learn nuance between different intents within
the same domain. In the semi-supervised setting,
many methods set a confidence threshold for the
model and assign pseudo-labels to the unlabeled
data if their confidence is above the threshold [Sohn
et al., 2020]. This strategy permits high-confidence
pseudo-labeled data elements to be included in the
training set, which typically results in performance
gains. Unfortunately, this approach also causes the
model to become overconfident for classes that are
easier to predict.

In the present work, we describe the Top-K K-
Nearest Neighbor (TK-KNN) method for training
semi-supervised models. The main idea of this
method is illustrated in Figure 1. TK-KNN makes
two improvements over other pseudo-labeling ap-
proaches. First, to address the model overcon-
fidence problem, we use a top-k sampling strat-
egy when assigning pseudo-labels to enforce a
balanced set of classes by taking the top-k pre-
dictions per class, not simply the predictions that
exceed a confidence threshold overall predictions.
Furthermore, when selecting the top-k examples
the sampling strategy does not simply rely on the
model’s predictions, which tend to be noisy. In-
stead we leverage the embedding space of the la-
beled and unlabeled examples to find those with
similar embeddings and combine them with the
models’ predictions. Experiments using standard
performance metrics of intent classification are per-
formed on three datasets: CLINC150 [Larson et al.,
2019], Banking77 [Casanueva et al., 2020], and
Hwu64 [Liu et al., 2019]. We find that the TK-
KNN method outperforms existing methods in all
scenarios and performs exceptionally well in the
low-data scenarios.

2 Related Work

Intent Classification The task of intent classifi-
cation has attracted much attention in recent years
due to the increasing use of virtual customer ser-
vice agents. Recent research into intent classi-
fication systems has mainly focused on learning
out of distribution data [Zhan et al., 2021, Zhang
et al., 2021b, Cheng et al., 2022, Zhou et al., 2022].
These techniques configure their experiments to
learn from a reduced number of the classes and
treat the remaining classes as out-of-distribution
during testing. Although this research is indeed
important in its own regard, it deviates from the
present work’s focus on semi-supervised learning.

Pseudo Labeling Pseudo labeling is a mainstay
in semi-supervised learning [Lee et al., 2013, Rizve
et al., 2021, Cascante-Bonilla et al., 2021]. In sim-
ple terms, pseudo labelling uses the model itself to
acquire hard labels for each of the unlabeled data
elements. This is achieved by taking the argmax of
the models’ output and treating the resulting label
as the example’s label. In this learning regime, the
hard labels are assigned to the unlabeled examples
without considering the confidence of the model’s
predictions. These pseudo-labeled examples are
then combined with the labeled data to train the
model iteratively. The model is then expected to
iteratively improve until convergence. The main
drawback of this method is that mislabeled data
elements early in training can severely degrade the
performance of the system.

A common practice to help alleviate mislabeled
samples is to use a threshold τ to ensure that
only high-quality (i.e., confident) labels are re-
tained [Sohn et al., 2020]. The addition of con-
fidence restrictions into the training process [Sohn
et al., 2020] has shown improvements but also re-
stricts the data used at inference time and intro-
duces the confidence threshold value as yet another
hyperparameter that needs to be tuned.

Another major drawback of this selection
method is that the model can become very biased
towards the easy classes in the early iterations of
learning [Arazo et al., 2020]. Recent methods, such
as FlexMatch [Zhang et al., 2021a], have discussed
this problem at length and attempted to address
this issue with a curriculum learning paradigm that
allows each class to have its own threshold. These
thresholds tend to be higher for majority classes
lower for less-common classes. However, this only



serves to exacerbate the problem because the less-
common classes will have less-confident labels. A
previous work by Zou et al. [2018] proposes a
similar class balancing parameter to be learned
per class, but is applied to the task of unsuper-
vised domain adaptation. A close previous work
to ours is co-training [Nigam and Ghani, 2000]
that iteratively adds a single example from each
class throughout the self-training. Another more
recent work [Gera et al., 2022] also proposes a bal-
anced sampling mechanism for self-training, but
starts from a zero-shot perspective and limits to
two cycles of self-training.

