
Under review as a conference paper at ICLR 2023

LSTM-BASED-AUTO-BI-LSTM FOR REMAINING
USEFUL LIFE (RUL) PREDICTION: THE FIRST ROUND
OF TEST RESULTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Remaining Useful Life (RUL) is one of the most critical indicators to detect
a component’s failure before it effectively occurs. It can be predicted by histori-
cal data or direct data extraction by adopting model-based, data-driven, or hybrid
methodologies. Data-driven methods have mainly used Machine Learning (ML)
approaches, despite several studies still pointing out different challenges in this
sense. For instance, traditional ML methods cannot extract features directly from
time series depending, in some cases, on the prior knowledge of the system. In this
context, this work proposes a DL-based approach called LSTM-based-AUTO-Bi-
LSTM. It ensembles an LSTM-based autoencoder to automatically perform fea-
ture engineering (instead of manually) with Bidirectional Long Short-Term Mem-
ory (Bi-LSTM) to predict RUL. We have tested the model using the Turbofan En-
gine Degradation Simulation Dataset (FD001), an open dataset. It was generated
from the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)
from the Prognostics Center of Excellence (PcoE), from the National Aeronautics
and Space Administration (NASA). The objective is to release the first round of
analytical results and statistical visualisations of the model application, which will
guide us in future improvements.

1 INTRODUCTION

Cyber-Physical Systems (CPS), Internet of Things (IoT), Internet of Services (IoS), and Data Analyt-
ics have built Industry 4.0, which has improved manufacturing efficiency and helped industries face
challenges such as economic, social, and environmental (Ruiz-Sarmiento et al., 2020). Condition-
Based Maintenance (CBM) performs machines and components’ maintenance routines based on
their needs, and Prognostics and Health Management (PHM) monitors components’ wear evolution
using indicators. PHM is a proactive way of implementing CBM by predicting the Remaining Use-
ful Life (RUL), one of the most critical indicators to detect a component’s failure before it effectively
occurs (Wang et al., 2021; Huang et al., 2019; Wu et al., 2017; Kan et al., 2015).

RUL can be predicted by historical data or direct data extraction by adopting model-based, data-
driven, or hybrid methodologies. Model-based methods are challenging, expensive, and time-
consuming to develop in complex equipment due to the need for prior system knowledge. Data-
driven methods have mainly used Machine Learning (ML) approaches. They are less complex and
expensive, more applicable and provide a suitable trade-off between complexity, cost, precision, and
applicability (Cheng et al., 2021; Mrugalska, 2019; Li et al., 2019; Yang et al., 2016), although they
require large amounts of historical data for development (Liewald et al., 2022)

Meanwhile, despite the increased use of ML to predict RUL, several studies have still pointed out
different challenges in this sense (Huang et al., 2019). For example, most ML methods’ accuracy in
predicting RUL largely depends on the feature extraction quality, and their performance is affected
in the case of very complex systems with multiple components, multiple states, and a considerable
amount of parameters (Zhao et al., 2021; Chen et al., 2019). Moreover, the literature has also
reported that most of these models do not consider operation conditions; the machines operate in
different states, even on the same shop floor. It significantly impacts the degradation behaviour and
raw sensor signals that may be non-stationary, nonlinear, and mixed with much noise (Liu et al.,

1

Under review as a conference paper at ICLR 2023

2020a). Finally, traditional ML methods cannot extract features directly from time series depending
on the complex intermediate transformation and, in some cases, depending on the prior knowledge
of the system (Cabrera et al., 2020).

To overcome several challenges and improve the accuracy of RUL prediction, there has been a
prominent use of Deep Learning (DL) Methods, especially Recurrent Neural Networks (RNN) and
Long Short-Term Memory (LSTM), besides other variations (Zhu et al., 2019; Li et al., 2020; Liu
et al., 2020b). They have emerged and achieved outstanding results in different areas due to their
strong capacity to map the relationship between degradation paths and measured data. Also, these
methods can learn feature representation automatically, such that it is not necessary to design fea-
tures manually, eliminating the need for previous knowledge of the system (Zhu et al., 2019). Fi-
nally, DL methods have a high capacity to deal with many complex data (Kong et al., 2019) [17].
Nonetheless, the literature reports some drawbacks, such as the data deficit issue, especially con-
sidering the varying operation conditions and the degradation mode of the components in practical
industrial applications (Liu et al., 2020a).

In this context, Ferreira & Gonçalves (2022),among other results, have mapped 14 challenges in
using ML methods for RUL prediction and pointed out some approaches used in the literature
to overcome these challenges. From this collection of approaches, it was possible to propose
an architecture called LSTM-based-AUTO-Bi-LSTM, which ensembles an Autoencoder (Unsu-
pervised/Reconstructive Learning Technique) with the DL method Bidirectional Long Short-Term
Memory (Bi-LSTM). The autoencoder aims to perform feature engineering automatically (instead
of manually). The Bi-LSTM aims to predict the RUL based on the outputs of the autoencoder. This
type of ensembling is, at least, very few applied in the RUL prediction process. To test our model,
we have explored the turbofan engine problem through the dataset gathered from PCoE/NASA.
Therefore, this work aims to release the first round of analytical results and statistical visualisations
of the model application.

The remaining of this work is as follows. Section 2 describes the problem and the used dataset,
and Section 3 introduces the LSTM-based-AUTO-Bi-LSTM architecture. Section 4 describes the
experimental context, and Section 5 presents the results and compares them with the literature.
Finally, Section 6 concludes this work by giving some directions for future works.

