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Abstract

Sharpness-aware minimization (SAM) improves
generalization of various deep learning tasks. Mo-
tivated by popular architectures such as LoRA,
we explore the implicit regularization of SAM for
scale-invariant problems involving two groups of
variables. Instead of focusing on commonly used
‘sharpness,’ this work introduces a concept termed
balancedness, defined as the difference between
squared norms of two variables. This allows us to
depict richer global behaviors of SAM. In particu-
lar, our theoretical and empirical findings reveal
that i) SAM promotes balancedness; and ii) the
regularization on balancedness is data-responsive
– outliers have stronger impact. The latter coin-
cides with empirical observations that SAM out-
performs SGD in the presence of outliers. Lever-
aging the implicit regularization, we develop a
resource-efficient SAM, balancedness-aware regu-
larization (BAR), tailored for scale-invariant prob-
lems such as finetuning language models with
LoRA. BAR saves 95% computational overhead
of SAM, with enhanced test performance across
various tasks on RoBERTa, GPT2, and OPT-1.3B.

1. Introduction
Sharpness-aware minimization (SAM) enhances general-
ization on various downstream tasks across vision and lan-
guage applications (Foret et al., 2021; Bahri et al., 2022).
The success of SAM is typically explained using its implicit
regularization (IR) toward a flat solution (Wen et al., 2023a).

However, existing results only characterize sharpness (or
flatness) near local minima (Wen et al., 2023a). Little is
known about early convergence, despite its crucial role in
SAM’s implicit regularization (Agarwala & Dauphin, 2023).
In addition, theoretical understanding of SAM highly hinges
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upon the existence of positive eigenvalues of Hessians (Wen
et al., 2023a), leaving gaps in nonconvex scenarios where
the Hessian can be negative definite. The limitations above
lead to our first question (Q1): can we broaden the scope of
IR to depict global behaviors in SAM?

Scenarios where SAM popularizes often involve data anoma-
lies. Remarkable performance of SAM is observed under
distributional shift in domain adaptation (Wang et al., 2023)
and transfer learning (Bahri et al., 2022); and SAM has prov-
able merits on sparse coding problems in the small signal-
to-noise ratio (SNR) regime (Chen et al., 2023). These evi-
dences motivate our second question (Q2): can IR of SAM
reflect its enhanced performance under data anomalies?

This work answers Q1 and Q2 within a class of scale-
invariant problems. The focus on scale-invariance is mo-
tivated by its prominence in deep learning architectures.
Consider non-scalar variables x ∈Rd1 and y ∈Rd2 . The
problem is formulated as non-overparametrization (NOP)
or overparametrization (OP) problems, based on whether
d1 + d2 is greater than dimension of dom f ,

NOP: min
x,y

fn(xy>) = Eξ∼D
[
fξn(xy>)

]
(1a)

OP: min
x,y

fo(x
>y) = Eξ∼D

[
fξo (x>y)

]
. (1b)

Here, d1 = d2 is assumed for OP, and D denotes the train-
ing data. For both cases, the losses are nonconvex in (x,y).
Scale-invariance refers to that (αx,y/α) share the same
objective value ∀α 6= 0. It naturally calls for implicit reg-
ularization from optimization algorithms to determine the
value of α. We focus on two-variable problems in the main
text for simplicity and generalize the results to multi-layer
cases in appendix. Problems (1a) and (1b) suits for modern
deep learning, where low rank adapters (LoRA) for finetun-
ing language models is NOP, and softmax in attention falls
in OP framework (Hu et al., 2022; Vaswani et al., 2017).

This work studies SAM’s IR on balancedness, defined as
Bt = 1

2

(
‖xt‖2 − ‖yt‖2

)
. Balancedness is a useful alter-

native to sharpness for (1) because it enables us i) to go
beyond local minima and describe the behavior over SAM’s
entire trajectory; ii) to simplify analyses and assumptions;
and, iii) to depict data-driven behaviors of SAM. Building
upon balancedness, we answer our major questions.
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Figure 1. IR of SAM on balancedness. The losses for NOP and
OP are E[‖xy> − (A + αN)‖2] and E[‖x>y − (a + αn)‖2],
respectively. Here, A is the ground truth matrix, N is the Gaussian
noise, and α controls the SNR. Left of (a) and (b): |‖xt‖2−‖yt‖2|
vs. iteration. Right of (a) and (b): |‖gxt‖2−‖gyt‖2| vs. iteration,
where (gxt ,gyt) denotes stochastic gradients.

For Q1, we prove that even with imbalanced initialization,
SAM drives |Bt| → 0 for OP, while ensuring a small |Bt|
in NOP. In contrast, the balancedness of SGD remains over
iterations. This clear distinction between SAM and SGD is
illustrated in Fig. 1. Thanks to the adoption of balancedness,
our results on implicit regularization have no requirement
on the batchsize compared to (Wen et al., 2023a) and can
be extended to explain m-sharpness in (Foret et al., 2021).

For Q2, we present analytical and empirical evidences that
data anomalies (e.g., samples with large noise) have stronger
impact on balancedness for both NOP and OP. Fig. 1 show-
cases an example where SAM is applied on the same prob-
lem with different SNRs. Smaller SNR (i.e., larger α) pro-
motes balancedness faster. Being more balanced with noisy
data also aligns well with previous studies (Chen et al., 2023;
Wang et al., 2023), which show that SAM performs better
than SGD under data anomalies. This data-driven behavior
of SAM is well depicted through balancedness.

Our understanding on balancedness also cultivates practical
tools. In particular, we explicify IR of SAM as a data-driven
regularizer. It enables a computationally efficient variant
of SAM, balancedness-aware regularization (BAR), suited
for scale-invariant problems such as finetuning language
models with LoRA. This is the first efficient SAM approach
derived from IR. BAR eliminates the need of the second
gradient in SAM. It also improves the test performance of
LoRA on representative downstream tasks on different large
models, while saving 95% computational overhead of SAM.
In a nutshell, our contribution can be summarized as:

v Theory. Balancedness is introduced as a new metric
for IR in SAM. Compared to sharpness, balancedness
enables us to depict richer behaviors – SAM favors bal-
anced solutions for both NOP and OP, and data anomalies
have stronger regularization on balancedness.

v Practice. IR of SAM is made explicit for practical merits.
The resulting approach, BAR, improves accuracy for fine-
tuning language models with LoRA, while significantly
saving computational overhead of SAM.

Algorithm 1 SAM (Foret et al., 2021)
1: Initialize: w0, ρ, T, η
2: for t = 0, . . . , T − 1 do
3: Sample ξ to get a minibatchMt

4: Define stochastic gradient onMt as∇ht(·)
5: Find εt = ρ∇ht(wt)/‖∇ht(wt)‖
6: Update via wt+1 = wt − η∇ht(wt + εt)
7: end for

2. Preliminaries
2.1. Recap of SAM

SAM is designed to seek for solutions in flat basins. The
idea is formalized by enforcing small loss within the neigh-
borhood in parameter space, i.e., minw max‖ε‖≤ρ h(w+ε),
where ρ is the radius of neighborhood, and h(w) :=
Eξ[hξ(w)]. Practical implementation of SAM is summa-
rized under Alg. 1. It is proved in Wen et al. (2023a) that
‖∇ht(w)‖ 6= 0 (in line 5) holds for any ρ under most ini-
tialization. Based on this result and similar to (Dai et al.,
2023), we assume that SAM iterates are well-defined.

Sharpness. Coming naturally with SAM is the ‘sharpness,’
given by S(w) := max‖ε‖≤ρ h(w + ε) − h(w). When
‖∇h(w)‖ → 0, S(w) can be approximated via (scaled)
largest eigenvalue of Hessian (Zhuang et al., 2022). This
approximation is widely exploited in literature to study IR
of SAM. Consequently, most results only hold locally –
behaviors near ‖∇h(w)‖ → 0 are studied. In addition,
sharpness (the largest eigenvalue) is not always informative
for scale-invariant problems (1). Consider h(x, y) = xy
near some local minima. The sharpness is 1 for any (x, y) –
these points are not distinguishable in terms of sharpness.

2.2. Prelude on balancedness

Balancedness Bt := 1
2

(
‖xt‖2 − ‖yt‖2

)
turns out to be an

intriguing alternative to sharpness on the scale-invariant
problem (1). Being a global metric, balancedness is capable
of describing the entire trajectory of an algorithm, regardless
of proximity to critical points or definiteness of Hessian.

How does Bt evolve in different algorithms? To set a bench-
mark, we extend results in (Arora et al., 2018; 2019b; Ahn
et al., 2023) to SGD taking NOP as an example. Following
(Arora et al., 2019b; Wen et al., 2023a), we consider SGD
with infinitesimally small learning rate for (1a)

xt+1 = xt − ηgxt , yt+1 = yt − ηgyt . (2)

Theorem 2.1. When applying SGD on the NOP (1a), the
limiting flow with η → 0 satisfies ‖xt‖2−‖yt‖2 = ‖x0‖2−
‖y0‖2 for all t > 0. In other words, dBt

dt = 0 holds.