Another pertinent work is by Chen et al. [2022],
who introduce ContrastNet, a framework that lever-
ages contrastive learning for few-shot text classi-
fication. This is particularly relevant to our study
considering the challenges posed by datasets with
a scarce number of labeled examples per class. A
notable work by Wang et al. [2022] employs a con-
trastive learning-enhanced nearest neighbor mecha-
nism for multi-label text classification, which bears
some resemblance to the KNN strategies discussed
in our work.

The TK-KNN strategy described in the present
work addresses these issues by learning the deci-
sion boundaries for all classes in a balanced way
while still giving preference to accurate labels by
considering the proximity between the labeled and
the unlabeled examples in the embedding space.

Distance-based Pseudo labeling Another direc-
tion explored in recent work is to consider the
smoothness and clustering assumptions found in
semi-supervised learning [Ouali et al., 2020a] for
pseudo labeling. The smoothness assumption states
that if two points lie in a high-density region their
outputs should be the same. The clustering assump-
tion similarly states that if points are in the same
cluster, they are likely from the same class. Recent
work by Zhu et al. [2022] propose a training-free
approach to detect corrupted labels. They use a k-
style approach to detect corrupted labels that share
similar features. The results of this work show that
the smoothness and clustering assumptions are also
applicable in a latent embedding space and there-
fore data elements that are close in the latent space
are likely to share the same clean label.

Two other recent works have made use of
these assumptions in semi-supervised learning
to improve their pseudo-labeling process. First,
Taherkhani et al. [2021] use the Wasserstein dis-

tance to match clusters of unlabeled examples to
labeled clusters for pseudo-labeling.

Second, the aptly-named feature affinity based
pseudo-labeling [Ding et al., 2019] method uses
the cosine similarity between unlabeled examples
and cluster centers that have been discovered for
each class. The selected pseudo label is determined
based on the highest similarity score calculated for
the unlabeled example.

Results from both of these works demonstrate
that distance-based pseudo-labeling strategies yield
significant improvements over previous methods.
However, both of these methods depend on clusters
formed from the labeled data. In the intent clas-
sification task considered in the current study, the
datasets sometimes have an extremely limited num-
ber of labeled examples per class, with instances
where there is only one labeled example per class.
This scarcity of labeled data makes forming reliable
clusters quite challenging. Therefore, the TK-KNN
model described in the present work adapted the
K-Nearest Neighbors search strategy to help guide
our pseudo-labeling process.

3 Top-K KNN Semi-Supervised Learning

3.1 Problem Definition

We formulate the problem of semi-supervised in-
tent classification as follows:

Given a set of labeled intents X = (xn, yn) :
n ∈ (1, ..., N) where xn represents the intent ex-
ample and yn the corresponding intent class c ∈ C
and a set of unlabeled intents U = um : m ∈
(1, ...,M), where each instance um is an intent ex-
ample lacking a label. Intents are fed to the model
as input and the model outputs a predicted intent
class, denoted as pmodel(c|x, θ), where θ represents
some pre-trained model parameters. Our goal is to
learn the optimal parameters for θ.

3.2 Method Overview

As described above, we first employ pseudo label-
ing to iteratively train (and re-train) a model based
on its most confident-past predictions. In the first
training cycle, the model is trained on only the
small portion of labeled data X . In the subsequent
cycles, the model is trained on the union of X
and a subset of the unlabeled data U that has been
pseudo-labeled by the model in the previous cy-
cle. Figure 2 illustrates an example of this training
regime with the TK-KNN method.
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Figure 2: TK-KNN overview. The model is (1) trained on the small portion of labeled data. Then, this model is used
to predict (2) pseudo labels on the unlabeled data. Then the cosine similarity (3) is calculated for each unlabeled
data point with respect to the labeled data points in each class. Yellow shapes represent unlabeled data and green
represent labeled data. Similarities are computed and unlabeled examples are ranked (4) based on a combination of
their predicted probabilities and cosine similarities. Then, the top-k (k = 2) examples are selected (5) for each class.
These examples are finally added (6) to the labeled dataset to continue the iterative learning process.

We use the BERT-base [Devlin et al., 2018]
model with an added classification head to the top.
The classification head consists of a dropout layer
followed by a linear layer with dropout and ends
with an output layer that represents the dataset’s
class set C. We select the BERT-base model for
fair comparison with other methods.

