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Abstract—With the growing adoption of computer-aided di-
agnostic and treatment recommendation systems in healthcare,
it is essential to ensure both the accuracy and reliability of
AI-enabled clinical decision support systems. In this study,
we comprehensively examine existing model confidence cali-
bration methods and propose an ensemble-based calibration
approach for reliable predictions in clinical decision support
systems (CDSSs). Specifically, we introduce an ENsemble-based
Confidence-caLibrated deep neural network, ENCL-DNN, to im-
prove respiratory disease screening using cough sounds. We
also leverage local interpretable model-agnostic explanations to
monitor the behavior of the CDSS, identifying the key features
that contribute to its predictions and ensuring transparency in the
diagnosis. By employing the ensemble-based calibration method,
ENCL-DNN demonstrates superior performance on two publicly
available respiratory audio datasets, Coswara and Cambridge, as
evidenced by a 50% and a 28.74% reduction in Expected Cali-
bration Error (ECE), respectively, compared to the uncalibrated
baselines. Our experiments highlight the significance of well-
calibrated deep neural networks in respiratory disease screening
and the enhancement of reliability in mobile healthcare systems.
By providing reliable and transparent predictions, ENCL-DNN
has the potential to promote the wide adoption of AI-driven
CDSSs and thereby improve patient outcomes through early
diagnosis and intervention.

Index Terms—respiratory disease, clinical decision support,
audio signal analysis, confidence calibration

I. INTRODUCTION

Despite the emergent advancements in artificial intelli-
gence (AI), very few AI-enabled clinical decision support
systems (CDSSs) have been adopted in real-world clinical
research or practice [1]–[3]. The increasing reliance on these
probabilistic machine learning models raises critical concerns
regarding their accuracy and reliability [4]–[10]. Specifically,
the uncritical adoption of generated probabilities can lead to
inappropriate recommendations with potentially severe con-
sequences [11], [12]. In healthcare, the stakes are incredibly
high; a miscalibrated or overconfident model can result in
erroneous diagnoses, inappropriate treatments, and, ultimately,
harm to patient outcomes [5], [13]. Therefore, the probabilities
generated by these models should be not only accurate but
also communicated with a clear understanding of their inherent
uncertainties.

Confidence calibration in modern neural networks refers to
the process of ensuring that the predicted probabilities (i.e.,
confidence) of a model accurately reflect its performance and
reliability [5], [14], [15]. In other words, a well-calibrated
model should produce predicted probabilities that align with
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Fig. 1. Overview of the proposed clinical decision support system,
ENCL-DNN. We first develop a deep neural network to extract hidden
features from patients’ cough samples for COVID-19 early diagnosis. We
then calibrate model confidence to enhance the reliability of the prediction and
quantify the uncertainty for a robust diagnosis. Specifically, we also leverage
explainable AI to identify potentially important features from audio samples
for transparent clinical decision-making.

the true likelihood of correctness. The need for confidence
calibration arises because modern neural networks, especially
deep learning models, tend to be overconfident in their pre-
dictions due to model depth [5].

Prior studies have introduced a variety of calibration tech-
niques, encompassing strategies such as post-processing cal-
ibration, data augmentation for enhanced training data rep-
resentation, and both Bayesian and non-Bayesian approaches
to deep neural networks (DNN) for more accurate model
parameter representation [5], [14], [16]–[18]. For instance, Ra-
jaraman et al. [19] proposed calibrating deep learning models
to improve the performance of medical imaging classification
in the presence of class imbalance. Furthermore, Lakshmi-
narayanan et al. [20] suggested a non-Bayesian method that
involves training multiple neural networks from varied random
starting points. Similarly, Krishnan et al. [11] emphasized the
significance of possessing a well-calibrated model - one that
not only delivers accurate predictions when confident but also
indicates substantial uncertainty when its predictions are likely
to be inaccurate. Despite the significant advancements in the-
oretical studies, there have been limited practical applications,
particularly within the healthcare sector.

Uncertainty estimation is another crucial technique for as-
sessing the reliability of model predictions [5]. Uncertainty
can be broadly categorized into two main groups: aleatoric and
epistemic uncertainty [21]. Aleatoric uncertainty refers to the
innate unpredictability inherent in a given problem or experi-
mental context, an aspect that remains unchanged regardless of
additional empirical knowledge. Epistemic uncertainty refers



to model uncertainty that stems from gaps in knowledge or
information. This kind of uncertainty is particularly prevalent
in complex tasks such as medical diagnosis, where the incom-
plete understanding of certain symptoms or health conditions
contributes to the uncertainty. In this study, we investigate the
presence of epistemic uncertainty, which is closely linked to
model parameters, in order to enhance the understanding of
input data by calibrating model confidence.

