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Abstract

Given a pre-trained in-distribution (ID) model,
the inference-time out-of-distribution (OOD) de-
tection aims to recognize OOD data during the
inference stage. However, some representative
methods share an unproven assumption that the
probability that OOD data belong to every ID
class should be the same, i.e., these OOD-to-
ID probabilities actually form a uniform distri-
bution. In this paper, we show that this assump-
tion makes the above methods incapable when
the ID model is trained with class-imbalanced
data. Fortunately, by analyzing the causal re-
lations between ID/OOD classes and features,
we identify several common scenarios where the
OOD-to-ID probabilities should be the ID-class-
prior distribution and propose two strategies to
modify existing inference-time detection meth-
ods: 1) replace the uniform distribution with the
ID-class-prior distribution if they explicitly use
the uniform distribution; 2) otherwise, reweight
their scores according to the similarity between
the ID-class-prior distribution and the softmax
outputs of the pre-trained model. Extensive exper-
iments show that both strategies can improve the
OOD detection performance when the ID model
is pre-trained with imbalanced data, reflecting the
importance of ID-class prior in OOD detection.
The codes are available at https://github.
com/tmlr-group/class_prior.
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1. Introduction
How to reliably deploy machine learning models into real-
world scenarios has been attracting more and more attention
(Huang et al., 2021; Liang et al., 2018; Liu et al., 2020). In
real-world scenarios, test data usually contain known and un-
known classes (Hendrycks & Gimpel, 2017). We expect the
deployed model to eliminate the interference of unknown
classes while classifying known classes well. Nevertheless,
current models tend to be overconfident in the unknown
classes (Nguyen et al., 2015), and thus confusing known
and unknown classes, which increases the risk of deploying
these models in the real world. Especially, if the scenarios
are life-critical (e.g., car-driving scenarios), we cannot take
the risks of deploying unreliable models in them. This moti-
vates researchers to study out-of-distribution (OOD) detec-
tion, where we need to identify unknown classes (i.e., OOD
classes) and classify known classes (i.e., in-distribution (ID)
classes) well at the same time (Hendrycks & Gimpel, 2017).

In the OOD detection, a well-known branch is to develop
the inference-time/post hoc OOD detection methods (Huang
et al., 2021; Liang et al., 2018; Liu et al., 2020; Lee et al.,
2018a; Sun et al., 2021), where we are given a pre-trained
ID model and then aim to recognize upcoming OOD data
well. The key advantage of inference-time OOD detection
methods is that the classification performance on ID data
will be unaffected since we only use the ID model instead
of changing it. A general strategy to design a large-scale-
friendly inference-time OOD detection method is to propose
a socre function by using the ID model’s information. For
example, the maximum softmax probability (MSP) uses the
ID model’s outputs (Hendrycks & Gimpel, 2017), and Grad-
Norm uses the ID model’s gradients (Huang et al., 2021). If
the score of a data point is smaller, then this data point is an
OOD data point with a higher probability.

Class imbalance issue is natural in real-world applications
(Cao et al., 2019; Park et al., 2022). Models trained on
classes with fewer samples are often insufficiently trained,
leading to higher inter-class confusion risks. The presence
of fragile classification boundaries can affect the OOD de-
tection performance of the model. However, some represen-
tative methods (Huang et al., 2021; Hendrycks & Gimpel,
2017) share an unproven assumption: the probability that
an OOD data point xout belongs to each ID class i is always
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Figure 1: Three common causal graphs in OOD detection. Under these graphs, we prove that probabilities that an OOD data point xout

belongs to ID classes should be the ID-class-prior distribution PY in (Theorem 3.2). However, some representative OOD detection methods
(Huang et al., 2021; Hendrycks & Gimpel, 2017) assume such probabilities to be a uniform distribution u (e.g., GradNorm in Eq. (2)). In
this figure, each node represents a random variable, and gray ones indicate observable variables. X stands for features, Y stands for
classes, and S stands for styles. In the three graphs, features are generated by classes (i.e., Y → X) (Gong et al., 2016; Stojanov et al.,
2021) or generated by classes and styles (i.e., Y → X ← S) (Yao et al., 2021). The three causal graphs broadly exist in our common
datasets. For example, (a) corresponds to datasets consisting of sketch images, like ImageNet-Sketch (Wang et al., 2019) where ID classes
could be cars and OOD classes could be animals; (b) and (c) correspond to datasets consisting of common images, like ImageNet (Deng
et al., 2009) and MNIST (LeCun et al., 1998). In (b), the ID classes could be cars in ImageNet, and the OOD classes could be numbers in
MNIST (different styles). In (c), the ID classes could be numbers in MNIST, and OOD classes could be classes in Fashion-MNIST (Xiao
et al., 2017) (the same style). Through these graphs, it is clear that Y in ⊥⊥ Xout, i.e., Y in and Xout are independent.

the same. Namely, for any xout,

[P(label of xout is 1), . . . ,P(label of xout is K)]

= [1/K, . . . , 1/K]1×K := u,
(1)

where u is a uniform distribution and K is the number of
ID classes. Taking the GradNorm (Huang et al., 2021) as an
example1, let fΘ(x) be ID model’s output of a data point x,
and the score function of GradNorm SGradNorm(fΘ,x) is∥∥∥∥∂DKL(u∥ softmax(fΘ(x))

∂w

∥∥∥∥
L1

, (2)

where softmax(fΘ(x)) is a vector consisting of predicted
probabilities that x belongs to ID classes, Θ represents
the parameters of model fΘ, w is a component of network
parameter Θ, and DKL(· ∥ ·) is the Kullback-Leibler diver-
gence function. It is clear that GradNorm considers u as a
reference distribution to distinguish between ID and OOD
data. If the divergence between softmax(fΘ(x)) and u is
smaller, then x is an OOD data point with a higher proba-
bility. Nonetheless, since we do not have this assumption
proven, we do not know whether it is correct. If not, the u-
based score functions (e.g., Eq. (2)) are ill-defined because
they cannot guarantee that the lowest score corresponds to
the most OOD-ness data.

1MSP also follows this assumption, see Section 3.1.

In this paper, we analyze the above assumption (i.e., Eq. (1))
under three common causal graphs (Fig. 1), and find that
this assumption holds only when the ID-class prior is u, i.e.,
the ID model is trained with class-balanced data. In other
cases, the reference distribution of OOD data should be the
ID-class-prior distribution PY in (Theorem 3.2), i.e.,

[P(label of xout is 1), . . . ,P(label of xout is K)] = PY in .

Specifically, assume that we have K classes in training data
(i.e., ID data). Let nj be the number of samples in class j,
then the total number of samples is N =

∑K
j nj . Thus, we

have PY in = [n1/N, n2/N, ..., nK/N ].

Empirically, we test the performance of OOD detection
methods when the data are not class-balanced (Fig. 2a),
i.e., PY in ̸= u. We find that the GradNorm will suffer
from the imbalanced situation (see cyan and yellow bars
in Fig. 2b). Besides, it is interesting to find that Energy
(Liu et al., 2020), the other one of representative OOD de-
tection methods that do not explicitly use u, also suffers
from this situation (see cyan and yellow bars in Fig. 2c).
Based on Theorem 3.2, we propose two effective strategies
to modify previous score-based OOD detection methods us-
ing the ID-class-prior distribution: replacing (RP) strategy
and reweighting (RW) strategy. In RP strategy, previous
methods explicitly use the uniform distribution (like Grad-
Norm), so we can modify them by replacing u with the
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ID-class-prior distribution PY in . For example, we can mod-
ify score functions of GradNorm by replacing u in Eq. (2)
with PY in :

SRP+GradNorm(fΘ,x) =

∥∥∥∥∂DKL(PY in∥ softmax(fΘ(x))

∂w

∥∥∥∥
L1

.

For the methods that do not explicitly use the uniform dis-
tribution to compute scores (like Energy (Liu et al., 2020)),
we can use the RW strategy to reweight their scores ac-
cording to the similarity between the ID-class-prior distribu-
tion PY in and the softmax outputs of the pre-trained model
softmax(fΘ(x)). Namely, SRW+Method(fΘ,x) is equal to

SMethod(fΘ,x) ·W (fΘ,PY in),

where SMethod(fΘ,x) is a score function proposed in previ-
ous studies (like Energy (Liu et al., 2020)). W (fΘ,PY in)
represents the weight function shown in Eq. (8).

We conduct extensive experiments to verify the effective-
ness of RP and RW strategies. After our modification, the
results (red bars in Fig. 2) show a significant improvement,
which illustrates the effectiveness of our theory. Moreover,
when evaluate the OOD detection performance on iNatural-
ist dataset, our method can achieve ∼30% increase on AU-
ROC and ∼51% decrease on FPR95, compared with ODIN
(Liu et al., 2020) (see Table 1). It further validates that we
cannot default the reference distribution of OOD data to
the uniform distribution. To improve the generalizability
of OOD detection methods, the class-prior distribution of
the training data should be taken into account, which might
benefit future researches in the OOD detection community.