Theorem 2.1 shows that Bt ≡ B0 throughout training. A
graphical illustration can be found in Fig. 1 (a). Another

2



BAR: Balancedness-Aware Regularization

0 50000 100000
iter

0.0

0.4

0.8

1.2
abs(||x||2 ||y||2)

SAM = 0.5
thres = 0.5
SAM = 1
thres = 1
SAM = 1.5
thres = 1.5

0 50000 100000
iter

0.0

0.4

0.8

1.2
abs(||x||2 ||y||2)

SGD
SAM
oBAR
nBAR

(a) (b)
Figure 2. IR of SAM on NOP E[‖xy> − (A + αN)‖2], where α
controls SNR: (a) the threshold of balancedness B̄ρt in Corollary
3.2. (b) implicit vs. explicit regularization.

interesting observation is that given the same initialization,
Bt is fixed for SGD regardless of training datasets. This
suggests that SGD is less adaptive to data. A similar result
of Theorem 2.1 can be established for SGD on OP. The full
statement is deferred to Apdx. C.2; see also Fig. 1 (b).

Merits of being balance. Because B0 is preserved, SGD
is sensitive to initialization. For example, (x0,y0) and
(2x0, 0.5y0) can result in extremely different trajectories,
although the same objective value is shared at initializa-
tion. Most of existing works initialize B0 ≈ 0 to promote
optimization benefits, because the variance of stochastic gra-
dient is small and the local curvature is harmonized around
a balanced solution. For these reasons, balancedness is
well-appreciated in domains such as matrix factorization –
a special case of (1a) (Tu et al., 2016; Ge et al., 2017). It
is also observed that balanced neural networks are easier to
train relative to unbalanced ones (Neyshabur et al., 2015).

2.3. Assumptions and prerequisites

To gain theoretical insights of scale-invariant problems in
(1), we assume that the loss has Lipschitz continuous gradi-
ent on dom f following common nonconvex optimization
and SAM analyses (Bottou et al., 2018; Wen et al., 2023a).

Assumption 2.2. Let W ∈ Rd1×d2 , and w ∈ R. For
each ξ, fξn(W) and fξo (w) in (1) have Ln, and Lo Lipschitz
continuous gradient, respectively.

Scale-invariant problems are challenging even on simple
problems in Fig. 1. Even GD can diverge on some manu-
ally crafted initialization (De Sa et al., 2015; Arora et al.,
2019a). With proper hyperparameters this rarely happens
in practice; hence, we focus on cases where SGD and SAM
do not diverge. This assumption is weaker than the global
convergence in (Andriushchenko & Flammarion, 2022), and
is similar to the existence assumption (Wen et al., 2023a).

3. SAM for Non-Overparametrized Problems
This section tackles the implicit regularization of SAM on
NOP (1a). Motivated by practical scenarios such as LoRA,
we focus on cases initialized with large |B0|. The subscript
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Figure 3. IR of SAM on LoRA. We consider few shot learning on
a RoBERTa-large. For datasets RTE, SST-5, and MNLI, 1st, 12th
and 24th query layers’ 2|Bt,l| are plotted. The layers are chosen
to represent early, middle, and final stages of RoBERTa. The
averaged B̄ρt,l in Corollary 3.2 is 0.37, 0.21, and 0.29, respectively.

in fn and Ln is ignored for convenience. Applying Alg. 1
on NOP, the update of SAM can be written as

x̃t = xt + ρutgxt , ỹt = yt + ρutgyt (3a)

gx̃t = ∇ft(x̃tỹ>t )ỹt, gỹt =
[
∇ft(x̃tỹ>t )

]>
x̃t (3b)

xt+1 = xt − ηgx̃t , yt+1 = yt − ηgỹt (3c)

where ρ > 0 is the radius of SAM perturbation; ut :=
1/
√
‖gxt
‖2 + ‖gyt

‖2; and ft,∇ft denote the loss, stochas-
tic gradient on minibatchMt, respectively.

Theorem 3.1. Suppose that Assumption 2.2 holds. Consider
SAM for NOP in (3) with a sufficiently small ρ. Let Bt :=
1
2

(
‖xt‖2 − ‖yt‖2

)
. For some |At| = O(ρ2L) and η → 0,

the limiting flow of SAM guarantees that

dBt
dt

= ρ
‖gxt‖2 − ‖gyt‖2√
‖gxt‖2 + ‖gyt‖2

+At. (4)

Unlike SGD for which dBt

dt = 0, Theorem 3.1 states that
the balancedness for SAM is driven by gradient difference
‖gxt
‖2 − ‖gyt

‖2. To gain some intuition, if we estimate
‖gxt
‖2 ∝ ‖yt‖2, ‖gyt

‖2 ∝ ‖xt‖2, and ignore At, it can
be seen that dBt

dt ∝ −ρBt. This indicates the contraction on
|Bt|. A graphical illustration on decreasing |Bt|, and its rela-
tion with gradient difference can be found in Figs. 1(a) and
2(a). Moreover, this implicit regularization on balancedness
is global as it holds for all t regardless of whether (xt,yt)
is close to local optima. Thanks to balancedness, Theorem
3.1 also poses no requirement on the batchsize.

SAM promotes balancedness. Next we show that SAM
implicitly favors relatively balanced solutions.

Corollary 3.2. (Informal.) Under some regularity condi-
tions, there exists B̄ρt ≥ 0 such that whenever |Bt| > B̄ρt ,
the magnitude of Bt shrinks, where B̄ρt can be found in (17).

Corollary 3.2 shows that SAM promotes balancedness until
|Bt| reaches lower bounds B̄ρt . Because B̄ρt depends on
SAM’s trajectory, we plot 1

T

∫ T
0
B̄ρt dt using dotted lines for

better visualization in Fig. 2 (a). It can be seen that our
calculation on B̄ρt almost matches the balancedness of SAM
after sufficient convergence. Being balance also reveals that
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BAR: Balancedness-Aware Regularization

Table 1. Runtime of BAR (normalized to LoRA, 1x) on OPT-1.3B.
SAM relies on FP32 for stability. LoRA and BAR adopt FP16.
nBAR and oBAR share similar runtime, hence reported together.

runtime (↓) SST-2 CB RTE COPA ReCoRD SQuAD

LoRA-SAM 4.43x 3.34x 4.10x 3.28x 4.35x 3.54x
LoRA-BAR 1.05x 1.03x 1.04x 1.05x 1.04x 1.03x

the benefit of SAM can come from optimization, which is a
perspective typically ignored in literature.

Noisy data have stronger impact on balancedness. Al-
though our discussions extend to more general problems,
for simplicity we consider the example in Fig. 2 (a), i.e.,
E[‖xy> − (A + αN)‖2], where A is ground truth; N is
data noise; and α determines SNR. For this problem, noisy
data directly lead to noisy gradients. It can be seen in Fig. 2
(a) that smaller SNR coincides with faster decreasing of |Bt|.
To explain such a data-responsive behavior in implicit reg-
ularization, Theorem 3.1 states that balancedness changes
largely when the difference of ‖gyt‖ and ‖gxt‖ is large.
Since E[‖gyt‖2−‖gxt‖2] ∝ α2 if assuming elements of N
to be iid unit Gaussian variables, it thus implies that a small
SNR (large α) offers large regularization on balancedness.

Extension to LoRA (multi-layer two-variable NOP). For
LoRA, the objective is to minimize D blocks of variables
simultaneously, i.e., minEξ[fξ({xly>l }Dl=1)]. It is estab-
lished in Theorem B.3 that SAM cultivates balancedness
in a layer-wise fashion. In other words, the magnitude of
Bt,l := 1

2

(
‖xt,l‖2−‖yt,l‖2

)
cannot be large for each l. How-

ever, |dBt,l/dt| can beO(
√
D) times smaller than Theorem

3.1 in the worst case due to additional variables.

Validation on modern architectures. Going beyond the
infinitesimally small η, we adopt η = 0.1 on modern lan-
guage models to validate our findings. We consider finetun-
ing RoBERTa-large with LoRA for few-shot learning tasks;
see Apdx. D.3. Balancedness of SAM on different layers
are plotted in Fig. 3. SAM has a clear trend of promoting
balancedness, aligning with our theoretical predictions.

SAM for OP. The IR of SAM for OP can be found in
Apdx. C.1, where overparametrization enables stronger
regularization on balancedness. We also extend our result
to explain m-sharpness (Foret et al., 2021).

4. Implicit Regularization Made Explicit
Next, insights from theoretical understanding of SAM are
leveraged to build practical tools. We adopt LoRA (Hu et al.,
2022) as our major numerical benchmark for scale-invariant
problems given its prevalence in practice.

Integrating SAM with LoRA is a case with mutual benefits –
LoRA reduces the additional memory requirement of SAM,
while SAM not only overcomes the distributional shift in

Table 2. Performance of BAR for few shot learning on OPT-1.3B.
OPT-1.3B SST-2 CB RTE COPA ReCoRD SQuAD avg (↑)

Prefix 92.9 71.6 65.2 73.0 69.7 82.1 75.8
LoRA 93.1 72.6 69.1 78.0 70.8 81.9 77.6

LoRA-SAM 93.5 74.3 70.6 78.0 70.9 83.0 78.4
LoRA-oBAR 93.6 75.6 70.4 78.0 70.9 82.5 78.5
LoRA-nBAR 93.7 79.8 70.5 78.0 71.0 82.3 79.2

Zero-Shot 53.6 39.3 53.1 75.0 70.2 27.2 53.1

finetuning (Zhou et al., 2022), but also mitigates the pos-
sible inefficiency associated with LoRA’s unbalancedness.
However, directly applying SAM variants on LoRA exhibits
two concerns: i) SAM doubles computational cost due to
the need of two gradients; and ii) additional efforts are re-
quired to integrate SAM with gradient accumulation and
low-precision training (HuggingFace), which are common
techniques for memory and runtime efficiency in finetuning.
Note that concern i) is annoying given the size of language
models, especially in setups involving model parallelism.