3.3 Top-K Sampling

When applying pseudo-labeling, it is often ob-
served that some classes are easier to predict than
others. In practice, this causes the model to be-
come biased towards the easier classes [Arazo et al.,
2020] and perform poorly on the more difficult
ones. The Top-K sampling process within the TK-
KNN system seeks to alleviate this issue by grow-
ing the pseudo-label set across all labels together.

When we perform pseudo labeling, we select
the top-k predictions per class from the unlabeled
data. This selection neither uses nor requires any
threshold; instead, it limits each class to choose the
predictions with the highest confidence. We rank
each predicted data element with a score based on
the models predicted probability.

score(um) = pmodel(y = c|um; θ) (1)

After each training cycle, the number of pseudo
labels in the dataset will have increased by k times
the number of classes. This process continues un-
til all examples are labeled or some number of
pre-defined cycles has been reached. We employ
standard early stopping criteria [Prechelt, 1998]
during each training cycle to determine whether or
not to stop training.

3.4 KNN-Alignment
Although our top-k selection strategy helps allevi-
ate the model’s bias, it still relies entirely on the
model predictions. To enhance our top-k selection
strategy, we utilize a KNN search to modify the
scoring function that is used to rank which pseudo-
labeled examples should be included in the next
training iteration. The intuition for the use of the
KNN search comes from the findings in [Zhu et al.,
2022] where "closer" instances are more likely to
share the same label based on the neighborhood
information when some labels are corrupted, which
often occurs in semi-supervised learning from the
pseudo-labeling strategy.



Specifically, we extract a latent representation
from each example in our training dataset, both the
labeled and unlabeled examples. We formulate this
latent representation in the same way as Sentence-
BERT [Reimers and Gurevych, 2019] to construct a
robust sentence representation. This representation
is defined as the mean-pooled representation of the
final BERT layer that we formally define as:

z = mean([CLS], T1, T2, ..., TM ) (2)

Where CLS is the class token, T is each token
in the sequence, M is the sequence length, and z
is the extracted latent representation. When we
perform our pseudo labeling process we extract the
latent representation for all of our labeled data X
as well as our unlabeled data U .

For each unlabeled example, we calculate the
cosine similarity between its latent representation
and the latent representations of the labeled coun-
terparts belonging to the predicted class.

The highest cosine similarity score between the
unlabeled example and its labeled neighbors is used
to calculate the score of an unlabeled example. Let
zm and zn be the latent representations of the un-
labeled data point um and a labeled data point xn,
respectively. An additional hyperparameter, β, per-
mits the weighing of the model’s prediction and the
cosine similarity for the final scoring function.

score(um) = (1− β)× pmodel(y|um; θ)+

β × sim(zn, zm)
(3)

In this equation sim(zn, zm) computes the co-
sine similarity between the latent representations
of um and its closest labeled counterpart in the
predicted class. With these scores we then follow
the previously discussed top-k selection strategy
to ensure balanced classes. The addition of the
K-nearest neighbor search helps us to select more
accurate labels early in the learning process. We
provide pseudo code for our pseudo-labeling strat-
egy in Appendix Algorithm 1.

3.5 Loss Function
As we use the cosine similarity to help our ranking
method we want to ensure that similar examples are
grouped together in the latent space.While the cross
entropy loss is an ideal choice for classification,
as it incentivizes the model to produce accurate
predictions, it does not guarantee that discrimina-
tive features will be learned [Elsayed et al., 2018],

which our pseudo labeling relies on. To address
this issue, we supplemented the cross-entropy loss
with a supervised contrastive loss [Khosla et al.,
2020] and a differential entropy regularization loss
[Sablayrolles et al., 2019], and trained the model
using all three losses jointly.

LCE = −
C∑
i=1

yi log(ŷi) (4)

We select the supervised contrastive loss as
shown in [Khosla et al., 2020]. This ensures that
our model with learn good discriminative features
in the latent space that separate examples belong-
ing to different classes. The supervised contrastive
loss relies on augmentations of the original exam-
ples. To get this augmentation we simply apply a
dropout layer of 0.2 to the representations that we
extract from the model. As is standard for the su-
pervised contrastive loss we add a separate projec-
tion layer to our model to align the representations.
The representations fed to the projection layer is
the mean-pooled BERT representation as shown in
Eq. 2.