To address these challenges, we develop an ENsemble-based
Confidence-caLibrated deep neural network, ENCL-DNN, mit-
igating the gap between model capability and confidence to
enhance the reliability of COVID-19 early diagnosis using
audio samples. In addition, we also quantify the epistemic
uncertainty during model training for a robust prediction in
respiratory disease screening. Given the increasing demand for
reliable and well-calibrated CDSSs, our primary motivation is
to create a model that is confident in its accurate predictions
and transparent in its uncertainty when predictions are less
certain, thus ensuring trustworthiness and effective communi-
cation of uncertainty levels in AI-enabled CDSS outputs.

II. METHODOLOGY

A. Data Preprocessing

Data preprocessing consists of three stages, including (1)
silence removal, (2) feature extraction, and (3) data augmenta-
tion. Firstly, we split the cough sounds into segments, divided
the segments into chunks based on points of silence, and
retained a small buffer of silence at the beginning and end
of each chunk. The non-silent audio chunks are concatenated
to form a continuous audio segment, excluding the detected
silent periods. Secondly, we used the Mel-Frequency Cepstral
Coefficients (MFCC) feature extraction technique to extract
relevant features for COVID-19 classification. We extracted
13 MFCC features from each shallow and heavy cough sound
in the Coswara dataset, and 26 MFCC features from each
cough sound in the Cambridge dataset. The training data
was oversampled using the SMOTE [22] technique to address
the class imbalance by balancing the proportion of positive
COVID-19 to healthy patients. SMOTE uses the k nearest
neighbors of a given sample xi in the feature space to generate
new samples:

x′
i = xi + λ(xj − xi), (1)

where λ represents a random value within the range [0, 1],
and x′

i denotes the newly synthesized samples derived from
the original sample xi and a randomly selected sample xj

from the k nearest neighbors of xi.

B. Model Architecture

For the classification of COVID-19 and non-COVID-19
patients, ENCL-DNN is composed of four densely connected
layers for learning the non-linear combinations of the input
features, with each node in these layers being connected to
every node in the preceding and following layers. For the
first three dense layers in ENCL-DNN, the rectified linear unit

(ReLU) activation function is employed. To mitigate overfit-
ting, we include three dropout layers to enhance the model’s
capability to learn robust features. Specifically, the final dense
layer adopts the sigmoid activation function, enabling the
model’s output to be a probability score between 0 and 1.
To ensure that these probability scores are well-calibrated and
reflect the true likelihood of the predicted outcomes, we apply
a post-processing calibration step ENCL. ENCL ensures that
these probability outputs better match the actual observed
frequencies.

C. Confidence Calibration

Calibrating DNNs is essential to ensure that the predicted
probabilities accurately reflect the true likelihood of outcomes,
thereby enhancing the model’s ability to make reliable pre-
dictions. This process involves aligning the model’s predicted
confidence levels, P̂ , with their true probabilities of cor-
rectness. For instance, when a model predicts a class with
confidence of 0.7, ideally, 70% of such predictions should be
correct if the model is perfectly calibrated [5]. This alignment
is fundamental as it bolsters the model’s predictive accuracy,
pinpoints uncertainties or risks, and offers more dependable
insights into complex data. The calibration process includes
scrutinizing and adjusting factors like algorithms, input data,
and model structure. These adjustments are made using statis-
tical methods and analytical tools to ensure that the model’s
outputs more accurately reflect the actual observed data.

1) Preliminaries: Existing Confidence Calibration Meth-
ods: We comprehensively examine the following calibration
methods in this study:

• Spline Calibration: The spline calibration method, as
described by Lucena et al. [23], employs a natural cubic
spline for fitting predicted probabilities. This technique
utilizes a series of knots to establish the spline’s basis and
to formulate the optimal calibration function, ensuring it
is smooth and effective. The calibrated probability of a
positive class given an input x is expressed mathemati-
cally as:

P (y = 1|x) =
K∑
j=1

βjBj(x), (2)

where P (y = 1|x) represents the calibrated probability
of the positive class given the input x and K denotes
the number of basis functions or knots used in the spline
calibration. βj denotes the coefficients associated with
each basis function, and Bj(x) represents the value of
the j-th basis function evaluated at the input x. Spline
calibration is particularly advantageous for its flexibility,
surpassing the capabilities of piecewise constant or sig-
moid functions.