Our balancedness-aware regularization (BAR) is a highly
efficient approach to address both concerns. BAR is the first
efficient SAM variant derived from IR. The key observation
for our design is that SAM’s IR can be achieved with an
explicit regularizer αt|x>x− y>y|. This regularizer orig-
inates from matrix factorization; see e.g., (Tu et al., 2016;
Ge et al., 2017). We take inspiration from Theorem 3.1 –
dropping the term At and mimicking dynamics of SAM. In
particular, we regulate the objective with αt(x>x− y>y)
if ‖gxt‖2 < ‖gyt‖2; otherwise αt(y>y−x>x). The resul-
tant approach is termed as nBAR to reflect its root in NOP.
A graphical illustration can be found in Fig. 2 (b), where
nBAR shares similar performance as SAM on NOP. It is
also possible to derive a oBAR regularizer from OP. Both
nBAR and oBAR can be implemented in the same manner
as weight decay, hence the pseudocode is put in Apdx. A.5.

5. Numerical Experiments
Next, we test BAR on various deep learning tasks using
language models (LMs). Bold and underlined numbers are
used to highlight the best and second best performance. We
only showcase OPT-1.3B here. More results with various
tasks on RoBERTa and GPT2 are deferred to appendix.

We consider a few-shot learning setup with LoRA following
(Malladi et al., 2023), where the goal is to finetune an LM
with a small training set. BAR reduces the overhead of SAM
by more than 95%; see Table 1. Note that applying FP16
directly with SAM leads to underflow; see more in Apdx. D.
This signifies the flexibility of BAR over SAM when scaling
to large problems, as FP16 is the default choice for LMs.
The test performance is reported in Table 2, where Prefix
tuning (Li & Liang, 2021) is also included as a benchmark.
The averaged improvement over LoRA is 0.9 and 1.6 from
oBAR and nBAR, both outperforming SAM.
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A. Missing Details
A.1. More on related work

Scale-invariance in deep learning. Scale-invariant modules are prevalent in modern neural networks, such as LoRA,
ReLU networks, and softmax in attention. However, scale-invariant problems are not yet fully understood, especially from
a theoretical perspective. Neyshabur et al. (2018) develop scale-invariant PAC-Bayesian bounds for ReLU networks. A
scale-invariant SGD is developed in (Neyshabur et al., 2015), and this approach becomes more practical recently in (Gonon
et al., 2024). Linear neural networks entail scale-invariance and overparametrization simultaneously, and IR of (S)GD on
quadratic loss is established in (Arora et al., 2018; Du et al., 2018; Gidel et al., 2019). IR of GD for softmax attention
in transformers is studied in (Sheen et al., 2024) assuming linearly separable data. It is pointed out in (Dinh et al., 2017)
that sharpness is sensitive to scaling, while our results indicate that when taking the training trajectory into account, SAM
excludes extreme scaling.

Mechanism behind SAM. To theoretically explain the success of SAM, Bartlett et al. (2023) analyze sharpness on
quadratic losses. Wen et al. (2023a) focus on sharpness of SAM near the solution manifold on smooth loss functions,
requiring batchsize to be 1 in the stochastic case. Andriushchenko & Flammarion (2022) consider sparsity of SAM on
(overparametrized) diagonal linear networks on a regression problem. Chen et al. (2023) study the benign overfitting of
SAM on a two-layer ReLU network. In general, existing studies on SAM’s implicit regularization focus more on sharpness
and do not fully capture scale-invariance. In comparison, our results i) are Hessian-free and hence sharpness-free; ii) have
no constraint on batchsize; and iii) hold for both NOP and OP.

SAM variants. Approaches in (Kim et al., 2022; Kwon et al., 2021) modify SAM for efficiency under coordinate-wise
ill-scaling, while our results suggest that SAM favors balancedness between layers. Computationally efficient SAM variants
are developed through reusing or sparsifying gradients (Liu et al., 2022; Mi et al., 2022); stochastic perturbation (Du et al.,
2022a); switching to SGD (Jiang et al., 2023); and connecting with distillation (Du et al., 2022b). Our BAR can be viewed
as resource-efficient SAM applied specifically for scale-invariant problems such as LoRA. Different from existing works,
BAR is the first to take inspiration from the implicit regularization of SAM.

Sharpness and generalization. Sharpness is observed to relate with generalization of SGD in deep learning (Keskar et al.,
2016). It is found that sharpness varies with the ratio between learning rate and batchsize in SGD (Jastrzebski et al., 2017).
Large scale experiments also indicate sharpness-based measures align with generalization in practical scenarios (Jiang et al.,
2020; Chen et al., 2022). Theoretical understandings on generalization error using sharpness-related metrics can be found in
e.g., (Dziugaite & Roy, 2017; Neyshabur et al., 2017; Wang & Mao, 2022). There is a large body of literature exploring
sharpness for improved generalization. Entropy SGD leverages local entropy in search of a flat valley (Chaudhari et al.,
2017). A similar approach as SAM is also developed in (Wu et al., 2020) while putting more emphases on adversarial
robustness. Stochastic weight averaging is proposed for finding flatter minima in (Izmailov et al., 2018). It is shown later in
(Wen et al., 2023b) that the interplay between sharpness and generalization subtly depends on data distributions and model
architectures, and there are unveiled reasons beyond sharpness for the benefit of SAM.

SAM variants. Although SAM is successful in various deep learning tasks, it can be improved further by leveraging local
geometry in a fine-grained manner. For example, results in (Zhao et al., 2022; Barrett & Dherin, 2021) link SAM with
gradient norm penalization. Zhuang et al. (2022) optimize sharpness gap and training loss jointly. A more accurate manner
to solve inner maximization in SAM is developed in (Li & Giannakis, 2023). SAM and its variants are also widely applied
to domain generalization problems; see e.g., (Zhang et al., 2023b; Wang et al., 2023).

Other perspectives for SAM. The convergence of SAM is comprehensively studied in (Si & Yun, 2023). Agarwala &
Dauphin (2023) focus on the edge-of-stability-like behavior of unnormalized SAM on quadratic problems. Dai et al. (2023)
argue that the normalization in SAM, i.e., line 5 of Alg. 1, is critical. Sharpness measure is generalized to any functions of
Hessian in (Tahmasebi et al., 2023), but it still does not fully address the ill-posedness when Hessian is negative definite.

Implicit regularization. The regularization effect can come from optimization algorithms rather than directly from the
regularizer in objective functions. This type of the behavior is termed as implicit regularization or implicit bias of the
optimizer. The implicit regularization of (S)GD is studied from multiple perspectives, such as margin (Ji & Telgarsky,
2019; Lyu & Li, 2020), kernel (Arora et al., 2019c), and Hessian (Li et al., 2022; Arora et al., 2022). Initialization can also
determine the implicit regularization (Woodworth et al., 2020). Most of these works explore the overparametrization regime.

LoRA and parameter-efficient finetuning. LoRA (Hu et al., 2022), our major numerical benchmark, is an instance of
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parameter-efficient finetuning (PEFT) approaches. PEFT reduces the resource requirement for large language models
on various downstream tasks, at the cost of possible accuracy drops on test performance. The latter, together with the
transfer learning setup jointly motivate the adoption of SAM. Other commonly adopted PEFT methods include, e.g.,
adapters (Houlsby et al., 2019) and prefix tuning (Li & Liang, 2021). There are also various efforts to further improve
LoRA via adaptivity (Zhang et al., 2023a), chaining (Xia et al., 2024), aggressive parameter saving (Kopiczko et al., 2024),
low-bit training (Dettmers et al., 2023), and modifications for long-sequences (Chen et al., 2024). Most of these efforts are
orthogonal to BAR proposed in this work.

A.2. Additional applications of scale-invariant problems in deep learning

Attention in transformers. Attention is one of the backbones of modern neural networks (Vaswani et al., 2017). Given the
input D, attention can be written as

min
Q,K,V

softmax
(

1

α
DQK>D>

)
DV (5)

where {Q,K,V} are query, key, and value matrices to be optimized. This is a scale-invariant problem because scaling
{Q,K} does not modify the objective function. Considering the number of variables, the optimization of {Q,K} is
considered as OP.

Two-layer linear neural networks. This problem is a simplified version of two-layer ReLU neural nets, and its objective
can be defined as

f(W1,W2) =
1

2
E(a,b)

[
‖W1W2a− b‖2

]
. (6)

This is usually adopted as an example for overparametrization, and can be extended to deeper linear neural networks; see
e.g., (Arora et al., 2019a). Moreover, it is known that the optimization for such problem is quite challenging, and GD can
fail to converge if W1 and W2 are not initialized with balancedness (Arora et al., 2019a). An extension of (6) is two-layer
ReLU networks, which are widely adopted in theoretical frameworks to understand the behavior of neural networks. ReLU
networks are scale-invariant, but only when the scaling factor is positive.

Other examples. For ResNets, two-variable scale-invariant submodules also include affine BatchNorm and the subsequent
convolutional layer. For transformers, scale-invariant submodules besides attention include LayerNorm and its subsequent
linear layer.