2. Preliminaries
Let X and Y in = {1, ...,K} be the feature space and ID
label space. Let X in ∈ X , Xout ∈ X and Y in ∈ Y in be the
random variables with respect to X and Y in. P(X in, Y in)
is the ID joint distribution, and P(Xout, Y out) is the OOD
joint distribution, where Xout is a random variable from X ,
but Y out is a random variable whose value do not belong to
Y in. PXin is the ID marginal distribution, and PXout is the
OOD marginal distribution.

OOD Detection (Fang et al., 2022). Given the training data

Dtrain
in = {(x1, y1), ..., (xn, yn)} ∼ P(X in, Y in), i.i.d.,

the aim of OOD detection is to learn a classifier h using
Dtrain

in such that for any test data x drawn from PXin or
PXout : 1) if x is drawn from PXin , then h can classify x
into correct ID classes; and 2) if x is drawn from PXout ,
then h can detect x as OOD data.

Inference-time OOD Detection. A well-known branch
of OOD detection methods is to develop the inference-
time OOD detection (or post hoc OOD detection) methods

(Huang et al., 2021; Liang et al., 2018; Liu et al., 2020;
Hendrycks & Gimpel, 2017; Lee et al., 2018a; Sun et al.,
2021), where we are given a pre-trained ID model and then
aim to recognize upcoming OOD data well. The key ad-
vantage of inference-time OOD detection methods is that
the classification performance on ID data will be unaffected
since we only use the ID model instead of changing it.

Score Functions. Many representative OOD detection
methods (Liu et al., 2020) use a score-based strategy: given
a threshold γ, an ID model fΘ and a score function S, then
x is detected as ID data if S(fΘ,x) ≥ γ:

Gγ(x) =

{
ID, if S(fΘ,x) ≥ γ

OOD , if S(fΘ,x) < γ
(3)

The performance of OOD detection depends on how to
design a score function S to make OOD data obtain lower
scores while ID data obtain higher scores.

3. Methodology
Clearly, without any assumptions or conditions, OOD de-
tection cannot be addressed well due to the unavailability
of OOD data (Zhang et al., 2021; Fang et al., 2022). There-
fore, to investigate the feasibility of OOD detection, in this
section, we consider a natural case that ID classes and OOD
features do not interfere with each other, i.e.,

Assumption 3.1. Random variables Xout and Y in are in-
dependent, i.e., P(Xout, Y in) = PXoutPY in .

Justification of Assumption 3.1. To justify that Assump-
tion 3.1 is realistic, we conclude three common causal
graphs in Fig. 1. These graphs illustrate how the data is
generated through the lens of causality. Notably, in Fig. 1c,
we can observe that X in and Xout are actually dependent,
which is very common in our daily life. It seems that the
dependence of X in and Xout could result in the failure of
Assumption 3.1. However, since X in and Xout are depen-
dent only because of the same style (S in Fig. 1) instead
of classes (Y in Fig. 1) (Yao et al., 2021), the condition
that X in and Xout are dependent does not conflict with As-
sumption 3.1. In fact, there exist many practical scenarios
which meet the causal structure in Fig. 1c, e.g., MNIST and
Fashion-MNIST (Xiao et al., 2017). According to this as-
sumption, we can prove our main theorem, which provides
the theoretical foundation for our paper.

Theorem 3.2 (Corollary of Bayesian Rule). If Assump-
tion 3.1 holds, PY in|Xout(y|x) = PY in(y), for any y ∈ Y in.

Based on Theorem 3.2, we have softmax(fΘ(x)) =
PY in|Xout(y|x) = [PY in|Xout(1|x), ...,PY in|Xout(K|x)] =
[PY in(1), ...,PY in(K)] = PY in , for any OOD data
x. softmax(fΘ(x)) = PY in|Xout(y|x) holds because
softmax(·) maps the model predictions into conditional
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Figure 2: (a) Plot showing the data distribution of balanced and imbalanced datasets. OOD detection performances of (b)
GradNorm and (c) Energy. Smaller FPR95 values are better. Cyan (left) bar: the original method on a balanced dataset.
Yellow (middle) bar: the original method on an imbalanced dataset. Red (right) bar: the original method with our method on
an imbalanced dataset. For a fair comparison, the sample numbers of balanced and imbalanced datasets are the same. More
detailed results are shown in Appendix A.1.1.

probability space (see in Bishop & Nasrabadi (2006)). Next,
we discuss how to utilize this novel observation to improve
existing score-based OOD methods. When the labels of
the training dataset are not available, we can use the pre-
dictions made by the model as an alternative to simulate
empirical ID-class-prior distribution PY in . More analyses
and experiments can be found in the Appendix B.2.

3.1. Rethinking MSP and GradNorm by Theorem 3.2

According to Eq. (3), we discover that the score-based strat-
egy has an implied assumption that if a data point x has
a lower score, then the data x has a higher probability de-
tected as an OOD data point. Based on this assumption, we
consider the ideal case that if a data point x has the smallest
score, then what will happen? When the score function is
MSP, we answer this issue in Theorem 3.3.

Rethinking MSP by Theorem 3.2. We consider the MSP
score and answer the above issue by Theorem 3.3.

Theorem 3.3. Given a data point x ∈ X , if f∗Θ(x) ∈
argminfΘ(x) SMSP(fΘ,x), then

softmax(f∗Θ(x)) = u, where u = [1/K, . . . , 1/K] ∈ RK .

The proof of Theorem 3.3 is in Appendix B.3. According to
the implied assumption, we know that when the data point
has the smallest score, then x has the largest probability de-
tected as an OOD data point. Then, Theorem 3.3 shows that
in the ideal case, the output of this data point x is a uniform
distribution u, which is conflict with our observation (i.e.,
softmax(fΘ(x)) = PY in , if x is an OOD data point) in the
ID class-imbalance case. Hence, to avoid the contradiction,

we replace the uniform distribution u in MSP as follows:

SRP+MSP(fΘ,x)

= max
i∈{1,...,K}

(softmaxi(fΘ(x))− PY in(i)). (4)

Rethinking GradNorm by Theorem 3.2. Here we dis-
cuss how to adjust the GradNorm score. By Eq. (2), in
the ideal case, for any OOD data x, we can conclude that
softmax(fΘ(x)) ≈ u, i.e.,

lim
γ→0

softmax(fΘ(x)) = u, (5)

where fΘ(x) satisfies SGradNorm(fΘ,x) < γ.

Therefore, Eq. (5) is inconsistent with our observation (i.e.,
softmax(fΘ(x)) = PY in , if x is an OOD data point) in the
ID class-imbalance case. Similar to the MSP scenario, the
basic idea is to use the ID-class-prior distribution PY in =
[PY in(1), ...,PY in(K)] to replace the uniform distribution
u, i.e., SRP+GradNorm(fΘ,x), as∥∥∥∥∂DKL(PY in∥ softmax(fΘ(x))

∂w

∥∥∥∥
L1

. (6)

3.2. Replacing and Reweighting Strategies

Replacing (RP) Strategy. For those methods (e.g., MSP
and GradNorm) whose score functions are related to the uni-
form distribution u, the simple and straight way to modify
them is to replace the uniform distribution u with the ID-
class-prior distribution PY in . As mentioned in Section 3.1,
we modify MSP’s score, i.e., SRP+MSP(fΘ,x) to Eq. (4).
and GradNorm’s score, i.e., SRP+GradNorm(fΘ,x) to Eq. (6).

Reweighting (RW) Strategy. For the methods that have no
obvious correlations with the uniform distribution u (e.g.,
ODIN (Liang et al., 2018) and Energy (Liu et al., 2020)),
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we design the RW strategy as a complementary to the RP
strategy. RW strategy reweights their scores according to a
similarity between the ID-class-prior distribution PY in and
softmax(fΘ(x)). Here, we expect that the weights do not
impact on the OOD scores seriously. In this paper, we use
the cosine function as the weight function, which is one
of the most popular distances and similarity functions in
contrastive learning (Chen et al., 2020; Grill et al., 2020;
He et al., 2020). The main reason we choose cosine func-
tion is that cosine is a bounded function and suitable as
a weighting parameter after normalization. Specifically,
SRW+Method(fΘ,x) is equal to

SRW+Method(fΘ,x) = SMethod(fΘ,x) ·W (fΘ,PY in), (7)

where W (fΘ,PY in) is the weight function, i.e.,

W (fΘ,PY in) =(1− cos(softmax(fΘ(x)),PY in))

=(1−
softmax(fΘ(x)) · P⊤

Y in

∥ softmax(fΘ(x))∥ · ∥PY in∥
),

(8)

where we add a constant 1 to the cosine function to make
the weight function be non-negative. SMethod(fΘ,x) is a
score function proposed in previous studies, e.g., ODIN and
Energy. Next, we introduce the details about the reweighted
ODIN and reweighted Energy.