• Platt Calibration: Platt calibration [24] assumes that the
relationship between the predicted probabilities (α) and
the true probabilities P (y = 1|x) follows a sigmoidal



curve. The model has two adjustable parameters, α and
β and is defined by the mathematical expression:

P (y = 1|x) = 1

1 + exp(αf(x) + β)
, (3)

where α and β are real valued. Platt calibration’s main
drawback is that it has a limited range of possible
functions. In other words, this technique can only pro-
vide accurate probability estimates if there is a logistic
relationship between the output of the binary classifier
and the actual probability of the positive class.

• Beta Calibration: Beta calibration methods leverage a
richer class of calibration maps based on the beta dis-
tribution [25]. It can be defined as:

P (y = 1|x) =

1 +
1

exp(γ) f(x)α

(1−f(x))β

−1

. (4)

In this case, parameters γ, β, and α are real values that
are determined when fitting the curve. Beta calibration is
a flexible method, but it is still parametric. Therefore, it
may not be able to correct all types of distortions, espe-
cially if the original model has non-monotonic distortions
or is poorly calibrated.

• Isotonic Calibration: Isotonic calibration [26] fits a
piecewise constant function to the classifier’s score that
is monotonically increasing and minimizes the mean
squared error. The probability of a positive class given
an input x is calculated as:

P (y = 1|x) = si, (5)

where si is the score given by the isotonic function for
the bin that contains x. To obtain the isotonic function, an
optimization problem is solved, which can be expressed
as follows:

mins1,....,sn

n∑
i=1

(yi − si)
2, (6)

subjected to si ≤ sj whenever f(xi) ≤ f(xj), where
f(xi) is the score given by the uncalibrated model, n is
the number of samples and yi is the true labels.

2) ENsemble-based Confidence caLibration (ENCL): The
ENCL combines multiple independent calibration techniques
to generate calibrated probabilities. Each technique within the
ensemble produces its own calibrated probabilities based on
learned parameters. These probabilities are then aggregated
by the ensemble method to formulate a final decision. The
primary advantage of this approach is its ability to reduce the
biases or variances specific to individual calibration methods,
often leading to a more generalized and reliable prediction
system. ENCL first obtains calibrated probabilities from each
method (Spline, Platt, Beta) within the ensemble. ENCL then
aggregates these probabilities and applies a voting mechanism
where the final probability for each instance is determined
by the mode of the combined calibrated probabilities. Here,
the mode is defined as the value that appears most frequently
among the probabilities calculated by the calibration methods.

Finally, if no mode is present, select the lowest calibrated
probability. This final step helps ensure that the ensemble-
based calibration method avoids overconfidence in predictions
where certainty is low. To clarify further, in information
theory, an event with a low probability is less predictable, and
the uncertainty associated with that event is high [27], [28].
Entropy, which measures the expected value of uncertainty
across all possible events, increases with the presence of low-
probability events. This high entropy reflects greater uncer-
tainty, which can lead to reduced confidence in predictions. In
a clinical setting where stakes are high, this cautious approach
is intended to allow clinicians more room to take necessary
precautions to ensure accurate diagnosis and treatment.

3) Reliability Diagram: The reliability diagram is a visual
tool for assessing the calibration of a model. It involves
segmenting predicted probabilities into a fixed number of bins
(N), with each bin representing a segment of size 1/N . These
bins are then plotted against the actual outcomes to evaluate
the model’s prediction accuracy. The accuracy for each bin,
denoted as Cn, is calculated to understand how well the
model’s predicted probabilities match the observed outcomes:

acc(Cn) =
1

|Cn|
∑
i∈Cn

1(y′i = yi), (7)

where y′i and yi represent the predicted and true class labels
for sample i and Cn is the set of samples whose predicted
confidences fall within the interval In = (n−1

N , n
N ), for n ∈

1, 2, ..., N . The average confidence in the bin Cn is defined
as:

conf(Cn) =
1

|Cn|
∑
i∈Cn

P ′
i , (8)

where p′i represents the predicted confidence for each sample
i. In a model that is ideally calibrated, the accuracy of each
bin, the acc(Cn) is expected to be equal to the conf(Cn) for
all n ∈ 1, 2, ..., N .

