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Abstract

Chain-of-thought (CoT) prompting has001
emerged as a popular in-context learning (ICL)002
approach for large language models (LLMs),003
especially when tackling complex reasoning004
tasks. Traditional ICL approaches construct005
prompts using examples that contain questions006
similar to the input question. However, CoT007
prompting, which includes crucial intermediate008
reasoning steps (rationales) within its exam-009
ples, necessitates selecting examples based010
on these rationales rather than the questions011
themselves. Existing methods require human012
experts or pre-trained LLMs to describe the013
skill, a high-level abstraction of rationales, to014
guide the selection. These methods, however,015
are often costly and difficult to scale. Instead,016
this paper introduces a new approach named017
Latent Reasoning Skills (LaRS) that employs018
unsupervised learning to create a latent space019
representation of rationales, with a latent020
variable called a reasoning skill. Concurrently,021
LaRS learns a reasoning policy to determine022
the required reasoning skill for a given023
question. Then the ICL examples are selected024
by aligning the reasoning skills between past025
examples and the question. Our approach is026
theoretically grounded and sample-efficient,027
eliminating the need for helper LLM inference028
or manual prompt design. Empirically, LaRS029
achieves performance comparable to SOTA030
rationale-based selection methods, saving031
thousands of LLM inferences and significantly032
reducing the time required to process the033
example bank.034

1 Introduction035

Large Language Models (LLMs) exhibit remark-036

able capabilities in solving various downstream037

tasks through in-context learning (ICL) (Brown038

et al., 2020), even without being explicitly trained039

on the distribution of in-context examples (Vaswani040

et al., 2017; Devlin et al., 2019; Rae et al., 2021;041

(a) Question-similarity-based selection.

(b) Skill-based selection.

Figure 1: CoT prompting with examples selected by (a) similar
questions and (b) similar skills that (mis)match the skills in
their rationales.

Chowdhery et al., 2022; Wei et al., 2022a). Us- 042

ing in-context learning, LLMs generate output for 043

an input query by conditioning on a prompt that 044

contains a few input-output demonstrations. 045

Reasoning tasks have proven to be particularly 046

difficult for language models and NLP in gen- 047

eral (Rae et al., 2021; Bommasani et al., 2021; 048

Nye et al., 2021). In the recent literature, chain- 049

of-thought (CoT) prompting, an ICL method, has 050

been proposed to improve LLMs on a wide spec- 051

trum of reasoning tasks by guiding LLMs to pro- 052

duce a sequence of intermediate steps (rationale) 053

for generating a (better) final answer (Cobbe et al., 054

2021a; Wei et al., 2022b; Suzgun et al., 2022). The 055

prompts for CoT are composed of demonstrations 056

that contain not only input and output, but also the 057
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Figure 2: An overview of LaRS including a pre-processing stage (left) and a selection stage (right).

rationales for why the output holds.058

The core challenge for ICL lies in designing ef-059

fective demonstrations to prompt LLMs. Much060

evidence has indicated the significant impact of061

demonstrations on the performance of ICL (Lu062

et al., 2021; Liu et al., 2021). To form a prompt,063

one important setting considers selecting demon-064

strations from an existing example bank, termed065

demonstration selection (Dong et al., 2022). While066

a variety of methods exist in the ICL literature for067

automating this process, CoT prompts are distinct068

in that they include not only questions and answers069

but also specially-designed rationales. This distinc-070

tion highlights the importance of rationales in se-071

lecting demonstrations for CoT prompting. Specifi-072

cally, CoT prompting should select demonstrations073

that illustrate relevant skills within their rationales074

to effectively address a given question. For in-075

stance, in solving math word problems (as depicted076

in Fig. 1), a useful rationale involves computing ad-077

dition to get the correct answer. Selecting few-shot078

examples based on the question similarity (Fig. 1a)079

might lead to examples showcasing subtraction and080

generate incorrect rationales. However, skill-based081

selection (Fig. 1b) can align the skills between ex-082

amples and the given question, which leads to cor-083

rect answers guided by relevant rationales.084

To achieve such a skill-based demonstration se-085

lection, An et al. (2023b) introduces Skill-KNN,086

which employs pre-trained LLMs to generate skill087

descriptions. Then, the few-shot examples are088

selected based on the embedding of the skill de-089

scriptions computed by another pre-trained embed-090

ding model. This process is illustrated by Fig. 2091

(left). Although this approach is straightforward,092

the LLM-generated skill descriptions can be some-093

what arbitrary, heavily relying on the manually094

crafted prompts. This reliance constrains its wider095

applicability across diverse reasoning tasks. More-096

over, the approach requires to generate a unique 097

skill description for each example, which limits its 098

scalability to larger example banks. 099

Rather than relying on LLMs, we introduce 100

Latent Reasoning Skill Discovery (LaRS), a new 101

skill-based demonstration selection method. This 102

approach learns skills as latent space representa- 103

tions of rationales through unsupervised learning. 104

The essence of LaRS lies in a unique formulation 105

for the generation of rationales, which we term 106

the latent skill model. This model, inspired by the 107

principles of topic models (Xie et al., 2021a), con- 108

ditions the generation of a rationale on both a given 109

question and a latent variable, called a reasoning 110

skill. This latent variable embodies a high-level 111

abstraction of the rationales, such as formats, equa- 112

tions, or knowledge. 113

Under the skill model formulation, LaRS utilizes 114

a Conditional Variational Auto-encoder (CVAE) to 115

approximate the generation of rationales on a small 116

dataset from the example bank. As a result, two 117

probabilistic models can be learned concurrently: 118

(1) a reasoning skill encoder that maps an example 119

to the actual reasoning skills demonstrated in the 120

rationale; and (2) a reasoning policy that predicts 121

the reasoning skills required for a particular ques- 122

tion. This method of learning through a CVAE, 123

especially when applied to a small dataset from the 124

example bank, is both cost-efficient and fast com- 125

pared to Skill-KNN. Fig. 2 presents an overview of 126

LaRS, including a comparison of its computational 127

efficiency relative to Skill-KNN. 128

The efficacy of LaRS is evaluated on four differ- 129

ent benchmarks based on four backbone LLMs 130

with varying scales. The method is also com- 131

pared with baseline approaches, including an oracle 132

method that assumes access to ground truth ratio- 133

nales. LaRS achieves comparable performance to 134
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Skill-KNN with no extra LLM inferences and also135

