
POPGYM: BENCHMARKING PARTIALLY OBSERVABLE
REINFORCEMENT LEARNING

Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, Amanda Prorok

ABSTRACT

Real world applications of Reinforcement Learning (RL) are often partially ob-
servable, thus requiring memory. Despite this, partial observability is still largely
ignored by contemporary RL benchmarks and libraries. We introduce Partially
Observable Process Gym (POPGym), a two-part library containing (1) a diverse
collection of 15 partially observable environments, each with multiple difficul-
ties and (2) implementations of 13 memory model baselines – the most in a
single RL library. Existing partially observable benchmarks tend to fixate on
3D visual navigation, which is computationally expensive and only one type
of POMDP. In contrast, POPGym environments are diverse, produce smaller
observations, use less memory, and often converge within two hours of train-
ing on a consumer-grade GPU. We implement our high-level memory API and
memory baselines on top of the popular RLlib framework, providing plug-and-
play compatibility with various training algorithms, exploration strategies, and
distributed training paradigms. Using POPGym, we execute the largest com-
parison across RL memory models to date. POPGym is available at https:
//github.com/proroklab/popgym.

1 INTRODUCTION

Datasets like MNIST (Lecun et al., 1998) have driven advances in Machine Learning (ML) as much
as new architectural designs (Levine et al., 2020). Comprehensive datasets are paramount in assess-
ing the progress of learning algorithms and highlighting shortcomings of current methodologies.
This is evident in the context of RL, where the absence of fast and comprehensive benchmarks re-
sulted in a reproducability crisis (Henderson et al., 2018). Large collections of diverse environments,
like the Arcade Learning Environment, OpenAI Gym, ProcGen, and DMLab provide a reliable mea-
sure of progress in deep RL. These fundamental benchmarks play a role in RL equivalent to that of
MNIST in supervised learning (SL).

The vast majority of today’s RL benchmarks are designed around Markov Decision Processes
(MDPs). In MDPs, agents observe a Markov state, which contains all necessary information to
solve the task at hand. When the observations are Markov states, the Markov property is satisfied,
and traditional RL approaches guarantee convergence to an optimal policy (Sutton & Barto, 2018,
Chapter 3). But in many RL applications, observations are ambiguous, incomplete, or noisy – any of
which makes the MDP partially observable (POMDP) (Kaelbling et al., 1998), breaking the Markov
property and all convergence guarantees. Furthermore, Ghosh et al. (2021) find that policies trained
under the ideal MDP framework cannot generalize to real-world conditions when deployed, with
epistemic uncertainty turning real-world MDPs into POMDPs. By introducing memory (referred
to as sequence to sequence models in SL), we can summarize the observations1 therefore restoring
policy convergence guarantees for POMDPs (Sutton & Barto, 2018, Chapter 17.3).

Despite the importance of memory in RL, most of today’s comprehensive benchmarks are fully
observable or near-fully observable. Existing partially observable benchmarks are often navigation-
based – representing only spatial POMDPs, and ignoring applications like policymaking, disease
diagnosis, teaching, and ecology (Cassandra, 1998). The state of memory-based models in RL
libraries is even more dire – we are not aware of any RL libraries that implement more than three

1Strictly speaking, the agent actions are also required to guarantee convergence. We consider the previous
action as part of the current observation.

1

https://github.com/proroklab/popgym
https://github.com/proroklab/popgym

(a) Stateless Cartpole and
Stateless Pendulum

(b) Battleship, Concentration, Higher Lower
and Mine Sweeper

(c) Labyrinth Escape and Ex-
plore

Figure 1: Renders from select POPGym environments.

or four distinct memory baselines. In nearly all cases, these memory models are limited to frame
stacking and LSTM.

To date, there are no popular RL libraries that provide a diverse selection of memory models. Of the
few existing POMDP benchmarks, even fewer are comprehensive and diverse. As a consequence,
there are no large-scale studies comparing memory models in RL. We propose to fill these three gaps
with our proposed POPGym.

1.1 CONTRIBUTIONS

POPGym is a collection of 15 partially observable gym environments (Figure 1) and 13 memory
baselines. All environments come with at least three difficulty settings and randomly generate levels
to prevent overfitting. The POPGym environments use low-dimensional observations, making them
fast and memory efficient. Many of our baseline models converge in under two hours of training on
a single consumer-grade GPU (Table 1, Figure 2). The POPGym memory baselines utilize a simple
API built on top of the popular RLlib library (Liang et al., 2018), seamlessly integrating memory
models with an assortment of RL algorithms, sampling, exploration strategies, logging frameworks,
and distributed training methodologies. Utilizing POPGym and its memory baselines, we execute
a large-scale evaluation, analyzing the capabilities of memory models on a wide range of tasks. To
summarize, we contribute:

1. A comprehensive collection of diverse POMDP tasks.

2. The largest collection of memory baseline implementations in an RL library.

3. A large-scale, principled comparison across memory models.

2 RELATED WORK

There are many existing RL benchmarks, which we categorize as fully (or near-fully) observable
and partially observable. In near-fully observable environments, large portions of the the Markov
state are visible in an observation, though some information may be missing. We limit our litera-
ture review to comprehensive benchmarks (those that contain a wide set of tasks), as environment
diversity is essential for the accurate evaluation of RL agents (Cobbe et al., 2020).

2.1 FULLY AND NEAR-FULLY OBSERVABLE BENCHMARKS

The Arcade Learning Environment (ALE) (Bellemare et al., 2013) wraps Atari 2600 ROMs in a
Python interface. Most of the Atari games, such as Space Invaders or Missile Command are fully
observable (Cobbe et al., 2020). Some games like asteroids require velocity observations, but models
can recover full observability by stacking four consecutive observations (Mnih et al., 2015), an
approach that does not scale for longer timespans. Even seemingly partially-observable multi-room
games like Montezuma’s Revenge are made near-fully observable by displaying the player’s score
and inventory (Burda et al., 2022).

OpenAI Gym (Brockman et al., 2016) came after ALE, implementing classic fully observable RL
benchmarks like CartPole and MountainCar. Their Gym API found use in many other environments,
including our proposed benchmark.

2

Cobbe et al. (2020) find that randomly generated environments are critical to training general agents,
showing policies will overfit to specific levels otherwise. They propose ProcGen: 16 procedurally
generated environments with pixel-space observations. Most environments are fully or near-fully
observable, although a few environments provide a partially observable mode, effectively turning
them into 2D area coverage (navigation) tasks. ProcGen motivates POPGym’s use of random level
generation.

2.2 PARTIALLY OBSERVABLE BENCHMARKS

When enumerating partially observable benchmarks, we find many are based on 3D first-person
navigation. DeepMind Lab (Beattie et al., 2016) (DMLab) is a 3D first-person view navigation
simulator based on the Quake 3 physics engine. It implements various tasks such as collecting fruits,
maze exploration, and laser tag. VizDoom (Kempka et al., 2016) is another 3D navigation simulator
based on the PC game Doom. It gives the agent weapons and adds computer-controlled characters
that can shoot at the player. Miniworld (Chevalier-Boisvert, 2018) is a third 3D first-person view
navigation simulator that is easier to install than DMLab or VizDoom. MiniGrid (Chevalier-Boisvert
et al., 2018) and GridVerse (Baisero & Katt, 2021) are 2D navigation simulators with a first-person
view. Unlike the previously mentioned 3D simulators, agents converge on gridworld environments
much faster due to the smaller observation space. This makes it a popular benchmark for memory
models.

There are few POMDP libraries that provide tasks beyond navigation. Behaviour suite (BSuite)
evaluates agents on a variety of axes, one of which is memory (Osband et al., 2020), but they only
provide two POMDPs. Similar to our benchmark, (Zheng & Tellex, 2020) provide classic POMDPs
with low-dimensional observation spaces. But their tasks are solvable without neural networks and
are not difficult enough for modern deep RL. Ni et al. (2022) provide 21 environments, most of
which are a special case of POMDP known as latent MDPs (Kwon et al., 2021), where a specific
MDP is chosen from a set of possible MDPs at the beginning of an episode. (Morad et al., 2022)
provides three POMDPs, which is insufficient for a benchmark.

We briefly mention the Starcraft (Samvelyan et al., 2019) and VMAS (Bettini et al., 2022) bench-
marks because multi-agent environments are intrinsically partially observable, but we focus specifi-
cally on single-agent POMDPs.

2.3 SHORTCOMINGS OF CURRENT BENCHMARKS

Popular fully observable benchmarks use pixel-based observation spaces, adding a layer of complex-
ity that takes an order of magnitude longer to train when compared against state-based observation
counterparts (Seita, 2020). In fully observable environments, visually pleasing results are worth a
few extra hours training. This dogma persists into partial observability, where environments often
take 10x longer to converge than their fully observable counterparts. Popular benchmarks using 3D
graphics take hundreds of billions of timesteps (Parisotto et al., 2020) and multiple weeks (Morad
et al., 2021) on a GPU to train a single policy to convergence. Until sample efficiency in partially
observable RL improves, we must forgo pixel-based observations or continue to struggle with re-
producibility.