2 THE PROBLEM AND DATASET

2.1 THE PROBLEM

PHM has been an essential topic in the industry for predicting the state of assets to avoid downtime
and failures (NASA, 2022). In the aircraft industry, attempted maintenance is critical to ensure
operation safety (Zheng et al., 2018), besides increasing economic efficiency (Deng et al., 2019).
According to the International Air Transport Association (IATA), maintenance costs of the major
aviation companies reached $15.57 billion between 2012 and 2016, which represented a growth of
3% (Kraus & Feuerriegel, 2019). Turbofan engines, specifically, are responsible for about 30% of
the failures in an aircraft, and in great-proportion accidents, these systems have been the root cause in
40% of the cases. Besides, propulsion device maintenance costs share about 40% of the full aircraft
maintenance costs (Tang et al., 2021). The main components of a turbofan engine include the fan,
low-pressure compressor (LPL), high-pressure compressor (HPC), combustor, high-pressure turbine
(HPT), and low-pressure turbine (LPT), and nozzle.

2.2 THE DATASET

The dataset was gathered from the Prognostics Center of Excellence – PCoE, from the National
Aeronautics and Aerospace Administration (NASA). In this sense, the information provided in this
subsection was retrieved from that source NASA (2022) and Saxena et al. (2008).

Engine degradation simulation was carried out using Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS). Four different datasets (FD001, FD002, FD003, and FD004) were simu-
lated under various operational conditions. They comprised a range of values for three operating
conditions – Altitude, from 0 to 42K ft., Mach Number, from 0 to 0.84, and Throttle Resolver An-
gle (TRA), from 20 to 100 – and fault modes – High-Pressure Compressor Degradation or/and Fan

2

Under review as a conference paper at ICLR 2023

Degradation – combinations. Records of several sensor channels to characterise fault evolution. The
objective of these datasets is to predict the RUL of each engine in the test dataset. RUL can be
defined as the equivalent number of flights remaining for the engine after the last data point in the
test dataset.

The datasets consist of multiple multivariate time series. Each data set is further divided into
training (train FD001, train FD002, train FD003, and train FD004) and test subsets (test FD001,
test FD002, test FD003, and test FD001). Each time series is from a different engine, i.e., the data
can be considered from a fleet of engines of the same type. Each engine starts with different de-
grees of initial wear and manufacturing variation, unknown to the user. This wear and variation are
considered normal, i.e., it is not considered a fault condition.

Three operational settings substantially affect engine performance were also included in the datasets:
Altitude, Mach Number, and TRA. The data is contaminated with sensor noise. The engine usually
operates at the start of each time series, developing a fault at some point. In the training dataset, the
fault grows in magnitude until system failure. The time series sometimes ends before system failure
in the test dataset. It also provides a vector of true Remaining Useful Life (RUL) values for the test
data (RUL FD001, RUL FD002, RUL FD003, and RUL FD001). The train and test datasets are
presented through 26 columns of numbers (Unit/Engine Number, Time (Cycles), Operational Setting
1, . . . , Operational Setting 3, Sensor Measurement 1, . . . , Sensor Measurement 21), comprehending
a different variable. Each row is a snapshot of data taken during a single operational cycle. Table A1
presents a summarised description of the datasets, and Table A2 describes the sensor measurement
variables (columns 6 to 26).

3 THE LSTM-BASED-AUTO-BI-LSTM

The proposed architecture consists of ensembling two methods. First, we used an LSTM-based Au-
toencoder to perform automatic feature engineering (instead of manually) through the raw dataset.
Then we applied Bi-LSTM initialised through the autoencoder outputs to predict the RUL (predic-
tion model). Both methods are explained in detail, and an overview of the entire architecture is
presented in the following subsections.

3.1 LSTM-BASED AUTOENCODER

The autoencoders are unsupervised NN structures (Ren et al., 2021), completely symmetrical (Ren
et al., 2018), with one input layer, a hidden layer, and one output layer (Xia et al., 2019). The input
layer and the first half of the hidden layer build the encoder. The second half of the hidden layer
and the output layer build the decoder. The fundamental objective is reconstructing original data
by minimising the error between the network output data and the original data and initialising a
deep NN (Xia et al., 2019). The number of nodes in each hidden layer is less than the number of
nodes in the input layer and the output layer, creating a type of bottleneck (Chen et al., 2020). These
structures have improved the optimal model determination through the random network initialisation
(Xia et al., 2019) and have also demonstrated great ability for feature extraction (Chen et al., 2020).
The generic mathematical autoencoder construction is shown in equations (1) and (2).

y = σ(Wx+ b) (1)
x′ = σ[W ′y + b] (2)

In equation (1), y represents the features learned by the encoder (code), x represents the input vector,
W is the weight matrix between the input layer and the hidden layer, b is the bias, and σ is the
activation function. In equation (2), x’ represents the vector constructed through the features learned
from the hidden layer, and W’ is the weight matrix between the input layer and the hidden layer.
The remaining parameters are the same in equation (1).

In this work, we have set up an autoencoder by applying Long Short-Term Memory (LSTM) model
in the encoder and decoder layers (LSTM-based Autoencoder). The main idea behind the LSTM
is to capture the dependence of the current state on the previous state, which means in the forward
direction (Zhao et al., 2017). The general LSTM cell (neuron) structure can be divided into three
parts or gates. First, the input gate decides when the model can receive a new information state. Next,

3

Under review as a conference paper at ICLR 2023

(a) General LSTM structure (b) LSTM-Based Autoencoder structure

Figure 1: General LSTM and LSTM-Based-Autoencoder structure.

the forget gate decides when the model can forget the previous information state. Finally, the output
gate decides which information to output. These gates are determined by the input at the current
instant and the output at the previous instant through sigmoid and hyperbolic tangent activation
functions (Liu et al., 2021b). Figure 1 presents the general LSTM structure and the LSTM-Based
Autoencoder structures.