matches the oracle performance in almost half of136

the experiments. A summary of this paper’s contri-137

bution is as follows:138

• We propose LaRS, a novel unsupervised demon-139

stration selection approach for CoT prompting,140

and empirically verify its effectiveness through141

four sets of experiments142

• We introduce the latent skill model, a plausible143

formulation for CoT reasoning, which has illumi-144

nated a deeper understanding of CoT prompting.145

• We present theoretical analyses of the optimality146

of the latent-skill-based selection method.147

2 Related Work148

This section discusses related work in two differ-149

ent directions.150

2.1 CoT Reasoning151

CoT prompting is a special prompt design tech-152

nique that encourages LLMs to generate interme-153

diate rationales that guide them towards providing154

accurate final answers. These rationales can exhibit155

remarkable flexibility in their styles. For instance,156

the original work by (Wei et al., 2022b) specially157

designs rationales in the in-context demonstrations158

to suit different reasoning tasks. Moreover, novel159

prompt designs that highlight diverse formats of the160

rationales have emerged to enhance CoT prompt-161

ing. For example, (Kojima et al., 2022) proposed162

Program of Thoughts (PoT) that disentangles tex-163

tual reasoning from computation, with the latter164

specially handled through program generation.165

In contrast to manual design, our method LaRS166

can be thought of as automatic discovery of di-167

verse rationale styles from an example bank. This168

method can also dynamically select reasoning skills169

based on the specific questions. Worth noting,170

(Chen et al., 2023) introduces SKills-in-Context171

(SKiC), which confines rationale generation to pre-172

defined “skills” within the prompt. Although shar-173

ing a similar motivation to LaRS, we emphasize174

two crucial distinctions: (1) while SKiC relies on175

manual “skills” design, LaRS automatically discov-176

ers them, (2) SKiC presents a full list of “skills” in177

the prompt, allowing LLMs to select from them,178

whereas LaRS learns the skill selection from the ex-179

ample bank, explicitly instructing LLMs on which180

skill to employ through in-context examples.181

2.2 Demonstration Selection 182

Demonstration selection refers to a special set- 183

ting, where the prompts are constructed by select- 184

ing examples from an example bank. In this con- 185

text, our LaRS aligns with the paradigm of unsu- 186

pervised demonstration selection, which involves 187

designing heuristics for this selection process. A 188

variety of heuristics have been explored, including 189

similarity (Gao et al., 2021; Hu et al., 2022), di- 190

versity (Zhang et al., 2022), coverage (Gupta et al., 191

2023), and uncertainty (Diao et al., 2023). Among 192

these, Skill-KNN ((An et al., 2023b)) shares the 193

closest resemblance to our approach. However, 194

Skill-KNN relies on pre-trained LLMs to provide 195

“skill” annotations, which could be arbitrary and 196

resource-intensive, requiring extensive inferences 197

of LLMs and human prompt design. In contrast, 198

LaRS automatically discovers reasoning skills by 199

learning a very lightweight CVAE. In addition, 200

the selections based on these discovered reason- 201

ing skills are theoretically-grounded based on the 202

latent skill model and the theoretical analyses pre- 203

sented in this paper. 204

3 Formulation 205

In this section, we formally describe the skill 206

model, a new formulation for explaining the gener- 207

ation of rationales in CoT reasoning. In Section 3.1, 208

the skill model is first introduced to describe the 209

human-generated rationales. Then, Section 3.2 il- 210

lustrates how the skill model can be adapted to 211

LLM-generated rationales. Finally, leveraging the 212

concept of reasoning skill as outlined in the skill 213

model, a new latent-skill-based demonstration se- 214

lection method is formally described in Section 3.3. 215

3.1 Skill Model 216

Let X be the set of all sequences of tokens, 217

Z be the continuous vector space of latent rea- 218

soning skills, and PH denotes the probability dis- 219

tribution of real-world natural language. CoT 220

reasoning is to generate a rationale R ∈ X 221

given a question Q ∈ X , whose correctness1 can 222

be verified by an indicator function 1(R,Q) := 223

1(R is the correct rationale for Q). 224

The skill model assumes that the real-world con- 225

ditional distribution of R given Q can be described 226

1For math word problems, whose answers are discrete la-
bels, the correct rationale should contain the correct answer
label as the final step. For code generation, the correct ratio-
nale should be the correct code.
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as follows:227