LSCL =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
sim(zi, zp)/τ∑

a∈A(i) sim(zi, za)/τ

(5)

When adopting the contrastive loss previous
works [El-Nouby et al., 2021] have discussed how
the model can collapse in dimensions as a result
of the loss. We follow this work in adopting a dif-
ferential entropy regularizer in order to spread the
representations our more uniformly. The method
we use is based on the Kozachenko and Leonenko
[1987] differential entropy estimator:

LKoLeo = − 1

N

N∑
i=1

log(pi) (6)

Where pi = min(i ̸=j)||f(xi) − f(xj)||. This
regularization helps to maximize the distance be-
tween each point and its neighbors. By doing so
it helps to alleviate the rank collapse issue. We
combine this term with the cross-entropy and con-
trastive objectives, weighting it using a coefficient
γ.

LALL = LCE + LSCL + γLKoLeo (7)

The joint training of these individual compo-
nents leads our model to have better discriminative



features that are more robust, that results in im-
proved generalization and prediction accuracy.

4 Experiments

4.1 Experimental Settings
Datasets We use three well-known benchmark
datasets to test and compare the TK-KNN model
against other models on the intent classifica-
tion task. Our intent classification datasets are
CLINC150 [Larson et al., 2019] that contains
150 in-domain intents classes from ten different
domains and one out-of-domain class. BANK-
ING77 [Casanueva et al., 2020] that contains
77 intents, all related to the banking domain.
HWU64 [Liu et al., 2019] which includes 64 in-
tents coming from 21 different domains. Bank-
ing77 and Hwu64 do not provide validation sets,
so we created our own from the original training
sets. All datasets are in English. A breakdown of
each dataset is shown in Table 1.

Dataset Intents Domain Train Val Test

CLINC150 151 10 15,250 3,100 5,550
Banking77 77 1 9,002 1,001 3,080
Hwu64 64 21 8,884 1,076 1,076

Table 1: Breakdown of the intent classification datasets.
Note that BANKING77 and HWU64 do not provide
validation sets, so we generated a validation set from
the original training set.

We conducted our experiments with varying
amounts of labeled data for each dataset. All meth-
ods are run with five random seeds and the mean
average accuracy of their results are reported along
with their 95% confidence intervals [Dror et al.,
2018].

4.2 Baselines
To perform a proper and thorough comparison of
TK-KNN with existing methods, we implemented
and repeated the experiments on the following mod-
els and strategies.

• Supervised: Use only labeled portion of
dataset to train the model without any semi-
supervised training. This model constitutes a
competitive lower bound of performance be-
cause of the limits in the amount of labeled
data.

• Pseudo Labeling (PL) [Lee et al., 2013]:
This strategy trains the model to convergence
then makes predictions on all of the unlabeled

data examples. These examples are then com-
bined with the labeled data and used to re-train
the model in an iterative manner.

• Pseudo Labeling with Threshold (PL-T)
[Sohn et al., 2020]: This process follows the
pseudo labeling strategy but only selects unla-
beled data elements which are predicted above
a threshold τ . We use a τ of 0.95 based on the
findings from previous work.

• Pseudo Labeling with Flexmatch (PL-Flex)
[Zhang et al., 2021a]: Rather than using a
static threshold across all classes, a dynamic
threshold is used for each class based on a
curriculum learning framework.

• GAN-BERT [Croce et al., 2020]: This
method applies generative adversarial net-
works [Goodfellow et al., 2020] to a pre-
trained BERT model. The generator is an
MLP that takes in a noise vector. The output
head added to the BERT model acts as the
discriminator and includes an extra class for
predicting whether a given data element is real
or not.

• MixText [Chen et al., 2020]: This method ex-
tends the MixUp [Zhang et al., 2017] frame-
work to NLP and uses the hidden representa-
tion of BERT to mix together. The method
also takes advantage of consistency regulariza-
tion in the form of back translated examples.

• TK-KNN : The method described in the
present work using top-k sampling with a
weighted selection based on model predictions
and cosine similarity to the labeled samples.