A.3. SAM pays more attention to difficult examples

Testing example for NOP. The problem presented below is adopted in Fig. 1 (a) and Fig. 2 for visualization of SAM’s
behavior on NOP. We consider a special case of problem (1a), where the goal is to fit (rank-1) matrices by minimizing

fn(x,y) = Eξ
[
‖xy> − (A + αNξ)‖2

]
(7)

where A ∈ R3×3 := diag[0.5, 0, 0] and Nξ ∈ R3×3 denote the ground truth and Gaussian noise, respectively; and α
controls the SNR. Here we choose Nξ := diag[1.0, 0.8, 0.5]Uξ, where entries of Uξ are unit Gaussian random variables.

In our simulation of Fig. 1 (a), we set the step size to be η = 10−4 and the total number of iterations as T = 105 for both
SGD and SAM. Parameter ρ is chosen as 0.1 for SAM. For both algorithms, initialization is x0 = [0.2,−0.1, 0.3]> and
y0 = −3x0. Note that we choose a small step size to mimic the settings of our theorems.

Testing example for OP. The problem presented below is adopted in Fig. 1 (b) for visualization of SAM on OP. A special
case of problem (1b) is considered with objective function

fo(x,y) = Eξ
[
‖x>y − (a+ αnξ)‖2

]
(8)

where a ∈ R and nξ ∈ R denote the ground truth and Gaussian noise, respectively. We choose a = 0.5 and nξ as a unit
Gaussian random variable. Here, α controls the SNR of this problem.

In our simulation of Fig. 1 (b), we set η = 10−4 and T = 105 for both SGD and SAM. Parameter ρ is set as 0.2 for SAM.
For both algorithms, initialization is x0 = [0.2,−0.1, 0.3]> and y0 = −3x0.
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Algorithm 2 nBAR
1: Initialize: learning rate {ηt}, regularization coefficient
{µt}

2: for t = 0, . . . , T − 1 do
3: Get stochastic gradient gxt and gyt

4: if ‖gxt‖ ≥ ‖gyt‖ then
5: xt ← (1 + µtηt)xt
6: yt ← (1− µtηt)yt
7: else
8: xt ← (1− µtηt)xt
9: yt ← (1 + µtηt)yt

10: end if
11: Optimizer update (via Adam or SGD)
12: end for

Algorithm 3 oBAR
1: Initialize: learning rate {ηt}, regularization coefficient
{µt}

2: for t = 0, . . . , T − 1 do
3: Get stochastic gradient gxt and gyt

4: if ‖xt‖ ≥ ‖yt‖ then
5: xt ← (1− µtηt)xt
6: yt ← (1 + µtηt)yt
7: else
8: xt ← (1 + µtηt)xt
9: yt ← (1− µtηt)yt

10: end if
11: Optimizer update (via Adam or SGD)
12: end for

A.4. Scale-invariance in OP

Scale-invariance also bothers OP in the same fashion as it burdens NOP. For completeness, the scale-invariance of OP can
be verified by

fo(x
>y) = fo

(
(αx)>(

1

α
y)
)
,∀α 6= 0. (9)

An optimizer has to determine α for OP despite it does not influence objective value. Hence, scaling is redundant for OP.

Similar to NOP, the (stochastic) gradient of OP is not scale-invariant. In particular, given a minibatch of data M, the
stochastic gradient for OP (1b) can be written as

gx =
1

|M|

[ ∑
ξ∈M

(fξo )′(x>y)
]
y, gy =

1

|M|

[ ∑
ξ∈M

(fξo )′(x>y)
]
x. (10)

Consequently, being balance also brings optimization benefits for OP as discussed previously in Section 2.2 .

A.5. BAR in detail

BAR is inspired jointly from the balancedness-promoting regularizer |‖xt‖2 − ‖yt‖2| and the dynamics of SAM on both
NOP and OP. The implementation of BAR is similar as weight decay in AdamW (Loshchilov & Hutter, 2019).

If ignoring At in Theorem 3.1, it can be seen that Bt for NOP decreases whenever ‖gxt‖ < ‖gyt‖. In other words, the
balancedness of SAM is driven by the difference between the gradient norms at xt and yt. nBAR mimics this and triggers
balancedness when stochastic gradients gxt

and gyt
are not balanced; see Alg. 2.

For OP, the dynamic of SAM is presented in Lemma C.4 later in the appendix. By ignoring At, it can be seen that Bt
decreases when ‖xt‖ ≥ ‖yt‖. oBAR follows this, and regulates balancedness based on whether ‖xt‖ ≥ ‖yt‖; see details in
Alg. 3.

Schedule of µt. In both nBAR and oBAR, one can employ a decreasing scheduler for µt. This is motivated by the fact that
for both NOP and OP problems, the implicit regularization of SAM is less powerful after sufficient balancedness or near
optimal. Commonly adopted cosine and linear schedules work smoothly.

Lastly, we illustrate more on the reasons for employing regularization in OP rather than posing ‖xt‖ = ‖yt‖ as a hard
constraint. First, it is quite clear that ‖x‖ = ‖y‖ is a nonconvex set and how to project on such a set is still debatable.
Second, the ‘symmetry’ associated with the scale-invariant problems does not always favor this constraint. For the purpose
of graphical illustration, we consider a 2-dimensional example f(x, y) = 30000(xy − 0.005)2. It is quite clear that the
objective is symmetric regarding the line x = −y, which satisfies |x| = |y|; see Fig. 4. However, it is not hard to see that
SGD can never leave x = −y once it reaches this line via a hard constraint. In other words, directly adding ‖x‖ = ‖y‖ as
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Figure 4. The value of f(x, y). Once SGD reaches the dotted line, i.e., the hard constraint |x| = |y|, it can only converge to a saddle point
(0, 0).

a constraint can trap the algorithm at saddle points. This symmetric pattern is even more complicated in high dimension,
i.e., symmetry over multiple lines or hyperplanes. Hence, one should be extremely careful about this hard constraint, and
regularization is a safer and more practical choice.

B. Missing Proofs for NOP
B.1. Proof of Theorem 2.1

Proof. For notational convenience, we let Gt := ∇ft(xty>t ). Then, we have that

d‖xt‖2

dt
= 2x>t

dxt
dt

= −2x>t gxt
= −2x>t Gtyt.

Similarly, we have that

d‖yt‖2

dt
= 2y>t

dyt
dt

= −2y>t gyt = −2y>t G
>
t xt.

Combining these two inequalities, we arrive at

d‖xt‖2

dt
− d‖yt‖2

dt
= 0.

The proof is thus completed.

B.2. Extension to stochastic normalized gradient descent (SNGD)

Next, we extend Theorem 2.1 to SNGD, whose updates can be written as

xt+1 = xt − η
gxt√

‖gxt‖2 + ‖gyt‖2
, yt+1 = yt − η

gyt√
‖gxt‖2 + ‖gyt‖2

. (11)

Theorem B.1. When applying SNGD (11) on NOP problem (1a), the limiting flow with η → 0 guarantees that ‖xt‖2 −
‖yt‖2 = ‖x0‖2 − ‖y0‖2 for all t > 0. In other words, dBt

dt = 0 holds.

Proof. For notational convenience, we let Gt := ∇ft(xty>t ). Then, we have that

d‖xt‖2

dt
= 2x>t

dxt
dt

= −2
x>t gxt√

‖gxt
‖2 + ‖gyt

‖2
= −2

x>t Gtyt√
‖gxt
‖2 + ‖gyt

‖2
.

12
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Similarly, we have that

d‖yt‖2

dt
= 2y>t

dyt
dt

= −2
y>t gyt√

‖gxt
‖2 + ‖gyt

‖2
= −2

y>t G
>
t xt√

‖gxt
‖2 + ‖gyt

‖2
.

Combining these two inequalities, we arrive at

d‖xt‖2

dt
− d‖yt‖2

dt
= 0.

The proof is thus completed.

B.3. Proof of Theorem 3.1

Proof. Denote Gt = ∇ft(xty>t ) and G̃t = ∇ft(x̃tỹ>t ) for notational convenience. Following SAM updates in (3) and
setting η → 0, we have that

dxt
dt

= −G̃t(yt + ρutG
>
t xt),

dyt
dt

= −G̃>t (xt + ρutGtyt).

This gives that

1

2

d
(
‖xt‖2 − ‖yt‖2

)
dt

= ρut

[
y>t G̃

>
t Gtyt − x>t G̃tG

>
t xt

]
(12a)

= ρut

[
‖gxt
‖2 − ‖gyt

‖2
]

+ ρut

[
y>t (G̃t −Gt)

>gxt
− x>t (G̃t −Gt)gyt

]
︸ ︷︷ ︸

:=At

. (12b)

The second term in (12b) is At in Theorem 3.1. Next, we give upper bound on |At|. Using Assumption 2.2, we have that

‖G̃t −Gt‖ ≤ L‖x̃tỹ>t − xty
>
t ‖

= L‖ρut(xtg>yt
+ gxt

y>t ) + ρ2u2tgxt
g>yt
‖

(a)

≤ Lρ
‖xtg>yt

+ gxty
>
t ‖√

‖gxt
‖2 + ‖gyt

‖2
+ Lρ2

‖gxtg
>
yt
‖

‖gxt‖2 + ‖gyt‖2

(b)

≤ Lρ(‖xt‖+ ‖yt‖) +
Lρ2

2
= O(Lρ)

where (a) uses the definition of ut; (b) follows from ‖ab>‖ = ‖a‖‖b‖ and the finite convergence assumption. To bound
At, we also have

ρut
∣∣y>t (G̃t −Gt)

>gxt

∣∣ = ρ
|y>t (G̃t −Gt)

>gxt
|√

‖gxt
‖2 + ‖gyt

‖2
≤ ρ |y

>
t (G̃t −Gt)

>gxt
|

‖gxt‖

≤ ρ‖G̃t −Gt‖‖yt‖ = O(Lρ2) (13)

where the last line also uses the finite convergence. We can bound ρut|x>t (G̃t −Gt)gyt | = O(ρ2L) in a similar manner.
Combining (13) with (12b) gives the bound on |At| = O(ρ2L) .