PH(R | Q) =
∫
Z PH(R | z,Q)PH(z | Q)dz (1)228

where, PH(z | Q) is the posterior of selecting229

latent reasoning skills in human reasoning, called230

a reasoning policy. PH(R | z,Q) is the posterior231

distribution of generatingR given a questionQ and232

a reasoning skill z. A causal graph illustrating such233

a generation process involving a latent reasoning234

skill z is presented in Fig. 3 on the left.235

Unlike (Wang et al., 2023), this formulation con-236

siders a dependency of z on Q reflecting a pref-237

erence for selecting particular reasoning skills to238

solve a given question. We justify this formulation239

as follows:240

1. Rationales can exhibit remarkable flexibil-241

ity, manifesting diverse formats, topics, and242

knowledge, which can naturally be abstracted243

into the high-level concepts of reasoning244

skills.245

2. The selection of these skills is not bound by246

strict determinism. For instance, diverse rea-247

soning paths and formats could all contribute248

toward finding the correct final answer. There-249

fore, real-world data is a mixture of diverse250

skills captured by a stochastic reasoning pol-251

icy PH(z | Q).252

3.2 CoT prompting253

LLMs are pre-trained conditional generators.254

Given an input query X ∈ X , the conditional dis-255

tribution of an output Y ∈ X generated by LLMs256

can be written as PM (Y | X). LLMs are usually257

trained on generic real-world data distribution such258

that PM (Y | X) ≈ PH(Y | X).259

Prior studies have presented an implicit topic260

model formulation in explaining the in-context261

learning mechanisms of LLMs (Wang et al., 2023;262

Xie et al., 2021a). Similarly, we posit that LLMs263

can be viewed as implicit skill models for generat-264

ing rationales. To elaborate, when generating ratio-265

nales, LLMs’ conditional distribution PM (R | Q)266

can be extended as follows (with illustrations in267

Fig. 3 on the left):268

PM (R | Q) =
∫
Z PM (R | z,Q)PM (z | Q)dz (2)269

This implicit skill model assumes that LLMs also270

infer reasoning skills z, which resembles the real-271

world generation of rationales.272

The above formulation only encompasses the273

zero-shot generation of rationales. In practice,274

Figure 3: Causal graphs for prompting with zero-shot/human
(left), zero-shot CoT (middle), and few-shot CoT (right) for
generating rationales via skills. The dashed arrow from Q to
z indicates possible sub-optimal inference of the reasoning
skills from both human and zero-shot LLM generations.

prompts are commonly provided to guide LLMs’ 275

generation. In general, two CoT prompting strate- 276

gies exist: zero-shot CoT, employing a prompt com- 277

prising a short prefix and a test question, and few- 278

shot CoT, employing a prompt containing pairs of 279

questions and rationales. Denoting pt ∈ X as a 280

prompt, a unified formulation for both prompting 281

strategies can be derived as follows: 282

PM (R | pt) =
∫
Z PM (R | z,Q)PM (z | pt)dz (3) 283

0-shot CoT: pt = (prefix, Q) or (Q, prefix) 284

k-shot CoT: pt = (Q1, R1, · · · , Qk, Rk, Q) 285

Here, the formulation is simplified such that the 286

use of prompts only influences the probability dis- 287

tribution of z. For instance, a prefix specifying the 288

generation’s format can be interpreted as specify- 289

ing the reasoning skill z by shaping the distribu- 290

tion from PM (z | Q) to PM (z | pt). This sim- 291

plification aligns with empirical evidence suggest- 292

ing that in-context examples serve as mere point- 293

ers to retrieve already-learned knowledge within 294

LLMs (Shin et al., 2020; Min et al., 2022; Wang 295

et al., 2022). 296

Drawing upon this formulation, we can gain in- 297

sight into the failure of zero-shot generation. In 298

general, real-world data is inherently noisy, indi- 299

cating that the reasoning policy PH(z | Q) may be 300

sub-optimal, and the reasoning skills are not cho- 301

sen to maximize the accuracy of answering a test 302

question. Trained on this generic real-world data 303

distribution, PM (z | Q) could also be sub-optimal, 304

leading to the failure of zero-shot generation. On 305

the other hand, CoT prompting improves the rea- 306

soning performance by shaping the distribution of 307

reasoning skills using carefully-designed prompts 308

that contain either instructions or few-shot exam- 309

ples. 310

3.3 Skill-Based Demonstration Selection 311

The analysis above suggests that the key to the 312

success of CoT prompting is to design an effec- 313

tive prompt that shapes the posterior distribution of 314
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reasoning skills, assuming that the real-world dis-315