3.2 THE BI-LSTM

The Bi-LSTM derives from the LSTM, adapted to learning the most representative features hidden
in the Condition Monitoring (CM) data (Huang et al., 2019). With Bi-LSTM, the main idea is to
capture past and future information by processing the CM data forward and backwards through two
separate hidden layers. Equations sets (3) and (4) describe the separated hidden layers function
at step t. The symbols → and ← denote, respectively, the forward and backward process (Huang
et al., 2019). Deeper detailed considerations regarding Bi-LSTM can be found in Zhao et al. (2017)
and Zhang et al. (2018a). Figure 2 shows the general Bi-LSTM structure, and Figure 3 shows an
overview of the proposed architecture.
−→
h t = f(−→x t,

−→
h t−1;

−→
ΘLSTM) =

−→z t = tanh (
−→
W z
−→x t +

−→
R z
−→
h t−1 +

−→
b z)−→

i t = σ(
−→
W i
−→x t +

−→
R i
−→
h t−1 +

−→
b i)−→

f t = σ(
−→
W f
−→x t +

−→
R f
−→
h t−1 +

−→
b f)

−→o t = σ(
−→
W o
−→x t +

−→
R o
−→
h t−1 +

−→
b o)

−→c t =
−→z t ⊙

−→
i t +

−→c t−1 ⊙
−→
f t−→

h t = tanh (−→c t)⊙−→o t

(3)

←−
h t = f(←−x t,

←−
h t−1;

←−
ΘLSTM) =

←−z t = tanh (
←−
W z
←−x t +

←−
R z
←−
h t−1 +

←−
b z)←−

i t = σ(
←−
W i
←−x t +

←−
R i
←−
h t−1 +

←−
b i)←−

f t = σ(
←−
W f
←−x t +

←−
R f
←−
h t−1 +

←−
b f)

←−o t = σ(
←−
W o
←−x t +

←−
R o
←−
h t−1 +

←−
b o)

←−c t =
←−z t ⊙

←−
i t +

←−c t−1 ⊙
←−
f t←−

h t = tanh (←−c t)⊙←−o t

(4)

In the equations sets (3) and (4),
−→
ΘLSTM and

←−
ΘLSTM are the parameters set of the forward and

backward processes, shared by all the time steps and learned during model training.
−→
W k,

←−
W k ∈

4

Under review as a conference paper at ICLR 2023

RL×p are input weights (related to −→x t,
←−x t) of the forward and backward process, respectively.

−→
R k,
←−
R k ∈ RL×L are recurrent weights (related to

−→
h t−1,

←−
h t+1) of the forward and backward

process, respectively.
−→
b k,
←−
b k ∈ RL are bias weights of the forward and backward process, respec-

tively. Finally, σ (logistics sigmoid) and tanh (hyperbolic tangent) are pointwise nonlinear activa-
tion functions, ⊙ denotes pointwise multiplication of two vectors, L denotes de dimensionality of
the hidden neurons and k ∈ {Z, i, f, o}.

Figure 2: Bi-LSTM structure.

Figure 3: LSTM-based-AUTO-Bi-LSTM.

4 EXPERIMENTAL CONTEXT

4.1 NORMALISATION

The normalisation was performed by applying the z-score method, as described in Che et al. (2019);
Wang et al. (2019); Jiang et al. (2020). The mean of the normalised values is 0, and the standard
deviation of the normalised values is 1. The normalised values represent the number of standard
deviations that the original value is from the mean and are calculated by the equation (5).

zi =
(xi − µi)

σi
(5)

The zi is the normalised value; xi is the raw data in the sensor i; µi is the average value of the ith
sensor, and σi is the standard deviation of the ith sensor.

5

Under review as a conference paper at ICLR 2023

4.2 PIECE-WISE FUNCTION

In real applications, a machine component degrades less at the beginning of life. On the other hand,
the degradation increases as it is close to its end of life (Zheng et al., 2017). It means that the com-
ponent degradation is early unclear, and the RUL of similar sensor data may vary sensible (Saxena
et al., 2008). For instance, Figure 4 shows ten selected sensors from engine 65 of the training dataset.
As we can perceive, for all chosen sensors, it is only possible to obtain some trend, approximately
from cycle 68. A Piece-Wise linear RUL target function was assumed. The maximum threshold for
RUL was 125 to deal with this condition and better model the RUL behaviour throughout time, such
as in several literature examples (see, among others, Mrugalska (2019); Liu et al. (2020b); Saxena
et al. (2008); Jiang et al. (2020)). This is a crucial concern since if a large RUL is assumed, there
can be a significant fluctuation of the predicted RUL in the early stage. Otherwise, if a small RUL
is considered, the predicted RUL can be confined to a small range (Saxena et al., 2008).

Figure 4: Selected sensors of engine 65 from the FD001 training dataset.

4.3 PERFORMANCE EVALUATION CRITERIA

To evaluate the proposed method’s performance, we have adopted the Root Mean Square Error
(RMSE) between the predicted RUL and the ground truth RUL, which is a standard metric reported
in the literature (see, among other, Li et al. (2019); Zheng et al. (2018); Falcon et al. (2020); Zhao
et al. (2019)). It allowed us to compare our results with the literature state-of-the-art mathematically.
The RMSE gives equal weights for early and late predictions and is defined by equation (6).

RMSE =

√√√√ 1

N

N∑
i=1

(R̂ULi −RULi) 2 (6)

In equation (6), RMSE is the computed error; N is the total number of data samples, and R̂ULi and
RULi are respectively the predicted RUL and the ground truth RUL concerning the ith data point.

4.4 LSTM-BASED-AUTO-BI-LSTM SETUP

The proposed architecture was tested in two ways. First, an utterly aleatory setup was performed
regarding the hyperparameters. This setup was considered the initial setup or baseline setup. Second,
the literature was surveyed more in-depth, and some hyperparameters were changed accordingly.
Specifically, regarding the number of epochs in the LSTM-based Autoencoder, we have performed
specific runs to determine the best number. This setup was considered the testing setup. The initial
setup and testing setup are fully detailed as follows.

6

Under review as a conference paper at ICLR 2023

4.4.1 INITIAL SETUP (BASELINE SETUP)

• LSTM-based Autoencoder⇒ LSTM-based layers (encoder and decoder) with 24 neurons
each (number of features in the dataset). Optimizer = ADAM and Loss Function = Binary
Crossentropy. Validation Split = 10% (standard throughout the literature). Epochs = 32.
Batch-size = 50 (about 0.25% of the training dataset). Time-Window = 31 (minimum
engine running length in the test dataset).