Compared to MSP, the main improvement of ODIN is the
use of a temperature scaling strategy. We can modify ODIN
as follows:2 for a temperature T > 0, SRW+ODIN(fΘ,x) is

max
i∈{1,...,K}

exp (fi(x)/T )∑K
j=1 exp (fj(x)/T )

·W (fΘ,PY in). (9)

Energy (Liu et al., 2020) proposes to replace the softmax
function with the energy function for OOD detection. The
energy function has a property that is highly correlated
with the distribution: the system with a more concentrated
probability distribution has lower energy, while the system
with a more divergent probability distribution (more similar
to the uniform distribution) has higher energy (LeCun et al.,
2006). Thus, the energy of ID data is smaller than OOD
data. Based on Eq. (7), we modify Energy as follows:

−T · log
K∑
i=1

efi(x)/T ·W (fΘ,PY in). (10)

In this paper, we mainly realize our strategies using Eq. (4),
Eq. (6), Eq. (9) and Eq. (10).

2In fact, ODIN uses the modified softmax function with tem-
perature T , which is also related to the uniform distribution, so we
can also modify ODIN with RP strategy. We can map the class-
prior distribution to the same feature space with ODIN’s OOD
scores by temperature T . However, if following the default setting
(T = 1000) in ODIN, ∥PY in −u∥/T ≈ 0. Thus, RP+ODIN may
not work. We will discuss this issue in Appendix B.4.
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Figure 3: Data distribution with different tail index a.

4. Experiments
In this section, we construct a series of imbalanced ID
datasets whose data are sampled from the ImageNet-1K
(Deng et al., 2009). Then, we train the ID classifiers on them
as pre-trained ID models, and use large-scale ImageNet
OOD detection benchmark (Huang & Li, 2021) to evalu-
ate our methods, i.e., RP+MSP (Eq. (4)), RP+GradNorm
(Eq. (6)), RW+ODIN (Eq. (9)), and RW+Energy (Eq. (10)).

4.1. Experiment Setup

Training Dataset. Following Liu et al. (2019), we construct
a series of imbalanced datasets that are sampled by the
Pareto distribution in ImageNet-1K dataset. The definition
of Pareto distribution is in Eq. (11).

p(x) =
ama

xa+1
. (11)

In Appendix B.5, we have shown that the parameter m does
not affect the level of imbalance. Thus, we set m = 1. Addi-
tionally, we note that the level of imbalance depends on the
tail index a (see Fig. 3), thus, to evaluate the performance of
our methods in different imbalanced cases, we take different
tail index a. The frequency distributions of classes of the
sampled datasets are shown in Fig. 3. As the increase of the
tail index a, the sampled datasets become more imbalanced,
thus, the ImageNet-LT-a8 dataset is the most imbalanced.

OOD Datasets. In the inference time, we use the large-scale
benchmark proposed by Huang & Li (2021). In this bench-
mark, the OOD datasets include the subsets of iNaturalist
(Horn et al., 2018), SUN (Xiao et al., 2010), Places (Zhou
et al., 2018), and Textures (Cimpoi et al., 2014). Note that,
there are no overlapping classes between ID datasets and
OOD datasets (Huang & Li, 2021).
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Table 1: OOD detection performance comparison with other competitive score-based OOD detection methods. All methods
are based on ResNet101 trained on ImageNet-LT-a8. ↑ indicates larger values are better and ↓ indicates smaller values are
better. All values are percentages. The bold indicates the best performance while the underline indicates the second.

Method iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MSP (Hendrycks & Gimpel, 2017) 63.95 97.72 66.60 93.13 66.84 92.11 42.74 98.79 60.03 95.44

ODIN (Liang et al., 2018) 60.14 98.70 70.63 93.13 70.14 91.96 41.83 98.30 60.69 95.52
Mahalanobis (Lee et al., 2018a) 60.72 95.87 56.79 94.50 55.27 93.78 49.43 86.99 55.55 92.78

Energy (Liu et al., 2020) 55.99 98.74 71.12 93.11 70.24 91.30 42.38 98.07 59.93 95.30
GradNorm (Huang et al., 2021) 82.51 72.19 74.57 78.10 70.67 86.58 57.31 84.95 71.26 80.45

Dice (Sun & Li, 2022) 85.80 58.96 73.17 76.90 67.83 87.89 58.43 80.59 71.31 76.11

RP+MSP (Ours) 64.95 96.44 67.39 91.79 67.46 91.16 43.05 98.51 60.71 94.48
RW+ODIN (Ours) 90.24 47.52 81.33 75.44 77.90 79.90 61.43 88.03 77.73 72.72
RW+Energy (Ours) 83.12 65.67 80.13 77.51 77.12 80.49 51.70 91.31 73.02 78.75

RP+GradNorm (Ours) 91.23 43.87 77.36 73.53 72.67 83.29 62.94 79.80 76.05 70.12

Evaluation Metrics. We use two common metrics to evalu-
ate OOD detection methods (Huang et al., 2021): the false
positive rate that OOD data are classified as ID data when
95% of ID data are correctly classified (FPR95) (Provost
et al., 1998) and the area under the receiver operating char-
acteristic curve (AUROC) (Huang et al., 2021).

Baselines. In order to verify the effectiveness of our strate-
gies, we select MSP (Hendrycks & Gimpel, 2017), ODIN
(Liang et al., 2018), Energy (Liu et al., 2020), GradNorm
(Huang et al., 2021) and Dice (Sun & Li, 2022) as the base-
lines. Following the setting of (Huang et al., 2021; Liang
et al., 2018), the temperature parameter T in ODIN is set
to be 1000 and in GradNorm is 1. The norm function in
GradNorm is set to be L1 norm.

Models and Hyperparameters. We use mmclassification3

(Contributors, 2020) with Apache-2.0 license to train ID
models. The training details of ResNet (He et al., 2016) and
MobileNet (Howard et al., 2019) follow the default setting
in mmclassification. Note that, all methods are realized
by Pytorch 1.6.0 with CUDA 10.2, where we use several
NVIDIA Tesla V100 GPUs.

4.2. Experimental Results and Analysis

Verification of Two Strategies. Our strategies are appli-
cable to various score functions used by OOD detection
methods. The performance of our methods and baselines
are shown in Table 1. Overall, after modifying previous
methods using our strategies, their performance are signifi-
cantly improved, indicating the effectiveness of our strate-
gies. Specifically, RW+ODIN achieves the highest AUROC
and RP+GradNorm achieves lowest FPR95 compared to
all methods. As a highlight, RW+ODIN shows the most
significant performance improvement on all four datasets:

3https://github.com/open-mmlab/
mmclassification

∼51% FPR95 decrease in iNaturalist, ∼18% FPR95 de-
crease in SUN, ∼12% FPR95 decrease in Places and ∼10%
FPR95 decrease in Textures. Experimental results have
shown that our strategies can outperform the baselines in
the ID-class-imbalanced scenarios.

Analysis of Detection Results on Different ID Classes.
Since the training dataset is imbalanced, we follow Liu et al.
(2019) to divide all ID classes into three categories (ID
Head, ID Mid, ID Tail) for further analysis. In detail, ID
Head category includes the classes containing more than 100
samples in the training dataset;ID Mid category includes
the classes whose number of samples is between 20 and
100 in the training dataset; and ID Tail category includes
the classes containing less than 20 samples in the training
dataset. Then, we evaluate the OOD detection performance
on three datasets: ID Head+OOD, ID Mid+OOD and ID
Tail+OOD (details can be found in Appendix A.1.3). If the
performance of one method on ID Tail+OOD is better than
that on ID Head+OOD, then this method performs better
when facing tailed classes and OOD data.

In the case of GradNorm, experiment results in Fig. 4 show
that our method RP+GradNorm improves the performance
on the above three datasets (ID Head+OOD, ID Mid+OOD,
and ID Tail+OOD). When we take a closer look at the perfor-
mance improvement, we notice that the overall performance
improvement of RP+GradNorm is mainly due to the signif-
icant improvement on the Tail+OOD dataset. This result
might indicate that the previous method, like GradNorm,
confuses OOD data and ID tailed classes, which hinders
their OOD detection performance. The results show that our
strategies can overcome this issue. More detailed results are
shown in Appendix A.1.3.

4.3. Ablation Study

Analysis regarding Tail Index a. Here, we report the per-
formance of our method and baselines when changing the
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Figure 4: Performance comparison of different data type. The figures shows the OOD detection performance of GradNorm
and RP+GradNorm in four OOD datasets.
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Figure 5: OOD detection performance with ResNet101 trained on different imbalanced ID datasets.

tail index a ∈ {2, 3, . . . , 8}. We conduct repeated experi-
ments on these seven datasets (ImageNet-LT-a2, ImageNet-
LT-a3,. . . , ImageNet-LT-a8), and the results are shown in
Fig. 5. Overall, our method RP+GradNorm always out-
performs other baselines with different imbalance degrees.
More importantly, the performance improvement between
RP+GradNorm and each baseline gradually increases, as
the increase of the imbalance degree. This indicates that
RP+GradNorm can handle different imbalanced scenarios
better. More detailed results are in Appendix A.1.2.

