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ABSTRACT

We are interested in the autonomous acquisition of repertoires of skills. Language-
conditioned reinforcement learning (LC-RL) approaches are great tools in this
quest, as they allow to express abstract goals as sets of constraints on the states.
However, most LC-RL agents are not autonomous and cannot learn without ex-
ternal instructions and feedback. Besides, their direct language condition can-
not account for the goal-directed behavior of pre-verbal infants and strongly lim-
its the expression of behavioral diversity for a given language input. To resolve
these issues, we propose a new conceptual approach to language-conditioned RL:
the Language-Goal-Behavior architecture (LGB). LGB decouples skill learning
and language grounding via an intermediate semantic representation of the world.
To showcase the properties of LGB, we present a specific implementation called
DECSTR. DECSTR is an intrinsically motivated learning agent endowed with an
innate semantic representation describing spatial relations between physical ob-
jects. In a first stage (G→B), it freely explores its environment and targets self-
generated semantic configurations. In a second stage (L→G), it trains a language-
conditioned goal generator to generate semantic goals that match the constraints
expressed in language-based inputs. We showcase the additional properties of
LGB w.r.t. both an end-to-end LC-RL approach and a similar approach leverag-
ing non-semantic, continuous intermediate representations. Intermediate seman-
tic representations help satisfy language commands in a diversity of ways, enable
strategy switching after a failure and facilitate language grounding.

1 INTRODUCTION

Developmental psychology investigates the interactions between learning and developmental pro-
cesses that support the slow but extraordinary transition from the behavior of infants to the sophis-
ticated intelligence of human adults (Piaget, 1977; Smith & Gasser, 2005). Inspired by this line
of thought, the central endeavour of developmental robotics consists in shaping a set of machine
learning processes able to generate a similar growth of capabilities in robots (Weng et al., 2001;
Lungarella et al., 2003). In this broad context, we are more specifically interested in designing
learning agents able to: 1) explore open-ended environments and grow repertoires of skills in a
self-supervised way and 2) learn from a tutor via language commands.

The design of intrinsically motivated agents marked a major step towards these goals. The Intrin-
sically Motivated Goal Exploration Processes family (IMGEPs), for example, describes embodied
agents that interact with their environment at the sensorimotor level and are endowed with the ability
to represent and set their own goals, rewarding themselves over completion (Forestier et al., 2017).
Recently, goal-conditioned reinforcement learning (GC-RL) appeared like a viable way to implement
IMGEPs and target the open-ended and self-supervised acquisition of diverse skills.
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Goal-conditionedRL approaches train goal-conditioned policies to target multiple goals (Kaelbling,
1993; Schaul et al., 2015). While mostGC-RL approaches express goals as target features (e.g. target
block positions (Andrychowicz et al., 2017), agent positions in a maze (Schaul et al., 2015) or target
images (Nair et al., 2018)), recent approaches started to use language to express goals, as language
can express sets of constraints on the state space (e.g.open the red door) in a more abstract and
interpretable way (Luketina et al., 2019).

However, mostGC-RL approaches – and language-based ones (LC-RL) in particular – are not intrin-
sically motivated and receive external instructions and rewards. TheIMAGINE approach is one of the
rare examples of intrinsically motivatedLC-RL approaches (Colas et al., 2020). In any case, the lan-
guage condition suffers from three drawbacks. 1) It couples skill learning and language grounding.
Thus, it cannot account for goal-directed behaviors in pre-verbal infants (Mandler, 1999). 2) Direct
conditioning limits the behavioral diversity associated to language input: a single instruction leads
to a low diversity of behaviors only resulting from the stochasticity of the policy or the environment.
3) This lack of behavioral diversity prevents agents from switching strategy after a failure.

To circumvent these three limitations, one can decouple skill learning and language grounding via
an intermediate innate semantic representation. On one hand, agents can learn skills by targeting
con�gurations from the semantic representation space. On the other hand, they can learn to generate
valid semantic con�gurations matching the constraints expressed by language instructions. This
generation can be the backbone of behavioral diversity: a given sentence might correspond to a
whole set of matching con�gurations. This is what we propose in this work.

Contributions. We propose a novel conceptualRL architecture, namedLGB for Language-Goal-
Behavior and pictured in Figure 1 (right). ThisLGB architecture enables an agent to decouple
the intrinsically motivated acquisition of a repertoire of skills (Goals! Behavior) from language
grounding (Language! Goals), via the use of semantic goal representation. To our knowledge, the
LGB architecture is the only one to combine the following four features:

� It is intrinsically motivated: it selects its own (semantic) goals and generates its own rewards,
� It decouples skill learning from language grounding, accounting for infants learning,
� It can exhibit a diversity of behaviors for any given instruction,
� It can switch strategy in case of failures.