Many partially observable tasks with pixel-based observation spaces are based on some form of
navigation (Ramani, 2019). Although navigation can be a partially observable task, wall following
behavior in perfect mazes guarantees complete area coverage without the need for memory. When
mazes are imperfect (i.e. contain cycles), deterministic wall following can get stuck in infinite
loops. However, RL policies often have some amount of stochasticity that can break out of these
loops. Kadian et al. (2020) and Morad et al. (2021) inadvertently show that memory-free navigation
agents learn wall following strategies2 that are surprisingly effective in imperfect real-world mazes.
We confirm these findings with our experiments, showing that memory-free agents are competitive
with memory-endowed agents in certain navigation benchmarks.

All other (imperfect) mazes can be fully explored by storing no more than two past locations (ob-
servations) in memory (Blum & Kozen, 1978). Navigation-based tasks like area coverage, moving
to a coordinate, or searching for items can be reduced to the maze exploration task. We do not claim

2https://en.wikipedia.org/wiki/Maze-solving_algorithm#Wall_follower

3

https://en.wikipedia.org/wiki/Maze-solving_algorithm#Wall_follower

that navigation tasks are easy, but rather that it is important to have a variety of tasks to ensure we
evaluate all facets of memory, such as memory capacity, that navigation tasks might miss.

2.4 EXISTING MEMORY BASELINES

The state of memory models in RL is even more bleak than the benchmarks. Most libraries pro-
vide frame stacking and a single type of RNN. OpenAI Baselines (Dhariwal et al., 2017), Stable-
Baselines3 (Raffin et al., 2021), and CleanRL (Huang et al., 2021) provide implementations of PPO
with frame stacking and an LSTM. Ray RLlib (Liang et al., 2018) currently implements frame stack-
ing, LSTM, and a transformer for some algorithms. Ni et al. (2022) implement LSTM, GRUs, and
two model-based memory models. Yang & Nguyen (2021) provides recurrent versions of the DDPG,
TD3, and SAC RL algorithms, which utilize GRUs and LSTM. Zheng & Tellex (2020) implement
multiple classical POMDP solvers, but these do not use neural networks, preventing their applica-
tion to more complex tasks. There is currently no go-to library for users who want to compare or
apply non-standard memory models.

2.5 A BRIEF SUMMARY ON MEMORY

When designing a library of memory models, it is important to select competitive models. Ni et al.
(2022) show that sequence to sequence models from SL are competitive or better than RL-specific
memory methods while being more straightforward to implement, so we focus specifically on se-
quence to sequence models (called memory throughout the paper). Although a strict categorization
of memory is elusive, most methods are based on RNNs, attention, or convolution.

RNNs (Elman, 1990) take an input and hidden state, feed them through a network, and produce a
corresponding output and hidden state. RNNs depend on the previous state and must be executed
sequentially, resulting in slow training but fast inference when compared with other methods.

Attention-based methods (Vaswani et al., 2017) have supplanted RNNs in many applications of
SL, but traditional transformers have quadratically-scaling memory requirements, preventing them
from running on long episodes in RL. Recent linear attention formulations (Schlag et al., 2021;
Katharopoulos et al., 2020) claim to produce transformer-level performance in linear time and space,
potentially enabling widespread use of attention in RL.

Like attention, convolutional methods are computationally efficient (Bai et al., 2018), lending them-
selves well to RL. They are less common than recurrent or attention-based methods in SL, and there
is little literature on their use in RL.

3 POPGYM ENVIRONMENTS

All of our environments bound the cumulative episodic reward in [−1, 1]. In some cases (e.g. re-
peating previous observations) an optimal policy would receive a cumulative reward of one in ex-
pectation. In other environments (e.g. playing battleship with randomly placed ships), an optimal
policy has an expected episodic cumulative reward of less than one.

We tag our proposed environments as diagnostic, control, noisy, game, and navigation. Each tag is
designed to represent a different class of POMDP, and each environment has at least three distinct
difficulty settings, creating the most diverse POMDP benchmark thus far. Our proposed environ-
ments are all overcomplete POMDPs, meaning our environments have more unique latent Markov
states than unique observations (Sharan et al., 2017; Jin et al., 2020).

Diagnostic environments probe model capabilities with respect to the duration of memories, for-
getting, and compression and recall. They are designed to quickly summarize the strengths and
weaknesses of a specific model.

Control environments are control RL environments made partially observable by removing part of
the observation. Solving these tasks only requires short-term memory.

Noisy environments require the memory model to estimate the true underlying state by computing
an expectation over many observations. These are especially useful for real-world robotics tasks.

4

Game environments provide a more natural and thorough evaluation of memory through card and
board games. They stress test memory capacity, duration, and higher-level reasoning.

Navigation environments are common in other benchmarks, and we include a few to ensure our
benchmark is comprehensive. More than anything, our navigation environments examine how mem-
ory fares over very long sequences.

3.1 ENVIRONMENT DESCRIPTIONS

1. Repeat First (Diagnostic): At the first timestep, the agent receives one of four values and a
remember indicator. Then it randomly receives one of the four values at each successive timestep
without the remember indicator. The agent receives a reward for outputting (remembering) the
first value.

2. Repeat Previous (Diagnostic): Like Repeat First, observations contain one of four values.
The agent is rewarded for outputting the observation from some constant k timesteps ago, i.e.
observation ot−k at time t.

3. Autoencode (Diagnostic): During the WATCH phase, a deck of cards is shuffled and played
in sequence to the agent with the watch indicator set. The watch indicator is unset at the last
card in the sequence, where the agent must then output the sequence of cards in order. This tests
whether the agent can encode a series of observations into a latent state, then decode the latent
state one observation at a time.

4. Stateless Cartpole (Control): The cartpole environment from Barto et al. (1983), but with the
angular and linear positions removed from the observation. The agent must integrate to compute
positions from velocity.

5. Stateless Pendulum (Control): The swing-up pendulum (Doya, 1995), with the angular po-
sition information removed.

6. Noisy Stateless Cartpole (Control, Noisy): Stateless Cartpole (Env. 4) with Gaussian noise.

7. Noisy Stateless Pendulum (Control, Noisy): Stateless Pendulum (Env. 5) with Gaussian
noise.

8. Multiarmed Bandit (Noisy, Diagnostic): The multiarmed bandit problem (Slivkins & others,
2019; Lattimore & Szepesvári, 2020) posed as an episodic task. Every episode, bandits are
randomly initialized. Over the episode, the player must trade off exploration and exploitation,
remembering which bandits pay best. Each bandit has some probability of paying out a positive
reward, otherwise paying out a negative reward. Note that unlike the traditional multiarmed
bandit task where the bandits are fixed once initialized, these bandits reset every episode, forcing
the agent to learn a policy that can adapt between episodes.

9. Higher Lower (Game, Noisy): Based on the card game higher-lower, the agent must guess if
the next card is of higher or lower rank than the previous card. The next card is then flipped face-
up and becomes the previous card. Using memory, the agent can utilize card counting strategies
to predict the expected value of the next card, improving the return.

10. Count Recall (Game, Diagnostic, Noisy): Each turn, the agent receives a next value and
query value. The agent must answer the query with the number of occurrences of a specific
value. In other words, the agent must store running counts of each unique observed value, and
report a specific count back, based on the query value. This tests whether the agent can learn a
compressed structured memory representation, such that it can continuously update portions of
memory over a long sequence.

11. Concentration (Game): A deck of cards is shuffled and spread out face down. The player
flips two cards at a time face up, receiving a reward if the flipped cards match. The agent must
remember the value and position of previously flipped cards to improve the rate of successful
matches.

12. Battleship (Game): A partially observable version of Battleship, where the agent has no ac-
cess to the board and must derive its own internal representation. Observations contain either
HIT or MISS and the position of the last salvo fired. The player receives a positive reward for
striking a ship, zero reward for hitting water, and negative reward for firing on a specific tile
more than once.

5

Table 1: Frames per second (FPS) of our environments, computed on the Google Colab free tier and
a Macbook Air (2020) laptop.

Environment Colab FPS Laptop FPS
Repeat First 23,895 155,201
Repeat Previous 50,349 136,392
Autoencode 121,756 251,997
Stateless Cartpole 73,622 218,446
Stateless Pendulum 8,168 26,358
Noisy Stateless Cartpole 6,269 66,891
Noisy Stateless Pendulum 6,808 20,090

Environment Colab FPS Laptop FPS
Multiarmed Bandit 48,751 469,325
Battleship 117,158 235,402
Concentration 47,515 157,217
Higher Lower 24,312 76,903
Count Recall 16,799 53,779
Minesweeper 8,434 32,003
Labyrinth Escape 1,399 41,122
Labyrinth Explore 1,374 30,611

13. Mine Sweeper (Game): The computer game Mine Sweeper, but like our Battleship imple-
mentation, the agent does not have access to the board. Each observation contains the position
and number of adjacent mines to the last square “clicked” by the agent. Clicking on a mined
square will end the game and produce a negative reward. The agent must remember where it has
already searched and must integrate information from nearby tiles to narrow down the location
of mines. Once the agent has selected all non-mined squares, the game ends.

14. Labyrinth Explore (Navigation): The player is placed in a discrete, 2D procedurally-
generated maze, receiving a reward for each previously unreached tile it reaches. The player can
only observe adjacent tiles. The agent also receives a small negative reward at each timestep,
encouraging the agent to reach all squares quickly and end the episode.

15. Labyrinth Escape (Navigation): The player must escape the procedurally-generated maze,
using the same observation space as Labyrinth Explore. This is a sparse reward setting, where
the player receives a positive reward only after solving the maze.