Analysis regarding Network Architecture. We evaluate
all methods on a different network architecture, MobileNet-
V3 (Howard et al., 2019). Experiment results in Table 2
show that our methods (RP+GradNorm and RW+ODIN)
still outperform baselines even when we change the network
architecture. In addition, RP+GradNorm has a better per-
formance on FPR95 while RW+ODIN has higher AUROC,
corresponding to the performances of GradNorm and ODIN.

Analysis regarding Model Size. We provide an experi-
ment about the model size of RP+GradNorm. We compare
ResNet50, ResNet101 and ResNet152 trained on ImageNet-

LT-a8 datasets. The results are shown in Table 3. The
optimal model is the smallest one (ResNet50), and we ob-
serve that as the increase of the model size, the performance
decreases. One possible reason is that small models are
more difficult to overfit and thus more suitable for OOD
detection in imbalanced scenarios.

More Experiments and Exploration. First, we can re-
gard the cosine similarity weights in the RW strategy as
a score function, and conduct several experiments in Ap-
pendix A.1.4. We notice that the cosine similarity also
achieves an improvement compared with baselines but the
cosine similarity is sensitive to the ID data distribution.

Second, to evaluate the stability of our strategies, we
conduct 10 independent replicate experiments in Ap-
pendix A.1.5. The results show that our proposed method
RP+GradNorm is stable under differnet trails with randomly
picked tail classes.

Third, to further explore the combination ways between ex-
isting methods and the proposed strategies, we conducted a
series of experiments involving RW+MSP, RW+GradNorm,
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Table 2: OOD detection performance with MobileNet trained on ImageNet-LT-a8. ↑ indicates larger values are better and ↓
indicates smaller values are better. All values are percentages. The bold indicates the best performance while the underline
indicates the second.

Method iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MSP (Hendrycks & Gimpel, 2017) 63.47 92.38 67.27 85.62 64.16 89.62 59.88 89.06 63.69 89.17

ODIN (Liang et al., 2018) 64.68 93.78 74.29 79.42 69.94 89.70 69.06 82.23 69.49 86.28
Energy (Liu et al., 2020) 63.42 96.37 74.95 77.86 70.30 90.50 70.69 80.83 69.84 86.39

GradNorm (Huang et al., 2021) 70.87 78.12 69.70 67.59 66.00 85.75 63.09 74.89 67.41 76.59
Dice (Sun & Li, 2022) 65.61 86.40 69.35 66.38 65.95 88.42 68.85 68.19 67.44 77.35

RP+MSP (Ours) 63.76 91.76 67.56 85.11 64.37 89.41 60.02 88.62 63.93 88.73
RW+ODIN (Ours) 82.51 66.06 80.08 69.12 74.33 79.41 69.58 78.07 76.63 73.16
RW+Energy (Ours) 73.70 80.28 79.32 69.73 74.31 82.30 72.24 76.01 74.89 77.08

RP+GradNorm (Ours) 77.25 68.61 72.49 66.02 68.56 82.30 64.69 71.86 70.75 72.20

Table 3: OOD detection performance with model size increases. The RP+GradNorm method is trained on ImageNet-LT-a8.
All values are percentages. ↑ indicates larger values are better and ↓ indicates smaller values are better.

Model iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
ResNet50 89.85 50.03 80.73 64.52 74.69 78.18 63.31 77.73 77.14 67.62

ResNet101 91.23 43.87 77.36 73.53 72.67 83.29 62.94 79.80 76.05 70.12
ResNet152 88.24 53.14 73.45 78.96 68.61 87.14 59.41 83.71 72.43 75.74

and RW+RP+MSP/GradNorm and the details can be found
in Appendix A.1.6. The results illustrate that MSP and RW
are the best match while GradNorm matches RP well, in
line with the scenario where RW and RP are suitable for
implicit and explicit distribution respectively.

Besides, we also conduct more experiments on various
benchmarks and settings to widely investigate the perfor-
mances. Appendix A.1.7 shows that our methods still work
well when models are trained with long-tailed learning
strategies (Cao et al., 2019; Park et al., 2022) during the
training phase. The results of detecting OOD samples under
balanced training are reported in Appendix A.1.8. We ex-
plore more distance metrics for data distribution and report
the results in Appendix A.1.9. We evaluate our strategies on
near OOD benchmark (Fort et al., 2021) in Appendix A.2.

5. Related works
OOD Detection. OOD detection is a crucial problem for
reliably deploying machine learning models into real-world
scenarios. OOD detection can be divided into two categories
according to whether the classifier will be re-trained for
OOD detection or not.

1) Inference-time/post hoc OOD Detection: Some methods
(Huang et al., 2021; Liang et al., 2018; Liu et al., 2020;
Hendrycks & Gimpel, 2017; Lee et al., 2018a; Sun et al.,
2021) focus on designing OOD score functions for OOD

detection in the inference time and are easy to use without
changing the model’s parameters. This property is important
for deploying OOD detection methods in real-world scenar-
ios where the cost of re-training is prohibitively expensive
and time-consuming. MSP (Hendrycks & Gimpel, 2017)
directly takes the maximum value of the model’s prediction
as the OOD score function. Based on MSP, ODIN (Liang
et al., 2018) uses a temperature scaling strategy and input
perturbation to improve OOD detection performance. More-
over, (Liu et al., 2020) and (Wang et al., 2021a) propose
to replace the softmax function with the energy functions
for OOD detection. Recently, GradNorm (Huang et al.,
2021) uses the similarity of the model-predicted probability
distribution and the uniform distribution to improve OOD
detection and achieve state-of-the-art performance. In this
paper, we mainly work on the inference-time OOD detec-
tion methods and aim at improving the generalizability of
OOD detection in real-world scenarios.

2) Training-time OOD detection: Other methods (Hsu et al.,
2020; Hein et al., 2019; Bitterwolf et al., 2020; Wang et al.,
2021b; Zhu et al., 2023) will complete ID tasks and OOD
detection simultaneously in the training time. (Bitterwolf
et al., 2020) uses adversarial learning to process OOD data
in training time and make the model predict lower con-
fidence scores for them. (Wang et al., 2021b) generates
pseudo OOD data by adversarial learning to re-training a
K+1 model for OOD detection. These methods usually re-
quire auxiliary OOD data available in the training process.
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Thus, the model will be affected by both ID data and OOD
data. It is important for these method to explore an inherent
trade-off (Liu et al., 2019; Vaze et al., 2022; Yang et al.,
2021) between ID tasks and OOD detection.

Wang et al. (2022) is training-time OOD detection and uses
OOD data to train the model. After being finetuned, the
model can deal with the imbalanced issue and OOD prob-
lem. The problem is similar to our paper, but the setting is
completely different with our paper (inference-time OOD
detection). In our paper, we do not change any parameters of
the model and design methods to deal with the imbalanced
issue on OOD detection. Note that our work and this work
are not comparable due to the different problem settings.

Open Set Recognition. In open set recognition, machine
learning models (Huang & Li, 2021; Lee et al., 2018b; Per-
era & Patel, 2019; Perera et al., 2020; Shalev et al., 2018;
Radford et al., 2021; Fort et al., 2021) are required to both
correctly classify the known data (ID) from the closed set
and detect unknown data (OOD) from the open set. Some
works (Lee et al., 2018b; Huang & Li, 2021) use the infor-
mation in the label space for OOD detection, and they divide
the large semantic space into multiple levels for models to
easily understand. (Perera & Patel, 2019) designs two paral-
lel networks training on different dataset and use the mem-
bership loss to encourage high activations for ID data while
reducing activations for OOD data. (Perera et al., 2020)
uses self-supervision and data augmentation to improve the
network’s ability to detect OOD data. Input images are aug-
mented with the representation obtained from a generative
model. In this paper, we consider a more complex open set,
large scale and imbalanced, to achieve OOD detetcion.

6. Conclusion
This paper theoretically and empirically shows that the
unproven assumption of uniform distribution in previous
methods is not valid when the training dataset is imbal-
anced. Moreover, by analyzing the causal relations between
ID/OOD classes and features, we point out that the best
reference distribution for OOD data is the ID-class-prior
distribution. Based on this, we propose two simple and
effective strategies to modify the uniform distribution as-
sumption in previous inference-time OOD detection meth-
ods. RP strategy is suitable for the methods that directly use
the uniform distribution to design the OOD score function,
while RW strategy is designed for methods that potentially
use the assumption. Extensive experiments show that both
strategies can improve the performance of OOD detection
on large-scale image classification benchmarks.
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A. Further Experiments
A.1. Evaluation on ImageNet Benchmark

A.1.1. EVALUATION ON IMBALANCED DATA AND BALANCED DATA

We randomly sample a balanced dataset from ImageNet-1K dataset, which has the same sample numbers with the imbalanced
datasets. We conduct experiments on the balanced data as shown in Fig. 6 and Fig. 7. All methods shows a similar trend,
i.e., the performance drop a lot when the training dataset becomes imbalanced (from cyan bars to yellow bars). Moreover,
our method shows a significant improvement with previous methods on all evaluation tasks (from yellow bars to red bars).
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Figure 6: OOD detection performance (AUROC) of (a) MSP (b) ODIN (c) Energy and (d) GradNorm. Larger AUROC
values are better. Cyan (left) bar: the original method on balanced dataset. Yellow (middle) bar: the original method on
imbalanced dataset. Red (right) bar: the original method with our method on imbalanced dataset.