tribution PH(z | Q) is potentially sub-optimal. In316

contrast to the real-world distribution, the demon-317

stration selection problem assumes access to an318

example bank of question-rationale pairs, denoted319

as DE = {(R,Q)}. This example bank is usu-320

ally specially-crafted and has a distribution dif-321

ferent from the real-world distribution. Denot-322

ing PE as the distribution of the example bank,323

R is distributed according to PE(R | Q) for all324

(R,Q) ∈ DE .325

Given DE , the demonstration selection is to se-326

lect a few question-rationale pairs from DE . As-327

suming that each selected demonstration is i.i.d, a328

demonstration selection method can be uniquely329

defined as a probabilistic model g(Q,R|Qtest) :=330

X 7→ ∆(X ) that maps a test question Qtest to a331

probability distribution of demonstrations. Then,332

we can formally define the skill-based demonstra-333

tion selection method as follows:334

Definition 1 Skill-based demonstration selection335

is given by336

gskill(Q,R | Qtest) =
∫
Z PE(Q,R | z)PE(z | Qtest)dz337

338

Intuitively, this selection method maximizes the339

probability of a selected demonstration showcas-340

ing the reasoning skill that is likely to be chosen341

according to PE(z | Q). Since the example bank342

is usually specially-crafted and contains rationales343

showcasing “better” reasoning skills, the in-context344

examples that align with PE(z | Q) are intuitively345

more effective. In Section 4.3, we provide theoreti-346

cal analysis of the optimality of this skill-based se-347

lection when conditioned on certain ideal assump-348

tions of the example bank and LLMs.349

4 Method350

To enable the skill-based demonstration selec-351

tion (Definition 1), we introduce our approach352

LaRS , which involves learning a conditional vari-353

ational autoencoder (CVAE) to approximate PE354

using the data from the example bank DE . We355

then outline a practical demonstration selection356

process aligning with the skill-based selection. The357

schematic overview of LaRS (right) and the corre-358

sponding demonstration selection process (left) are359

illustrated in Figure 2.360

4.1 Latent Reasoning Skill Discovery 361

The conditional variational autoencoder (CVAE) 362

has emerged as a popular approach for modeling 363

probabilistic conditional generation. As one spe- 364

cific case, the skill model, introduced in this paper, 365

can effectively be represented as a CVAE. There- 366

fore, we introduce LaRS that employs a CVAE to 367

approximate the generation of rationales using the 368

data from the example bank DE = {(Q,R)}. 369

In particular, this CVAE includes three coupled 370

models: an encoder model, a decoder model, and 371

a reasoning policy model, independently parame- 372

terized by ω, ψ, and ϕ respectively. Drawing from 373

the notations introduced in the skill model, the 374

reasoning policy model is a conditional Bayesian 375

network πϕ(z | Q), determining the posterior dis- 376

tribution of latent reasoning skill z given a ques- 377

tion Q. The decoder model is also a conditional 378

Bayesian network pψ(R | z,Q) that generates a 379

rationale R, conditioned on both Q and z, where 380

z is sampled from πϕ(z | Q). Finally, the en- 381

coder model qω(z | Q,R) is another conditional 382

Bayesian network, mapping a question-rationale 383

pair to z. In this paper, we train this CVAE using 384

classical variational expectation maximization and 385

the reparameterization trick. 386

Specifically, the classical variational expectation 387

maximization optimizes a loss function as follows: 388

LCVAE(ϕ, ω, ψ) = Lrecon + LKL (4)

Lrecon = −E(Q,R)∼DE ,z∼qω(|Q,R)[log pψ(R|z,Q)]

LKL = E(Q,R)∼DE
[DKL(qω(z | Q,R) ∥ πϕ(z | Q))]

389

By training to minimize this loss function, qω 390

and πϕ can be learned to effectively approximate 391

the conditional distributions PE(z | Q,R) and 392

PE(z | Q). It is worth noting that the decoder 393

model acts an auxiliary model that only roughly 394

reconstructs rationales for the purpose of training 395

the encoder and the reasoning policy model, 396

and is not deployed to generate rationales in the 397

downstream tasks. 398

Ideally, all three models would be represented 399

by language models, processing token sequences 400

as input and generating token sequences as out- 401

put. However, training full language models 402

for demonstration selections can be computation- 403

ally expensive. Instead, we adopt a pre-trained 404

embedding model denoted as f : X 7→ Θ, 405

which maps the token space X to an embedding 406
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Algorithm 1 Demonstration selection
Input: Test question Qtest, a pre-trained embed-
ding model f , a reasoning policy πϕ(z|f(Q)), a
reasoning skill encoder qω(z|f(Q,R)), and an
example bank DE = {(Qj , Rj)}j .
Parameter: shot number k
Output: (Q1, R1, Q2, R2, · · · , Qk, Rk)

1: Compute ztest ← mean of π(z|f(Qtest))
2: for each (Qj , Rj) in DE do
3: Compute zjpost ← mean of qω(z|f(Qj , Rj))

4: Compute rj =
ztest·zjpost

⊺

|ztest|·|zjpost|
5: end for
6: Select top-k demonstrations with the largest rj

and sort them in ascending order, denoted as
(Q1, R1, Q2, R2, · · · , Qk, Rk).

7: return (Q1, R1, Q2, R2, · · · , Qk, Rk) =0

space Θ. Consequently, the decoder model, en-407

coder model, and reasoning policy model trans-408

form into pψ(f(R)|z, f(Q)), qω(z|f(Q,R)), and409

πϕ(z|f(Q)), respectively. They now condition on410

and generate the embeddings instead of the origi-411

nal tokens. In the actual implementation, we use412

the same feed-forward neural network to represent413

both πϕ and qω, predicting the mean and variance414

of Gaussian distributions of latent reasoning skills.415

On the other hand, pψ is a feed-forward neural net-416

work that deterministically predicts a value in the417

embedding space.418

4.2 Demonstration Selection419

Since the distribution PE(Q,R | z) in Definition420

1 is practically intractable, we propose a selection421

process that effectively aligns with the skill-based422

selection using the learned πϕ and qω. For a given423

test question Qtest, the desirable reasoning skill424

ztest = argmaxz[πϕ(z|f(Qtest))] can be computed425

using the reasoning policy. Subsequently, each426

example from the example bank can be scored427

based on the cosine similarity between ztest and428

zpost, where zpost = argmaxz[qω(z|Q,R))] repre-429

sents the maximum likelihood skill of the current430

example. Finally, a CoT prompt can be constructed431

by selecting the top-k examples according to the432

computed scores. The step-by-step procedure is433

outlined in Algorithm 1.434

4.3 Theoretical Analysis435

In this section, we provide a theoretical analysis436

of the optimality of the skill-based selection by437

Definition 1. 438

Let PM (R | Q, g) denotes LLMs’ conditional 439

distribution of a rationale R given a test question 440

Q under a demonstration selection method 441

g. PM (R | Q, g) can be extended as follows: 442

PM (R | Q, g)

=

∫
Xk

PM (R | pt)Πki=1[g(Qi, Ri | Q)d(Qi, Ri)]
443

Here, each demonstrations (Qi, Ri) is indepen- 444

dently sampled from g(Qi, Ri | Q), ∀i = 1, · · · , k. 445

These k demonstrations form a prompt 446

pt = (Q1, R1, · · · , Qk, Rk, Q). 447

We want to show that PM (R | Q, g) is the op- 448

timal conditional distribution that maximizes the 449

accuracy of rationales if the selection follows skill- 450

based selection method or g = gskill. We begin 451

by defining the optimal conditional distribution as 452

follows: 453

Definition 2 Optimal conditional distribution of 454

rationales given questions P ∗(R | Q) is given by: 455

P ∗(R | Q) = argmax
P (·|Q)∈∆(X )