• Bi-LSTM ⇒ Single layer with Activation Function = Hyperbolic Tangent. Number of
Neurons = 100. Selected features (automatic selection) from the LSTM-based Autoencoder
= 12. Dense = 30, with Activation Function = ReLu. Output Layer with Activation Func-
tion = Linear. Optimizer = RMSProp and Loss Function = MSE. Epochs = 32. Batch-size
= 200 (about 1% of the training dataset). Time-Window = 31 (minimum engine running
length in the test dataset).

4.4.2 TESTING SETUP

• LSTM-based Autoencoder⇒ LSTM-based layers (encoder and decoder) with 24 neurons
each (number of features in the dataset). Optimizer = ADAM and Loss Function = MSE
(most common used). Validation Split = 10% (standard throughout the literature). Epochs =
50 (see next section). Batch-size = 50 (about 0.25% of the training dataset). Time-Window
= 31 (minimum engine running length in the test dataset).

• Bi-LSTM ⇒ Single layer with Activation Function = Hyperbolic Tangent. Number of
Neurons in the set {24, 48, 72, 96, 120, 144, 168, 192, 216, 240}. Selected features
(automatic selection) from the LSTM-based Autoencoder in the set {6, 12, 18, 24}. Dense
= 30, with Activation Function = ReLu (most common used). Output Layer with Activation
Function = Linear (most common used). Optimizer = ADAM and Loss Function = MSE
(most common used). Epochs = 32. Batch-size = 200 (about 1% of the training dataset).
Time-Window = 31 (minimum engine running length in the test dataset).

In this work, four different setups were tested for the LSTM-based Autoencoder, and 41 different
configurations (one for baseline and 40 for testing setup) were tested for the LSTM-based-AUTO-
Bi-LSTM. The results and comparison with state of the art in literature are presented in the next
Section. To reduce the influence of random factors, the reported results in the next Section are the
average of ten independent runs. Finally, all the experiments were performed using Colaboratory
from Google Research (Colab).

5 RESULTS

First, we have analysed the effective gain after each epoch in the LSTM-based Autoencoder, consid-
ering the loss (training and validation) and accuracy (training and validation). The objective was to
determine the best value for this hyperparameter. The analysis also considered the processing time
for 32, 64, 96 and 128 epochs. Regardless of the number of epochs setup, we could observe that,
from epoch 32, the expressive gain in loss and accuracy decreases fast. However, the processing
time of the LSTM-based Autoencoder increases as quickly as we increase the number of epochs
(329.54, 628.79, 928.83 and 1169.35 seconds, respectively). Thus, considering this trade-off (pro-
cessing time against effective gain) and aiming to avoid possible discrepancies (due to the stochastic
nature of the method) the best value considered was 50 epochs. Figure 5 shows the loss (a) and
accuracy (b) for the LSTM-based autoencoder.

Second, we have analysed the behaviour of the Bi-LSTM by fixing the LSTM-based Autoencoder
setup and varying the configuration of the number of neurons and selected features. The remaining
hyperparameters were as in the testing setup. The objective was to compare the results with our
baseline and the literature’s state of the art. To do this, we ran the LSTM-based-AUTO-Bi-LSTM
400 times (about 106 running hours) through 40 different configurations. The results are graphically
presented as follows. Figure 6 shows the RMSE evolution throughout the tests performed. The three
best averages are marked in the graph, with two occurring using 24 features and one using only six
features. It is also possible to perceive that the lines for 12, 18 and 24 features have a smoother path
than the line for six features. Also, the final trend appears to decrease (faster with 24 features) in
those lines while it seems to increase with six features.

7

Under review as a conference paper at ICLR 2023

(a) LSTM-based Autoencoder Loss (b) LSTM-based Autoencoder Accuracy

Figure 5: LSTM-Based-Autoencoder Loss and Accuracy

Figure 6: RMSE evolution throughout the tests (average of ten runs).

Still, regarding the behaviour of the Bi-LSTM, we have plotted the boxplots of the tests performed
considering 6 (a), 12 (b), 18 (c) and 24 (d) features. Figure 7 shows these results, and it is possible
to visualise that the more stable distribution relies on 18 features, which also contain the lowest
number of outliers.

Figure 7: Distributions of the tests performed considering 6, 12, 18 and 24 features.

Third, we have captured the total average processing time of the LSTM-based-AUTO-Bi-LSTM.
Figure 8 shows the evolution of this time. The minimum time obtained was 471.38 seconds (using
24 features in the Bi-LSTM), and the maximum was 1768.08 seconds (using 18 features in the Bi-
LSTM). Also, it is possible to observe a more stable trend when using 24 features in the Bi-LSTM.

8

Under review as a conference paper at ICLR 2023

Figure 8: LSTM-based-AUTO-Bi-LSTM total average processing time.

Finally, we compared our results with the state-of-the-art literature. Figure 9 highlights the RMSE
average of the baseline setup (17.38 in red) and the best RMSE average of the testing setup (14.67
in blue) with the state-of-the-art literature. Considering the testing setup result, it is possible to see
that it is well positioned in terms of the studied dataset. Indeed, from the architectures designed
for automatic feature extraction (dark grey), only one (Bi-LSTM + CNN) outperforms the result in
terms of RMSE. The remaining architectures that outperform the proposed one must perform some
feature (or sensor) selection. This implies previous knowledge regarding the system and makes it
challenging to apply them directly. A list of the methods and their acronyms is presented in Table A3.
Additional characteristics of the state-of-the-art methods are shown in Table A4. The symbol N.A.
means that data/information did not apply to the method or is not available in the text to the best of
our evaluation.

Figure 9: State-of-the-art Results (RMSE - Dataset FD001).