A.1.2. ANALYSIS REGARDING TAIL INDEX

We can obtain sampled datasets with different levels of imbalance based on the Pareto distribution. ImageNet-LT-a8 dataset
is the most imbalanced, while ImageNet-LT-a2 is the most balanced. We conduct repeated experiments on these seven
datasets and results are shown in Table 4. Obviously, the more imbalanced the training ID dataset becomes, the more our
methods (RP+GradNorm and Cosine Similarity) demonstrates their superior performance of OOD detection, compared to
other methods on all evaluation tasks.

It is noticeable that the detection performance of GradNorm is relatively stable no matter how imbalanced the ratio
changes, compared with other existing methods (such as MSP, ODIN, Energy). These methods explicitly/implicitly use
the discrepancy between the classifier’s output and the uniform distribution. Thus, they will be affected a lot if the prior
distribution changes from the uniform distribution to an imbalanced/tailed one.
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Figure 7: OOD detection performance (FPR95) of (a) MSP (b) ODIN (c) Energy and (d) GradNorm. Smaller FPR95 values
are better. Cyan (left) bar: the original method on balanced dataset. Yellow (middle) bar: the original method on imbalanced
dataset. Red (right) bar: the original method with our method on imbalanced dataset.

As for GradNorm, we conjecture that considering the gradient space might be robust to the changes of priors (such as
from a uniform prior to an imbalanced prior). To verify this conjecture, we conduct the experiment that KL divergence is
directly used to measure the discrepancy between the output of the classifier and the uniform distribution (i.e., GradNorm
without gradient-norm process). The results are shown in Table 5. Obviously, this KL-based method is also significantly
affected by the imbalanced situation, then we can verify this conjecture. Thus, we confirm that GradNorm’s robustness of
the imbalanced ratio depends on the gradient space.

A.1.3. ANALYSIS OF DETECTION RESULTS ON DIFFERENT ID CLASSES

We calculate the evaluation metrics for the three categories (ID-Head, ID-Mid, ID-Tail) by randomly sampling OOD data
in equal proportions corresponding to the number of samples in each category. For example, we have 50000 ID samples
and 10000 OOD samples in total. If the number of samples in category Head is 10000 and accordingly we will sample
2000 OOD samples, then we use the 12000 samples to calculate AUROC and FPR95. The results reflects the confusion
degree between ID Head data and OOD data in the view of OOD detection methods. We conduct experiments to analyze the
performance of different data types, as shown in Table 6.

Moreover, we visualize the OOD score distributions in Fig. 8-Fig. 11. Obviously, the results and figures show that the
previous methods tend to confuse OOD data and the minority classes, which hinders their performance of OOD detection.
And our strategies can reduce the confusion to improve OOD detection performance.
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Table 4: OOD detection performance with ResNet101 trained on different imbalanced ID datasets. ↑ indicates larger values
are better and ↓ indicates smaller values are better. All values are percentages.

Datasets Method iNaturalist SUN Places Textures Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ImageNet-LT-a2

MSP (Hendrycks & Gimpel, 2017) 71.57 89.71 73.74 80.64 70.76 85.17 49.68 96.28 66.44 87.95
ODIN (Liang et al., 2018) 65.92 93.17 76.32 79.60 72.77 84.29 42.67 95.76 64.42 88.21

Mahalanobis (Lee et al., 2018a) 61.12 92.51 52.79 95.47 52.26 94.96 51.19 88.14 54.34 92.77
Energy (Liu et al., 2020) 60.26 95.63 75.57 81.89 72.00 85.90 40.67 95.18 62.12 89.65

GradNorm (Huang et al., 2021) 75.82 75.86 75.33 68.03 70.13 80.61 52.58 86.86 68.46 77.84
Dice (Sun & Li, 2022) 72.17 77.31 73.94 70.28 68.88 83.69 50.12 86.38 66.28 79.42
RP+GradNorm (Ours) 79.66 70.18 75.70 68.50 70.33 81.34 53.30 86.88 69.75 76.72

Cosine Similarity (Ours) 81.84 67.06 73.26 74.27 68.78 81.75 47.94 92.18 67.95 78.82

ImageNet-LT-a3

MSP (Hendrycks & Gimpel, 2017) 73.97 89.10 73.38 80.91 69.91 87.20 50.07 96.28 66.83 88.37
ODIN (Liang et al., 2018) 72.04 92.06 75.92 79.71 71.49 86.30 45.79 95.04 66.31 88.28

Mahalanobis (Lee et al., 2018a) 48.51 94.60 53.81 92.63 53.85 91.84 56.36 86.48 53.13 91.39
Energy (Liu et al., 2020) 67.94 94.42 75.24 82.36 70.48 88.07 44.81 94.02 64.62 89.72

GradNorm (Huang et al., 2021) 83.41 65.27 76.93 67.10 70.94 81.43 57.03 82.25 72.08 74.01
Dice (Sun & Li, 2022) 81.72 65.63 75.60 70.30 69.81 84.44 54.68 82.48 70.45 75.71
RP+GradNorm (Ours) 87.13 56.16 77.47 67.71 71.42 81.96 58.35 82.45 73.59 72.07

Cosine Similarity (Ours) 87.81 50.66 74.15 73.80 68.87 82.92 52.98 87.73 70.96 72.78

ImageNet-LT-a4

MSP (Hendrycks & Gimpel, 2017) 72.41 89.92 73.00 83.34 70.38 86.97 49.96 96.42 66.44 89.16
ODIN (Liang et al., 2018) 70.35 92.76 74.66 82.95 71.35 87.30 46.00 95.50 65.59 89.63

Mahalanobis (Lee et al., 2018a) 49.37 96.48 56.58 93.36 54.98 93.75 51.59 85.45 53.13 92.26
Energy (Liu et al., 2020) 66.27 95.05 73.17 85.85 69.63 89.71 45.13 95.14 63.55 91.44

GradNorm (Huang et al., 2021) 80.87 71.75 74.64 71.60 69.86 84.24 57.87 81.72 70.81 77.33
Dice (Sun & Li, 2022) 78.60 72.35 74.02 73.34 68.94 86.45 55.75 82.18 69.33 78.58
RP+GradNorm (Ours) 86.20 60.40 75.29 71.93 70.40 84.43 59.85 80.51 72.93 74.32

Cosine Similarity (Ours) 89.21 48.91 74.13 74.53 70.06 82.41 57.25 86.60 72.66 73.11

ImageNet-LT-a5

MSP (Hendrycks & Gimpel, 2017) 72.18 91.15 72.43 85.42 70.38 87.73 48.59 97.13 65.89 90.36
ODIN (Liang et al., 2018) 69.53 94.68 75.92 84.34 73.07 87.04 46.49 96.47 66.26 90.63

Mahalanobis (Lee et al., 2018a) 48.35 96.03 58.07 91.81 57.20 90.52 50.00 83.95 53.41 90.58
Energy (Liu et al., 2020) 64.85 95.98 75.38 85.29 72.25 87.89 46.25 95.89 64.68 91.26

GradNorm (Huang et al., 2021) 84.01 67.28 75.30 73.25 69.82 85.38 58.53 82.52 71.91 77.11
Dice (Sun & Li, 2022) 82.88 65.51 73.14 76.80 66.94 89.04 57.04 82.25 70.00 78.40
RP+GradNorm (Ours) 89.59 51.01 76.55 72.93 70.91 84.68 61.06 81.05 74.53 72.42

Cosine Similarity (Ours) 91.53 41.44 78.57 71.83 74.41 79.89 60.13 86.74 76.16 69.97

ImageNet-LT-a6

MSP (Hendrycks & Gimpel, 2017) 70.99 91.04 71.63 86.67 70.50 86.62 45.49 97.66 64.65 90.50
ODIN (Liang et al., 2018) 70.82 92.57 74.04 87.81 72.18 88.25 43.49 96.83 65.13 91.36

Mahalanobis (Lee et al., 2018a) 57.62 89.82 60.18 89.38 59.07 89.46 49.49 84.92 56.59 88.39
Energy (Liu et al., 2020) 67.93 93.88 72.62 89.16 70.44 89.81 43.53 95.94 63.63 92.20

GradNorm (Huang et al., 2021) 83.49 67.76 74.02 76.58 69.12 85.87 55.75 85.46 70.60 78.92
Dice (Sun & Li, 2022) 82.31 68.27 71.70 79.35 66.20 89.82 54.04 85.60 68.56 80.76
RP+GradNorm (Ours) 89.07 51.55 75.09 77.47 69.89 86.28 58.80 84.38 73.21 74.92

Cosine Similarity (Ours) 91.22 43.01 78.35 78.35 74.64 82.94 60.08 88.63 76.07 73.23