D. Uncertainty Estimation
Following the approach proposed by Depeweg et al. [29],

we utilize predictive entropy as a key metric to assess uncer-
tainty in both calibrated and uncalibrated models. Predictive
entropy focuses on the entropy of the predictive posterior
distribution, which can be mathematically represented as:

H[P (y = k|X)] = −
∑
k

P (y = k|X) logP (y = k|X), (9)

where P (y = k|X) is the predicted probability of class k
from the DNN. The essence of predictive entropy lies in
its ability to gauge the level of uncertainty or ambiguity
inherent in model predictions. A higher entropy value signifies
greater uncertainty, implying that the model’s predictions are
dispersed across multiple classes. Conversely, lower entropy
indicates a high level of confidence in the prediction, with
the model’s predictions being more concentrated on a single
class. This approach is particularly insightful in our disease
diagnosis, where a model’s uncertainty can be quantified based
on how it allocates probabilities across classes.
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Fig. 2. Uncertainty Confusion Matrix. AC represents the number of correctly
classified predictions that are certain, while AU represents the number of
correct predictions that are incorrectly flagged as uncertain. IU represents the
number of incorrect predictions that are correctly flagged as uncertain, while
IC represents the number of incorrect predictions that are classified as certain.

III. EXPERIMENTAL RESULTS

A. Dataset

We evaluate ENCL-DNN on two publicly available COVID-
19 cough audio datasets, Coswara and Cambridge. The
Coswara dataset, compiled by the Indian Institute of Sci-
ence (IISc) Bangalore, contains respiratory sounds for disease
diagnosis and monitoring [30]. It includes 2746 samples
representing seven COVID-19 statuses and focuses on cough
sounds. COVID-19 cases were categorized into healthy (1433
individuals) and infected (681 individuals) consisting of posi-
tive mild, positive moderate, and positive asymptomatic. The
Cambridge dataset [31] from the University of Cambridge in-
cludes three participant groups: 141 individuals with COVID-
19, 330 without COVID-19 history, and 20 with asthma but no
COVID-19 history. Audio samples of cough and breath sounds
were collected using an Android app or web platform at a
sampling rate of 22050 Hz. This study focuses on categorizing
cough sounds into healthy (85 individuals) and infected (141
individuals). For both datasets, we randomly split the training
and testing set on the patient level to avoid potential data
leakage.

B. Evaluation Metric

Following [14], [17], we use the area under the receiver
operating characteristic (AUROC) to measure the performance
of the proposed method on COVID-19 classification. To eval-
uate the model confidence calibration, we use Log loss, the
Brier score, and Expected Calibration Error (ECE). We define
four quantitative measures based on the uncertainty confusion
matrix in Figure 2 to provide a measure of the uncertainty
estimation. These measures are uncertainty accuracy (UAcc),
uncertainty sensitivity (USen), uncertainty precision (UPre),
and uncertainty specificity (USpe).

C. Backbone Models

For performance comparison, we have considered several
machine-learning algorithms as backbone models, including
Logistic Regression (LR), Random Forest (RF), XGBoost,
Support Vector Classifier (SVC) with linear (SVC-L), and
Radial Basis Function (RBF) kernel (SVC-RBF), and Decision
Tree (DT). We also referenced literature such as LSTM [32]
and CNN [33].

TABLE I
MAIN RESULTS OF CLASSIFICATION PERFORMANCE (AUROC) ON

COSWARA AND CAMBRIDGE DATASETS.

Model Coswara (AUROC) Cambridge (AUROC)
LR 0.762 0.672
RF 0.725 0.793

XGBoost 0.681 0.759
SVC-L 0.764 0.789

SVC-RBF 0.741 0.781
DT 0.570 0.797

LSTM [32] 0.702 0.825
CNN [33] 0.704 0.837
ENCL-DNN 0.834 0.854

TABLE II
COMPARISON OF CONFIDENCE CALIBRATION USING LOG LOSS, BRIER
LOSS, AUROC, AND ECE ON COSWARA AND CAMBRIDGE DATASETS.