6 CONCLUSIONS

The LSTM-based-AUTO-Bi-LSTM architecture was shown in these initial tests to be within the
state-of-the-art literature for subdataset FD001, considering the results demonstrated. Especially
when compared with methods that performed automatic feature extraction, our architecture proved
far superior to the others, except for the work in Remadna et al. (2020). Although Colab may have
presented some instability and influenced the capture of processing times, it is estimated that the
obtained times are reasonable regarding the number of instances used.

First, we want to vary the number of neurons in the encoder and decoder layers of the LSTM-
based autoencoder. Then, we want to test different hyperparameters from those tested in this work,
namely varying the number of epochs used and the number of layers used in the predictive model
(Bi-LSTM). Next, we intend to perform more tests using the subdatasets FD002, FD003 and FD004,
which are more complex in terms of operational conditions and fault modes. Further, we intend to
evaluate these future results using the Score Function introduced in Saxena et al. (2008) jointly with
RMSE. Finally, we will test this architecture with categorical datasets generated through embedded
monitoring systems (system log files).

9

Under review as a conference paper at ICLR 2023

REFERENCES

Gurkan Aydemir and Burak Acar. Anomaly monitoring improves remaining useful life estimation
of industrial machinery. Journal of Manufacturing Systems, 56(June):463–469, 2020. doi: 10.
1016/j.jmsy.2020.06.014.

Sourajit Behera and Rajiv Misra. Generative adversarial networks based remaining useful life es-
timation for IIoT. Computers and Electrical Engineering, 92(June 2020):107195, 2021. doi:
10.1016/j.compeleceng.2021.107195.

Diego Cabrera, Adriana Guamán, Shaohui Zhang, Mariela Cerrada, René Vinicio Sánchez, Juan Ce-
vallos, Jianyu Long, and Chuan Li. Bayesian approach and time series dimensionality reduction to
LSTM-based model-building for fault diagnosis of a reciprocating compressor. Neurocomputing,
380:51–66, 2020. doi: 10.1016/j.neucom.2019.11.006.

Changchang Che, Huawei Wang, Qiang Fu, and Xiaomei Ni. Combining multiple deep learning
algorithms for prognostic and health management of aircraft. Aerospace Science and Technology,
94:105423, 2019. doi: 10.1016/j.ast.2019.105423.

Chong Chen, Ying Liu, Shixuan Wang, Xianfang Sun, Carla Di Cairano-Gilfedder, Scott Titmus,
and Aris A. Syntetos. Predictive maintenance using cox proportional hazard deep learning. Ad-
vanced Engineering Informatics, 44(February):101054, 2020. doi: 10.1016/j.aei.2020.101054.

Jinglong Chen, Hongjie Jing, Yuanhong Chang, and Qian Liu. Gated recurrent unit based recurrent
neural network for remaining useful life prediction of nonlinear deterioration process. Reliability
Engineering and System Safety, 185(January):372–382, 2019. doi: 10.1016/j.ress.2019.01.006.

Yiwei Cheng, Kui Hu, Jun Wu, Haiping Zhu, and Xinyu Shao. A convolutional neural network
based degradation indicator construction and health prognosis using bidirectional long short-term
memory network for rolling bearings. Advanced Engineering Informatics, 48(June 2020):101247,
2021. doi: 10.1016/j.aei.2021.101247.

Kunyuan Deng, Xiaoyong Zhang, Yijun Cheng, Zhiyong Zheng, Fu Jiang, Weirong Liu, and Jun
Peng. A Remaining Useful Life Prediction Method with Automatic Feature Extraction for Air-
craft Engines. In 2019 18th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications/13th IEEE International Conference On Big Data Science And
Engineering (TrustCom/BigDataSE), volume 2019-January, pp. 686–692. IEEE, aug 2019. doi:
10.1109/TrustCom/BigDataSE.2019.00097.

Alex Falcon, Giovanni D’Agostino, Giuseppe Serra, Giorgio Brajnik, and Carlo Tasso. A neural
turing machine-based approach to remaining useful life estimation. Proceedings of the Annual
Conference of the Prognostics and Health Management Society, PHM, 2020-June:1–8, 2020. doi:
10.1109/ICPHM49022.2020.9187043.

Carlos Ferreira and Gil Gonçalves. Remaining Useful Life prediction and challenges: A literature
review on the use of Machine Learning Methods. Journal of Manufacturing Systems, 63:550–562,
apr 2022. doi: 10.1016/j.jmsy.2022.05.010.

Narendhar Gugulothu, Vishnu TV, Pankaj Malhotra, Lovekesh Vig, Puneet Agarwal, and Gautam
Shroff. Predicting Remaining Useful Life using Time Series Embeddings based on Recurrent
Neural Networks. Journal of Learning Disabilities, 12(6):408–415, sep 2017. doi: 10.48550/
arXiv.1709.01073.

Chang Woo Hong, Kwangsuk Lee, Min-Seung Ko, Jae-Kyeong Kim, Kyungwon Oh, and Kyeon
Hur. Multivariate Time Series Forecasting for Remaining Useful Life of Turbofan Engine
Using Deep-Stacked Neural Network and Correlation Analysis. In 2020 IEEE International
Conference on Big Data and Smart Computing (BigComp), pp. 63–70. IEEE, feb 2020. doi:
10.1109/BigComp48618.2020.00-98.

Cheng Geng Huang, Hong Zhong Huang, and Yan Feng Li. A Bidirectional LSTM Prognostics
Method Under Multiple Operational Conditions. IEEE Transactions on Industrial Electronics, 66
(11):8792–8802, 2019. doi: 10.1109/TIE.2019.2891463.

10

Under review as a conference paper at ICLR 2023

Yijie Jiang, Yi Lyu, Yonghua Wang, and Pin Wan. Fusion network combined with bidirectional
LSTM network and multiscale CNN for useful life estimation LSTM network and multiscale
CNN for useful life estimation. 12th International Conference on Advanced Computational In-
telligence, ICACI 2020, pp. 620–627, 2020. doi: 10.1109/ICACI49185.2020.9177774.