4 POPGYM BASELINES

Our memory model API relies on an abstract memory model class, only requiring users to implement
memory forward and initial state methods. Our memory API builds on top of RLlib,
exposing various algorithms, exploration methods, logging, distributed training, and more.

We collect well-known memory models from SL domains and wrap them in this API, enabling their
use on RL tasks. We rewrite models where the existing implementation is slow, unreadable, not
amenable to our API, or not written in Pytorch. Some of these sequence models have yet to be
applied in the context of reinforcement learning.

1. MLP: An MLP that cannot remember anything. This serves to form a lower bound for memory
performance, as well and ensuring memory models are actively using memory, rather than just
leveraging their higher parameter counts.

2. Positional MLP (PosMLP): An MLP that can access the current episodic timestep. The cur-
rent timestep is fed into the positional encoding from Vaswani et al. (2017), which is summed
with the incoming features. PosMLP enables agents to learn time-dependent policies (those
which evolve over the course of an episode) without explicitly using memory.

3. Elman Networks: The original RNN, from Elman (1990). Elman networks sum the recurrent
state and input, passing the resulting vector through a linear layer and activation function to
produce the next hidden state. Elman networks are not used much in SL nowadays due to
vanishing and exploding gradients.

4. Long Short-Term Memory (LSTM): Hochreiter & Schmidhuber (1997) designed LSTM to
address the vanishing and exploding gradient problems present in earlier RNNs like the Elman
Network. LSTM utilizes a constant error carousel to handle longer dependencies and gating to
ensure recurrent state stability during training. It has two recurrent states termed the hidden and
cell states.

5. Gated Recurrent Unit (GRU): The GRU is a simplification of LSTM, using only a single
recurrent state. The GRU appears to have similar performance to LSTM in many applications
while using fewer parameters (Chung et al., 2014).

6

500 1000 1500
Train Memory

(MB)

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

250 500
Num. Params

(k)

10 100 1000 10000
GPU Train Time

(ms)

0 100 200
CPU Inf. Time

(ms)

0 2
GPU Inf. Time

(ms)

Figure 2: Performance characteristics for POPGym memory baselines on random inputs. We use a
recurrent state size of 256, a batch size of 64, and a episode length of 1024. We compute CPU statis-
tics on a 3GHz Xeon Gold and GPU statistics on a 2080Ti, reporting the mean and 95% confidence
interval over 10 trials. Train times correspond to a full batch while inference times are per-element
(i.e. the latency to compute a single action). Note that GPU Train Time has logarithmic scale.

6. Independently Recurrent Networks (IndRNN): Stacking LSTM and GRU cells tends to
provide few benefits when compared with traditional deep neural networks. IndRNNs update the
recurrent state using elementwise connections rather than a dense layer, enabling much deeper
RNNs and handling longer dependencies than the LSTM and GRU (Li et al., 2018). In our
experiments, we utilize a 2-layer IndRNN.

7. Differentiable Neural Computers (DNC): Graves et al. (2016) introduce a new type of recur-
rent model using external memory. The DNC utilizes an RNN as a memory controller, reading
and writing to external storage in a differentiable manner.

8. Fast Autoregressive Transformers (FART): Unlike the traditional attention matrix whose size
scales with the number of inputs, FART computes a fixed-size attention matrix at each timestep,
taking the cumulative elementwise sum over successive timesteps (Katharopoulos et al., 2020).
FART maintains two recurrent states, one for the running attention matrix and one for a normal-
ization term, which helps mitigate large values and exploding gradients as the attention increases
grows over time. The original paper omits a positional encoding, but we find it necessary for our
benchmark.

9. Fast Weight Programmers (FWP): The theory behind FART and FWP is different, but the
implementation is relatively similar. FWP also maintains a running cumulative sum. Unlike
FART, FWP normalizes the key and query vectors to sum to one, requiring only a single recurrent
state and keeping the attention matrix of reasonable scale (Schlag et al., 2021). Unlike the
original paper, we add a positional encoding to FWP.

10. Frame Stacking (Fr.Stack): Mnih et al. (2015) implemented frame stacking to solve Atari
games. Frame stacking is the concatenation of k observations along the feature dimension.
Frame stacking is not strictly convolutional, but is implemented similarly to other convolutional
methods. Frame stacking is known to work very well in RL, but the number of parameters scales
with the receptive field, preventing it from learning long-term dependencies.

11. Temporal Convolutional Networks (TCN): TCNs slide 1D convolutional filters over the tem-
poral dimension. On long sequences, they are faster and use less memory than RNNs. TCNs
avoid the vanishing gradient problem present in RNNs because the gradient feeds through each
sequence element individually, rather than propagating through the entire sequence (Bai et al.,
2018).

12. Legendre Memory Units (LMU): LMUs are a mixture of convolution and RNNs. They apply
Legendre polynomials across a sliding temporal window, feeding the results into an RNN hidden
state (Voelker et al., 2019). LMUs can handle temporal dependencies spanning up to 100K
timesteps.

13. Diagonal State Space Models (S4D): S4D treats memory as a controls problem. It learns a
linear time invariant (LTI) state space model for the recurrent state. S4D applies a Vandermonde
matrix to the sequence of inputs, which we can represent using either convolution or a recur-
rence. Computing the result convolutionally makes it very fast. In SL, S4D was able to solve
the challenging 16,000 timestep Path-X task, demonstrating significant capacity for long-term
dependencies (Gu et al., 2022).

7

MLP PosMLP FWP FART S4D TCN Fr.Stack LMU IndRNN Elman GRU LSTM DNC
Model

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 M
M

E
R

Model MMER MMER
w/o
Nav

MLP 0.067 -0.010
PosMLP 0.064 0.053
FWP 0.112 0.200
FART 0.138 0.202
S4D -0.180 -0.119
TCN 0.233 0.219
Fr.Stack 0.190 0.177
LMU 0.229 0.246
IndRNN 0.259 0.302
Elman 0.249 0.224
GRU 0.349 0.326
LSTM 0.255 0.294
DNC 0.065 0.016

Figure 3: (Left) A summary comparison of baselines aggregated over all environments. We nor-
malize the MMER such that 0 denotes the worst trial and 1 denotes the best trial for a specific
environment. We report the interquartile range (box), median (horizontal line), and mean (dot) nor-
malized MMER over all trials. (Right) Single value scores for each model, produced by meaning
the MMER over all POPGym environments. We also provide scores with navigation (Labyrinth)
environments excluded; the reasoning is provided in the discussion section.

5 EXPERIMENTS

Our memory framework hooks into RLlib, providing integration with IMPALA, DQN, and countless
other algorithms. Due to computational constraints, we only execute our study on Proximal Policy
Optimization (PPO) (Schulman et al., 2017). We tend to use conservative hyperparameters to aid
in reproducability – this entails large batch sizes, low learning rates, and many minibatch passes
over every epoch. We run three trials of each model over three difficulties for each environment,
resulting in over 1700 trials. We utilize the max-mean episodic reward (MMER) in many plots. We
compute MMER by finding the mean episodic reward for each epoch, then taking the maximum
over all epochs, resulting in a single MMER value for each trial. We present the full experimental
parameters in Appendix A and detailed results for each environment and model in Appendix B.
We provide a summary over models and tasks in Figure 3. Figure 2 reports model throughput and
Table 1 provides environment throughput.

6 DISCUSSION

In the following paragraphs, we pose some questions and findings made from the results of our
large-scale study.

Supervised learning is a bad proxy for RL. Supervised learning experiments show that IndRNN,
LMU, FART, S4D, DNC, and TCN surpass LSTM and GRUs by a wide margin (Li et al., 2018;
Voelker et al., 2019; Katharopoulos et al., 2020; Gu et al., 2022; Graves et al., 2016; Bai et al.,
2018). S4D is unstable and often crashed due to exploding weights, suggesting it is not suitable for
RL out of the box and that further tuning may be required. Although linear attention methods like
FWP and FART show significant improvements across a plethora of supervised learning tasks, they
were some of the worst contenders in RL. Classical RNNs outperformed modern memory methods,
even though RNNs have been thoroughly supplanted in SL (Figure 3). The underlying cause of the
disconnect between RL and SL performance is unclear and warrants further investigation.

Use GRUs for performance and Elman nets for efficiency. Within traditional RNNs, there
seems little reason to use LSTM, as GRUs are more efficient and perform better. Elman networks
are largely ignored in modern SL and RL due to vanishing or exploding gradients, but these issues
did not impact our training. We find Elman networks perform on-par with LSTM while exhibit-
ing some of the best parameter and memory efficiency out of any model (Figure 2). Future work
could investigate why Elman networks work so well in RL given their limitations, and distill these
properties into memory models suited specifically for RL.