Besides, we introduce an instance ofLGB, namedDECSTR for DEep sets andCurriculum with
SemanTic goal Representations. UsingDECSTR, we showcase the advantages of the conceptual
decoupling idea. In theskill learning phase, theDECSTR agent evolves in a manipulation envi-
ronment and leverages semantic representations based on predicates describing spatial relations be-
tween physical objects. These predicates are known to be used by infants from a very young age
(Mandler, 2012).DECSTRautonomously learns to discover and master all reachable con�gurations
in its semantic representation space. In thelanguage groundingphase, we train a Conditional Vari-
ational Auto-Encoder (C-VAE) to generate semantic goals from language instructions. Finally, we
can evaluate the agent in aninstruction-followingphase by composing the two �rst phases. The
experimental section investigates three questions: how doesDECSTRperform in the three phases?
How does it compare to end-to-endLC-RL approaches? Do we need intermediate representations to
be semantic? Code and videos can be found at https://sites.google.com/view/decstr/.

2 RELATED WORK

Standard language-conditioned RL. Most approaches from theLC-RL literature de�neinstruc-
tion following agents that receive external instructions and rewards (Hermann et al., 2017; Chan
et al., 2019; Bahdanau et al., 2018; Cideron et al., 2019; Jiang et al., 2019; Fu et al., 2019), except
the IMAGINE approach which introduced intrinsically motivated agents able to set their own goals
and to imagine new ones (Colas et al., 2020). In both cases, the language-condition prevents the
decoupling of language acquisition and skill learning, true behavioral diversity and ef�cientstrat-
egy switchingbehaviors. Our approach is different, as we can decouple language acquisition from
skill learning. The language-conditioned goal generation allows behavioral diversity and strategy
switching behaviors.
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Figure 1: A standard language-conditionedRL architecture (left) and our proposedLGB architecture (right).

Goal-conditioned RL with target coordinates for block manipulation. Our proposed imple-
mentation ofLGB, calledDECSTR, evolves in a block manipulation domain. Stacking blocks is one
of the earliest benchmarks in arti�cial intelligence (e.g. Sussman (1973); Tate et al. (1975)) and has
led to many simulation and robotics studies (Deisenroth et al., 2011; Xu et al., 2018; Colas et al.,
2019a). Recently, Lanier et al. (2019) and Li et al. (2019) demonstrated impressive results by stack-
ing up to4 and6 blocks respectively. However, these approaches are not intrinsically motivated,
involve hand-de�ned curriculum strategies and express goals as speci�c target block positions. In
contrast, theDECSTRagent is intrinsically motivated, builds its own curriculum and uses semantic
goal representations (symbolic or language-based) based on spatial relations between blocks.

Decoupling language acquisition and skill learning. Several works investigate the use of seman-
tic representations to associate meanings and skills (Alomari et al., 2017; Tellex et al., 2011; Kulick
et al., 2013). While the two �rst use semantic representations as an intermediate layer between lan-
guage and skills, the third one does not use language. WhileDECSTRacquires skills autonomously,
previous approaches all use skills that are either manually generated (Alomari et al., 2017), hand-
engineered (Tellex et al., 2011) or obtained via optimal control methods (Kulick et al., 2013). Closer
to us, Lynch & Sermanet (2020) also decouple skill learning from language acquisition in a goal-
conditioned imitation learning paradigm by mapping both language goals and images goals to a
shared representation space. However, this approach is not intrinsically motivated as it relies on a
dataset of human tele-operated strategies. The deterministic merging of representations also limits
the emergence of behavioral diversity and ef�cient strategy-switching behaviors.

3 METHODS

This section presents our proposed Language-Goal-Behavior architecture (LGB) represented in Fig-
ure 1 (Section 3.1) and a particular instance of theLGB architecture calledDECSTR. We �rst present
the environment it is set in [3.2], then describe the implementations of the three modules com-
posing anyLGB architecture: 1) the semantic representation [3.3]; 2) the intrinsically motivated
goal-conditioned algorithm [3.4] and 3) the language-conditioned goal generator [3.5]. We �nally
present how the three phases described in Figure 1 are evaluated [3.6].

3.1 THE LANGUAGE-GOAL-BEHAVIOR ARCHITECTURE

TheLGB architecture is composed of three main modules. First, thesemantic representationde�nes
the behavioral and goal spaces of the agent. Second, the intrinsically motivatedGC-RL algorithm
is in charge of the skill learning phase. Third, the language-conditioned goal generator is in charge
of the language grounding phase. Both phases can be combined in the instruction following phase.
The three phases are respectively calledG! B for Goal ! Behavior,L! G for Language! Goal
andL! G! B for Language! Goal ! Behavior, see Figure 1 and Appendix A. Instances of the
LGB architecture should demonstrate the four properties listed in the introduction: 1) be intrinsically
motivated; 2) decouple skill learning and language grounding (by design); 3) favor behavioral di-
versity; 4) allow strategy switching. We argue that anyLGB algorithm should ful�ll the following
constraints. ForLGB to be intrinsically motivated (1), the algorithm needs to integrate the generation
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