4.3 Implementation Details

Each method uses the BERT base model with a clas-
sification head attached. We use the base BERT im-
plementation provided by Huggingface Wolf et al.,
2019, that contains a total of 110M parameters. All
models are trained for 30 cycles of self-training.
The models are optimized with the AdamW opti-
mizer with a learning rate of 5e-5. Each model is
trained until convergence by early stopping applied
according to the validation set. We use a batch size
of 256 across experiments and limit the sequence
length to 64 tokens. For TK-KNN, we set k = 6,
β = 0.75, and γ = 0.1 and report the results for



Percent Labeled
Method 1% 2% 5% 10%

CLINC150
Supervised 27.35 ±1.71 49.15 ±1.99 67.96 ±0.85 75.05 ±1.57

PL 24.51 ±3.92 48.58 ±1.79 69.19 ±0.54 76.92 ±1.05

PL-T 39.05 ±3.26 56.65 ±1.53 71.25 ±0.5 79.29 ±1.62

PL-Flex 42.81 ±4.39 60.07 ±1.42 73.42 ±1.62 78.86 ±1.01

GAN-BERT 18.18 ±0.0 23.29 ±11.42 44.89 ±24.39 63.02 ±25.1

MixText 12.86 ±6.39 37.93 ±16.8 61.39 ±0.77 74.29 ±0.37

TK-KNN 53.73 ±1.72 65.87 ±1.18 74.31 ±0.96 79.45 ±1.01

BANKING77
Supervised 34.73 ±1.5 47.51 ±2.89 70.27 ±1.08 80.82 ±0.41

PL 29.09 ±3.83 45.16 ±2.71 69.69 ±2.16 80.26 ±0.49

PL-T 35.12 ±3.86 51.67 ±3.14 71.16 ±1.98 81.88 ±0.43

PL-Flex 40.04 ±3.4 54.18 ±3.31 73.43 ±1.55 82.54 ±0.84

GAN-BERT 5.4 ±9.16 16.98 ±21.73 54.09 ±29.56 79.64 ±1.39

MixText 32.73 ±6.02 54.75 ±3.15 76.59 ±1.05 82.34 ±0.94

TK-KNN 54.16 ±4.56 62.71 ±2.30 76.73 ±01.46 84.45 ±0.52

HWU64
Supervised 48.87 ±1.55 63.88 ±1.6 74.67 ±1.91 82.21 ±1.72

PL 48.46 ±1.86 64.39 ±1.66 75.76 ±1.69 82.49 ±0.94

PL-T 56.9 ±1.64 68.29 ±1.79 76.9 ±1.1 82.96 ±1.69

PL-Flex 60.15 ±3.27 69.87 ±0.93 77.99 ±1.4 83.83 ±1.2

GAN-BERT 33.36 ±16.55 32.9 ±29.07 72.32 ±1.41 81.78 ±1.64

MixText 33.3 ±8.98 56.46 ±11.08 66.65 ±7.28 79.72 ±1.27

TK-KNN 65.33 ±2.29 73.03 ±1.31 79.63 ±0.56 84.59 ±0.58

Table 2: Mean test accuracy results and their 95% con-
fidence intervals across 5 repetitions with different dif-
ferent random seeds. All experiments used k = 6 and
β = 0.75. TK-KNN outperformed existing state of the
art models, especially when the label set is small. The
confidence interval also shows that the TK-KNN results
were stable across repetitions.

these settings. An ablation study of these two hy-
perparameters is presented later. For details on the
settings used for MixText please see Appendix B.

Computational Use. In total we estimate that
we used around 18,000 GPU hours for this project.
For the final experiments and ablation studies we
estimate that the TK-KNN model used 4400 GPU
hours. Experiments were carried out on Nvidia
Tesla P100 GPUs that each had 12GB of memory
and 16GB of memory.

5 Results

Results from these experiments are shown in Ta-
ble 2. These quantitative results demonstrate that
TK-KNN yielded the best performance on the
benchmark datasets. We observed the most signifi-
cant performance gains for CLINC150 and BANK-
ING77, where these datasets have more classes.
For instance, on the CLINC150 dataset with 1%
labeled data, our method performs 10.92% better
than the second best strategy, FlexMatch. As the
portion of labeled data used increases, we notice
that the effectiveness of TK-KNN diminishes.