Are maze navigation tasks sufficient for benchmarking memory? Existing POMDP bench-
marks focus primarily navigation tasks. In our experiments, we show that the MLP received the

8

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

StatelessCartPoleEasy BattleshipMedium AutoencodeMedium

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

LabyrinthExploreEasy

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

LabyrinthExploreMedium

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

LabyrinthExploreHard

Figure 4: Selected results used in the discussion section. We standardize the MMER from [−1, 1]
to [0, 1] for readability. The colored bars denote the mean and the black lines denote the 95%
bootstrapped confidence interval. Full results across all environments are in Appendix B

highest score on almost all navigation tasks, beating all memory models (Figure 4). This is in line
with our hypothesis from subsection 2.3, and raises doubts concerning previous models evaluated
solely on navigation tasks. Does a novel memory method outperform baselines because of a better
memory architectures, or just because it has more trainable parameters? Future work can bypass this
scrutiny by including a diverse set of tasks beyond navigation, and by modifying simple navigation
tasks to better leverage memory (e.g. positive reward for correctly answering “how many rooms are
there in the house?”).

Positional MLPs are an important baseline. Masked control tasks turn MDPs into POMDPs by
hiding the velocity or position portions of classic control problems, and are probably the second
most popular type of POMDP in literature after navigation. The positional MLP performed notably
better than the MLP, nearly solving the Stateless Cartpole masked control task on easy (Figure 4).
This is entirely unexpected, as providing the current timestep to an MLP is insufficient to compute
the position and underlying Markov state. Outside of masked control, the positional MLP regularly
outperformed the MLP (Figure 3). Stateless policies that evolve over time could be an interesting
topic for future work, and should be a standard baseline in future memory comparisons.

Is PPO enough? Memory models do not noticeably outperform the MLP in many game environ-
ments, such as Autoencode or Battleship, indicating that the memory is minimally effective in these
tasks (Figure 4). All thirteen models converge to the nearly same reward, suggesting this could be
due to issues with PPO rather than the memory models themselves. Future work could focus on
designing new algorithms to solve these tasks. In parallel, research institutions with ample com-
pute could ablate POPGym across other algorithms, such as Recurrent Replay Distributed DQN
(Kapturowski et al., 2019).

7 CONCLUSION

We presented the POPGym benchmark, a collection of POMDPs and memory baselines designed
to standardize RL in partially observable environments. We discovered a notable disconnect be-
tween memory performance in supervised and reinforcement learning, with older RNNs surpassing
linear transformers and modern memory models. According to our experiments, the GRU is the
best general-purpose memory model, with Elman networks providing the best tradeoff between per-
formance and efficiency. We revealed shortcomings in prior benchmarks focused on control and
navigation POMDPs, emphasizing the importance of numerous and diverse POMDPs for evaluating
memory. There is still a great deal of work to be done towards solving POMDPs, and we hope
POPGym provides some measure of progress along the way.

9

8 ACKNOWLEDGEMENTS

Steven Morad and Stephan Liwicki gratefully acknowledge the support of Toshiba Europe Ltd.
Ryan Kortvelesy was supported by Nokia Bell Labs through their donation for the Centre of Mobile,
Wearable Systems and Augmented Intelligence to the University of Cambridge.

10

REFERENCES

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Andrea Baisero and Sammie Katt. gym-gridverse: Gridworld domains for fully and par-
tially observable reinforcement learning, 2021. URL https://github.com/abaisero/
gym-gridverse. Publication Title: GitHub repository.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics,
(5):834–846, 1983. Publisher: IEEE.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Ander-
son, Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis
Hassabis, Shane Legg, and Stig Petersen. DeepMind Lab. Technical Report arXiv:1612.03801,
arXiv, December 2016. URL http://arxiv.org/abs/1612.03801. arXiv:1612.03801
[cs] type: article.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning Environment: An
Evaluation Platform for General Agents. Journal of Artificial Intelligence Research, 47:253–
279, June 2013. ISSN 1076-9757. doi: 10.1613/jair.3912. URL https://www.jair.org/
index.php/jair/article/view/10819.

Matteo Bettini, Ryan Kortvelesy, Jan Blumenkamp, and Amanda Prorok. VMAS: A Vectorized
Multi-Agent Simulator for Collective Robot Learning. The 16th International Symposium on
Distributed Autonomous Robotic Systems, 2022. Publisher: Springer.

Manuel Blum and Dexter Kozen. On the power of the compass (or, why mazes are easier to search
than graphs). In 19th Annual Symposium on Foundations of Computer Science (sfcs 1978), pp.
132–142, October 1978. doi: 10.1109/SFCS.1978.30. ISSN: 0272-5428.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym, 2016. eprint: arXiv:1606.01540.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. February 2022. URL https://openreview.net/forum?id=H1lJJnR5Ym.

Anthony R Cassandra. A survey of POMDP applications. In Working notes of AAAI 1998 fall
symposium on planning with partially observable Markov decision processes, volume 1724, 1998.

Maxime Chevalier-Boisvert. MiniWorld: Minimalistic 3D Environment for RL & Robotics Re-
search, 2018. URL https://github.com/maximecb/gym-miniworld. Publication
Title: GitHub repository.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic Gridworld Environment
for OpenAI Gym, 2018. URL https://github.com/maximecb/gym-minigrid. Pub-
lication Title: GitHub repository.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging Procedural Generation
to Benchmark Reinforcement Learning. In Proceedings of the 37th International Conference on
Machine Learning, pp. 2048–2056. PMLR, November 2020. URL https://proceedings.
mlr.press/v119/cobbe20a.html. ISSN: 2640-3498.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. OpenAI Baselines, 2017. URL
https://github.com/openai/baselines. Publication Title: GitHub repository.

11

https://github.com/abaisero/gym-gridverse
https://github.com/abaisero/gym-gridverse
http://arxiv.org/abs/1612.03801
https://www.jair.org/index.php/jair/article/view/10819
https://www.jair.org/index.php/jair/article/view/10819
https://openreview.net/forum?id=H1lJJnR5Ym
https://github.com/maximecb/gym-miniworld
https://github.com/maximecb/gym-minigrid
https://proceedings.mlr.press/v119/cobbe20a.html
https://proceedings.mlr.press/v119/cobbe20a.html
https://github.com/openai/baselines

Kenji Doya. Temporal Difference Learning in Continuous Time and Space. In D. Touretzky, M. C.
Mozer, and M. Hasselmo (eds.), Advances in Neural Information Processing Systems, volume 8.
MIT Press, 1995. URL https://proceedings.neurips.cc/paper/1995/file/
1e1d184167ca7676cf665225e236a3d2-Paper.pdf.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990. Publisher:
Wiley Online Library.

Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why
Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability. In
Advances in Neural Information Processing Systems, volume 34, pp. 25502–25515. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
d5ff135377d39f1de7372c95c74dd962-Abstract.html.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
and others. Hybrid computing using a neural network with dynamic external memory. Nature,
538(7626):471–476, 2016. Publisher: Nature Publishing Group.

Albert Gu, Karan Goel, and Christopher Re. Efficiently Modeling Long Sequences with
Structured State Spaces. March 2022. URL https://openreview.net/forum?id=
uYLFoz1vlAC.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence
Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,
AAAI’18/IAAI’18/EAAI’18, pp. 3207–3214, New Orleans, Louisiana, USA, February 2018.
AAAI Press. ISBN 978-1-57735-800-8.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Comput., 9(8):1735–
1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735. Place: Cambridge, MA, USA Publisher:
MIT Press.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, and Jeff Braga. CleanRL: High-
quality Single-file Implementations of Deep Reinforcement Learning Algorithms. 2021. eprint:
2111.08819.

Chi Jin, Sham Kakade, Akshay Krishnamurthy, and Qinghua Liu. Sample-Efficient
Reinforcement Learning of Undercomplete POMDPs. In Advances in Neural In-
formation Processing Systems, volume 33, pp. 18530–18539. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
d783823cc6284b929c2cd8df2167d212-Abstract.html.

Abhishek Kadian, Joanne Truong, Aaron Gokaslan, Alexander Clegg, Erik Wijmans, Stefan Lee,
Manolis Savva, Sonia Chernova, and Dhruv Batra. Sim2Real Predictivity: Does Evaluation in
Simulation Predict Real-World Performance? IEEE Robotics and Automation Letters, 5(4):6670–
6677, October 2020. ISSN 2377-3766. doi: 10.1109/LRA.2020.3013848. Conference Name:
IEEE Robotics and Automation Letters.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998. Publisher:
Elsevier.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. RECURRENT
EXPERIENCE REPLAY IN DISTRIBUTED REINFORCEMENT LEARNING. pp. 19, 2019.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are RNNs: Fast Autoregressive Transformers with Linear Attention. In Proceedings of the
37th International Conference on Machine Learning, pp. 5156–5165. PMLR, November 2020.
URL https://proceedings.mlr.press/v119/katharopoulos20a.html. ISSN:
2640-3498.

12

https://proceedings.neurips.cc/paper/1995/file/1e1d184167ca7676cf665225e236a3d2-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/1e1d184167ca7676cf665225e236a3d2-Paper.pdf
https://proceedings.neurips.cc/paper/2021/hash/d5ff135377d39f1de7372c95c74dd962-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d5ff135377d39f1de7372c95c74dd962-Abstract.html
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://proceedings.neurips.cc/paper/2020/hash/d783823cc6284b929c2cd8df2167d212-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d783823cc6284b929c2cd8df2167d212-Abstract.html
https://proceedings.mlr.press/v119/katharopoulos20a.html

Micha\l Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. ViZ-
Doom: A Doom-based AI Research Platform for Visual Reinforcement Learning. In IEEE Con-
ference on Computational Intelligence and Games, pp. 341–348, Santorini, Greece, September
2016. IEEE. URL http://arxiv.org/abs/1605.02097.

Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, and Shie Mannor. RL
for Latent MDPs: Regret Guarantees and a Lower Bound. In Advances in Neu-
ral Information Processing Systems, volume 34, pp. 24523–24534. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
cd755a6c6b699f3262bcc2aa46ab507e-Abstract.html.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, November 1998. ISSN 1558-2256. doi:
10.1109/5.726791. Conference Name: Proceedings of the IEEE.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline Reinforcement Learning:
Tutorial, Review, and Perspectives on Open Problems, November 2020. URL http://arxiv.
org/abs/2005.01643. arXiv:2005.01643 [cs, stat].

Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. Independently Recurrent Neural
Network (IndRNN): Building A Longer and Deeper RNN. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5457–5466, Salt Lake City, UT, June 2018. IEEE.
ISBN 978-1-5386-6420-9. doi: 10.1109/CVPR.2018.00572. URL https://ieeexplore.
ieee.org/document/8578670/.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gon-
zalez, Michael Jordan, and Ion Stoica. RLlib: Abstractions for distributed reinforcement learning.
In International Conference on Machine Learning, pp. 3053–3062. PMLR, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, and others.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.
Publisher: Nature Publishing Group.

Steven Morad, Stephan Liwicki, Ryan Kortvelesy, Roberto Mecca, and Amanda Prorok. Modeling
Partially Observable Systems using Graph-Based Memory and Topological Priors. In Proceedings
of The 4th Annual Learning for Dynamics and Control Conference, pp. 59–73. PMLR, May 2022.
URL https://proceedings.mlr.press/v168/morad22a.html. ISSN: 2640-3498.

Steven D. Morad, Roberto Mecca, Rudra P. K. Poudel, Stephan Liwicki, and Roberto Cipolla. Em-
bodied Visual Navigation With Automatic Curriculum Learning in Real Environments. IEEE
Robotics and Automation Letters, 6(2):683–690, April 2021. ISSN 2377-3766. doi: 10.1109/
LRA.2020.3048662. Conference Name: IEEE Robotics and Automation Letters.

Tianwei Ni, Benjamin Eysenbach, and Ruslan Salakhutdinov. Recurrent Model-Free RL Can Be
a Strong Baseline for Many POMDPs. In Proceedings of the 39th International Conference on
Machine Learning, pp. 16691–16723. PMLR, June 2022. URL https://proceedings.
mlr.press/v162/ni22a.html. ISSN: 2640-3498.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvári, Satinder Singh, Benjamin Van Roy, Richard Sutton,
David Silver, and Hado van Hasselt. Behaviour Suite for Reinforcement Learning. In Interna-
tional Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=rygf-kSYwH.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphaël Lopez Kaufman, Aidan Clark, Seb Noury, Matthew Botvinick, Nicolas
Heess, and Raia Hadsell. Stabilizing Transformers for Reinforcement Learning. In Hal Daumé III
and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 7487–7498. PMLR, July 2020.
URL https://proceedings.mlr.press/v119/parisotto20a.html.

13

http://arxiv.org/abs/1605.02097
https://proceedings.neurips.cc/paper/2021/hash/cd755a6c6b699f3262bcc2aa46ab507e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/cd755a6c6b699f3262bcc2aa46ab507e-Abstract.html
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/2005.01643
https://ieeexplore.ieee.org/document/8578670/
https://ieeexplore.ieee.org/document/8578670/
https://proceedings.mlr.press/v168/morad22a.html
https://proceedings.mlr.press/v162/ni22a.html
https://proceedings.mlr.press/v162/ni22a.html
https://openreview.net/forum?id=rygf-kSYwH
https://openreview.net/forum?id=rygf-kSYwH
https://proceedings.mlr.press/v119/parisotto20a.html

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-Baselines3: Reliable Reinforcement Learning Implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Dhruv Ramani. A Short Survey On Memory Based Reinforcement Learning. Technical Re-
port arXiv:1904.06736, arXiv, April 2019. URL http://arxiv.org/abs/1904.06736.
arXiv:1904.06736 [cs] type: article.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear Transformers Are Secretly Fast
Weight Programmers. In Proceedings of the 38th International Conference on Machine Learning,
pp. 9355–9366. PMLR, July 2021. URL https://proceedings.mlr.press/v139/
schlag21a.html. ISSN: 2640-3498.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Daniel Seita. Can RL From Pixels be as Efficient as RL From State?, July 2020. URL http:
//bair.berkeley.edu/blog/2020/07/19/curl-rad/.

Vatsal Sharan, Sham M Kakade, Percy S Liang, and Gregory Valiant. Learning Overcomplete
HMMs. In Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
6aca97005c68f1206823815f66102863-Abstract.html.

Aleksandrs Slivkins and others. Introduction to multi-armed bandits. Foundations and Trends® in
Machine Learning, 12(1-2):1–286, 2019. Publisher: Now Publishers, Inc.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
\Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre Memory Units: Continuous-Time Rep-
resentation in Recurrent Neural Networks. In Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019. URL https://papers.nips.cc/paper/
2019/hash/952285b9b7e7a1be5aa7849f32ffff05-Abstract.html.

Zhihan Yang and Hai Nguyen. Recurrent Off-policy Baselines for Memory-based Continuous Con-
trol. Technical Report arXiv:2110.12628, arXiv, October 2021. URL http://arxiv.org/
abs/2110.12628. arXiv:2110.12628 [cs] type: article.

Kaiyu Zheng and Stefanie Tellex. pomdp py: A Framework to Build and Solve
POMDP Problems. In ICAPS 2020 Workshop on Planning and Robotics (PlanRob),
2020. URL https://icaps20subpages.icaps-conference.org/wp-content/
uploads/2020/10/14-PlanRob_2020_paper_3.pdf.

14

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://arxiv.org/abs/1904.06736
https://proceedings.mlr.press/v139/schlag21a.html
https://proceedings.mlr.press/v139/schlag21a.html
http://bair.berkeley.edu/blog/2020/07/19/curl-rad/
http://bair.berkeley.edu/blog/2020/07/19/curl-rad/
https://proceedings.neurips.cc/paper/2017/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://papers.nips.cc/paper/2019/hash/952285b9b7e7a1be5aa7849f32ffff05-Abstract.html
https://papers.nips.cc/paper/2019/hash/952285b9b7e7a1be5aa7849f32ffff05-Abstract.html
http://arxiv.org/abs/2110.12628
http://arxiv.org/abs/2110.12628
https://icaps20subpages.icaps-conference.org/wp-content/uploads/2020/10/14-PlanRob_2020_paper_3.pdf
https://icaps20subpages.icaps-conference.org/wp-content/uploads/2020/10/14-PlanRob_2020_paper_3.pdf

Table 2: PPO hyperparameters used in all of our experiments.
HParam Value

Decay factor γ 0.99
Value fn. loss coef. 1.0
Entropy loss coef. 0.0
Learning rate 5e-5
Num. SGD iters 30
Batch size 65536
Minibatch size 8192
GAE λ 1.0
KL target 0.01
KL coefficient 0.2
PPO clipping 0.3
Value clipping 0.3
BPTT Truncation Length ∞
Maximum Episode Length 1024

A EXPERIMENTAL PARAMETERS

Given the number of environments and models, it is not computationally feasible to optimize hyper-
parameters in a structured way. Through trial and error, we evaluated all models on the Repeat First
and Repeat Previous environments and found suitable values that worked across all models. We then
picked a more conservative estimate (larger batch size, lower learning rate) to promote monotonic
improvement and prevent catastrophic forgetting, at the expense of some sample efficiency.

There is no clear axis for a truly fair comparison between memory models – model throughput and
parameter count vary drastically throughout the memory models. We decide to limit the amount of
storage (i.e. recurrent state size) of each memory model to 256 dimensions, which is greater than
the common values of 64 and 128 in literature (Ni et al., 2022). This results in lower parameter
counts for models that produce the recurrent state using a tensor product (e.g. FWP, FART, S4D).
We could make an exception for these models, allowing them to produce recurrent states of size
2562 = 63356 dimensions instead of 162 = 256 dimensions to bring up the parameter count, but
we believe this is unfair to recurrent models. In this case, recurrent models would need to forget and
compress information over longer episodes, while tensor product models could store every single
observation in memory without any compression or forgetting. Storing everything is unlikely to
scale to real-world applications where episodes could span hours, days, or run indefinitely.

A.1 GENERAL MODEL HYPERPARAMETERS

For all our memory experiments, we use the same outer model, just swapping out the inner memory
model. The outer model first projects observations from the environment to 128 zero-mean variance-
one dimensions. Here, the positional encoding is applied if the memory model requests it. The
projection goes through a single linear layer and LeakyReLU activation of size 128, then feeds
into the memory model. Output from the memory model is projected to 128 dimensions, then split
into the actor and critic head. The actor and critic heads are two layer MLPs of width 128 with
LeakyReLU activation.

A.2 MODEL-SPECIFIC HYPERPARAMETERS

The Elman, GRU, LSTM, and LMU RNNs use a single cell. We use a 2-cell IndRNN as they
claim to utilize deeper networks. The FART and FWP models use a single attention block. We use
the attention-only formulations of FWP, rather than the combined attention and RNN variant. We
utilize a temporal window of four for frame stacking and TCN. LMU utilizes a θ window size of 64
timesteps.

