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Abstract

Traffic congestion in modern cities is exacerbated by the lim-
itations of traditional fixed-time traffic signal systems, which
fail to adapt to dynamic traffic patterns. Adaptive Traffic Sig-
nal Control (ATSC) algorithms have emerged as a solution by
dynamically adjusting signal timing based on real-time traf-
fic conditions. However, the main limitation of such methods
is they are not transferable to environments under real-world
constraints, such as balancing efficiency, minimizing colli-
sions, and ensuring fairness across intersections. In this paper,
we view the ATSC problem as a constrained multi-agent re-
inforcement learning (MARL) problem and propose a novel
algorithm named Multi-Agent Proximal Policy Optimization
with Lagrange Cost Estimator (MAPPO-LCE) to produce
effective traffic signal control policies. Our approach inte-
grates the Lagrange multipliers method to balance rewards
and constraints, with a cost estimator for stable adjustment.
We also introduce three constraints on the traffic network:
GreenTime, GreenSkip, and PhaseSkip, which penalize traf-
fic policies that do not conform to real-world scenarios. Our
experimental results on three real-world datasets demonstrate
that MAPPO-LCE outperforms baseline MARL algorithms
in all environments and traffic constraints. Our results show
that constrained MARL is a valuable tool for traffic planners
to deploy scalable and efficient ATSC methods in real-world
traffic networks.

1 Introduction
Traditional traffic signal systems, which operate on pre-
programmed, fixed schedules, are often inadequate in ad-
dressing the dynamic nature of urban traffic flow due to an
inability to adapt to constantly changing traffic patterns. This
can result in longer waiting times and unfair traffic distri-
butions across intersections (Curtis 2017). To combat the
limitations of traditional fixed-time traffic signal systems,
Adaptive Traffic Signal Control (ATSC) methods have been
developed to adjust signal timing based on real-time traf-
fic conditions dynamically. However, while ATSC methods
hold promise in reducing congestion in busy intersections,
there are still uncertainties about their deployment in real-
world environments. One challenge is balancing efficiency
while minimizing vehicle collisions and other hazards (Essa
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and Sayed 2020). Another challenge is maximizing the fair-
ness of each intersection, or ensuring that the green times
(amount of time the current traffic light is green) for different
lanes is the same on average (Raeis and Leon-Garcia 2021).
In general, these challenges highlight the ongoing struggles
with incorporating constraints into ATSC methods that ac-
curately reflect the demands of real-world environments.

Previous works on ATSC use the observations of the in-
tersections to form traffic control policies, such as SOTL
(Cools, Gershenson, and D’Hooghe 2007). However, these
are heuristic-based and cannot adapt to more complex traffic
environments. Additionally, they do not consider how cur-
rent actions can affect future states, which hinders long-term
outcomes. Reinforcement Learning (RL) has also been used
to develop autonomous traffic control methods by optimiz-
ing over current and future states (Zheng et al. 2019a). This
includes actor-critic methods (Aslani, Mesgari, and Wiering
2017) and policy gradient methods (Mousavi, Schukat, and
Howley 2017; Pang and Gao 2019) on single intersection
(Oroojlooy et al. 2020) and multi-intersection environments
(Wei et al. 2019b; Chen et al. 2020). RL has also been used
for non-traditional intersections such as roundabouts (Rizzo,
Vantini, and Chawla 2019) and dynamical lane changing
systems (Zhou et al. 2022).

Due to the exponentially growing action space of re-
inforcement learning as the number of intersections in-
creases, it becomes difficult to learn effective single-agent
RL policies that can adapt to non-stationary environments
like traffic signal control. As such, some works formulate
ATSC as a decentralized Multi-Agent Reinforcement Learn-
ing (MARL) problem, using several agents to represent each
intersection instead of one agent as a global traffic controller.
This allows each intersection to act as its own local RL agent
under partial observability and maximize its utility along
with the global utility (Zhou et al. 2022; Wang et al. 2020;
Wang and Wang 2023). Additional work serves to improve
baseline MARL algorithms by improving sample efficiency
(Huang, Wu, and Boulet 2023), or adding information to the
state space to mitigate partial observability, such as commu-
nication methods (Jiang et al. 2022) and environment mod-
eling (Bao et al. 2024; Wei et al. 2019a).