Another observation from these results is that the
GAN-BERT model tends to be unstable when the
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Figure 3: Convergence analysis of pseudo-labelling
strategies on CLINC150 at 1% labeled data. TK-KNN
clearly outperforms the other pseudo-labelling strategies
by balancing class pseudo labels after each training
cycle.

labeled data is limited. However, GAN-BERT does
improve as the proportion of labeled data increases.
This is consistent with previous findings on training
GANs from computer vision [Salimans et al., 2016,
Arjovsky and Bottou, 2017]. We also find that
while the MixText method shows improvements
the benefits of consistency regularization are not
as strong compared to works from the computer
vision domain.

These results demonstrate the benefits of TK-
KNN’s balanced sampling strategy and its use of
the distances in the latent space.

5.1 Overconfidence in Pseudo-Labelling
Regimes

A key observation we found throughout self-
training was that the performance of existing
pseudo-labelling methods tended to degrade as the
number of cycles increased. An example of this
is illustrated in Figure 3. Here we see that when a
pre-defined threshold is used, the model tends to
improve performance for the first few training cy-
cles. After that point, the pseudo-labeling becomes
heavily biased towards the easier classes. This
causes the model to become overconfident in pre-
dictions for those classes and neglect more difficult
classes. PL-Flex corrects this issue but converges
much earlier in the learning process. TK-KNN
achieves the best performance thanks to the slower
balanced pseudo-labeling approach. This process
helps the model learn clearer decision boundaries
for all classes simultaneously and prevent overcon-
fidence in the model in some classes.
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Figure 4: A comparison of TK-KNN on HWU64 with
1% labeled data as β varies.

5.2 Ablation Study

Because TK-KNN is different from existing meth-
ods in two distinct ways: (1) top-k balanced sam-
pling and (2) KNN ranking, we perform a set of
ablation experiments to better understand how each
of these affects performance. Specifically, we test
TK-KNN under three scenarios, top-k sampling
without balancing the classes, top-k sampling with
balanced classes, and top-k KNN without balanc-
ing for classes. When we perform top-k sampling
in an unbalanced manner, we ensure that the total
data sampled is still equal to k ∗ C, where C is
the number of classes. We report the results for
these experiments in Table 3. We also conduct
experiments on the addition of the different loss
objectives detailed in Appendix C

The results from the ablation study demonstrate
both the effectiveness of top-k sampling and KNN
ranking. A comparison between our unbalanced
sampling top-k sampling and balanced versions
show a drastic difference in performance across all
datasets. We highlight again that the performance
difference is greatest in the lowest resource setting,
with a 12.47% increase in accuracy for CLINC150
in the 1% setting.

Results from the TK-KNN method with unbal-
anced sampling also show an improvement over
unbalanced sampling alone. This increase in per-
formance is smaller than the difference between un-
balanced and balanced sampling but still highlights
the benefits of leveraging the geometry for selec-
tive pseudo-labeling. We also present an ablation
of the Top-k sampling methodology when passing
correctly labeled examples in the Appendix A.

Percent Labeled
Method 1% 2%

CLINC150
Top-k U 38.37 ±1.08 55.0 ±1.44

Top-k B 51.36 ±2.1 64.99 ±0.64

Top-k KNN U 41.24 ±0.97 55.01 ±1.49

Top-k KNN B 53.73 ±1.72 65.87 ±1.18

BANKING77
Top-k U 41.56 ±4.73 54.78 ±3.51

Top-k B 50.45 ±4.53 63.19 ±1.78

Top-k KNN U 44.12 ±3.14 55.9 ±2.65

Top-k KNN B 54.16 ±4.56 62.71 ±2.30

HWU64
Top-k U 54.87 ±1.64 64.85 ±1.54

Top-k B 54.13 ±6.0 65.12 ±0.35

Top-k KNN U 57.86 ±2.25 69.33 ±0.96

Top-k KNN B 65.33 ±2.29 73.03 ±1.31

Table 3: Ablation study of top-k sampling. U stands for
unbalanced sampling, where classes are not balanced. B
is for balanced sampling, and classes are balanced with
the top-k per class.
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Figure 5: A comparison of TK-KNN on HWU64 with
1% labeled data as k varies.