15

B FULL EXPERIMENTAL RESULTS

We report our results in three forms:

1. Bar charts denoting the standardized MMER split by environment (Figure 5-Figure 9)
2. Line plots showing cumulative maximum episodic reward for each training epoch, split by

environment (Figure 10-Figure 14)
3. Tables reporting the mean and standard deviation of the MMER, split by model and envi-

ronment (Table 3)

All models and environments are from commit e397e5e except for the DiffNC experiments, which
are from commit 33b0995. All experiments sample 15M timesteps from each environment, except
for the DiffNC experiments which sample 10M timesteps.

We run each trial 3 times, aggregating results using the mean over trials. All raw data is available
at https://wandb.ai/prorok-lab/popgym-public. The bar plots represent the mean
and 95% bootstrap confidence interval. For the bar charts, we standardize the reward between 0 and
1. In the line plots, the solid region refers to the mean and the shaded region to the 95% bootstrap
confidence interval. The table reports the MMER mean and standard deviation across trials.

16

https://wandb.ai/prorok-lab/popgym-public

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

AutoencodeEasy AutoencodeMedium AutoencodeHard

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

BattleshipEasy BattleshipMedium BattleshipHard

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

ConcentrationEasy

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

ConcentrationMedium

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

ConcentrationHard

Figure 5: POPGym baselines.

17

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

CountRecallEasy CountRecallMedium CountRecallHard

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

HigherLowerEasy HigherLowerMedium HigherLowerHard

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

LabyrinthEscapeEasy

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

LabyrinthEscapeMedium

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

LabyrinthEscapeHard

Figure 6: POPGym baselines (continued)

18

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

LabyrinthExploreEasy LabyrinthExploreMedium LabyrinthExploreHard

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

MineSweeperEasy MineSweeperMedium MineSweeperHard

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

MultiarmedBanditEasy

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

MultiarmedBanditMedium

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

MultiarmedBanditHard

Figure 7: POPGym baselines (continued)

19

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

NoisyStatelessCartPoleEasy NoisyStatelessCartPoleMedium NoisyStatelessCartPoleHard

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

NoisyStatelessPendulumEasy NoisyStatelessPendulumMedium NoisyStatelessPendulumHard

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

RepeatFirstEasy

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

RepeatFirstMedium

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

RepeatFirstHard

Figure 8: POPGym baselines (continued)

20

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

RepeatPreviousEasy RepeatPreviousMedium RepeatPreviousHard

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

StatelessCartPoleEasy StatelessCartPoleMedium StatelessCartPoleHard

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

MLP
PosMLP

FWP
FART

S4D
TCN

Fr.Stack
LMU

IndRNN
Elman

GRU
LSTM
DNC

M
od

el

StatelessPendulumEasy

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

StatelessPendulumMedium

0.0 0.2 0.4 0.6 0.8 1.0
Standardized MMER

StatelessPendulumHard

Figure 9: POPGym baselines (continued)

21

0.75

0.50

0.25

0.00

0.25

M
ax

 E
pi

so
di

c
R

ew
ar

d

AutoencodeEasy AutoencodeMedium AutoencodeHard

0.75

0.50

0.25

0.00

0.25

M
ax

 E
pi

so
di

c
R

ew
ar

d

BattleshipEasy BattleshipMedium BattleshipHard

0 50 100 150 200
Epoch

0.75

0.50

0.25

0.00

0.25

M
ax

 E
pi

so
di

c
R

ew
ar

d

ConcentrationEasy

0 50 100 150 200
Epoch

ConcentrationMedium

0 50 100 150 200
Epoch

ConcentrationHard

Model
MLP
PosMLP
FWP
FART
S4D
TCN
Fr.Stack
LMU
IndRNN
Elman
GRU
LSTM
DNC

Figure 10: POPGym baselines (continued)

1.0

0.5

0.0

0.5

1.0

M
ax

 E
pi

so
di

c
R

ew
ar

d

CountRecallEasy CountRecallMedium CountRecallHard

1.0

0.5

0.0

0.5

1.0

M
ax

 E
pi

so
di

c
R

ew
ar

d

HigherLowerEasy HigherLowerMedium HigherLowerHard

0 50 100 150 200
Epoch

1.0

0.5

0.0

0.5

1.0

M
ax

 E
pi

so
di

c
R

ew
ar

d

LabyrinthEscapeEasy

0 50 100 150 200
Epoch

LabyrinthEscapeMedium

0 50 100 150 200
Epoch

LabyrinthEscapeHard

Model
MLP
PosMLP
FWP
FART
S4D
TCN
Fr.Stack
LMU
IndRNN
Elman
GRU
LSTM
DNC

Figure 11: POPGym baselines (continued)

22

1.0

0.5

0.0

0.5

1.0

M
ax

 E
pi

so
di

c
R

ew
ar

d

LabyrinthExploreEasy LabyrinthExploreMedium LabyrinthExploreHard

1.0

0.5

0.0

0.5

1.0

M
ax

 E
pi

so
di

c
R

ew
ar

d

MineSweeperEasy MineSweeperMedium MineSweeperHard

0 50 100 150 200
Epoch

1.0

0.5

0.0

0.5

1.0

M
ax

 E
pi

so
di

c
R

ew
ar

d

MultiarmedBanditEasy

0 50 100 150 200
Epoch

MultiarmedBanditMedium

0 50 100 150 200
Epoch

MultiarmedBanditHard

Model
MLP
PosMLP
FWP
FART
S4D
TCN
Fr.Stack
LMU
IndRNN
Elman
GRU
LSTM
DNC

Figure 12: POPGym baselines (continued)

0.5

0.0

0.5

1.0

M
ax

 E
pi

so
di

c
R

ew
ar

d

NoisyStatelessCartPoleEasy NoisyStatelessCartPoleMedium NoisyStatelessCartPoleHard

0.5

0.0

0.5

1.0

M
ax

 E
pi

so
di

c
R

ew
ar

d

NoisyStatelessPendulumEasy NoisyStatelessPendulumMedium NoisyStatelessPendulumHard

0 50 100 150 200
Epoch

0.5

0.0

0.5

1.0

M
ax

 E
pi

so
di

c
R

ew
ar

d

RepeatFirstEasy

0 50 100 150 200
Epoch

RepeatFirstMedium

0 50 100 150 200
Epoch

RepeatFirstHard

Model
MLP
PosMLP
FWP
FART
S4D
TCN
Fr.Stack
LMU
IndRNN
Elman
GRU
LSTM
DNC

Figure 13: POPGym baselines (continued)

23

0.5

0.0

0.5

1.0

M
ax

 E
pi

so
di

c
R

ew
ar

d

RepeatPreviousEasy RepeatPreviousMedium RepeatPreviousHard

0.5

0.0

0.5

1.0

M
ax

 E
pi

so
di

c
R

ew
ar

d

StatelessCartPoleEasy StatelessCartPoleMedium StatelessCartPoleHard

0 50 100 150 200
Epoch

0.5

0.0

0.5

1.0

M
ax

 E
pi

so
di

c
R

ew
ar

d

StatelessPendulumEasy

0 50 100 150 200
Epoch

StatelessPendulumMedium

0 50 100 150 200
Epoch

StatelessPendulumHard

Model
MLP
PosMLP
FWP
FART
S4D
TCN
Fr.Stack
LMU
IndRNN
Elman
GRU
LSTM
DNC

Figure 14: POPGym baselines (continued)

24

Table 3: Full table of results, denoting the MMER mean and standard
deviation by environment and model.

Env. Model MMER
µ σ

AutoencodeEasy DNC -0.489 0.002
Elman -0.306 0.022
FART -0.447 0.014
FWP -0.322 0.020
Fr.Stack -0.422 0.010
GRU -0.283 0.029
IndRNN -0.334 0.004
LMU -0.370 0.015
LSTM -0.312 0.008
MLP -0.470 0.004
PosMLP -0.458 0.003
S4D -0.490 0.005
TCN -0.410 0.006

AutoencodeMedium DNC -0.488 0.002
Elman -0.443 0.007
FART -0.478 0.002
FWP -0.449 0.005
Fr.Stack -0.466 0.002
GRU -0.425 0.018
IndRNN -0.420 0.011
LMU -0.474 0.003
LSTM -0.423 0.004
MLP -0.482 0.002
PosMLP -0.474 0.001
S4D -0.490 0.001
TCN -0.464 0.002

AutoencodeHard DNC -0.489 0.002
Elman -0.481 0.005
FART -0.481 0.001
FWP -0.472 0.011
Fr.Stack -0.478 0.004
GRU -0.456 0.009
IndRNN -0.448 0.010
LMU -0.480 0.006
LSTM -0.467 0.004
MLP -0.488 0.002
PosMLP -0.483 0.003
S4D -0.489 0.003
TCN -0.476 0.004

BattleshipEasy DNC -0.427 0.002
Elman -0.290 0.013
FART -0.413 0.005
FWP -0.389 0.007
Fr.Stack -0.378 0.015
GRU -0.320 0.013
IndRNN -0.287 0.005
LMU -0.323 0.027
LSTM -0.376 0.007
MLP -0.325 0.012
PosMLP -0.226 0.077
S4D -0.432 0.002