∫
X
1(R,Q)P (R | Q)dR 456

Here 1(R,Q) is the indicator function of the 457

correctness of R given a question Q (see 458

Section 3.1). 459

Then, we state two major assumptions as follows: 460

Assumption 1 Example bank is sampled from the 461

optimal conditional distribution, or PE(R | Q) = 462

P ∗(R | Q). 463

Assumption 2 Humans and LLMs are expert ra- 464

tionale generators given reasoning skills and ques- 465

tions, meaning that 466

PH(R | z,Q) = PE(R | z,Q) = PM (R | z,Q). 467

Assumption 1 is rooted in the fact that example 468

banks are human-crafted that contains the most 469

useful rationales for answering the questions. In 470

Assumption 2, PM capturing PH is a common 471

assumption in the literature studying LLMs (Xie 472

et al., 2021b; Saunshi et al., 2020; Wei et al., 2021). 473

PE(R | z,Q) = PH(R | z,Q) is based on the 474

assumption that reasoning skills are shared across 475

humans, and the generation of rationales is identi- 476

cal given the same reasoning skills and questions. 477

Based on the above definiton and two assump- 478

tions, we prove the following theorem. 479
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Theorem 1 A LLM gives the optimal conditional
distribution of rationales given questions:

PM (R | Q, gskill) = P ∗(R | Q)

If (1) it is prompted by k →∞ in-context examples480

selected by the skill-based selection gskill defined481

by Definition 1, (2) Assumption 2 and Assumption482

1 hold.483

Appendix D presents the proof for Theorem 1.484

5 Experiments485

This section describes the experiment settings,486

including benchmarks, compared selection meth-487

ods, backbone models, and hyper-parameters.488

Lastly, the main results of these experiments are489

presented.490

5.1 Dataset491

For benchmarking, the selection methods are492

evaluated on four challenging datasets, includ-493

ing two datasets of Math Word Problem (MWP):494

TabMWP, GSM8K, one text-to-SQL dataset: Spi-495

der, and one semantic parsing dataset: COGS.496

Each dataset is split into a training set used to497

learn LaRS models and a test set used to evaluate498

the selection methods. While the training sets may499

potentially be large, we use randomly sampled 1K500

examples from the training set as the example bank,501

from which, the examples can be selected for CoT502

prompting. Detailed descriptions of the datasets503

and splitting are presented in Appendix A.504

To measure the performances, we use the answer505

accuracy for TabMWP and GSM8K, with the an-506

swers extracted by searching the texts right after a507

prefix The answer is. For Spider, we use the of-508

ficial execution-with-values accuracy2. For COGS,509

we report the exact-match accuracy for semantic510

parsing.511

5.2 Selection Methods512

Our method LaRS is compared with the follow-513

ing four baselines. All the hyper-parameters related514

to these methods are listed in Appendix A.515

Skill-KNN This baseline is a SOTA skill-based516

selection method that uses a pre-trained LLM (gpt-517

3.5-turbo) to generate skill descriptions for both518

questions in the example bank and the test question.519

Then, the method selects examples with the most520

2We use the official evaluation scripts for Spider in
https://github.com/taoyds/test-suite-sql-eval.

similar skill descriptions as the test question skill 521

description to form the prompt. The cosine simi- 522

larity is computed based a pre-trained embedding 523

model. 524

Random This baseline randomly selects k in- 525

context examples from the example bank. For each 526

test question, the accuracy is reported as an average 527

over three independent random selections. 528

Retrieval-Q This baseline employs a pre-trained 529

embedding model to encode a test question, and se- 530

lects in-context examples based on the cosine simi- 531

larity between embeddings from examples’ ques- 532

tions and the test question. 533

Retrieval-R (oracle) This baseline employs a 534

pre-trained embedding model to encode the ground- 535

truth rationale of a test question, and selects in- 536

context examples based on the cosine similarity 537

between examples’ rationales and the ground-truth 538

rationale. 539

5.3 Backbones and Hyper-parameters 540

In terms of the backbone models, the ICL 541

is conducted by two OpenAI language models: 542

text-davinci-003 and gpt-3.5-turbo, one Anthropic 543

model: Claude-v2, and one smaller-scale Falcon- 544

40B-Instruct (Xu et al., 2023). All the embedding 545

is computed by a pre-trained embedding model, 546

Deberta-v2-xlarge (He et al., 2021). We also in- 547

vestigate different choices of embedding model in 548

Section B. 549

During inference, the temperature is set to 0 (i.e., 550

greedy decoding) to reduce the variance. The CoT 551

prompts contain k = 2, 4, 4, 8 in-context exam- 552

ples for TabMWP, GSM8K, Spider, and COGS, 553

respectively. 554

5.4 Performance comparison results 555

Table 1 presents a summary of the experimen- 556

tal results. Detailed descriptions are provided as 557

follows: 558

LaRS is comparable to Skill-KNN. Across all 559

four benchmarks and three backbone models tested, 560

our proposed LaRS outperforms Skill-KNN in 7 561

out of 12 experiments. This result underlines the 562

effectiveness of the latent reasoning skills learned 563

through unsupervised learning with small CVAE 564

models, achieving comparable performance to the 565

skill descriptions crafted by extensive pre-trained 566

LLMs. Furthermore, LaRS consistently achieved 567

superior results compared to Retrieval-Q, which uti- 568
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Method TabMWP GSM8K Spider COGS

Backbone: gpt-3.5-turbo

Random 62.4 +0.0 75.7 +0.0 46.8 +0.0 67.5 +0.0
Retrieval-Q 72.3 +9.9 75.6 –0.1 49.9 +3.1 88.5 +21.0
Skill-KNN 78.3 +15.9 75.0 –0.7 58.4 +11.6 94.6 +27.2
LaRS (ours) 78.1 +15.7 76.8 +1.1 53.0 +6.2 94.6 +27.1

Retrieval-R (oracle) 77.4 +15.0 75.5 –0.2 64.4 +17.6 95.7 +28.2

Backbone: text-davinci-003

Random 69.3 +0.0 62.2 +0.0 47.1 +0.0 73.4 +0.0
Retrieval-Q 76.5 +7.2 62.7 +0.5 50.2 +2.9 92.1 +18.7
Skill-KNN 80.6 +11.3 62.0 –0.2 56.3 +9.8 96.8 +23.4
LaRS (ours) 80.8 +11.5 62.7 +0.5 48.6 +1.5 96.6 +23.2