5.3 Parameter Search

TK-KNN relies on two hyperparameters k and β
that can affect performance based on how they are
configured. We explore experiments to gauge their
effect on learning by testing k ∈ (4, 6, 8) and β ∈
(0.0, 0.25, 0.50, 0.75, 1.00). When varying k we
hold β at 0.75. For β experiments we keep k =
6. When β = 0.0, this is equivalent to just top-
k sampling based on Equation 3. Alternatively,
when β = 1.0, this is equivalent to only using
the KNN similarity for ranking. Results from our
experiments are shown in Figures 4 for β and 5 for
k.

As we varied the β parameter, we noticed that all
configurations tended to have similar training pat-
terns. After we trained the model for the first five
cycles, the model tended to move in small jumps
between subsequent cycles. From the illustration,
we can see that no single method was always the
best, but the model tended to perform worse when



β = 0.0, highlighting the benefits of including our
KNN similarity for ranking. The model reached
the best performance when β = 0.75, which oc-
curs about a third of the way through the training
process.

Comparison of values for k show that TK-KNN
is robust to adjustments in this hyperparameter. We
notice slight performance benefits from selecting
a higher k of 6 and 8 in comparison to 4. When
a higher value of k is used the model will see an
increase in performance earlier in the self-training
process, as it has more examples to train from. This
is only acheivable though when high quality cor-
rect samples are selected across the entire class
distribution. If a k value was selected that is too
large, more bad examples will be included early in
the training process and may result in poor model
performance.

6 Conclusions

This paper introduces TK-KNN, a balanced
distance-based pseudo-labeling approach for semi-
supervised intent classification. TK-KNN devi-
ates from previous pseudo-labeling methods as
it does not rely on a threshold to select the sam-
ples. Instead, we show that a balanced approach
that takes the model prediction and K-Nearest
Neighbor similarity measure allows for more ro-
bust decision boundaries to be learned. Experi-
ments on three popular intent classification datasets,
CLINC150, Banking77, and Hwu64, demonstrate
that our method improved performance in all sce-
narios.

7 Limitations

While our method shows noticeable improvements,
it is not without limitations. Our method does not
require searching for a good threshold but instead
requires two different hyperparameters, k and β,
that must be found. We offer a reasonable method
and findings for selecting both of these but others
may want to search for other combinations depend-
ing on the dataset. A noticeable drawback from our
self-training method is that more cycles of training
will need to be done, especially if the value of k
is small. This requires much more GPU usage to
converge to a good point. Further, we did not ex-
plore any heavily imbalanced datasets, so we are
unaware of how TK-KNN would perform under
those scenarios.

8 Ethics Statement

This work can be used to help improve current
virtual assistant systems for many of the businesses
that may be seeking to use one. As the goal of
these systems is to understand a persons request,
failures can lead to wrong actions being taken that
potentially impact an individual.
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Algorithm 1 TK-KNN Sampling For a Cycle

Input: Data of X = xn, yn : n ∈ (1, ..., N), U =
um : m ∈ (1, ...,M), β

1: Predict pseudo-labels for all U
2: Calculate cosine similarity via. Eq. (2) for all

U per class
3: Calculate score via Eq.(3)
4: Combine X and top-k per class from U

A Upper Bound Analysis

We further ran experiments to gauge the perfor-
mance of top-k sampling when ground truth labels
are fed to the model instead of predicted pseudo
labels. This experiment gives us an indicator as to
how performance should increase throughout the
self-training process in an ideal pseudo-labeling
scenario. We present the results of this in Figure. 6.
As expected, the model tends to converge towards a
fully supervised performance as the cycle increases
and more data is (pseudo-)labeled. Another point
of interest is that the method’s upper bound can
continue learning with proper labels, while TK-
KNN method tends to converge earlier. The upper
bound method also takes a significant increase in
the first few cycles as well. This highlights a need
to investigate methods for accurate pseudo label
selection further, so that the model can continue to
improve.