Continued on next page

25

µ σ
Env. Model

TCN -0.333 0.007
BattleshipMedium DNC -0.394 0.003

Elman -0.373 0.007
FART -0.392 0.003
FWP -0.386 0.003
Fr.Stack -0.390 0.008
GRU -0.367 0.008
IndRNN -0.337 0.005
LMU -0.387 0.010
LSTM -0.379 0.006
MLP -0.356 0.020
PosMLP -0.344 0.030
S4D -0.406 0.003
TCN -0.363 0.003

BattleshipHard DNC -0.380 0.004
Elman -0.377 0.005
FART -0.384 0.003
FWP -0.380 0.005
Fr.Stack -0.381 0.004
GRU -0.377 0.008
IndRNN -0.369 0.009
LMU -0.381 0.000
LSTM -0.380 0.001
MLP -0.383 0.002
PosMLP -0.382 0.003
S4D -0.389 0.005
TCN -0.376 0.004

ConcentrationEasy DNC -0.182 0.004
Elman -0.098 0.012
FART -0.185 0.002
FWP -0.188 0.001
Fr.Stack -0.146 0.001
GRU -0.039 0.005
IndRNN 0.142 0.004
LMU -0.057 0.009
LSTM -0.080 0.012
MLP -0.050 0.015
PosMLP -0.048 0.010
S4D -0.190 0.004
TCN 0.253 0.004

ConcentrationMedium DNC -0.182 0.001
Elman -0.186 0.003
FART -0.186 0.002
FWP -0.185 0.002
Fr.Stack -0.185 0.002
GRU -0.189 0.003
IndRNN -0.256 0.012
LMU -0.176 0.005
LSTM -0.185 0.001
MLP -0.178 0.004
PosMLP -0.175 0.002
S4D -0.186 0.002
TCN -0.157 0.005

ConcentrationHard DNC -0.830 0.002
Continued on next page

26

µ σ
Env. Model

Elman -0.830 0.001
FART -0.830 0.001
FWP -0.831 0.001
Fr.Stack -0.829 0.001
GRU -0.829 0.003
IndRNN -0.849 0.005
LMU -0.828 0.002
LSTM -0.829 0.001
MLP -0.833 0.001
PosMLP -0.831 0.001
S4D -0.830 0.002
TCN -0.830 0.003

CountRecallEasy DNC -0.913 0.017
Elman 0.016 0.091
FART -0.300 0.145
FWP -0.399 0.047
Fr.Stack -0.365 0.022
GRU 0.177 0.005
IndRNN -0.042 0.050
LMU -0.214 0.058
LSTM 0.509 0.062
MLP -0.847 0.011
PosMLP -0.409 0.011
S4D -0.911 0.005
TCN -0.385 0.010

CountRecallMedium DNC -0.907 0.023
Elman -0.540 0.001
FART -0.541 0.003
FWP -0.541 0.016
Fr.Stack -0.529 0.002
GRU -0.528 0.001
IndRNN -0.535 0.014
LMU -0.555 0.009
LSTM -0.538 0.005
MLP -0.907 0.001
PosMLP -0.519 0.003
S4D -0.920 0.000
TCN -0.524 0.003

CountRecallHard DNC -0.815 0.042
Elman -0.541 0.033
FART -0.501 0.008
FWP -0.477 0.006
Fr.Stack -0.475 0.008
GRU -0.475 0.006
IndRNN -0.481 0.004
LMU -0.522 0.036
LSTM -0.478 0.006
MLP -0.867 0.002
PosMLP -0.470 0.003
S4D -0.858 0.013
TCN -0.470 0.002

HigherLowerEasy DNC 0.505 0.002
Elman 0.520 0.002
FART 0.522 0.002

Continued on next page

27

µ σ
Env. Model

FWP 0.520 0.002
Fr.Stack 0.504 0.001
GRU 0.529 0.002
IndRNN 0.528 0.000
LMU 0.494 0.003
LSTM 0.526 0.003
MLP 0.505 0.001
PosMLP 0.505 0.001
S4D 0.479 0.018
TCN 0.503 0.000

HigherLowerMedium DNC 0.501 0.003
Elman 0.503 0.001
FART 0.511 0.001
FWP 0.504 0.006
Fr.Stack 0.503 0.000
GRU 0.511 0.002
IndRNN 0.513 0.001
LMU 0.466 0.004
LSTM 0.504 0.003
MLP 0.504 0.001
PosMLP 0.505 0.002
S4D 0.420 0.057
TCN 0.503 0.001

HigherLowerHard DNC 0.498 0.005
Elman 0.501 0.001
FART 0.507 0.001
FWP 0.499 0.002
Fr.Stack 0.499 0.002
GRU 0.506 0.001
IndRNN 0.509 0.001
LMU 0.453 0.005
LSTM 0.502 0.001
MLP 0.504 0.002
PosMLP 0.502 0.001
S4D 0.387 0.037
TCN 0.501 0.001

LabyrinthEscapeEasy DNC 0.958 0.002
Elman 0.956 0.002
FART -0.043 0.266
FWP -0.078 0.062
Fr.Stack 0.521 0.055
GRU 0.959 0.001
IndRNN -0.218 0.136
LMU 0.814 0.076
LSTM 0.920 0.024
MLP 0.961 0.000
PosMLP 0.544 0.023
S4D -0.305 0.033
TCN 0.773 0.054

LabyrinthEscapeMedium DNC -0.414 0.493
Elman -0.122 0.388
FART -0.602 0.057
FWP -0.604 0.015
Fr.Stack -0.384 0.271

Continued on next page

28

µ σ
Env. Model

GRU 0.230 0.642
IndRNN -0.735 0.135
LMU -0.525 0.081
LSTM -0.513 0.123
MLP -0.093 0.857
PosMLP -0.413 0.049
S4D -0.719 0.064
TCN -0.494 0.046

LabyrinthEscapeHard DNC -0.827 0.085
Elman -0.780 0.039
FART -0.828 0.018
FWP -0.848 0.016
Fr.Stack -0.733 0.040
GRU -0.839 0.032
IndRNN -0.907 0.030
LMU -0.762 0.033
LSTM -0.789 0.049
MLP -0.245 0.948
PosMLP -0.806 0.078
S4D -0.897 0.034
TCN -0.787 0.011

LabyrinthExploreEasy DNC 0.956 0.006
Elman 0.964 0.001
FART 0.424 0.465
FWP -0.152 0.033
Fr.Stack 0.957 0.001
GRU 0.960 0.001
IndRNN 0.961 0.001
LMU 0.812 0.048
LSTM 0.587 0.076
MLP 0.968 0.000
PosMLP 0.964 0.001
S4D -0.265 0.018
TCN 0.962 0.000

LabyrinthExploreMedium DNC 0.905 0.005
Elman 0.873 0.052
FART -0.197 0.130
FWP -0.464 0.041
Fr.Stack 0.847 0.063
GRU 0.893 0.008
IndRNN 0.440 0.350
LMU 0.423 0.185
LSTM 0.025 0.009
MLP 0.924 0.001
PosMLP 0.516 0.191
S4D -0.580 0.035
TCN 0.903 0.003

LabyrinthExploreHard DNC 0.720 0.212
Elman 0.612 0.286
FART -0.407 0.032
FWP -0.611 0.044
Fr.Stack 0.437 0.287
GRU 0.796 0.003
IndRNN 0.315 0.412

Continued on next page

29

µ σ
Env. Model

LMU -0.068 0.048
LSTM -0.206 0.030
MLP 0.858 0.002
PosMLP -0.018 0.016
S4D -0.721 0.008
TCN 0.559 0.203

MineSweeperEasy DNC 0.293 0.102
Elman 0.640 0.008
FART 0.474 0.030
FWP 0.520 0.025
Fr.Stack 0.516 0.028
GRU 0.693 0.009
IndRNN 0.626 0.003
LMU 0.689 0.005
LSTM 0.686 0.022
MLP 0.251 0.019
PosMLP 0.403 0.023
S4D -0.071 0.024
TCN 0.582 0.012

MineSweeperMedium DNC -0.385 0.016
Elman -0.009 0.034
FART -0.176 0.020
FWP -0.151 0.041
Fr.Stack -0.177 0.029
GRU -0.006 0.013
IndRNN -0.024 0.023
LMU -0.108 0.008
LSTM -0.110 0.012
MLP -0.158 0.006
PosMLP -0.117 0.042
S4D -0.365 0.019
TCN 0.018 0.030

MineSweeperHard DNC -0.429 0.002
Elman -0.230 0.021
FART -0.390 0.009
FWP -0.338 0.036
Fr.Stack -0.338 0.028
GRU -0.206 0.027
IndRNN -0.247 0.006
LMU -0.294 0.021
LSTM -0.303 0.012
MLP -0.289 0.011
PosMLP -0.278 0.001
S4D -0.430 0.002
TCN -0.191 0.018

MultiarmedBanditEasy DNC 0.302 0.106
Elman 0.631 0.014
FART 0.453 0.042
FWP 0.556 0.045
Fr.Stack 0.476 0.052
GRU 0.619 0.007
IndRNN 0.625 0.014
LMU 0.332 0.141
LSTM 0.527 0.006