Man Shan Kan, Andy C.C. Tan, and Joseph Mathew. A review on prognostic techniques for non-
stationary and non-linear rotating systems. Mechanical Systems and Signal Processing, 62-63:
1–20, oct 2015. doi: 10.1016/j.ymssp.2015.02.016.

Zhengmin Kong, Yande Cui, Zhou Xia, and He Lv. Convolution and long short-term memory hybrid
deep neural networks for remaining useful life prognostics. Applied Sciences (Switzerland), 9(19),
2019. doi: 10.3390/app9194156.

Mathias Kraus and Stefan Feuerriegel. Forecasting remaining useful life: Interpretable deep learning
approach via variational Bayesian inferences. Decision Support Systems, 125(April):113100,
2019. doi: 10.1016/j.dss.2019.113100.

Jialin Li, Xueyi Li, and David He. A Directed Acyclic Graph Network Combined With CNN
and LSTM for Remaining Useful Life Prediction. IEEE Access, 7:75464–75475, 2019. doi:
10.1109/ACCESS.2019.2919566.

Xiang Li, Xiaodong Jia, Yinglu Wang, Shaojie Yang, Haodong Zhao, and Jay Lee. Industrial
Remaining Useful Life Prediction by Partial Observation Using Deep Learning With Super-
vised Attention. IEEE/ASME Transactions on Mechatronics, 25(5):2241–2251, oct 2020. doi:
10.1109/TMECH.2020.2992331.

Mathias Liewald, Thomas Bergs, Peter Groche, Bernd Arno Behrens, David Briesenick, Martina
Müller, Philipp Niemietz, Christian Kubik, and Felix Müller. Perspectives on data-driven models
and its potentials in metal forming and blanking technologies. Production Engineering, 2022.
doi: 10.1007/s11740-022-01115-0.

Chenyu Liu, Alexandre Mauricio, Junyu Qi, Dandan Peng, and Konstantinos Gryllias. Domain
adaptation digital twin for rolling element bearing prognostics. Proceedings of the Annual Con-
ference of the Prognostics and Health Management Society, PHM, 12(1):1–10, 2020a. doi:
10.36001/phmconf.2020.v12i1.1294.

Chongdang Liu, Linxuan Zhang, Jiahe Niu, Rong Yao, and Cheng Wu. Intelligent prognostics of
machining tools based on adaptive variational mode decomposition and deep learning method
with attention mechanism. Neurocomputing, 417:239–254, 2020b. doi: 10.1016/j.neucom.2020.
06.116.

Hui Liu, Zhenyu Liu, Weiqiang Jia, and Xianke Lin. Remaining Useful Life Prediction Using a
Novel Feature-Attention-Based End-to-End Approach. IEEE Transactions on Industrial Infor-
matics, 17(2):1197–1207, 2021a. doi: 10.1109/TII.2020.2983760.

Kailong Liu, Yunlong Shang, Quan Ouyang, and Widanalage Dhammika Widanage. A Data-Driven
Approach with Uncertainty Quantification for Predicting Future Capacities and Remaining Useful
Life of Lithium-ion Battery. IEEE Transactions on Industrial Electronics, 68(4):3170–3180,
2021b. doi: 10.1109/TIE.2020.2973876.

Yuanjun Liu and Xingang Wang. Deep Attention: A Self-Attention based Neural Network for
Remaining Useful Lifetime Predictions. 2021 7th International Conference on Mechatronics
and Robotics Engineering, ICMRE 2021, pp. 98–105, 2021. doi: 10.1109/ICMRE51691.2021.
9384841.

Beata Mrugalska. Remaining Useful Life as Prognostic Approach: A Review. In Human Systems
Engineering and Design, pp. 689–695. Springer International Publishing, 2019. doi: 10.1007/
978-3-030-02053-8 105.

NASA. National Aeronautics and Aerospace Administration - Prognostics Cen-
ter of Excellence – PCoE, 2022. URL https://www.nasa.gov/content/
prognostics-center-of-excellence-data-set-repository. visited on
2022-09-01.

11

https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository
https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository

Under review as a conference paper at ICLR 2023

Ikram Remadna, Sadek Labib Terrissa, Ryad Zemouri, Soheyb Ayad, and Noureddine Zerhouni.
Leveraging the Power of the Combination of CNN and Bi-Directional LSTM Networks for Air-
craft Engine RUL Estimation. In 2020 Prognostics and Health Management Conference (PHM-
Besançon), pp. 116–121. IEEE, may 2020. doi: 10.1109/PHM-Besancon49106.2020.00025.

Lei Ren, Li Zhao, Sheng Hong, Shiqiang Zhao, Hao Wang, and Lin Zhang. Remaining Useful Life
Prediction for Lithium-Ion Battery: A Deep Learning Approach. IEEE Access, 6:50587–50598,
2018. doi: 10.1109/ACCESS.2018.2858856.

Lei Ren, Jiabao Dong, Xiaokang Wang, Zihao Meng, Li Zhao, and M. Jamal Deen. A Data-Driven
Auto-CNN-LSTM Prediction Model for Lithium-Ion Battery Remaining Useful Life. IEEE
Transactions on Industrial Informatics, 17(5):3478–3487, 2021. doi: 10.1109/TII.2020.3008223.

Jose Raul Ruiz-Sarmiento, Javier Monroy, Francisco Angel Moreno, Cipriano Galindo, Jose Maria
Bonelo, and Javier Gonzalez-Jimenez. A predictive model for the maintenance of industrial ma-
chinery in the context of industry 4.0. Engineering Applications of Artificial Intelligence, 87
(January 2019):103289, 2020. doi: 10.1016/j.engappai.2019.103289.

Abhinav Saxena, Kai Goebel, Don Simon, and Neil Eklund. Damage propagation modeling for
aircraft engine run-to-failure simulation. In 2008 International Conference on Prognostics and
Health Management, volume 41, pp. 1–9. IEEE, oct 2008. doi: 10.1109/PHM.2008.4711414.