ImageNet-LT-a7

MSP (Hendrycks & Gimpel, 2017) 65.60 96.81 68.50 90.68 67.22 91.26 44.65 98.16 61.49 94.23
ODIN (Liang et al., 2018) 63.13 97.72 71.29 91.17 69.16 91.20 43.33 97.64 61.73 94.43

Mahalanobis (Lee et al., 2018a) 50.52 97.86 54.18 92.36 54.19 92.31 51.96 88.28 52.71 92.70
Energy (Liu et al., 2020) 59.46 98.20 70.56 91.89 68.07 91.90 43.77 97.41 60.47 94.85

GradNorm (Huang et al., 2021) 80.38 77.04 73.07 77.43 66.86 88.60 58.65 83.21 69.74 81.57
Dice (Sun & Li, 2022) 81.61 70.42 71.19 78.93 63.79 91.40 57.72 81.95 68.58 80.68
RP+GradNorm (Ours) 88.59 55.40 75.17 75.35 68.78 86.41 63.08 80.83 73.91 74.50

Cosine Similarity (Ours) 90.12 49.49 78.62 77.87 73.94 82.90 62.43 87.54 76.28 74.45

ImageNet-LT-a8

MSP (Hendrycks & Gimpel, 2017) 63.95 97.72 66.60 93.13 66.84 92.11 42.74 98.79 60.03 95.44
ODIN (Liang et al., 2018) 60.14 98.70 70.63 93.13 70.14 91.96 41.83 98.30 60.69 95.52

Mahalanobis (Lee et al., 2018a) 60.72 95.87 56.79 94.50 55.27 93.78 49.43 86.99 55.55 92.78
Energy (Liu et al., 2020) 55.99 98.74 71.12 93.11 70.24 91.30 42.38 98.07 59.93 95.30

GradNorm (Huang et al., 2021) 82.51 72.19 74.57 78.10 70.67 86.58 57.31 84.95 71.26 80.45
Dice (Sun & Li, 2022) 85.80 58.96 73.17 76.90 67.83 87.89 58.43 80.69 71.31 76.11
RP+GradNorm (Ours) 91.23 43.87 77.36 73.53 72.67 83.29 62.94 79.80 76.05 70.12

Cosine Similarity (Ours) 89.81 51.42 81.55 73.25 77.47 78.38 62.41 87.59 77.65 72.66

A.1.4. COSINE SIMILARITY AS A SCORE FUNCTION

We can also regard the cosine similarity weights in the RW strategy as a score function, and conduct several experiments in
Table 4 and Table 7. We notice that the cosine similarity also achieves a significant improvement compared with baselines in
main evaluation tasks. Yet we notice that the cosine similarity is sensitive to the ID data distribution, since the performance
in random sampling experiments (see Table 7) is not good enough compared with RP+GradNorm.
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Table 5: OOD detection performance with ResNet101 trained on different imbalanced ID datasets. KL stands for using only
KL divergence as the OOD detection function. ↑ indicates larger values are better and ↓ indicates smaller values are better.
All values are percentages.

Datasets Method iNaturalist SUN Places Textures Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ImageNet-LT-a2 KL 60.66 95.51 75.21 83.06 71.94 86.15 40.36 95.25 62.04 89.99
ImageNet-LT-a3 KL 68.14 94.26 74.91 83.22 70.32 88.10 44.55 94.10 64.48 89.92
ImageNet-LT-a4 KL 66.58 94.78 72.97 86.35 69.66 89.62 44.97 95.25 63.54 91.50
ImageNet-LT-a5 KL 65.14 95.88 75.02 86.18 72.12 88.03 45.96 96.01 64.56 91.53
ImageNet-LT-a6 KL 68.14 93.77 72.30 89.82 70.44 89.86 43.10 96.15 63.50 92.40
ImageNet-LT-a7 KL 59.71 98.10 70.32 92.18 68.12 91.81 43.49 97.41 60.41 94.88
ImageNet-LT-a8 KL 56.33 98.72 71.09 93.29 70.43 91.13 42.27 98.12 60.03 95.32

Table 6: Performance comparison of different data type. All methods are based on ResNet101 trained on ImageNet-LT-a8.
All values are percentages.

iNaturalist SUN Places TexturesMethod Data Type AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
Overall 82.51 72.19 74.57 78.10 70.67 86.58 57.31 84.95
Head 82.68 66.48 73.13 73.18 68.86 82.66 51.61 83.59
Mid 83.85 69.50 75.88 75.68 71.91 84.41 55.99 85.48GradNorm (Huang et al., 2021)

Tail 82.51 75.77 75.13 80.78 71.64 88.85 58.62 86.62

Overall 91.23(+8.72) 43.83(-28.36) 77.05(+2.48) 74.20(-3.90) 72.36(+1.69) 83.73(-2.85) 63.05(+5.74) 79.95(-5.00)
Head 87.56(+4.88) 51.94(-14.54) 68.13(-5.00) 78.77(+5.59) 61.71(-7.15) 88.02(+5.36) 52.56(+0.94) 83.39(-0.20)
Mid 91.42(+7.56) 42.26(-27.24) 76.87(+0.99) 73.40(-2.29) 72.12(+0.21) 83.30(-1.11) 63.32(+7.33) 79.92(-5.57)RP+GradNorm (Ours)

Tail 93.38(+10.87) 37.58(-38.19) 81.82(+6.69) 70.33(-10.45) 78.51(+6.87) 80.98(-7.87) 69.40(+10.78) 77.01(-9.61)

Table 7: Performance comparison under random sampling. All methods are based on ResNet101 trained on different
imbalanced ID dataset with tail index a = 8. The results are means ± standard errors among ten randomly sampled datasets.
↑ indicates larger values are better and ↓ indicates smaller values are better. All values are percentages.

Method iNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MSP (Hendrycks & Gimpel, 2017) 65.19±0.95 93.77±0.58 66.18±2.91 91.49±0.62 59.83±1.19 93.44±0.47 46.94±0.81 97.16±0.26

ODIN (Liang et al., 2018) 59.30±0.86 96.99±0.31 66.82±3.36 94.2±0.48 59.84±1.35 94.65±0.40 39.79±0.62 98.32±0.10
Mahalanobis (Lee et al., 2018a) 52.70±1.05 94.56±0.72 50.12±5.09 95.79±1.32 49.72±3.50 95.66±1.04 54.79±3.94 91.36±2.52

Energy (Liu et al., 2020) 53.96±0.77 98.20±0.17 65.44±3.72 96.26±0.49 58.67±1.46 95.54±0.51 37.09±0.76 99.07±0.11
GradNorm (Huang et al., 2021) 81.03±0.56 68.73±1.40 76.03±1.77 70.39±1.74 70.87±0.77 83.39±1.18 61.78±0.83 79.80±0.80

RP+GradNorm (Ours) 83.48±1.03 61.93±2.26 78.74±2.43 62.66±1.81 74.20±0.78 77.35±1.42 64.11±0.73 76.80±0.69
Cosine Similarity (Ours) 71.99±7.05 84.29±13.22 71.72±3.87 82.04±3.06 66.63±4.70 87.99±3.45 51.46±4.44 92.95±1.93

Table 8: OOD detection performance with model size increasing. The RP+GradNorm method is trained on ImageNet-LT-a8.
All values are percentages.

Model iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
ResNet50 89.18 51.42 81.55 73.25 77.47 78.38 62.41 87.59 77.65 72.66

ResNet101 90.34 47.35 81.30 75.55 77.84 80.01 62.04 88.05 77.88 72.74
ResNet152 89.19 50.08 79.53 79.20 76.25 82.63 61.41 89.17 76.59 75.27

MobileNet 82.55 65.76 79.73 69.31 73.84 79.47 69.09 78.21 76.30 73.19

A.1.5. PERFORMANCE EVALUATION UNDER RANDOM SAMPLING

To further evaluate the performance of our method RP+GradNorm, we conduct experiments in 10 different ID datasets, which
are generated randomly by the Pareto distribution with a = 2 and a = 8 from ImageNet-1K. The results on ImageNet-a8
dataset are reported in Table 7. From this table, it can be observed that, our method RP+GradNorm can outperform baseline
methods on all evaluation tasks. As a highlight, RP+GradNorm reduces FPR95 from 70.39% to 62.66%. All these results
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Figure 8: OOD score distribution of (a) MSP and (b) RP+MSP.

Table 9: Performance comparison under random sampling. All methods are based on ResNet101 trained on different
imbalanced ID dataset with tail index a = 2. The results are means ± standard errors among ten randomly sampled datasets.
↑ indicates larger values are better and ↓ indicates smaller values are better. All values are percentages.