Retrieval-R (oracle) 80.4 +11.1 63.8 +1.6 67.3 +20.2 97.3 +23.9

Backbone: Claude-v2

Random 77.7 +0.0 86.9 +0.0 40.2 +0.0 77.6 +0.0
Retrieval-Q 80.1 +2.4 88.2 +1.3 45.5 +5.3 93.5 +15.9
LaRS (ours) 80.9 +3.2 88.3 +1.4 47.7 +7.5 96.6 +19.0

Retrieval-R (oracle) 80.3 +2.6 88.4 +1.5 60.8 +20.6 97.3 +19.7

Backbone: Falcon-40B-Instruct

Random 45.7 +0.0 38.8 +0.0 20.6 +0.0 45.1 +0.0
Retrieval-Q 51.9 +6.2 37.3 –1.5 22.1 +1.5 73.9 +28.8
Skill-KNN 55.9 +10.2 40.3 +1.5 23.7 +2.9 81.0 +35.9
LaRS (ours) 57.7 +12.0 39.1 +0.3 24.8 +4.2 89.5 +44.4

Retrieval-R (oracle) 61.2 +15.5 40.4 +1.6 39.9 +19.3 90.3 +45.2

Table 1: Main results (%) across all backbone models and
datasets. Numbers in bold represent the best results for each
backbone model across all selection methods. The subscripted
gray values indicate the relative improvement over Random
selection.

lizes raw question embeddings. This observation569

underscores that the success of LaRS is attributed570

to the learned reasoning skill representation rather571

than solely relying on the raw information from572

the questions. As depicted in Figure 1 within Ap-573

pendix B, we manually identified 12 skill labels574

from TabMWP. The scatter plots illustrate the dis-575

tinct separation of these skills by LaRS, Skill-KNN,576

question embedding, and rationale embedding, re-577

spectively.578

LaRS is LM-agnostic. The superiority of LaRS579

is consistent across four different LMs, including580

the both open-source and proprietary models, de-581

spite not being specifically trained for any of these582

LMs. This finding underscores the universality of583

the learned latent reasoning skill representation,584

enabling any LMs to benefit from it.585

LaRS is computationally efficient. In Table 2,586

we present a comparison of computational over-587

head, including computing time, estimated cost588

for pre-processing the example bank, and cost for589

each input query during testing, among Retrieval-Q,590

LaRS, Skill-KNN, and the supervised demonstra-591

tion selection method PromptPG (Lu et al., 2022).592

These estimates are based on the TabMWP dataset,593

Accuracy (%) Time (h) Cost (training) Cost per query

Retrieval-Q 72.3 0 $0 $0.02 +%0
LaRS (ours) 78.1 0.5 $0 $0.02 +%0
Skill-KNN 78.3 2 $30 $0.05 +%150
PromptPG 74.2 6 $50 $0.02 +%0

Table 2: Comparison of accuracy and computational overhead,
including computing time, estimated cost for pre-processing
the example bank, and average cost per input query, among
four selection methods on the TabMWP dataset with an ex-
ample bank of size 1000. The grey percentages represent the
increased cost ratio associated with each selection method.

using GPT-4 as the backbone model, with the API 594

pricing at $0.03 per 1k tokens. Retrieval-Q in- 595

curs the lowest computational overhead but exhibits 596

the poorest performance among the methods eval- 597

uated. Our method achieves accuracy comparable 598

to Skill-KNN, requiring 1000 fewer LLM infer- 599

ences (approximately $30 savings) and reducing 600

computing time by 1.5 hours during training, along 601

with more than 100% less cost per input query. Re- 602

markably, even though it uses more computational 603

resources, PromptPG does not outperform our un- 604

supervised method in terms of accuracy. 605

6 Conclusions 606

This paper introduces LaRS, a novel demonstra- 607

tion selection method designed for CoT prompting. 608

LaRS bases the selection on reasoning skills, which 609

are latent representations discovered by unsuper- 610

vised learning from rationales via a CVAE. Based 611

on the experiments conducted across four LLMs 612

and over four different reasoning tasks, LaRS man- 613

ifests comparable performance on selecting effec- 614

tive few-shot examples for CoT reasoning while 615

requiring no extra LLM inference and saving hours 616

in pre-processing the example bank. 617

7 Limitations 618

Despite the success of LaRS, a few limitations 619

and potential future directions are worth noting. 620

First, the impact of the order of examples in the 621

prompts is not considered. Introducing additional 622

heuristics to sort the examples could potentially 623

lead to better performances. Second, in the CVAE, 624

the decoder is represented by an MLP neural net- 625

work. However, it would be ideal to represent the 626

decoder as a prompt-tuning module, which aligns 627

better with the implicit skill model assumption. Fi- 628

nally, one single reasoning skill might not be suf- 629

ficient to represent the entire rationale that might 630

contain multiple steps of reasoning. Learning and 631

selecting reasoning skills for each individual rea- 632

soning step is an interesting direction to explore. 633
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Appendix: LaRS: Latent Reasoning Skill for900

Chain-of-Thought Reasoning901

A Experimental Details902

A.1 Dataset903

We provide detailed description of the dataset and the split of train and test set as follows:904

TabMWP (Lu et al., 2022) This dataset consists of semi-structured mathematical reasoning problems,905

comprising 38,431 open-domain grade-level problems that require mathematical reasoning on both textual906

and tabular data. We use the train set, containing 23,059 examples, to train our LaRS models, and test1k907

set containing 1K examples to evaluate the selection methods.908

Spider (Yu et al., 2018) Spider is a large-scale text-to-SQL dataset. It includes a train set with 7,000909

examples and a dev set with 1,034 examples. We use the train set to train our LaRS models, and the dev910

set as the test set to evaluate the selection methods.911

COGS (Kim and Linzen, 2020) is a synthetic benchmark for testing compositional generalization in912

semantic parsing. We transform the output format in the same way as An et al. (2023a), and consider a913

mixture of two sub-tasks: primitive substitution (P.S.) and primitive structural alternation (P.A.). This914

results in a train set of 6916 examples to train our LaRS models and a test set of 1000 examples to evaluate915

the selection method.916

GSM8k (Cobbe et al., 2021b) GSM8k is a dataset containing 8.5K high-quality, linguistically diverse917

grade school math word problems. It includes a train set of 7.5K problems and a test set of 1319 problems.918