Continued on next page

30

µ σ
Env. Model

MLP 0.377 0.055
PosMLP 0.342 0.068
S4D 0.095 0.008
TCN 0.586 0.004

MultiarmedBanditMedium DNC 0.260 0.066
Elman 0.450 0.043
FART 0.278 0.109
FWP 0.388 0.087
Fr.Stack 0.357 0.074
GRU 0.538 0.036
IndRNN 0.591 0.026
LMU 0.055 0.018
LSTM 0.476 0.019
MLP 0.350 0.041
PosMLP 0.299 0.055
S4D 0.136 0.006
TCN 0.598 0.022

MultiarmedBanditHard DNC 0.278 0.075
Elman 0.297 0.103
FART 0.208 0.102
FWP 0.234 0.048
Fr.Stack 0.264 0.096
GRU 0.516 0.083
IndRNN 0.567 0.033
LMU 0.033 0.002
LSTM 0.419 0.057
MLP 0.391 0.040
PosMLP 0.177 0.028
S4D 0.118 0.024
TCN 0.574 0.049

NoisyStatelessCartPoleEasy DNC 0.615 0.094
Elman 0.991 0.000
FART 0.983 0.001
FWP 0.966 0.010
Fr.Stack 0.856 0.003
GRU 0.995 0.000
IndRNN 0.994 0.001
LMU 0.921 0.020
LSTM 0.987 0.006
MLP 0.515 0.003
PosMLP 0.537 0.006
S4D 0.259 0.021
TCN 0.871 0.002

NoisyStatelessCartPoleMedium DNC 0.312 0.025
Elman 0.640 0.014
FART 0.590 0.006
FWP 0.547 0.017
Fr.Stack 0.449 0.004
GRU 0.642 0.012
IndRNN 0.659 0.006
LMU 0.519 0.012
LSTM 0.638 0.007
MLP 0.302 0.002
PosMLP 0.353 0.004

Continued on next page

31

µ σ
Env. Model

S4D 0.211 0.025
TCN 0.462 0.007

NoisyStatelessCartPoleHard DNC 0.233 0.009
Elman 0.386 0.009
FART 0.366 0.002
FWP 0.354 0.001
Fr.Stack 0.326 0.006
GRU 0.390 0.007
IndRNN 0.404 0.005
LMU 0.352 0.019
LSTM 0.393 0.002
MLP 0.229 0.002
PosMLP 0.288 0.000
S4D 0.207 0.007
TCN 0.330 0.004

NoisyStatelessPendulumEasy DNC 0.456 0.040
Elman 0.818 0.056
FART 0.610 0.005
FWP 0.532 0.028
Fr.Stack 0.832 0.015
GRU 0.894 0.002
IndRNN 0.654 0.188
LMU 0.654 0.055
LSTM 0.786 0.031
MLP 0.387 0.010
PosMLP 0.467 0.011
S4D 0.291 0.022
TCN 0.811 0.015

NoisyStatelessPendulumMedium DNC 0.435 0.020
Elman 0.622 0.031
FART 0.570 0.001
FWP 0.521 0.006
Fr.Stack 0.621 0.010
GRU 0.717 0.004
IndRNN 0.526 0.061
LMU 0.570 0.012
LSTM 0.653 0.024
MLP 0.369 0.002
PosMLP 0.446 0.011
S4D 0.286 0.011
TCN 0.633 0.013

NoisyStatelessPendulumHard DNC 0.440 0.017
Elman 0.614 0.017
FART 0.553 0.007
FWP 0.498 0.008
Fr.Stack 0.561 0.008
GRU 0.657 0.002
IndRNN 0.521 0.109
LMU 0.563 0.014
LSTM 0.617 0.010
MLP 0.351 0.012
PosMLP 0.433 0.009
S4D 0.289 0.011
TCN 0.573 0.009

Continued on next page

32

µ σ
Env. Model

RepeatFirstEasy DNC 0.716 0.207
Elman 1.000 0.000
FART 1.000 0.000
FWP 0.813 0.224
Fr.Stack 0.997 0.005
GRU 1.000 0.000
IndRNN 1.000 0.000
LMU 1.000 0.000
LSTM 1.000 0.000
MLP 0.489 0.391
PosMLP 0.736 0.209
S4D -0.194 0.098
TCN 1.000 0.000

RepeatFirstMedium DNC -0.349 0.041
Elman -0.468 0.014
FART 0.962 0.048
FWP 0.830 0.237
Fr.Stack -0.467 0.007
GRU 1.000 0.000
IndRNN 0.998 0.003
LMU 0.641 0.457
LSTM 0.926 0.068
MLP -0.389 0.057
PosMLP -0.472 0.007
S4D -0.241 0.100
TCN -0.449 0.033

RepeatFirstHard DNC -0.334 0.039
Elman -0.464 0.002
FART 0.867 0.142
FWP 0.915 0.045
Fr.Stack -0.448 0.016
GRU 0.940 0.012
IndRNN 0.969 0.026
LMU -0.406 0.060
LSTM 0.275 0.677
MLP -0.355 0.111
PosMLP -0.455 0.009
S4D -0.178 0.146
TCN -0.457 0.010

RepeatPreviousEasy DNC -0.223 0.075
Elman 1.000 0.000
FART 0.060 0.040
FWP 0.200 0.052
Fr.Stack 1.000 0.000
GRU 1.000 0.000
IndRNN 0.957 0.012
LMU 1.000 0.000
LSTM 1.000 0.000
MLP -0.320 0.007
PosMLP -0.336 0.014
S4D -0.473 0.003
TCN 1.000 0.000

RepeatPreviousMedium DNC -0.490 0.001
Elman -0.394 0.025

Continued on next page

33

µ σ
Env. Model

FART -0.468 0.011
FWP -0.345 0.033
Fr.Stack -0.484 0.003
GRU -0.315 0.017
IndRNN -0.304 0.014
LMU 0.789 0.288
LSTM -0.284 0.024
MLP -0.486 0.001
PosMLP -0.485 0.001
S4D -0.490 0.002
TCN -0.478 0.004

RepeatPreviousHard DNC -0.490 0.002
Elman -0.481 0.003
FART -0.485 0.003
FWP -0.443 0.017
Fr.Stack -0.485 0.001
GRU -0.428 0.002
IndRNN -0.384 0.013
LMU 0.191 0.041
LSTM -0.397 0.008
MLP -0.486 0.002
PosMLP -0.486 0.004
S4D -0.491 0.001
TCN -0.486 0.001

StatelessCartPoleEasy DNC 0.960 0.027
Elman 1.000 0.000
FART 1.000 0.000
FWP 1.000 0.000
Fr.Stack 1.000 0.000
GRU 1.000 0.000
IndRNN 1.000 0.000
LMU 0.996 0.001
LSTM 1.000 0.000
MLP 0.722 0.001
PosMLP 0.967 0.006
S4D 0.514 0.076
TCN 1.000 0.000

StatelessCartPoleMedium DNC 0.956 0.061
Elman 1.000 0.000
FART 1.000 0.000
FWP 0.989 0.007
Fr.Stack 1.000 0.000
GRU 1.000 0.000
IndRNN 1.000 0.000
LMU 0.995 0.001
LSTM 1.000 0.000
MLP 0.398 0.006
PosMLP 0.593 0.049
S4D 0.205 0.011
TCN 1.000 0.000

StatelessCartPoleHard DNC 0.778 0.330
Elman 1.000 0.000
FART 0.996 0.000
FWP 0.900 0.092

Continued on next page

34

µ σ
Env. Model

Fr.Stack 0.989 0.017
GRU 1.000 0.000
IndRNN 1.000 0.000
LMU 0.987 0.007
LSTM 1.000 0.000
MLP 0.265 0.002
PosMLP 0.443 0.018
S4D 0.127 0.026
TCN 0.998 0.003

StatelessPendulumEasy DNC 0.427 0.022
Elman 0.903 0.007
FART 0.652 0.010
FWP 0.556 0.007
Fr.Stack 0.906 0.005
GRU 0.913 0.002
IndRNN 0.798 0.151
LMU 0.819 0.107
LSTM 0.878 0.048
MLP 0.448 0.005
PosMLP 0.486 0.011
S4D 0.290 0.007
TCN 0.906 0.003

StatelessPendulumMedium DNC 0.436 0.012
Elman 0.880 0.004
FART 0.660 0.013
FWP 0.579 0.033
Fr.Stack 0.881 0.002
GRU 0.884 0.002
IndRNN 0.719 0.216
LMU 0.858 0.003
LSTM 0.875 0.005
MLP 0.455 0.025
PosMLP 0.509 0.011
S4D 0.282 0.003
TCN 0.874 0.002

StatelessPendulumHard DNC 0.420 0.033
Elman 0.819 0.005
FART 0.698 0.077
FWP 0.663 0.051
Fr.Stack 0.824 0.002
GRU 0.828 0.001
IndRNN 0.804 0.023
LMU 0.806 0.006
LSTM 0.819 0.006
MLP 0.477 0.030
PosMLP 0.543 0.020
S4D 0.303 0.014
TCN 0.822 0.005

35

	Introduction
	Contributions

	Related Work
	Fully and Near-Fully Observable Benchmarks
	Partially Observable Benchmarks
	Shortcomings of Current Benchmarks
	Existing Memory Baselines
	A Brief Summary on Memory

	POPGym Environments
	Environment Descriptions

	POPGym Baselines
	Experiments
	Discussion
	Conclusion
	Acknowledgements
	Experimental Parameters
	General Model Hyperparameters
	Model-Specific Hyperparameters

	Full Experimental Results