B MixText Experiments

The MixText method requires a number of hyper-
parameters to be selected in order to acheive good
performance. The method also relies on data aug-
mentation of the original text. For our experiments
we used the Helsinki-NLP models available on
the huggingface repository 1 to perform back trans-
lation. Following the original paper we performed
back translation into German (de) and Russian (ru).
Our experiments used a labeled batch size of 4 and
unlabeled batch size of 8, the same as the original
paper. The Temperature parameter was set to 0.5.

1https://huggingface.co/Helsinki-NLP/opus-mt-en-de
https://huggingface.co/Helsinki-NLP/opus-mt-en-ru

C Ablation Table

We present a detailed breakdown of our full abla-
tion results in Table 4. These results include the
performance when using only the cross-entropy
loss, as well as various combinations of the super-
vised contrastive loss and differential entropy reg-
ularizer. The results in this table demonstrate that
the inclusion of additional loss objectives improves
performance. This is particularly evident when we
add our KNN objective, as we observe an increase
of approximately 1-4%. Although the addition of
the differential entropy regularizer yields smaller
performance improvements, it remains beneficial
to our method overall.
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Figure 6: Ablation results for each dataset using 1% labeled data.



Percent Labeled
Method 1% 2%

CLINC150
Top-k U CE 37.06 ±2.09 50.8 ±1.79

Top-k U CE CON 38.67 ±1.47 55.09 ±0.85

Top-k U CE CON DER 38.37 ±1.08 55.0 ±1.44

Top-k B CE 49.53 ±3.1 62.45 ±1.21

Top-k B CE CON 52.33 ±2.53 64.52 ±1.63

Top-k B CE CON DER 51.36 ±2.1 64.99 ±0.64

Top-k KNN U CE 40.58 ±2.54 53.45 ±1.05

Top-k KNN U CE CON 42.3 ±2.86 56.07 ±1.26

Top-k KNN U CE CON DER 41.24 ±0.97 55.01 ±1.49

Top-k KNN B CE 50.28 ±3.00 63.99 ±0.85

Top-k KNN B CE CON 53.23 ±3.17 65.37 ±1.17

Top-k KNN B CE CON DER 53.73 ±1.72 65.87 ±1.18

BANKING77
Top-k U CE 36.19 ±2.93 51.69 ±3.54

Top-k U CE CON 42.16 ±4.61 54.77 ±2.48

Top-k U CE CON DER 41.56 ±4.73 54.78 ±3.51

Top-k B CE 44.35 ±3.82 57.19 ±3.23

Top-k B CE CON 50.48 ±3.75 62.34 ±1.57

Top-k B CE CON DER 50.45 ±4.53 63.19 ±1.78

Top-k KNN U CE 36.96 ±4.78 52.42 ±2.75

Top-k KNN U CE CON 44.86 ±3.53 56.49 ±2.68

Top-k KNN U CE CON DER 44.12 ±3.14 55.9 ±2.65

Top-k KNN B CE 49.16 ±3.02 59.81 ±1.69

Top-k KNN B CE CON 52.4 ±3.91 62.35 ±2.18

Top-k KNN B CE CON DER 54.16 ±4.56 62.71 ±2.30

HWU64
Top-k U CE 51.45 ±3.8 62.79 ±1.99

Top-k U CE CON 54.8 ±2.1 66.58 ±1.17

Top-k U CE CON DER 54.87 ±1.64 64.85 ±1.54

Top-k B CE 61.69 ±3.15 70.41 ±0.66

Top-k B CE CON 63.05 ±2.6 72.55 ±1.41

Top-k B CE CON DER 54.13 ±6.0 65.12 ±0.35

Top-k KNN U CE 52.97 ±1.45 64.41 ±1.58

Top-k KNN U CE CON 59.26 ±2.99 69.98 ±1.44

Top-k KNN U CE CON DER 57.86 ±2.25 69.33 ±0.96

Top-k KNN B CE 62.43 ±2.78 71.04 ±0.93

Top-k KNN B CE CON 64.41 ±2.26 72.71 ±1.07

Top-k KNN B CE CON DER 65.33 ±2.29 73.03 ±1.31

Table 4: Ablation study of top-k sampling. U stands for
unbalanced sampling, where classes are not balanced. B
is for balanced sampling, and classes are balanced with
the top-k per class. CE stands for cross-entropy loss,
CON for contrastive loss, and DER differential entropy
regularizer.