B.4. Proof of Corollary 3.2

Here, we prove the formal version of Corollary 3.2.

Corollary B.2. Suppose that ‖gxt‖ > 0 and ‖gyt‖ > 0 and ρ → 0, then there exists B̄t such that the magnitude of Bt
shrinks whenever |Bt| > B̄t.

13
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Proof. Without loss of generality, we suppose that Bt > 0, i.e., ‖xt‖ > ‖yt‖ > 0. Let x̄t and ȳt be the scaled version of
xt and yt such that ‖x̄t‖ = ‖ȳt‖ and x̄tȳ

>
t = xty

>
t are satisfied. This suggests that xt = αtx̄t and yt = ȳt/αt, where

αt =
√
‖xt‖/‖yt‖. Next, we show that whenever Bt is large enough, we have that

dBt
dt

= ρ
‖gxt
‖2 − ‖gyt

‖2√
‖gxt
‖2 + ‖gyt

‖2
+O(ρ2L) < 0. (14)

Since ρ→ 0, we only need to show that for some small ε = O(ρL) ≥ 0,

‖gxt
‖2 − ‖gyt

‖2√
‖gxt
‖2 + ‖gyt

‖2
< −ε. (15)

By the definition of gxt ,gyt and x̄t, ȳt, we have that (15) can be rewritten as

α2
t ‖G>t x̄t‖2 − ‖Gtȳt‖2/α2

t√
α2
t ‖G>t x̄t‖2 + ‖Gtȳt‖2/α2

t

> ε. (16)

Note that the function h(z) := (az − b/z)/
√
az + b/z is monotonically increasing in z when a, b > 0 and z > 0 as

h′(z) = (a2z+6ab/z+ b2/z3)/(2(az+ b/z)3/2) > 0. This implies that h(z) > 0 when z >
√
b/a, and thus the condition

in (16) can be satisfied for ε = O(ρL) → 0 when α2
t > ᾱ2, where ᾱ2 := ‖Gtȳt‖/‖G>t x̄t‖. This condition on αt is

equivalent to

Bt =
1

2

(
‖xt‖2 − ‖yt‖2

)
=

1

2

(
‖αtx̄t‖2 − ‖ȳt/αt‖2

)
>

1

2

(
‖ᾱx̄t‖2 − ‖ȳt/ᾱ‖2

)
.

Combining everything together, we have that dBt

dt < 0 if

Bt > B̄t :=
1

2

(
‖ᾱx̄t‖2 − ‖ȳt/ᾱ‖2

)
. (17)

The proof is thus completed. We also note that in the case of ρ > 0, the same condition as (17) can be derived by obtaining
the inverse function of h(z) evaluated at ε = O(ρL), and the corresponding ᾱρ and B̄ρt can be defined similarly.

B.5. Extension to LoRA (layer-wise NOP problem)

Let l ∈ {1, 2, . . . , D} be the layer index. Denote ft as the loss function on minibatchMt. To simplify the notation, we also

let Gt,l := ∇xt,ly>
t,l
ft({xt,l,yt,l}l), G̃t,l := ∇x̃t,lỹ>

t,l
ft({x̃t,l, ỹt,l}l), and ut := 1/

√∑D
l=1

(
‖gxt,l

‖2 + ‖gyt,l
‖2
)
. The

update of SAM for layer l can be written as

x̃t,l = xt,l + ρutGt,lyt,l, ỹt,l = yt,l + ρutG
>
t,lxt,l (18a)

gx̃t,l
= G̃t,lỹt,l, gỹt,l

= G̃>t,lx̃t,l (18b)

xt+1,l = xt,l − ηgx̃t,l
, yt+1,l = yt,l − ηgỹt,l

. (18c)

Refined assumption for LoRA. Direct translating Assumption 2.2 to our multi-layer setting gives

‖∇ft({xly>l }l)−∇ft({alb>l }l)‖2 ≤ L2
D∑
l=1

‖xly>l − alb
>
l ‖2. (19)

However, the above assumption is loose, and our proof only needs block-wise smoothness, i.e.,

‖∇lft(xly>l )−∇lft(alb>l )‖2 ≤ L̂2‖xly>l − alb
>
l ‖2,∀l (20)

where ∇l refers to the gradient on xly
>
l . It can be seen that

√
DL̂ ≥ L, but one can assume that

√
DL̂ ≈ L for intuitive

understandings.

14
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Theorem B.3. Suppose that block smoothness assumption in (20) holds. Consider the limiting flow of SAM in (18) with
η → 0 and a sufficiently small ρ. Let Bt,l := 1

2

(
‖xt,l‖2 − ‖yt,l‖2

)
and Bt =

∑D
l=1 Bt,l. For some |At| = O(ρ2L̂), SAM

guarantees that

dBt
dt

= ρ

∑D
l=1 ‖gxt,l

‖2 −
∑D
l=1 ‖gyt,l

‖2√∑D
l=1 ‖gxt,l

‖2 +
∑D
l=1 ‖gyt,l

‖2
+At. (21)

Furthermore, for per layer balancedness it satisfies that for some |At,l| = O(ρ2L̂).

dBt,l
dt

= ρ
‖gxt,l

‖2 − ‖gyt,l
‖2√∑D

l=1 ‖gxt,l
‖2 +

∑D
l=1 ‖gyt,l

‖2
+At,i. (22)

Understanding Theorem B.3. At,i and At are at the same order because of the possible unbalancedness among gradient
norms for different layers. Comparing per layer balancedness Bt,l with Theorem 3.1, it can be roughly estimate that the
regularization power is O(

√
D) times smaller in Bt,l. This estimation comes from L̂ ≈ L/

√
D, and the first term is also

O(
√
D) smaller than the same term in Theorem 3.1. In other words, the regularization on balancedness can be reduced by

O(
√
D) times in LoRA in the worst case, and the worst case comes from gradient unbalancedness among layers.

Proof. Following (18) and setting η → 0, we have that

dxt,l
dt

= −G̃t,l(yt,l + ρutG
>
t,lxt,l),

dyt,l
dt

= −G̃>t,l(xt,l + ρutGt,lyt,l).

This gives that

dBt,l
dt

= ρut

[
y>t,lG̃

>
t,lGt,lyt,l − x>t,lG̃t,lG

>
t,lxt,l

]
(23a)

= ρut

[
‖gxt,l

‖2 − ‖gyt,l
‖2
]

+ ρut

[
y>t,l(G̃t,l −Gt,l)

>gxt,l
− x>t,l(G̃t,l −Gt,l)gyt,l

]
︸ ︷︷ ︸

:=At,l

. (23b)

Proof for (21). Let At :=
∑
lAt,l. To start with, we have that

‖G̃t,l −Gt,l‖ ≤ L̂‖x̃t,lỹ>t,l − xt,ly
>
t,l‖

= L̂‖ρut(xt,lg>yt,l
+ gxt,l

y>t,l) + ρ2u2tgxt,l
g>yt,l
‖

Next, based on finite convergence assumption, we have that

ρut

D∑
l=1

∣∣y>t,l(G̃t,l −Gt,l)
>gxt,l

∣∣ (24)

≤
D∑
l=1

O
(
ρut‖G̃t,l −Gt,l‖ · ‖gxt,l

‖
)

(a)

≤
D∑
l=1

O
(
ρ2u2t L̂‖xt,lg>yt,l

+ gxt,l
y>t,l‖ · ‖gxt,l

‖
)

(b)

≤
D∑
l=1

O
(
ρ2u2t L̂(‖gyt,l

‖+ ‖gxt,l
‖) · ‖gxt,l

‖
)

= ρ2L̂ · O
( ∑D

l=1 ‖gxt,l
‖2∑D

l=1(‖gxt,l
‖2 + ‖gyt,l

‖2)
+

∑D
l=1 ‖gxt,l

‖‖gyt,l
‖∑D

l=1(‖gxt,l
‖2 + ‖gyt,l

‖2)

)
= O(ρ2L̂)
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where in (a) we use the fact that ρ is chosen small; (b) uses finite convergence assumption and ‖ab>‖ = ‖a‖‖b‖. Using
similar arguments, we can bound At = O(ρ2L̂).