We use the train set to train our LaRS models, and the test set to evaluate the selection methods.919

A.2 Hyper-parameters920

LaRS contains a encoder, a decoder, and a reasoning policy model. The reasoning skill is represented as921

a 128-dimensional continuous space. Both the encoder and the reasoning policy model are represented as922

a feed-forward multiple layer perception (MLP) with two 256-unit hidden layers, predicting the mean and923

variance of a multivariate Gaussian distribution in the latent space of reasoning skills. The decoder is a924

MLP with two 256-unit hidden layers that predicts a value in the embedding space deterministically. The925

dimension of the embedding space depends on the choice of pre-trained embedding models. The models926

are trained using the loss function in Equation 4 with a batch size of 256 and a learning rate of 0.0001 for927

1000 epochs. Those hyper-parameters apply for all four datasets.928

B Analysis and Ablation929

This section provides in-depth analysis and explains the reasoning of the success of LaRS .930

Why reasoning skill is a better guidance for demonstration selection? In TabMWP dataset, 200931

examples are labeled based on the skills being showcased out of 12 manually-crafted skills labels, including932

“compute statistics”, “compute rate of change”, “Reason time schedule”, “Compute probability”, et. al. We933

investigate how the unsupervisedly discovered reasoning skills by LaRS align with human’s understanding934

of skills. More specifically, a visualization of how human-labeled skills distribute based on the t-SNE935

projections of four different types of embedding is shown in Fig. 1. Both the reasoning skill encoder936

(reasoning skill of (Q,R)) and the reasoning policy (reasoning skill of Q) trained by LaRS demonstrate937

clear separation of the labeled 12 skills. At the mean time, the human-labeled skills are not well-separated938

by raw question embedding, and even raw rationale embeddings. This indicates that the discovered939

reasoning skills aligns well with human-labeled skills even without explicit labels being provided during940

the training. This sheds the light on why the demonstration selection based on similar reasoning skills can941

improve the CoT prompting.942
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Reasoning skill of (Q, R) Reasoning skill of Q

Raw question embedding Raw rationale embedding

Reasoning skills
Compute statistics
Compute rate of change
Compute money cost
Filter tree leaves
Addtion/subtraction
Search minimum/maximum
Multiplication
Filter table entries
Compute probability
Shortage or surplus?
Reason time schedule
Compare numbers
Others

Figure 1: t-SNE projections of reasoning skills predicted from (Q,R) (top-left), reasoning skills predicted from Q (top-right),
raw question embedding (bottom-left), and raw rationale embedding (bottom-right). The 12 different colors correspond to 12
skill labels provided by human.

(a) The accuracy of Random, Retrieval-Q, and, LaRS based on
three different pre-trained embedding models.

(b) The accuracy of Random, Retrieval-Q, and LaRS using
different number of in-context examples.

Figure 2: Performances of three different selection methods under (a) different pre-trained embedding models, and (b) different
number of in-context examples.

Robustness to different pre-trained embedding models. Fig. 2a compares the performances of 943

Random, Retrieval-Q, and LaRS based on three pre-trained embedding models, including Sentence- 944

BERT (Reimers and Gurevych, 2019), Deberta-v2-xlarge, and, text-embedding-ada-02 (Neelakantan 945

et al., 2022) from OpenAI. We observe that the performances of retrieval-based selection methods 946

monotonously improve with more capable pre-trained embedding models. However, our LaRS shows 947

consistent improvements over Retrieval-Q given the same embedding models. 948

Robustness to k: the number of in-context examples. This study compares three selection methods, 949

including Random, Retrieval-Q, and LaRS under three different number of in-context examples 2, 4, and 8. 950

The results are summarized in Fig. 2b. While the accuracy monotonously improves with the increasing 951

number of in-context examples, LaRS consistently outperforms Retrieval-Q. 952
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C Case Study953

To explore the examples categorized as distinct skills within the learned latent reasoning skill repre-954

sentation, we employed K-means clustering on the latent reasoning skills of 1,000 examples from the955

TabMWP dataset. The centroids of these clusters are detailed in Table 3. The analysis presented in this956

table reveals that our method effectively discerns examples showcasing specific skills, such as “Searching957

minimum/maximum” and “Computing rate change”.958

D Theoretical Analysis959

To prove Theorem 1, we start with the equation of rationale generation via CoT prompting, employing960

the skill-based demonstration selection method denoted as gskill. The process can be formalized as961

follows:962

PM (R | Q, gskill) =
∫
Xk

PM (R | pt)Πki=1[gskill(Qi, Ri | Q)d(Qi, Ri)] (5)963

where Equation 5 is integrated by substituting pt = (Q1, R1, · · · , Qk, Rk, Q) as outlined in Equation 3,964

leading to:965

PM (R | Q, gskill) =
∫
Z
PM (R | z,Q)PM (z | Q)Πki=1[Pskill(z | Q)]dz (6)966

In this context, Pskill(z | Q) is defined as:967

Pskill(z | Q) =

∫
(Q′,R′)∈X

PM (z | Q′, R′)gskill(Q
′, R′ | Q)d(Q′, R′)dz′ (7)968

Substituting the Definition 1 into Equation 7, leading to:969

Pskill(z | Q) =

∫
(Q′,R′)∈X

∫
z′∈Z

PM (z | Q′, R′)PE(Q
′, R′ | z′)PE(z′ | Q)dz′ (8)970

Applying Assumption 2 into the above equation, replacing PM (z | Q′, R′) with PE(z | Q′, R′):971