Ran Tang, Gang Fang, Guangjia Liu, and Heng Wang. Propulsion life prediction based on support
vector machine. IOP Conference Series: Earth and Environmental Science, 687(1), 2021. doi:
10.1088/1755-1315/687/1/012082.

Vishnu TV, Diksha, Pankaj Malhotra, Lovekesh Vig, and Gautam Shroff. Data-driven Prognostics
with Predictive Uncertainty Estimation using Ensemble of Deep Ordinal Regression Models. In-
ternational Journal of Prognostics and Health Management/Special Issue on PHM Applications
of Deep Learning & Emerging Analytics, 10(4), 2019. doi: https://doi.org/10.36001/ijphm.2019.
v10i4.2612.

Biao Wang, Yaguo Lei, Naipeng Li, and Tao Yan. Deep separable convolutional network for re-
maining useful life prediction of machinery. Mechanical Systems and Signal Processing, 134:
106330, 2019. doi: 10.1016/j.ymssp.2019.106330.

Jiujian Wang, Guilin Wen, Shaopu Yang, and Yongqiang Liu. Remaining Useful Life Estimation in
Prognostics Using Deep Bidirectional LSTM Neural Network. In 2018 Prognostics and System
Health Management Conference (PHM-Chongqing), pp. 1037–1042. IEEE, oct 2018. doi: 10.
1109/PHM-Chongqing.2018.00184.

Ruihan Wang, Hui Chen, and Cong Guan. A Bayesian inference-based approach for performance
prognostics towards uncertainty quantification and its applications on the marine diesel engine.
ISA Transactions, 118:159–173, dec 2021. doi: 10.1016/j.isatra.2021.02.024.

Dazhong Wu, Connor Jennings, Janis Terpenny, Robert X. Gao, and Soundar Kumara. A Com-
parative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction
Using Random Forests. Journal of Manufacturing Science and Engineering, 139(7):1–9, jul 2017.
doi: 10.1115/1.4036350.

Min Xia, Teng Li, Tongxin Shu, Jiafu Wan, Clarence W. De Silva, and Zhongren Wang. A
Two-Stage Approach for the Remaining Useful Life Prediction of Bearings Using Deep Neu-
ral Networks. IEEE Transactions on Industrial Informatics, 15(6):3703–3711, 2019. doi:
10.1109/TII.2018.2868687.

Zhe Yang, Piero Baraldi, and Enrico Zio. A comparison between extreme learning machine and
artificial neural network for remaining useful life prediction. In 2016 Prognostics and System
Health Management Conference (PHM-Chengdu), number 201506280015, pp. 1–7. IEEE, oct
2016. doi: 10.1109/PHM.2016.7819794.

Wennian Yu, II Yong Kim, and Chris Mechefske. Remaining useful life estimation using a bidi-
rectional recurrent neural network based autoencoder scheme. Mechanical Systems and Signal
Processing, 129:764–780, aug 2019. doi: 10.1016/j.ymssp.2019.05.005.

12

Under review as a conference paper at ICLR 2023

Wennian Yu, II Yong Kim, and Chris Mechefske. An improved similarity-based prognostic algo-
rithm for RUL estimation using an RNN autoencoder scheme. Reliability Engineering System
Safety, 199(February):106926, jul 2020. doi: 10.1016/j.ress.2020.106926.

Ansi Zhang, Honglei Wang, Shaobo Li, Yuxin Cui, Zhonghao Liu, Guanci Yang, and Jianjun Hu.
Transfer learning with deep recurrent neural networks for remaining useful life estimation. Ap-
plied Sciences (Switzerland), 8(12), 2018a. doi: 10.3390/app8122416.

Jianjing Zhang, Peng Wang, Ruqiang Yan, and Robert X. Gao. Long short-term memory for machine
remaining life prediction. Journal of Manufacturing Systems, 48(June):78–86, jul 2018b. doi:
10.1016/j.jmsy.2018.05.011.

Huimin Zhao, Haodong Liu, Yang Jin, Xiangjun Dang, and Wu Deng. Feature Extraction for Data-
Driven Remaining Useful Life Prediction of Rolling Bearings. IEEE Transactions on Instrumen-
tation and Measurement, 70, 2021. doi: 10.1109/TIM.2021.3059500.

Rui Zhao, Ruqiang Yan, Jinjiang Wang, and Kezhi Mao. Learning to Monitor Machine Health
with Convolutional Bi-Directional LSTM Networks. Sensors, 17(2):273, jan 2017. doi: 10.3390/
s17020273.

Sen Zhao, Yong Zhang, Shang Wang, Beitong Zhou, and Cheng Cheng. A recurrent neural network
approach for remaining useful life prediction utilizing a novel trend features construction method.
Measurement: Journal of the International Measurement Confederation, 146:279–288, 2019. doi:
10.1016/j.measurement.2019.06.004.

Caifeng Zheng, Weirong Liu, Bin Chen, Dianzhu Gao, Yijun Cheng, Yingze Yang, Xiaoyong Zhang,
Shuo Li, Zhiwu Huang, and Jun Peng. A Data-driven Approach for Remaining Useful Life Pre-
diction of Aircraft Engines. IEEE Conference on Intelligent Transportation Systems, Proceedings,
ITSC, 2018-November:184–189, 2018. doi: 10.1109/ITSC.2018.8569915.

Shuai Zheng, Kosta Ristovski, Ahmed Farahat, and Chetan Gupta. Long Short-Term Memory Net-
work for Remaining Useful Life estimation. 2017 IEEE International Conference on Prognostics
and Health Management, ICPHM 2017, pp. 88–95, 2017. doi: 10.1109/ICPHM.2017.7998311.

Jun Zhu, Nan Chen, and Weiwen Peng. Estimation of Bearing Remaining Useful Life Based on
Multiscale Convolutional Neural Network. IEEE Transactions on Industrial Electronics, 66(4):
3208–3216, 2019. doi: 10.1109/TIE.2018.2844856.