Due to the efficacy of MARL in solving high dimensional
traffic control problems and current struggles with incorpo-
rating constraints that reflect real-world environments, we



propose a constrained MARL algorithm named Multi-Agent
Proximal Policy Optimization with Lagrange Cost Estima-
tor (MAPPO-LCE). Specifically, the algorithm uses the La-
grange multipliers method to balance the constraints with
maximizing rewards and a cost estimator function to update
the Lagrange multiplier.

Our contributions can be summarized as follows:

1. We define three constraint functions: GreenSkip, Green-
Time, and PhaseSkip, which penalize policies that do not
reflect real-world scenarios.

2. We propose a constrained MARL algorithm for multi-
intersection traffic control.

3. We show experimentally that MAPPO-LCE outperforms
three baseline MARL algorithms on three different
datasets.

4. Our results show that constrained MARL can be a valu-
able tool for traffic planners to deploy ATSC methods in
real-world traffic networks to reduce congestion.

2 Related Work
In this section, we discuss recent work on MARL algorithms
and general constraints for ATSC.

2.1 MARL for ATSC

Recent work uses multi-agent reinforcement learning to
model traffic signal control, with each agent controlling one
intersection under partial observability. Wang et al. (2020)
developed independent and joint Advantage Actor-Critic
(A2C) algorithms for ATSC with a centralized critic in a
distributed setting. Chen et al. (2021) also leverages A2C
in a multi-agent setting, using decentralized critics for each
agent in a distributed network. In addition to on-policy al-
gorithms, previous works use multi-agent off-policy algo-
rithms for ATSC. For example, Zhang et al. (2023) use Nash
Q-Learning to alleviate the large state-action space from
traditional MARL algorithms. Wang and Wang (2023) im-
proves on this by using a Deep Q-Network (Mnih et al.
2013) with Friend Q-Learning (Littman 2001) to achieve
better coordination between agents.

Other ways to improve MARL algorithms in ATSC are to
include additional information in each agent’s observation
space to create more informed policies. However, includ-
ing more information does not always lead to better results,
as this can require more parameters and a slower conver-
gence rate (Zheng et al. 2019b). Thus, selecting the right
information to include between agents is crucial for perfor-
mance. Huang, Wu, and Boulet (2023) use a model-based
approach by learning a global probabilistic dynamics model
along with the policy, which generates a prediction of the
next states as additional information. This method is purely
decentralized, where there is no interaction between agents.
Thus, Jiang et al. (2022) develops UniComm, a method that
computes only the necessary information between neighbor
agents, which is used in their UniLight algorithm to calcu-
late Q values for each agent.

2.2 Constraints for ATSC
Solving environments with incorporated constraints is diffi-
cult due to balancing rewards and costs from the constraints.
Constrained Reinforcement Learning (CRL) is an active re-
search area in RL that solves such environments by de-
veloping algorithms that exclusively learn policies that are
both effective and satisfy the constraints (e.g. safety, fair-
ness, etc.) (Gu et al. 2022; Achiam et al. 2017; Lu et al.
2021). Achiam et al. (2017) develops a Constrained Pol-
icy Optimization (CPO) algorithm to learn policies under
constraints, and Gu et al. (2022) expands this into a multi-
agent setting with MACPO and MAPPO-Lagrange. Tabas,
Zamzam, and Zhang (2023) improve upon MACPO by de-
veloping a primal-dual optimization framework and param-
eterizing each agent with a neural network.

In ATSC, there is minimal work on incorporating con-
straints into the environment to develop policies closer to
real-world scenarios. Gu et al. (2024) partitions the traffic
network topology to alleviate scalability issues with MARL,
but this only constrains the state space, not the action space.
Haydari et al. (2024) use the CRL framework with the
amount of emissions as the constraint and develop a Soft
Actor-Critic algorithm to balance rewards with constraints.
However, this is a single-agent setting, which poses scala-
bility issues as the number of intersections increases. Adan
et al. (2023) models traffic environment constraints in a
multi-agent setting, but this work models agents as the vehi-
cles around one intersection, instead of each intersection be-
ing an agent. Finally, Raeis and Leon-Garcia (2021) creates
two fairness constraints for the ATSC problem, one delay-
based metric which is meant to diminish the number of vehi-
cles experiencing significantly longer waiting times and an-
other throughput-based metric which attempts to give equal
weighting to all traffic flows by extending concepts from
computer networking. However, this is also a single agent
setting in a more simplistic environment and is focused more
specifically on fairness between the North-South and East-
West traffic flows instead of general constraints.