Dataset Model Calibration Log Brier AUROC ECE

Coswara

LR - 0.568 0.194 0.762 0.134
RF - 0.645 0.226 0.725 0.173

XGBoost - 0.978 0.260 0.681 0.238
SVC-L - 0.567 0.193 0.764 0.134

SVC-RBF - 0.567 0.195 0.741 0.118
DT - 7.894 0.347 0.570 0.336

LSTM [32] - 0.587 0.199 0.702 0.108
CNN [33] - 0.137 0.256 0.704 0.227

DNN

- 0.558 0.187 0.834 0.178
MC Dropout 0.606 0.210 0.731 0.145

Beta 0.495 0.162 0.834 0.107
Isotonic 0.507 0.167 0.828 0.120

Platt 0.490 0.164 0.834 0.106
Spline 0.486 0.161 0.834 0.104
ENCL 0.486 0.159 0.834 0.089

Cambridge

LR - 0.594 0.203 0.672 0.151
RF - 4.237 0.178 0.793 0.131

XGBoost - 0.590 0.199 0.759 0.165
SVC-L - 0.594 0.180 0.789 0.178

SVC-RBF - 0.566 0.183 0.781 0.156
DT - 5.090 0.183 0.797 0.164

LSTM [32] - 0.535 0.176 0.825 0.152
CNN [33] - 0.821 0.187 0.837 0.202

DNN

- 0.539 0.173 0.854 0.167
MC Dropout 0.605 0.177 0.807 0.163

Beta 0.724 0.202 0.854 0.204
Isotonic 1.650 0.204 0.810 0.192

Platt 0.525 0.174 0.854 0.133
Spline 0.535 0.180 0.854 0.121
ENCL 0.506 0.168 0.854 0.119

D. Main Results

As shown in Table I, we evaluate the classification per-
formance of ENCL-DNN on both the Coswara and Cam-
bridge datasets. Before calibration, for the Coswara dataset,
ENCL-DNN achieves the highest AUROC score of 0.834,
while on the Cambridge dataset, it achieves a score of 0.854. It
also suggests that the extracted MFCC features exhibit distinct
patterns, effectively differentiating between healthy individuals
and COVID-19 patients.

E. Model Calibration

We then assess the confidence level of ENCL-DNN towards
its predictions before and after calibration for prediction
reliability.

1) Coswara Dataset: In Figure 3, we observe that the
model confidence consistently improves after implementing
the ENCL, suggesting that ENCL-DNN becomes more con-
fident in its predictions when they are correct, but also
acknowledges its uncertainty when a prediction is less certain.
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Fig. 3. Reliability Diagram for the Coswara Dataset: ENCL achieves the lowest ECE (0.089) when compared to other calibration methods.
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Fig. 4. Reliability Diagram for the Cambridge Dataset: ENCL yields the best ECE (0.119) and appears to be optimally calibrated.
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Fig. 5. Uncertainty accuracy as a function of the confidence level. We measure the relationship between model uncertainty and prediction confidence across
different methods on the Coswara and Cambridge datasets. The uncertainty accuracy measures the overall accuracy of uncertainty classification. Overall,
calibration enhances the model’s capability to quantify uncertainty accurately.

Furthermore, we can confirm these results by examining
Table II, which illustrates that the ENCL is more effective
at improving the model’s confidence than other calibration
methods. Specifically, ENCL-DNN achieved an ECE score of
0.089, an AUROC of 0.834, a Brier loss of 0.159, and a Log
loss of 0.486, all indicating a high confidence level in the
model’s predictions when ENCL is applied.

2) Cambridge Dataset: To demonstrate that ENCL-DNN
is effective and generalizable, we have present the reliability
diagram of our model on the Cambridge dataset. As shown
in Figure 4, we observe that the confidence of our model im-
proves significantly when ENCL is applied. The effectiveness
of ENCL can be further verified from Table II, with an ECE
score of 0.119, an AUROC of 0.854, a Brier loss of 0.168,
and a Log loss of 0.506, which significantly outperforms other
calibration methods.

F. Uncertainty Quantification

In this section, we demonstrate the performance of the
models in quantifying uncertainty. We consider the entropy,
uncertainty accuracy, and uncertainty matrix. The analysis
for the uncertainty confusion matrix was performed using
a confidence level of 0.75. This threshold was determined
based on the uncertainty accuracy plot in Figure 5. The
plot provides information on the model’s ability to accurately
classify predictions that it was either certain or uncertain about
across all confidence levels.
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Fig. 6. Density histogram of the entropy on the Coswara and Cambridge
datasets. We present the distribution of predictive entropy for various calibra-
tion methods (Uncalibrated, Isotonic, Spline, Beta, Platt, ENCL) applied to
the Coswara and Cambridge datasets.