Proof for (22). Next, we give upper bound on |At,l|. Using similar argument as (24), we have that

ρut
∣∣y>t,l(G̃t,l −Gt,l)

>gxt,l

∣∣ (25)

≤ O
(
ρ2u2t L̂(‖gyt,l

‖+ ‖gxt,l
‖) · ‖gxt,l

‖
)

= ρ2L̂ · O
( ‖gxt,l

‖2∑D
l=1(‖gxt,l

‖2 + ‖gyt,l
‖2)

+
‖gxt,l

‖‖gyt,l
‖∑D

l=1(‖gxt,l
‖2 + ‖gyt,l

‖2)

)
. (26)

Using (25), we have that

|At,l| ≤ ρ2L̂ · O
( ‖gxt,l

‖2 + ‖gyt,l
‖2∑D

l=1(‖gxt,l
‖2 + ‖gyt,l

‖2)
+

‖gxt,l
‖‖gyt,l

‖∑D
l=1(‖gxt,l

‖2 + ‖gyt,l
‖2)

)
= O(ρ2L̂).

The proof is is thus completed.

C. Missing Proofs for OP
C.1. SAM for Overparametrized Problems

Next, we focus on SAM’s implicit regularization on OP (1b). Overparametrization enables SAM to have stronger regular-
ization on balancedness. Subscripts in fo and Lo are omitted for convenience. SAM’s per iteration update for OP can be
summarized as

x̃t = xt + ρutyt, ỹt = yt + ρutxt (27a)

gx̃t
= f ′t(x̃

>
t ỹt)ỹt, gỹt

= f ′t(x̃
>
t ỹt)x̃t (27b)

xt+1 = xt − ηgx̃t
, yt+1 = yt − ηgỹt

(27c)

where ut := sgn(f ′t(x
>
t yt))/

√
‖xt‖2 + ‖yt‖2; ft and f ′t denote the loss, stochastic gradient on minibatchMt, respectively.

Different from NOP, SAM has stronger regularization on balancedness, where |Bt| decreases whenever the norm of stochastic
gradient is large. To see this, it is convenient to define Ct := |‖xt‖ − ‖yt‖|. Note that Ct ≤

√
2|Bt|.

Theorem C.1. Consider η → 0 for (27). The limiting flow of SAM on OP ensures a decreasing magnitude of Bt whenever
|f ′t(x>t yt)| · Ct > O(ρL|Bt|). Moreover, the speed of decrease can be lower- and upper- bounded as

ρ|f ′t(x>t yt)| · Ct −O(ρ2L|Bt|) ≤
∣∣dBt
dt

∣∣ ≤ ρ|f ′t(x>t yt)|√2|Bt|+O(ρ2L|Bt|).

Given ρ→ 0 and sufficiently noisy data, Theorem C.1 implies that |Bt| → 0. Moreover, Theorem C.1 also states that the
regularization power on balancedness is related to both gradient norm and balancedness itself. The elbow-shaped curve of
|Bt| in Fig. 1 (b) demonstrates that the regularization power is reducing, as both gradient norm and balancedness shrink over
time.

Noisy data have stronger impact on balancedness. As shown in Fig. 1 (b), balancedness is promoted faster on problems
with lower SNR. This data-responsive behavior can be already seen from Theorem C.1, because |dBt/dt| is directly related
with |f ′t(x>t yt)|, and E[|f ′t(x>t yt)|] is clearly larger when data are more noisy. In other words, SAM exploits noisy data
for possible optimization merits from balancedness (see discussions in Sec. 2.2). Overall, the implicit regularization on
balancedness aligns well with the empirical observations in presence of data anomalies (Wang et al., 2023; Sherborne et al.,
2023), where SAM outperforms SGD by a large margin.

Extension to m-sharpness. m-sharpness is a variant of SAM suitable for distributed training. It is observed to empirically
improve SAM’s performance (Foret et al., 2021). m-sharpness evenly divides minibatchMt into m disjoint subsets, i.e.,
{ft,j}mj=1, and perform SAM update independently on each subset; see (35) in appendix. It turns out that m-sharpness
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can also be explained using balancedness. With formal proofs in Apdx. C.4, the IR of m-sharpness amounts to substitute
|f ′t(x>t yt)| in Theorem C.1 with 1

m

∑m
j=1 |f ′t,j(x>t yt)|. This means that the regularization on balancedness from m-

sharpness is more profound than vanilla SAM, because 1
m

∑m
j=1 |f ′t,j(x>t yt)| ≥ |f ′t(x>t yt)|.

Finally, we connect balancedness with sharpness on local minima of OP.

Lemma C.2. LetW∗ = {(x,y)|x>y = w, f ′(w) = 0, f ′′(w) > 0} be non-empty. For the OP problem (1b), minimizing
sharpness withinW∗ is equivalent to finding B = 0 inW∗.

This link showcases that by studying balancedness we can also obtain the implicit regularization on sharpness for free.
Compared with (Wen et al., 2023a), this is achieved with less assumptions and simplified analyses. More importantly,
balancedness enables us to cope with arbitrary batchsize, to explain SAM’s stronger regularization with noisy data, and to
extend results to m-sharpness.

C.2. Unbalancedness of SGD in OP

Theorem C.3. Applied SGD or SNGD on problem (1b), both of them ensure that ‖xt‖2 − ‖yt‖2 = ‖x0‖2 − ‖y0‖2 for all
t > 0. In other words, Bt keeps unchanged.

Proof. We consider SGD and NSGD separately.

SGD. It is straightforward to see that

d‖xt‖2

dt
= −2f ′t(x

>
t yt)x

>
t yt =

d‖yt‖2

dt
.

This completes the proof of SGD.

NSGD. The gradient update of NSGD is

dxt
dt

= − gxt√
‖gxt‖2 + ‖gyt‖2

,
dyt
dt

= − gyt√
‖gxt‖2 + ‖gyt‖2

. (28)

Then we have that for NSGD,

d‖xt‖2

dt
= −2f ′t(x

>
t yt)

x>t yt√
‖gxt
‖2 + ‖gyt

‖2
=

d‖yt‖2

dt
.

This gives the result for SNGD.

C.3. Proof of Theorem C.1

To prove this theorem, we first focus on the dynamic of SAM.

Lemma C.4. Suppose that Assumption 2.2 holds. Consider the limiting flow of SAM in (27) with η → 0. Let Bt :=
1
2

(
‖xt‖2 − ‖yt‖2

)
and ρ be small. Then, for some |At| = O(ρ2L|Bt|), SAM guarantees

dBt
dt

= −2ρ
|f ′t(x>t yt)|√
‖xt‖2 + ‖yt‖2

Bt +At. (29)

Proof. For notational convenience, we write f ′t := f ′t(x
>
t yt) and f̃ ′t := f ′t(x̃

>
t ỹt). Using similar arguments as Theorem
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3.1, we have that

1

2

d
dt

(
‖xt‖2 − ‖yt‖2

)
= −ρutf̃ ′t ·

(
‖xt‖2 − ‖yt‖2

)
(30)

= −ρ sgn(f ′t)f̃
′
t√

‖xt‖2 + ‖yt‖2
·
(
‖xt‖2 − ‖yt‖2

)
= −ρ |f ′t |√

‖xt‖2 + ‖yt‖2
·
(
‖xt‖2 − ‖yt‖2

)
+ ρ

sgn(f ′t)(f
′
t − f̃ ′t)√

‖xt‖2 + ‖yt‖2
·
(
‖xt‖2 − ‖yt‖2

)
︸ ︷︷ ︸

:=At

.

Next we bound |At|. To start with, we have that∣∣x̃>t ỹt − x>t yt
∣∣ =

∣∣ρ2u2tx>t yt + ρut‖xt‖2 + ρut‖yt‖2
∣∣ (31)

≤ ρ2 |x>t yt|
‖xt‖2 + ‖yt‖2

+ ρ
√
‖xt‖2 + ‖yt‖2

≤ ρ2

2
+ ρ
√
‖xt‖2 + ‖yt‖2.

Using Assumption 2.2 and (31), we arrive at

|f ′t − f̃ ′t | ≤ L
∣∣x̃>t ỹt − x>t yt

∣∣ = O(ρL
√
‖xt‖2 + ‖yt‖2). (32)

Hence, we arrive at

|At| ≤ ρ|f ′t − f̃ ′t |
∣∣∣∣ ‖xt‖2 − ‖yt‖2√
‖xt‖2 + ‖yt‖2

∣∣∣∣ = O(ρ2L|Bt|).

The proof is thus completed.

Next, the proof of Theorem C.1 is provided.

Proof. Lemma C.4 has already indicated the concentration of Bt towards 0, if the magnitude of the first term is larger than
|At|. To see this, notice that we can lower bound 2|Bt|/

√
‖xt‖2 + ‖yt‖2 by∣∣∣∣ ‖xt‖2 − ‖yt‖2√

‖xt‖2 + ‖yt‖2

∣∣∣∣ =

∣∣∣∣ (‖xt‖+ ‖yt‖)(‖xt‖ − ‖yt‖)√∣∣‖xt‖2 + ‖yt‖2
∣∣

∣∣∣∣ ≥ ∣∣‖xt‖ − ‖yt‖∣∣ = Ct. (33)

Hence, long as ρ|f ′t(x>t yt)| · Ct > O(ρ2L|Bt|), we have the first term dominating the dynamic of SAM, leading to
contraction of Bt. This completes the proof to the first part.