Pskill(z | Q) =

∫
(Q′,R′)∈X

∫
z′∈Z

PE(z | Q′, R′)PE(Q
′, R′ | z′)PE(z′ | Q)dz′972

=

∫
z′∈Z

δ(z = z′)PE(z
′ | Q)dz′973

= PE(z | Q) (9)974

By reintegrating the derived expression for Pskill(z | Q) back into Equation 6, we arrive at:975

PM (R | Q, gskill) =
∫
Z
PM (R | z,Q)PM (z | Q)Πki=1[PE(z | Q)]dz (10)976

Take the limit of k →∞, above equation siplifies to:977

PM (R | Q, gskill) =
∫
Z
PM (R | z,Q)PE(z | Q)dz (11)978

Applying Assumption 2 into the above equation, replacing PM (R | z,Q) with PE(R | z,Q):979

PM (R | Q, gskill) =
∫
Z
PE(R | z,Q)PE(z | Q)dz = PE(R | Q) (12)980

According to Assumption 1, the example bank can approximate expert rationale generation, or PE(R |981

Q) = P ∗(R | Q), we then conclude:982

PM (R | Q, gskill) = P ∗(R | Q) (13)983

Equation 13 means that the CoT prompting under the skill-based demonstration selection method give the984

optimal conditional distribution of rationales given questions by Definition 2. This proves the Theorem 1985

under Assumption 1 and Assumption 2.986
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Cluster ID Table Question Skill

0 [TITLE]: School play committees
Committee | Boys | Girls
Casting | 17 | 5
Set design | 14 | 17
Lighting | 20 | 20
Costume | 7 | 4
Music | 2 | 13

Some students at Dayton Middle School signed up to help out
with the school play. Which committee has the most boys?
Options: (A) set design (B) lighting (C) casting (D) costume

Search minimum/maximum

1 [TITLE]: Pairs of shoes per store
Stem | Leaf
1 | 9
2 | 3, 3
3 | 0, 2
4 | 2, 4
5 | 5, 7
6 | 2, 5
7 | 7
8 | 0, 2, 4, 4
9 | 0, 0

Ivan counted the number of pairs of shoes for sale at each of the
shoe stores in the mall. How many stores have exactly 23 pairs of
shoes?

Search tree leaves

2 [TITLE]: None
piece of licorice | $0.07
gum drop | $0.05
gumball | $0.08
cinnamon candy | $0.01
peppermint candy | $0.08
lemon drop | $0.07

Derek has $0.06. Does he have enough to buy a piece of licorice
and a cinnamon candy?
Options: (A) yes (B) no

Compute money cost

3 [TITLE]: None
Number of offices | Number of chairs
1 | 2
2 | 4
3 | 6
4 | 8
5 | ?

Each office has 2 chairs. How many chairs are in 5 offices? Multiplication

4 [TITLE]: None
popcorn balls | $1/kilogram
coffee cake | $3/kilogram
blueberry bars | $2/kilogram
cream cheese bars | $2/kilogram
lemon bars | $3/kilogram

Sarah went to the store and bought 2 kilograms of blueberry bars.
How much did she spend? (Unit: $)

Compute money cost

5 [TITLE]: None
x | y
12 | 19
13 | 9
14 | 2

The table shows a function. Is the function linear or nonlinear?
Options: (A) linear (B) nonlinear

Compute rate of change

6 [TITLE]: Tractors
Farmer | Number of tractors
Farmer Judy | 4
Farmer Joe | 7
Farmer Megan | 7
Farmer Rick | 4
Farmer Jane | 4

Some farmers compared how many tractors they own. What is the
mode of the numbers?

Compute statistics

7 [TITLE]: None
pink sweater | $6.69
pair of brown pants | $9.66
plaid scarf | $2.45
pair of sandals | $7.69
white polo shirt | $4.86

How much money does Heather need to buy a pair of brown pants
and a plaid scarf? (Unit: $)

Compute money cost

8 [TITLE]: Tour bus schedule
Location | Arrive | Depart
the riverfront | 9:55 A.M. | 10:20 A.M.
the zoo | 10:35 A.M. | 11:30 A.M.
art museum | 12:05 P.M. | 12:30 P.M.
science museum | 1:00 P.M. | 1:45 P.M.
skyscraper | 1:50 P.M. | 2:20 P.M.
governor’s mansion | 2:50 P.M. | 3:45
P.M.
old building | 4:00 P.M. | 4:45 P.M.
famous bridge | 5:15 P.M. | 5:40 P.M.
the aquarium | 6:20 P.M. | 7:00 P.M.
landmark sculpture | 7:45 P.M. | 8:20
P.M.

Look at the following schedule. Which stop does the bus depart
from at 11.30 A.M.?
Options: (A) zoo (B) riverfront (C) old building (D) science mu-
seum

Reason time schedule
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Cluster ID Table Question Skill

9 [TITLE]: None
poppyseed muffin | $2.31
bowl of yogurt | $1.35
blueberry pancakes | $7.28
hash browns | $4.56
bowl of granola | $2.97
bagel with cream cheese | $2.56

Max has $13.33. How much money will Max have left if he buys
a bagel with cream cheese and blueberry pancakes? (Unit: $)

Compute money cost

10 [TITLE]: Balloons sold
Day | Number of balloons
Wednesday | 568
Thursday | 586
Friday | 558
Saturday | 565

The manager of a party supply store researched how many balloons
it sold in the past 4 days. On which day did the store sell the most
balloons?
Options: (A) Wednesday (B) Thursday (C) Friday (D) Saturday

Search minimum/maximum

11 [TITLE]: None
forklift | $9,987.00
dump truck | $9,543.00
race car | $8,370.00
crane | $6,996.00
bulldozer | $7,547.00
hydrofoil | $8,047.00

How much more does a forklift cost than a dump truck? (Unit: $) Compute money cost

Table 3: The closest examples to the 12 cluster centers computed by K-Means clustering method on reasoning skill latent
variables.
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