3 Preliminaries
In this section, we define the Constrained Markov Game, the
RL environment, and our constraints for ATSC.

3.1 Constrained Markov Game for ATSC
We can model ATSC as a constrained Markov
Game (Qu, Ma, and Wu 2024; Wang et al.
2024) which can be represented by the tuple
M = ⟨N , S, {Oi}i∈N , {Ai}i∈N , T , r,Ω, C, c, γ⟩, where
N = {1, 2, ..., n} is a set of n agents; S is the state
space; O = ×i∈NOi is the joint observation space, where
Oi is the observation space of agent i; A = ×i∈NAi

is the joint action space, where Ai is the action space
of agent i; T : S × A × S → [0, 1] is probabilis-
tic state transition function; R is the reward function;
Ω : S × A×O → [0, 1] is space of conditional observation
probabilities (Ω(s′, a, o) = P (o|s′, a)); C : S × A → R
is the cost function; and c is the cost limit. Since this is a
decentralized Markov Game, the reward function for each



Figure 1: An example intersection with three lanes for turn-
ing left, going straight, and turning right for each of the four
incoming directions/roads.

Figure 2: An overview of the 8 different phases for a four-
direction intersection.

agent is the same, e.g. R = Ri ∀i ∈ N . MARL algorithms
for constrained Markov Games aim to search for policy π
that solves this constrained optimization problem:

max
π

E(st∼S,at∼π)

[ ∞∑
t=0

γtr(st, at)

]
,

s.t. E(st∼S,at∼π)

[ ∞∑
t=0

γtC(st, at)

]
< c

In the ATSC problem specifically, the elements of the envi-
ronment are defined as:

• Agents: Each agent is responsible for controlling traffic
lights at one intersection.

• Observation: The observation of each agent is composed
of the characteristics of the corresponding intersection.
Specifically, each intersection has 12 road links (vehicles
turning left, right, and going straight in each cardinal di-
rection), and each road link contains the number of vehi-
cles moving, the number of vehicles waiting, the traffic
light phase, and the number of vehicles in each lane, as
well as the speed and location of each vehicle in the lane.

• Actions: As shown in Figure 1 and Figure 2, there are
eight phases that describe combinations of traffic lights
that can be green simultaneously. At each timestep, the
intersection can choose one of these phases as an action.

• STATE: The state is the combination of all observations
at the current time step.

• STATE Transition: After an action is selected at each
time step, vehicles are allowed to move if the correspond-
ing traffic light is green for a short period Tg . While the
environment does not directly represent yellow lights,
before changing phases, all lights that would be turned
on/off are turned to red for a brief period Ty before the
lights of the new phase are turned to green.

• Reward: Each agent will receive a global reward λfRf +
λwRw, where Rf is the total number of vehicles moving,
Rw is the total number of vehicles waiting, and λf and
λw are hyperparameters.

For more information on environment parameters, refer to
Appendix A.

3.2 Environment Constraints
We develop three environment constraints on each intersec-
tion that reflect real-world environments named GreenTime,
PhaseSkip, and GreenSkip (German Road and Transport Re-
search Association 2010). These constraints also help to pro-
mote fair treatment of all vehicles by the agents by reducing
differences in waiting times between directions and encour-
aging agents to take all possible actions.

• GreenTime: Each light l should be green for no more
than Gmax time before turning red to prevent long wait-
ing times from other lanes, and model light cycles in the
real world. Each time step that a light is on increases
its GreenTime value by 1, and when it is turned off its
GreenTime value is set to 0. Right-turn lights are ignored
for this constraint, as they are always treated as being on.

Gtime(l) ≤ Gmax time (1)

• PhaseSkip: The state of each traffic light follows one
of a specific, pre-determined set of phases (see Figure
2). No phase should be skipped consecutively more than
Pmax skip times. Each time the phase changes, the new
phase has its PhaseSkip value set to 0, and all phases
other than the new phase and the old phase have their
PhaseSkip values incremented by 1. This is a way of
somewhat closely approximating how traffic cycles work
in the real world, as well as being an indirect way of pro-
moting the agent to give equal attention to all lanes.