Next we prove the second part, which is the lower- and upper- bound on Bt. The lower bound can be seen from (33). For the
upper bound, we have ∣∣∣∣ ‖xt‖2 − ‖yt‖2√

‖xt‖2 + ‖yt‖2

∣∣∣∣ ≤ ∣∣∣∣ ‖xt‖2 − ‖yt‖2√
|‖xt‖2 − ‖yt‖2|

∣∣∣∣ =
√

2|Bt|. (34)

Plugging (34) into (30) finishes the proof.
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C.4. m-sharpness for OP

m-sharpness is a variant of SAM that is empirically observed to improve generalization, and it is especially useful for
distributed training on multiple GPUs (Foret et al., 2021). However, the reason behind the improved performance is not fully
understood. (Andriushchenko & Flammarion, 2022) show that m-sharpness is more sparse-promoting for diagonal linear
neural networks minimized via a quadratic loss. However, diagonal linear networks are not scale-invariant.

For consistent notation with (27), we use ft(·) to denote the loss function on minibatchMt. In m-sharpness, the minibatch
Mt is divided into m disjoint subsets. Without loss of generality, we also assume that the minibatch is evenly divided.
We denote the loss function on each subset as ft,i, i ∈ {1, 2, . . . ,m}. Note that we have 1

m

∑m
i=1 ft,i = ft. With these

definitions, the update of m-sharpness can be written as

x̃t,i = xt + ρut,iyt, ỹt,i = yt + ρut,ixt (35a)

gix̃t,i
= f ′t,i(x̃

>
t,iỹt,i)ỹt,i, giỹt,i

= f ′t,i(x̃
>
t,iỹt,i)x̃t,i (35b)

xt+1 = xt − η
1

m

m∑
i=1

gix̃t,i
, yt+1 = yt − η

1

m

m∑
i=1

giỹt,i
. (35c)

where ut,i := sgn(f ′t,i(x
>
t yt))/

√
‖xt‖2 + ‖yt‖2. Comparing with the SAM update for OP in (27), the difference is that

perturbed gradient is calculated on each ft,i. Next, we analyze the dynamic of SAM with m-sharpness.

Lemma C.5. Suppose that Assumption 2.2 holds. Consider the limiting flow of SAM in (35) with η → 0. Let Bt :=
1
2

(
‖xt‖2 − ‖yt‖2

)
and ρ be small. Then, for some |At| = O(ρ2L), SAM guarantees that

dBt
dt

= −2
ρ

m

∑m
i=1 |f ′t,i(x>t yt)|√
‖xt‖2 + ‖yt‖2

Bt +At. (36)

Proof. For notational convenience, we write f ′t,i := f ′t,i(x
>
t yt) and f̃ ′t,i := f ′t,i(x̃

>
t,iỹt,i). Then, we have that

1

2

d
dt

(
‖xt‖2 − ‖yt‖2

)
= − ρ

m

m∑
i=1

ut,if̃
′
t,i ·

(
‖xt‖2 − ‖yt‖2

)
(37)

= − ρ

m

m∑
i=1

sgn(f ′t,i)f̃
′
t,i√

‖xt‖2 + ‖yt‖2
·
(
‖xt‖2 − ‖yt‖2

)
= − ρ

m

∑m
i=1 |f ′t,i|√

‖xt‖2 + ‖yt‖2
·
(
‖xt‖2 − ‖yt‖2

)
+
ρ

m

m∑
i=1

sgn(f ′t,i)(f
′
t,i − f̃ ′t,i)√

‖xt‖2 + ‖yt‖2
·
(
‖xt‖2 − ‖yt‖2

)
︸ ︷︷ ︸

:=At,i

.

Next, using (31) and Assumption 2.2, we have

|f ′t,i − f̃ ′t,i| ≤ L
∣∣x̃>t,iỹt,i − x>t yt

∣∣ = O(ρL
√
‖xt‖2 + ‖yt‖2).

Hence, we can bound |At,i| as

|At,i| ≤ |f ′t,i − f̃ ′t,i|
∣∣∣∣ ‖xt‖2 − ‖yt‖2√
‖xt‖2 + ‖yt‖2

∣∣∣∣ = O(ρL|Bt|).

The proof is thus completed by plugging |At,i| into (37).
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C.5. Extension to layer-wise OP

We start with the notation. Let l ∈ {1, 2, . . . , D} be the layer index. Denote ft as the loss on minibatch Mt. Let
f ′t,l := ∇lft({x>t,lyt,l}l), i.e., the l-th entry of gradient (w.r.t. the variable x>t,lyt,l), f̃

′
t,l := ∇lft({x̃>t,lỹt,l}l), and

ut := 1/
√∑D

l=1 |f ′t,l|2
[
‖xt,l‖2 + ‖yt,l‖2

]
. The update of SAM for layer l can be written as

x̃t,l = xt,l + ρutf
′
t,lyt,l, ỹt,l = yt,l + ρutf

′
t,lxt,l, (38a)

gx̃t,l
= f̃ ′t,lỹt,l, gỹt,l

= f̃ ′t,lx̃t,l (38b)

xt+1,l = xt,l − ηgx̃t,l
, yt+1,l = yt,l − ηgỹt,l

. (38c)

Refined assumption for LoRA. Our proof only needs block-wise smoothness, i.e.,

|∇lft(x>l yl)−∇lft(a>l bl)|2 ≤ L̂2|x>l yl − a>l bl|2, ∀l, (39)

where ∇l refers to the gradient on x>l yl. It can be seen that
√
DL̂ ≥ L, but one can assume that

√
DL̂ ≈ L for more clear

intuition.

Theorem C.6. Suppose that block smoothness assumption in (39) holds. Consider the limiting flow of SAM in (38) with
η → 0 and a sufficiently small ρ. Let Bt,l := 1

2

(
‖xt,l‖2−‖yt,l‖2

)
and Bmax

t = maxl |Bt,l|. For some |At| = O(ρ2L̂Bmax
t ),

SAM guarantees that

dBt
dt

= −ρ
∑D
l=1 |f ′t,l|2

(
‖xt,l‖2 − ‖yt,l‖2

)√∑D
l=1 |f ′t,l|2

[
‖xt,l‖2 + ‖yt,l‖2

] +At. (40)

Furthermore, for some |At,l| = O(ρ2L̂|Bt,l|), per layer balancedness satisfies that

dBt,l
dt

= −ρ
|f ′t,l|2

(
‖xt,l‖2 − ‖yt,l‖2

)√∑D
l=1 |f ′t,l|2

[
‖xt,l‖2 + ‖yt,l‖2

] +At,i. (41)

Proof. Using a similar derivation as before, we have that

1

2

d
dt

(
‖xt,l‖2 − ‖yt,l‖2

)
= −ρut|f ′t,l|2 ·

(
‖xt,l‖2 − ‖yt,l‖2

)
+ ρutf

′
t,l(f

′
t,l − f̃ ′t,l) ·

(
‖xt,l‖2 − ‖yt,l‖2

)︸ ︷︷ ︸
:=At,l

Next, based on (39), we have that

|f ′t,l − f̃ ′t,l| ≤ L̂
∣∣x̃>t,lỹt,l − x>t,lyt,l

∣∣ ≤ ρL̂ut|f ′t,l|(‖xt,l‖2 + ‖yt,l‖2
)

+ ρ2L̂u2t |f ′t,l|2|x>t,lyt,l|.

Combining these two equations, and applying similar argument as Theorem B.3, it is not difficult to arrive at |At,i| =

O(ρ2L̂|Bt,l|) and |At| = O(ρ2L̂Bmax
t ).

C.6. Proof of Lemma C.2

Proof. Within W∗, the Hessian on (x,y) can be calculated as f ′′(x>y)[y>,x>]>[y>,x>]. The largest eigenvalue is
f ′′(w)

(
‖x‖2 + ‖y‖2). By the AM-GM inequality, it can be seen that the largest eigenvalue is minimized when ‖x‖ = ‖y‖,

whose balancedness is 0.

20



BAR: Balancedness-Aware Regularization

D. Missing Experimental Details
We mainly focus on finetuning LMs with LoRA. This setting naturally includes distributional shift – the finetuning dataset
does not usually have the same distribution as the pretraining dataset as validated through zero-shot performance. All
experiments are performed on a server with AMD EPYC 7742 CPUs and NVIDIA GeForce RTX 3090 GPUs each with
24GiB memory. All numerical results from Section 5 report test performance (e.g., accuracy, F1 scores, or BLEU scores)
and the standard deviation across multiple runs.

D.1. Details on datasets

Our evaluations are carried out on commonly-used datasets in the literature.

GLUE benchmark. GLUE is designed to provide a general-purpose evaluation of language understanding (Wang et al.,
2019b). Those adopted in our work include MNLI (inference, (Williams et al., 2018)), SST-2 (sentiment analysis, (Socher
et al., 2013)), MRPC (paraphrase detection, (Dolan & Brockett, 2005)), CoLA (linguistic acceptability (Warstadt et al.,
2019)), QNLI (inference (Rajpurkar et al., 2018)), QQP1 (question-answering), RTE2 (inference), and STS-B (textual
similarity (Cer et al., 2017)). These datasets are released under different permissive licenses.

SuperGLUE benchmark. SuperGLUE (Wang et al., 2019a) is another commonly adopted benchmark for language
understanding and is more challenging compared with GLUE. The considered datasets include CB (inference, (De Marneffe
et al., 2019)), ReCoRD (multiple-choice question answering (Zhang et al., 2018)), COPA (question answering (Roemmele
et al., 2011)). These datasets are released under different permissive licenses.

WebNLG Challenge. This dataset is commonly used for data-to-text evaluation (Gardent et al., 2017). It has 22K examples
in total with 14 distinct categories. Among them, 9 are seen during training, and the unseen training data are used to test the
generalization performance. The dataset is released under license CC BY-NC-SA 4.0.