Method iNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MSP (Hendrycks & Gimpel, 2017) 72.55±0.39 87.64±0.59 68.23±0.35 87.33±0.27 64.82±0.25 90.21±0.27 50.58±0.48 96.02±0.26

ODIN (Liang et al., 2018) 70.70±0.63 89.41±0.75 72.03±0.43 85.31±0.55 67.26±0.38 89.28±0.46 44.86±0.69 95.57±0.28
Energy (Liu et al., 2020) 67.36±0.89 91.14±0.83 72.52±0.63 85.27±0.88 67.33±0.54 89.67±0.61 43.19±0.74 95.42±0.27

GradNorm (Huang et al., 2021) 83.66±0.93 61.90±2.25 78.40±0.76 66.78±1.31 72.09±0.67 79.47±1.09 61.80±0.72 80.21±0.88
RP+GradNorm (Ours) 83.77±0.95 61.83±2.30 78.84±0.77 65.79±1.40 72.50±0.69 78.65±1.17 61.91±0.74 80.12±0.89

show the our method RP+GradNorm still outperforms all baselines under random sampling. ImageNet-a2 dataset is more
similar to the balanced dataset. The results are reported in Table 9. It can be observed that, our method RP+GradNorm can
still outperform baseline methods on all evaluation tasks.

A.1.6. ABLATION STUDY BETWEEN PROPOSED STRATEGIES

To further explore the combination ways between existing methods and the proposed strategies, we conducted a series of
experiments involving RW+MSP, RW+GradNorm, and RW+RP+MSP/GradNorm. The details of these experiments can be
found in Table 10. The results illustrate that MSP and RW are the best match while GradNorm matches RP well, in line with
the scenario where RW and RP are suitable for implicit and explicit distribution respectively.

Our recommendation for practitioners is to prioritize the RP strategy, as it does not alter the original method’s functioning
and can revert to the original method when the ID data is balanced. The RW strategy is a viable option to mitigate the
impact of data imbalance when some methods do not explicitly assume uniform distribution. Moreover, as demonstrated in
Appendix A.1.8, when the data is balanced, the RW strategy has minimal influence on the original method’s performance.
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Figure 9: OOD score distribution of (a) ODIN and (b) RW+ODIN.

Table 10: Ablation study between proposed strategies. All methods are trained on ImageNet-LT-a8 dataset with ResNet101.

Method Strategy iNaturalist SUN Places Textures Average

RP RW AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

MSP

w/o w/o 63.95 97.72 66.60 93.13 66.84 92.11 42.74 98.79 60.03 95.44
w/ w/o 64.95 96.44 67.39 91.79 67.46 91.16 43.05 98.51 60.71 94.48

w/o w/ 71.29 88.46 70.19 87.59 69.66 87.84 45.16 96.90 64.08 90.20
w/ w/ 67.40 94.79 68.23 91.12 68.30 90.34 43.71 98.09 61.91 93.58

GradNorm

w/o w/o 82.51 72.19 74.57 78.10 70.67 86.58 57.31 84.95 71.26 80.45
w/ w/o 91.23 43.87 77.36 73.53 72.67 83.29 62.94 79.80 76.05 70.12

w/o w/ 88.31 55.53 78.49 73.60 74.60 81.00 58.75 84.96 75.04 73.77
w/ w/ 82.56 85.92 77.89 89.06 76.30 88.23 58.73 96.37 73.87 89.89

A.1.7. OOD DETECTION WITH LONG-TAILED LEARNING

We train ResNet50 with some long-tailed methods, like LDAM (Cao et al., 2019) and CMO (Park et al., 2022). Then we
evaluate it with different OOD detection methods and our strategies, as shown in Table 11. The models with LDAM loss do
perform better than those with CrossEntropy loss, but after applying our strategies, there are also significant improvements
in all methods. However, CMO does not bring the performance improvement of OOD detection as LDAM does, and even
performs worse than CrossEntropy. We think that this phenomenon indicates that not all long-tailed training methods are
helpful to improve the OOD detector. But the results show that our strategies still works well while the models try to
overcome the class imbalance in training time.

At last, We would like to reiterate our view on class-imbalanced OOD detection:

• Data imbalance is a common phenomenon, and even a slight imbalance (like the ImageNet-LT-a2 dataset) can still lead
to a decrease in the performance of the OOD detector. After applying our strategies, this phenomenon can be improved.

• Developers do not necessarily use strategies to overcome data imbalance during the training phase of the model,
depending on whether developers need to pay more attention to the minority in specific applications.

• Even if developers use strategies to overcome data imbalance during the training time, it is very hard to obtain a
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Figure 10: OOD score distribution of (a) Energy and (b) RW+Energy.

class-balanced classifier. Experiment results show that our method can achieve performance improvements with or
without a strategy to overcome data imbalance.

A.1.8. EVALUATION ON THE BALANCED DATASET

As for RP strategy, when the training dataset is balanced (the class-prior distribution is uniform distribution in Eqs. (4)
and (6)), RP+Method will be same as the original method.

For RW strategy, we conduct experiments on full ImageNet dataset (note that it is balanced) and the results are shown in
Table 12. The performances of Energy and ODIN are quite close to the performnce of Energy and ODIN using RW strategy
on the balanced dataset.

A.1.9. ABLATION ON THE SIMILARITY METRIC

The performance of RW does indeed depend on the choice of measures used to evaluate the difference between the model
outputs and the ID-class prior. Therefore, We explore how different measures influence the performance of RW in Table 13.

Here, we implement KL and JS divergence for RW, and the results are presented below. Specifically, as the range of
KL divergence is [0,+∞), we used the sigmoid function to normalize it to [0, 1). Additionally, KL divergence is an
asymmetrical function, so we calculate both KL(pred, target) and KL(target, pred). Besides, as the range of JS divergence is
[0, 1], so we make it work as Eq. (7) in our paper.

The experimental results show that the results obtained using different distance metric functions are similar. This suggests
that the effectiveness of RW is due to its rebalancing behavior, and that the choice of distance metric function is relatively
robust.

A.2. Evaluation on Near OOD Benchmark

We follow the benchmark setting in the paper (Fort et al., 2021) to train ResNet50 on Imbalaned Cifar10 / Cifar100 and
evaluate the model on Cifar100 / Cifar10. The bold in Table 14 below means better performance. Basically, our method can
obtain some improvements, although not too much. We think that near-OOD benchmark is more challenging.
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(a) GradNorm
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(b) RP-GradNorm

Figure 11: OOD score distribution of (a) GradNorm and (b) RW+GradNorm.

B. Further Analysis
B.1. Proof of Theorem 3.2

Theorem 1. If Assumption 3.1 holds, then PY in|Xout(y|x) = PY in(y), for any y ∈ Y in.

Proof. Using Assumption 3.1 in the second equation, we have

PY in|Xout(y|x) = P(Y in = y ∧Xout = x)

P(Xout = x)
=

P(Y in = y)P(Xout = x)

P(Xout = x)
= PY in(y).

B.2. Alternative Choice for ID-class-prior Distribution

When the labels of the training dataset are not available, we can use the predictions made by the model as an alternative to
simulate empirical ID-class-prior distribution. Specifically, for each sample xi in training dataset, the prediction made by
the model is softmax(fΘ(xi)). Thus, we have PY in = 1/N ∗

∑N
i=0 softmax(fΘ(xi)).

We also conduct experiments to confirm the assumption, and the results are shown in Table 15. Noticeably, OOD detection
performances with two kinds of ID-class-prior distribution are similar.

B.3. Proof of Theorem 3.3

Proof of Theorem 3.3. According to the definition of softmax function, it is clear that

K∑
i=1

softmaxi(fΘ(x)) = 1 and softmaxi(fΘ(x)) ≥ 0, for ∀ i = 1, ...,K.

Existence. If we assume that for all i = 1, ...,K, softmaxi(fΘ(x)) < 1
K , then

K∑
i=1

softmaxi(fΘ(x)) < 1, which is conflict with
K∑
i=1

softmaxi(fΘ(x)) = 1.
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Table 11: OOD detection performance with long-tailed learning methods.

Method Long-tailed Method iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MSP CrossEntropy 62.50 97.30 67.46 92.04 66.89 91.49 42.64 98.44 59.87 94.82

RP+MSP CrossEntropy 63.45 95.88 67.83 90.85 67.41 90.47 42.74 98.26 60.36 93.87
MSP LDAM 68.12 95.22 70.04 89.39 69.72 87.71 43.04 98.07 62.73 92.60

RP+MSP LDAM 68.95 93.66 70.67 88.07 70.19 86.87 43.27 97.78 63.27 91.60
MSP CMO 71.13 83.77 59.35 93.81 60.35 92.77 49.13 93.58 59.99 90.98

RP+MSP CMO 70.82 84.59 58.92 94.62 59.96 93.49 48.99 93.85 59.67 91.64

ODIN CrossEntropy 59.34 98.59 72.57 91.68 70.85 90.83 42.00 98.16 61.19 94.81
RW+ODIN CrossEntropy 84.04 76.58 68.25 95.94 65.69 96.43 53.00 92.16 67.75 90.28

ODIN LDAM 64.08 98.28 74.40 90.79 72.93 89.01 39.74 98.37 62.79 94.11
RW+ODIN LDAM 85.94 71.28 68.59 96.92 66.77 96.63 50.30 93.53 67.90 89.59

ODIN CMO 73.67 81.36 58.94 93.39 59.57 92.54 49.34 92.41 60.38 89.93
RW+ODIN CMO 77.19 81.55 53.21 95.26 56.84 93.90 57.03 83.67 61.07 88.60