1) Coswara Dataset: We examine the entropy before and
after calibration dissipated in Figure 6, which displays the
density histogram of the entropy on the Coswara dataset. We
expect the ENCL-DNN to be confident in its predictions when
the entropy values are close to 0, but we also want it to be
uncertain when it is not confident; that is, when the entropy
values are close to 1. We observe that our model captures this
behavior well after applying the ENCL. Moreover, Figure 5
illustrates the uncertainty accuracy of the model in identifying
accurate and less accurate predictions across all confidence
levels. We note that the uncertainty accuracy increases as the
confidence level increases when the ENCL is applied. Table
III shows the USpe, USen, UPre, and UAcc at a confidence
level of 0.75, where we focus on reducing certain incorrect
predictions as much as possible for a robust prediction in the



TABLE III
PERFORMANCE COMPARISON OF UNCERTAINTY ESTIMATION ON

COSWARA AND CAMBRIDGE DATASETS.

Dataset Model Calibration USpe UPre USen UAcc

Coswara

LR - 0.492 0.768 0.749 0.670
RF - 0.357 0.692 0.751 0.616

XGBoost - 0.389 0.713 0.716 0.611
SVC-L - 0.528 0.780 0.755 0.685

SVC-RBF - 0.507 0.766 0.802 0.704
DT - 0.206 0.613 0.807 0.572

LSTM [32] - 0.523 0.783 0.783 0.702
CNN [33] - 0.433 0.739 0.723 0.633

DNN

- 0.402 0.746 0.791 0.670
MC Dropout 0.420 0.716 0.745 0.636

Beta 0.435 0.807 0.847 0.738
Isotonic 0.417 0.809 0.887 0.763

Platt 0.439 0.805 0.818 0.719
Spline 0.495 0.826 0.848 0.756
ENCL 0.542 0.836 0.825 0.751

Cambridge

LR - 0.333 0.741 0.678 0.588
RF - 0.000 0.738 1.000 0.738

XGBoost - 0.350 0.787 0.800 0.688
SVC-L - 0.389 0.807 0.742 0.663

SVC-RBF - 0.381 0.797 0.864 0.738
DT - 0.313 0.823 0.797 0.700

LSTM [32] - 0.245 0.566 0.838 0.566
CNN [33] - 0.330 0.552 0.702 0.531

DNN

- 0.700 0.878 0.717 0.713
MC Dropout 0.250 0.813 0.813 0.700

Beta 0.650 0.870 0.783 0.750
Isotonic 0.368 0.821 0.902 0.775

Platt 0.650 0.881 0.867 0.813
Spline 0.650 0.879 0.850 0.800
ENCL 0.700 0.897 0.867 0.825

TABLE IV
SUMMARY STATISTICS BETWEEN UNCALIBRATED AND ENCL-DNN ON

COSWARA AND CAMBRIDGE DATASETS.

Dataset Property Metric Uncalibrated Calibrated ↑%

Coswara

Calibration
Log 0.558 0.486 12.903
Brier 0.187 0.159 14.973
ECE 0.178 0.089 50.000

Uncertainty
USpe 0.402 0.542 34.826
UPre 0.746 0.836 12.064
USen 0.791 0.825 4.298
UAcc 0.670 0.751 12.090

Cambridge

Calibration
Log 0.539 0.506 6.122
Brier 0.173 0.168 2.890
ECE 0.167 0.119 28.743

Uncertainty
USpe 0.700 0.700 0
UPre 0.878 0.897 2.164
USen 0.717 0.867 20.921
UAcc 0.713 0.825 15.708

real-world scenario.
2) Cambridge Dataset: Based on the Cambridge dataset,

we analyze the density histogram of the entropy shown in Fig-
ure 6. We found that the Platt, Isotonic, and Beta calibration-
based methods had a higher density close to the entropy value
0, which implies that more samples fall within this range of
entropy. In contrast, ENCL had almost similar densities when
entropy values were close to 0 and 1. Moreover, we observed
that the model’s overall confidence improved slightly when
the ENCL was applied, as depicted in Figure 5. Furthermore,
Table III showcases the USpe, USen, UPre, and UAcc for
each model at a confidence level of 0.75. It is observed that
the ENCL exhibits better performance in terms of UPre and
USpe, it also demonstrates a marginally better UAcc when
contrasted with the other calibration methods considered.