Additional datasets. We also use SQuAD (question answering (Rajpurkar et al., 2016)) in our experiments, which is
released under license CC BY-SA 4.0. Other datasets include TREC (topic classification (Voorhees & Tice, 2000)) and
SNLI (inference (Bowman et al., 2015)). Both of them are licensed under CC BY-SA 4.0.

D.2. Details on language models

We summarize the adopted language models in our evaluation. All model checkpoints are obtained from HuggingFace.

RoBERTa-large. This is a 355M parameter model. The model checkpoint3 is released under the MIT license.

OPT-1.3B. The model checkpoint4 is released under a non-commercial license. 5

GPT2-medium. This is a 345M parameter model. Its checkpoint6 is under MIT License.

D.3. Few-shot learning with RoBERTa and OPT

Experiments on RoBERTa-large. Results of the proposed oBAR and nBAR on RoBERTa-large are summarized in Table 3.
As indicated by the zero-shot performance, the distributional shift between finetuning and pretraining datasets is obvious.
This is a natural setting suitable for SAM and BAR. The averaged test accuracy is improved by 0.9 and 1.2 via oBAR and
nBAR, respectively. The performance of nBAR is close to SAM. Moreover, BAR saves 74% additional runtime of SAM;
see more details in Table 5 in the appendix.

We follow the k-shot learning setup in (Malladi et al., 2023) and focus on classification tasks. The training set contains
k = 512 samples per class while the test set has 1000 samples. We also employ prompts for finetuning; where the
adopted prompts are the same as those in (Malladi et al., 2023, Table 13). AdamW is adopted as the base optimizer, and
hyperparameters are tuned from those in Table 4. Our experiments are averaged over 3 random trials. The estimated runtime

1https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
2https://paperswithcode.com/dataset/rte
3https://huggingface.co/FacebookAI/roberta-large
4https://huggingface.co/facebook/opt-1.3b
5https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/MODEL_LICENSE.md
6https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin

21

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://paperswithcode.com/dataset/rte
https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/facebook/opt-1.3b
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/MODEL_LICENSE.md
https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin


BAR: Balancedness-Aware Regularization

Table 3. Few shot learning on RoBERTa (355M). † denotes results reported by (Malladi et al., 2023)

RoBERTa SST-2 SST-5 SNLI MNLI RTE TREC avg (↑)

LoRA 91.1±0.8 52.3±2.9 84.3±0.3 78.1±1.3 77.5±2.3 96.6±1.0 80.0
LoRA-SAM 92.2±0.4 54.2±2.0 85.5±0.7 78.7±1.0 80.6±4.3 96.7±0.2 81.3

LoRA-oBAR 91.5±0.9 54.5±2.7 84.9±0.5 78.3±2.2 79.7±2.0 96.7±0.5 80.9
LoRA-nBAR 91.4±0.5 55.0±2.0 84.9±1.4 78.1±0.2 81.0±1.0 96.7±1.0 81.2

Zero-Shot† 79.0 35.5 50.2 48.8 51.4 32.0 49.5

is about 5 minutes per dataset.

Table 4. Hyperparameters used for few-shot learning with RoBERTa-large.

Hyper-parameters Values

LoRA r (rank) 8
LoRA α 16

# iterations 1000
batchsize 16

learning rate 1×10−4, 3×10−4, 5×10−4

ρ for SAM 0.05, 0.1, 0.2
µ0 for BAR 0.5, 1.0, 2.0

scheduler for BAR linear, cosine

The per-iteration runtime on the SST-5 dataset of BAR, SAM, and the baseline optimizer are compared in Table 5. It can be
seen that SAM is much more slower than the baseline approach, and BAR reduces 74% additional runtime of SAM, while
achieving comparable accuracy. We believe that this runtime saving can be even larger with additional engineering efforts
such as kernel fusion, which we leave for future work. This validates the computational efficiency of BAR.

Table 5. Per-iteration runtime for finetuning RoBERTa-large on SST5.

SST5 baseline SAM BAR

time (s) 0.105 0.265 0.146

Experiments on OPT. For OPT-1.3B, we consider tasks from the SuperGLUE benchmark covering classification and
multiple-choice. We also consider generation tasks on SQuAD. Following (Malladi et al., 2023), we randomly sample 1000
data for training and the other 1000 for testing. AdamW is adopted as base optimizer. The hyperparameters adopted are
searched over values in Table 6. Estimated runtime is less than or around 10 minutes, depending on the dataset.

If we directly apply FP16 training with SAM, underflow can happen if one does not take care of the gradient scaling on
the two gradients calculated per iteration. This means that SAM is not flexible enough to be integrated with the codebase
for large scale training, as FP16 is the default choice for finetuning LMs. We employ FP32 to bypass the issue with SAM.
Consequently, the training speed is significantly slowed down; see a summary in Table 7. It further demonstrates the
effectiveness of BAR for large scale-training.

Overall, the results for few-shot learning indicate that given limited data, BAR can effectively improve generalization using
significantly reduced computational resources relative to SAM.

D.4. Finetuning with RoBERTa-large

Having demonstrated the power of BAR in few-shot learning, we then apply it to finetune RoBERTa-large with LoRA. The
results can be found in Table 8.
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Table 6. Hyperparameters used for few-shot learning with OPT-1.3B.

Hyper-parameters Values

LoRA r (rank) 8
LoRA α 16

# iterations 1000
batchsize 2, 4, 8

learning rate 1×10−5, 1×10−4, 5×10−4

ρ for SAM 0.05, 0.1, 0.2
µ0 for BAR 0.2, 0.5, 1.0, 2.0

scheduler for BAR linear, cosine

Table 7. Per-iteration runtime for finetuning OPT-1.3B on RTE.

RTE baseline SAM BAR

precision FP16 FP32 FP16
time (s) 0.1671 0.708 0.1731

Our implementation is inspired from (Hu et al., 2022)7, which is under MIT License. The hyperparameters are chosen
the same as provided in its GitHub Repo. AdamW is adopted as the base optimizer. However, we employ single GPU
rather than multiple ones and use gradient accumulation rather than parallelism due to memory constraint. We also note that
there could be failure cases for LoRA using certain seed, e.g., SST-2 with seed 1 and MNLI with seed 2. These cases are
ignored when comparing. We consider the GLUE benchmark and report the mismatched accuracy for MNLI, Matthew’s
correlation for CoLA, Pearson correlation for STS-B, and accuracy for other datasets. Larger values indicate better results
for all datasets. For LoRA, we employ r = 8 and α = 16. Experiments are conducted over three random trials for all
datasets, with the exception of QQP, for which only two trials are performed due to its large size. The results of final test
performance can be found in Table 8. Estimated runtime varies for different datasets from 2 to 15 hours, except for QQP
which takes 3 days on our device.

For the hyperparameters of oBAR and nBAR, µ0 is typically chosen from {0.2, 0.5, 1.0}; however, for QQP, a value of 0.05
is used. The scheduler is chosen from linear and constant. We also observe that for datasets such as COLA and RTE, setting
weight decay as 0 works best for BAR.

D.5. GPT2 medium on WebNLG challenge

Lastly, we consider BAR on a text-generation problem using GPT2-medium, a model with 345M parameters. Results on
WebNLG (Gardent et al., 2017) are reported in Table 9. It can be seen that oBAR matches the performance of prefix tuning,
while nBAR achieves the best BLEU score.

AdamW is adopted as base optimizer. The hyperparameters can be found in Table 10. Our results are obtained from three
random trials. Each trial takes roughly 8 hours on our hardware.

7https://github.com/microsoft/LoRA/tree/main
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Table 8. Experiments on finetuning RoBERTa (355M). Results marked with † are taken from (Hu et al., 2022), and those with ∗ refer to
AdapterP in (Hu et al., 2022).

RoBERTa # para SST2 STS-B RTE QQP QNLI MRPC MNLI CoLA avg

FT† 355M 96.4 92.4 86.6 92.2 94.7 90.9 90.2 68.0 88.9

Adapter∗ 0.8M 96.6 91.9 80.1 91.7 94.8 89.7 - 67.8 -
LoRA 0.8M 95.8 92.4 88.2 91.4 94.7 89.6 90.6 64.8 88.4

LoRA-oBAR 0.8M 96.0 92.6 88.7 91.6 94.8 90.3 90.6 65.1 88.7
LoRA-nBAR 0.8M 96.0 92.6 89.2 91.6 94.7 90.3 90.8 65.6 88.9

Table 9. Finetuning GPT2 (345M) with BAR on WebNLG. Results of prefix tuning and full-parameter finetuning are obtained from (Hu
et al., 2022).

GPT2 FT∗ Prefix∗ LoRA LoRA-oBAR LoRA-nBAR

# param 354M 0.35M 0.35M 0.35M 0.35M
BLEU (↑) 46.5 55.1 54.99±0.24 55.15±0.19 55.20±0.16

Table 10. Hyperparameters used for GPT2.

Hyper-parameters Values

LoRA r (rank) 4
LoRA α 32
# epochs 5
batchsize 8

learning rate 2×10−4

label Smooth 0.1
µ0 for BAR 0.1, 0.15, 0.2, 0.25, 0.3

scheduler for BAR linear, constant

beam size 10
length penalty 0.8
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