A APPENDIX

Table A1: C-MAPSS Dataset Description

Description C-MAPSS Dataset
FD001 FD002 FD003 FD004

Training Engines Number 100 260 100 248
Testing Engines Number 100 259 100 248
Operational Conditions 1 6 1 6

Fault Modes 1 1 2 2
Max. Life Spam (Cycles) 362 378 525 546
Min. Life Spam (Cycles) 128 128 145 128

Train Instances (rows) 20.631 53.759 24.720 61.249
Test instances (rows) 13.096 33.991 16.569 41.214

13

Under review as a conference paper at ICLR 2023

Table A2: Sensor measurement variables description

Variable (Sensor Measurement) Description Unit
T2 The total temperature at the fan inlet °R

T24 The total temperature at the LPC outlet °R
T30 The total temperature at the HPC outlet °R
T50 The total temperature at the LPT outlet °R
P2 Pressure at fan inlet psia

P15 Total pressure in bypass-duct psia
P30 Total pressure at the HPC outlet psia
Nf Physical fan speed Rpm
Nc Physical core speed rpm
epr Engine pressure ratio (P50/P2) —

Ps30 Static pressure at HPC outlet psia
phi Ratio of fuel flow to Ps30 pps/psi
NRf Corrected fan speed pm
NRc Corrected core speed rpm
BPR Bypass Ratio —
farB Burner fuel-air ratio —

htBleed Bleed Enthalpy —
Nf dmd Demanded fan speed rpm

PCNfR dmd Demanded corrected fan speed rpm
W31 HPT coolant bleed lbm/s
W32 LPT coolant bleed lbm/s

Table A3: Methods described in the literature and their acronyms

Method Acronym
Anomaly Triggered Long Short-Term Memory AT-LSTM

Bidirectional Gated Recurrent Units BGRU
Bidirectional Long Short-Term Memory Bi-LSTM

Deep- Bidirectional Long Short-Term Memory Deep-Bi-LSTM
Conditional Generative Adversarial Network CGAN

Convolutional Neural Networks CNN
Deep & Attention Network DAN

Deep Gated Recurrent Unit Network DGRU
Deep Long Short-Term Memory Deep LSTM

Deep Separable Convolutional Network DSCN
Direct Acyclic Graphic Network DAG

D-Long Short-Term Memory DLSTM
Extreme Learning Machine ELM

Feature Attention Mechanism BRGU CNN AGCNN Gated Recurrent Unit
GRU

Long Short-Term Memory LSTM
Multiscale Convolutional Neural Networks MSCNN

Neural Turing Machine NTM
Ordinal Regression Censored Estimation Long Short-Term Memory ORCE-LSTM

Polynomial Regression PR
Stacked Sparse Autoencoder SSA

Time Window TW

14

Under review as a conference paper at ICLR 2023

Table A4: Additional characteristics of the state-of-the-art methods

Method Learning
Rate Epochs Batch

Size
Max
RUL

Features
Selected

RMSE
Calculation Ref.

PR+LSTM+CNN 0.001 500 250 N.A. N.A. N.A. [(Kong et al., 2019)]
TW+ELM N.A. N.A. N.A. 125 14 N.A. [(Zheng et al., 2018)]

SSA+GRU N.A. N.A. N.A. 125 Auto.
Selection

Aver. in
10 tests [(Deng et al., 2019)]

DSCN N.A. N.A. N.A. 130 14 Aver. in
20 tests [(Wang et al., 2019)]

Bi-LSTM+MSCNN 0.00001 300 64 125 N.A. N.A. [(Jiang et al., 2020)]
LSTM+NTM 0.005 50 100 130 14 N.A. [(Falcon et al., 2020)]

DLSTM N.A. N.A. N.A. 130 13 N.A. [(Zhao et al., 2019)]

AT-LSTM N.A. N.A. N.A. 125 Auto.
Selection N.A. [(Aydemir & Acar, 2020)]

ORCE-LSTM 0.001/
0.005 Max2000 32 130 N.A. N.A. [(TV et al., 2019)]

DeepLSTM N.A. N.A. N.A. 130 Auto.
Selection N.A. [(Zheng et al., 2017)]

DAN 0.001 500 256 125 N.A. N.A. [(Liu & Wang, 2021)]

CGAN+DGRU 0.0001/
0.001 100/100 54/512 130 N.A. Aver. in

5 tests [(Behera & Misra, 2021)]

Deep-Bi-LSTM N.A. Max300 N.A. 125 14 N.A. [(Wang et al., 2018)]

Bi-LSTM 0.01/
0.015 500/140 30 130 8 N.A. [(Zhang et al., 2018b)]

Bi-LSTM+CNN 0.0001 Max2000 N.A. N.A. Auto.
Selection N.A. [(Remadna et al., 2020)]

DAG+LSTM+CNN 0.005 40 200 125 14 N.A. [(Li et al., 2019)]
Embed-LR N.A. N.A. N.A. 120 N.A. N.A. [(Gugulothu et al., 2017)]

1D-CNN + LSTM + Bi-LSTM 0.0001 200 200 N.A. 14 N.A. [(Hong et al., 2020)]
AGCNN N.A. N.A. N.A. N.A. 14 N.A. [(Liu et al., 2021a)]
Bi-RNN 0.005 to 0.05 N.A. N.A. 135 14 N.A. [(Yu et al., 2020)]
Bi-RNN 0.02 2 N.A. N.A. 14 N.A. [(Yu et al., 2019)]

15

	Introduction
	The problem and dataset
	The problem
	The dataset

	The LSTM-based-AUTO-Bi-LSTM
	LSTM-based Autoencoder
	The Bi-LSTM

	Experimental Context
	Normalisation
	Piece-wise function
	Performance Evaluation Criteria
	LSTM-based-AUTO-Bi-LSTM setup
	Initial setup (baseline setup)
	Testing setup

	Results
	Conclusions
	Appendix