G. Statistical Analysis

The results of comparing before and after calibration with
the ENCL are summarized in Table IV across two main
properties: Reliability/Calibration and Uncertainty Estimation.
For the Coswara dataset, calibration improved the Log Loss
by approximately 12.903%, reduced Brier Loss by about
14.973%, and notably enhanced the ECE by 50%. Uncertainty
Estimation metrics, such as UPre, USen, USpe, and UAcc, also
showed significant improvements post-calibration, with UPre
improving by 12.064%, USen by 4.298%, USpe by 34.824%,
and UAcc by 12.090%.

Similarly, for the Cambridge dataset, calibration results in
over 6% improvement in Log Loss and 2.890% in Brier Loss.
The ECE saw a substantial enhancement of nearly 29%. In
terms of Uncertainty Estimation, while UPre slightly improve
by about 2%, USen and UAcc increase by 20.921% and
15.708%, respectively. Notably, USpc remained unchanged.
These results indicate that ENCL can significantly improve
model reliability and the accuracy of uncertainty estimates,
which is crucial for developing robust predictive models.

H. Effect of Activation Functions

We further examine the effect of the activation function in
model calibration. Specifically, we examine three cases: no
activation function, sigmoid activation function, and softmax
activation function. By analyzing the density histogram of
each class, as shown in Figure 7, we noticed that when the
softmax activation function is applied to obtain the probability
distribution, the classes are better separated than when the
sigmoid or no activation function is used. Nevertheless, based
on the reliability diagram and the entropy displayed in Figure
8, we found that while the softmax activation function exhib-
ited higher density when the entropy values were close to 0,
indicating strong confidence in its prediction, it resulted in a
poor ECE of 0.250, implying that the model calibration error
was poor, and that softmax overestimated the probabilities of
its predictions.

I. Model Interpretation

We utilize the LIME framework [34] to provide a trans-
parent explanation for our model predictions. In Figure 9,
we show an accurate prediction with feature interpretations.
Upon closer examination of Figure 10, we observe that
among the top ten features, approximately seven of them
were responsible for this misclassification. To further validate
model performance, we apply t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [35] to visualize the distribution of
test samples within the latent space. This technique helps us
assess how well the model captures important features and
distinguishes between different classes (Figure 11). Upon anal-
ysis, we observe that our model before calibration struggles
to define an optimal hyperplane that adequately separates the
classes. Furthermore, after calibration, we noticed a shift in
the distribution, which impacted the separation of the classes.
Additionally, when the uncertainty level is incorporated into



0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Predicted Score

0.0

0.5

1.0

1.5

2.0

2.5

3.0
De

ns
ity

No Activation Function
COVID-19
Healthy

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Predicted Score

0

1

2

3

4

De
ns

ity

Sigmoid Activation Function
COVID-19
Healthy

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Predicted Score

0

1

2

3

4

De
ns

ity

SoftMax Activation Function
COVID-19
Healthy

Fig. 7. Density histogram of different activation functions, including Sigmoid and Softmax.
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Prediction probabilities healthy infected Feature Value

Fig. 9. LIME interpretation of the calibrated model performance on a correctly
predicted case study, highlighting the key MFCC features that influence the
model’s decision, along with the associated prediction probabilities. In this
scenario, the model correctly predicts the ”infected” class with a probability
of 0.88.

the space, we observe that predictions closer to the hyperplane
peak at 0.69, further validating that our method works.

IV. CONCLUSION

The accurate quantification of uncertainty in model pre-
dictions is essential for human intervention, especially in the
field of medicine. In this study, we propose ENCL-DNN for
calibrating model confidence and measuring the uncertainty
in CDSSs. Our experiments on the Coswara and Cambridge
datasets showed that the application of confidence calibration
significantly improves the reliability of diagnosis in early
COVID-19 detection using audio samples. In addition, we
investigated how calibration affects the model’s ability to
accurately quantify uncertainty in its predictions for a robust
diagnosis. This study emphasizes the importance of model cal-
ibration, uncertainty estimation, and interpretability to enhance
the trustworthiness and reliability of predictions. It also has the

Prediction probabilities healthy infected Feature Value

Fig. 10. LIME interpretation of the calibrated model performance on an
incorrectly predicted case study. In this scenario, the model incorrectly
predicts the ”infected” class with a probability of 0.54.

potential to encourage the adoption of mobile healthcare for
screening infectious respiratory diseases.
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