Energy CrossEntropy 56.25 98.95 73.60 91.56 71.32 90.37 42.68 98.10 60.96 94.75
RW+Energy CrossEntropy 90.57 42.68 80.09 76.41 76.12 80.78 64.68 86.17 77.87 71.51

Energy LDAM 59.93 98.80 74.74 91.99 72.74 90.39 39.51 98.37 61.73 94.89
RW+Energy LDAM 92.32 35.76 82.38 74.25 78.61 79.08 63.32 86.35 79.16 68.86

Energy CMO 73.24 85.77 55.50 95.64 55.64 95.54 48.93 91.56 58.33 92.13
RW+Energy CMO 79.75 71.54 54.32 97.12 53.63 96.51 52.31 90.32 60.00 88.87

GradNorm CrossEntropy 80.61 74.33 78.73 68.77 72.78 82.15 58.12 81.97 72.56 76.80
RP+GradNorm CrossEntropy 89.85 50.03 80.73 64.52 74.69 78.18 63.31 77.73 77.14 67.62

GradNorm LDAM 87.05 58.11 81.20 66.00 76.01 78.42 55.95 81.86 75.05 71.10
RP+GradNorm LDAM 92.87 36.75 82.70 63.74 77.41 77.21 60.50 79.01 78.37 64.18

GradNorm CMO 78.56 77.25 57.91 95.74 56.94 96.06 52.86 89.79 61.57 89.71
RP+GradNorm CMO 84.90 63.05 63.65 92.25 61.24 94.42 59.17 86.06 67.24 83.95

Table 12: OOD detection performances on full ImageNet dataset.

Method RW Strategy iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
ODIN w/o 89.81 45.74 83.01 63.84 82.50 66.48 81.31 65.51 84.16 60.39

w/ 89.87 45.37 83.05 63.59 82.54 66.32 81.36 65.27 84.20 60.14
Energy w/o 93.28 37.62 88.60 49.48 87.36 54.61 86.80 53.40 89.01 48.78

w/ 93.48 35.86 88.48 50.13 87.29 54.80 86.72 53.24 88.99 48.51

Therefore, there is at least one i such that softmaxi(fΘ(x)) ≥ 1
K , which implies that

min
fΘ(x)

SMSP(fΘ,x) ≥ 1

K
.

Note that when softmax(fΘ(x)) = u, SMSP(fΘ,x) = 1
K , which implies that there exists f̃Θ(x) ∈

argminfΘ(x) SMSP(fΘ,x) such that
u = softmax(f̃Θ(x)).

Uniqueness. If there is f∗Θ(x) ∈ argminfΘ(x) SMSP(fΘ,x) such that softmax(f∗Θ(x)) ̸= u, it is clear that

K∑
i=1

softmaxi(f
∗
Θ(x)) < 1,

which is conflict with
∑K

i=1 softmaxi(fΘ(x)) = 1. Therefore, softmax(f∗Θ(x)) = u.

Combining the results in existence and uniqueness, we have completed this proof.

B.4. Discussion about RP+ODIN

ODIN (Liang et al., 2018) is an enhanced version of MSP, whose main improvement is the introduction of a temperature
scaling strategy. The temperature parameter T smoothes the prediction distribution of the softmax function and thus making
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Table 13: Ablation on the similarity metric

Method RW iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

Energy

cos 83.12 65.67 80.13 77.51 77.12 80.49 51.70 91.31 73.02 78.75
KL(pred, target) 76.52 74.40 79.10 73.60 75.40 77.40 47.06 89.80 69.52 78.80
KL(target, pred) 70.92 83.60 77.95 77.60 74.45 78.90 46.27 91.00 67.40 82.78

JS 83.82 64.20 81.83 69.70 77.71 75.10 51.55 88.30 73.73 74.33

ODIN

cos 90.24 47.52 81.33 75.44 77.90 79.90 61.43 88.03 77.73 72.72
KL(pred, target) 89.98 44.00 82.04 67.70 77.84 75.00 55.34 85.20 76.30 67.98
KL(target, pred) 86.10 65.50 81.16 70.70 76.72 76.30 53.14 87.20 74.28 74.93

JS 89.10 52.00 82.95 68.20 78.75 74.90 56.19 86.00 76.75 70.28

Table 14: Evaluation on near OOD benchmark.

ID Dataset OOD Dataset Method AUROC↑ FPR95↓
MSP 81.76 78.45

RP+MSP 74.75 72.90
ODIN 83.53 67.65

Imbalanced Cifar10 Cifar 100 RW+ODIN 85.14 65.85
Energy 83.61 66.68

RW+Energy 85.40 64.23
GradNorm 29.21 99.45

RP+GradNorm 40.62 93.63

MSP 68.49 87.91
RP+MSP 67.75 87.86

ODIN 70.83 86.42
Imbalanced Cifar100 Cifar10 RW+ODIN 70.90 86.43

Energy 70.89 86.15
RW+Energy 71.03 86.57
GradNorm 34.89 99.06

RP+GradNorm 35.72 99.15

the prediction sparser and more similar to the uniform distribution.

SODIN(fΘ,x) = max
i

exp (fi(x)/T )∑C
j=1 exp (fj(x)/T )

(12)

Since ODIN maps the prediction distribution of the softmax layer to another distribution space while we need to measure
the similarity between the class-prior distribution and the model-predicted distribution, we need to use the same mapping
method to deal with the class-prior distribution PY in = [p1, p2, ..., pC ], as follows:

P′
Y in =

[
exp (p1/T )∑C
j=1 exp (pj/T )

,
exp (p2/T )∑C
j=1 exp (pj/T )

, . . . ,
exp (pC/T )∑C
j=1 exp (pj/T )

]
(13)

Then, we use this new class-prior distribution P′
Y in to modify ODIN with RP strategy as Eq. (15).

hΘ(x) =

[
exp (f1(x)/T )∑C
j=1 exp (fj(x)/T )

,
exp (f2(x)/T )∑C
j=1 exp (fj(x)/T )

, . . . ,
exp (fC(x)/T )∑C
j=1 exp (fj(x)/T )

]
(14)

SRP+ODIN(fΘ,x) = max (hΘ(x)− P′
Y in) (15)

When we follow the default setting T = 1000 in ODIN, we notice that P′
Y in will be quite close to the uniform distribution,

where each element is close to 1/K. Thus,Eq. (15) can be regarded as hΘ(x) minus a constant.
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Table 15: Performance comparison of two different ID-class-prior distribution acquisition methods.

Method ID-class-prior Distribution iNaturalist SUN Places Texture Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

RP+MSP Model Prediction 63.36 96.05 68.19 90.40 67.44 90.58 42.93 98.17 60.48 93.80
Data Label 63.34 96.09 68.19 90.44 67.43 90.64 42.93 98.17 60.48 93.84

RW+ODIN Model Prediction 84.02 76.52 68.62 95.56 65.85 96.28 53.21 90.22 67.93 89.65
Data Label 84.04 76.49 68.57 95.59 65.81 96.29 53.23 91.99 67.91 90.09

RW+Energy Model Prediction 90.64 42.30 80.51 75.14 76.39 80.29 64.64 85.78 78.05 70.88
Data Label 90.56 42.69 80.46 75.34 76.27 80.48 64.79 85.90 78.02 71.10

RP+GradNorm Model Prediction 89.89 49.89 80.75 64.33 74.70 78.11 63.36 77.70 77.17 67.51
Data Label 89.85 50.03 80.73 64.52 74.69 78.18 63.31 77.73 77.14 67.60

B.5. Discussion about m in Pareto Distribution

For each class xi, the sample number is

yi = N × p(xi) = N × ama

xa+1
i

, (16)

where a is tail index, m is a constant and N is the sample number of the ImageNet-1K dataset.

After sampling, the new data distribution for each class is

p(yi) =
yi∑K
i=1 yi

=
N × ama

xa+1
i∑K

i=1(N × ama

xa+1
i

)
=

1

xa+1
i

∑K
i=1

1
xa+1
i

. (17)

Obviously, the value of m do not affect the imbalance degree of sampled datasets. Thus, we keep m = 1 unchanged.

B.6. Discussion about Feature-based Methods

Feature-based methods, like KNN (Sun et al., 2022), need a training set to generate class prototypes, i.e., an average feature
vector for each category. Under class-imbalanced situations, prototypes of tailed classes would be more unreliable than the
majority due to the limitation of training samples. We think using ID-class-prior distribution to reweight features may be an
effective way to solve the imbalanced problem in feature space.

B.7. Discussion about possibility for RP+MSP.

In order to discuss about the possibility for aligning the minimizer of the score function with the class priors, we conduct
experiments for maxi(softmaxi(f(x))/PY in(i)) and show the corresponding results in the below table. Our experiments
show that maxi(softmaxi(f(x))/PY in(i)) also performs very well.

Table 16: OOD detection performances on ImageNet-LT-a8 dataset.

Method iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
maxi(softmaxi(f(x))/PY in(i)) 81.76 69.75 57.80 94.80 54.90 94.68 52.01 88.97 61.62 87.05
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