Pskips(p) ≤ Pmax skips (2)

• GreenSkip: Similar to the phase constraint, no individ-
ual light l should be skipped consecutively more than
Gmax skips times. Each time the phase changes, each
light turned on in the new phase has its GreenSkip value
set to 0, and all lights not on in the new phase or the
old phase have their GreenSkip values incremented by 1.
This is a direct way of promoting fairness by reducing
the variance in waiting times among all lanes. Right-turn
lights are also ignored for this constraint.

Gskips(l) ≤ Gmax skips (3)

Each agent is constrained according to Eqns 1-3. The
penalty associated with each constraint is the average across



all lights: ∑
i∈N

∑
l

1c
nl(i)

|N |
(4)

where 1c is an indicator function that checks whether the
constraint is satisfied, i is the intersection, |N | is the num-
ber of agents, l is a specific light at the intersection the agent
controls, and nl(i) is the total number of lights at the inter-
section that particular agent controls. Note that for the Phas-
eSkip constraint, we sum over the phases and divide by the
total number of phases. For our experiments, the number of
lights is always 12 and the number of phases is always equal
to 8, as all the intersections in our environment have 4 roads
of 3 lanes with 8 distinct phases. For more information on
constraints, including the algorithm for each constraint, re-
fer to Appendix A.

4 Method
In this section, we describe our constrained multi-agent re-
inforcement learning algorithm: Multi-Agent Proximal Pol-
icy Optimization with Lagrange Cost Estimator (MAPPO-
LCE).

4.1 Multi-Agent Proximal Policy Optimization
with Lagrange Cost Estimator

Constrained optimization problems are typically of the form
max

x
f(x)

s.t. g(x) ≤ c

which can be solved by the Lagrange multiplier method
L(x;λ) = f(x)− λ(g(x)− c) (5)

where L(x;λ) is a new optimization objective to maximize
and λ > 0 is the Lagrange multiplier. (Bertsekas 1996).
Thus, for the constrained MARL problem,

max
πθ

E(st∼S,at∼πθ)

[ ∞∑
t=0

γtr(st, at)

]
, (6)

s.t. E(st∼S,at∼πθ)

[ ∞∑
t=0

γtC(st, at)

]
< c (7)

we can formulate it with a Lagrangian where

f(x) = E(st∼S,at∼π)

[ ∞∑
t=0

γtr(st, at)

]
(8)

g(x) = E(st∼S,at∼π)

[ ∞∑
t=0

γtC(st, at)

]
(9)

In MAPPO-LCE, we use a reward critic and a cost critic,
V r
ϕr

and V c
ϕc

, for estimating the discounted cumulative re-
ward and discounted cumulative cost, respectively. Instead
of training on every step, we also collect a dataset D con-
taining rollout data every episode: {st, rt, ct, st+1}. Af-
ter B episodes, we update the policy. Similar to MAPPO-
Lagrange (Gu et al. 2022), we aim to minimize the following
loss:

L(πθ) = Lr(πθ)− λLc(πθ) (10)

where Lr and Lc are the MAPPO (Yu et al. 2022) actor
losses with an unclipped critic loss term:

Lr(πθ) =Est∼D,at∼πθ

[
min

(
ρtA

r
t , clip(ρt, 1± ϵ)Ar

t

)]
+ βEst∼D

[
1

2
∥V r

ϕr
(st)− rt∥2

]
(11)

Lc(πθ) =Est∼D,at∼πθ

[
min

(
ρtA

c
t , clip(ρt, 1± ϵ)Ac

t

)]
+ βEst∼D

[
1

2
∥V c

ϕc
(st)− ct∥2

]
(12)

In these formulations, ρt is the importance sampling ratio

ρt =
πθ(at|st)
πθold(at|st)

Ac
t and Ar

t are the cost advantage and reward advantage
functions respectively, and ϵ is the clipping parameter. Here,
we abuse notation and say that Ac

t = Ac
t(st, at) and Ar

t =
Ar

t (st, at). We also update each critic by the temporal dif-
ference error (TDE):

Lϕr
= E(st, st+1)∼D

[
rt + γV r

ϕr
(st+1)− V r

ϕr
(st)

]
(13)

Lϕc = E(st, st+1)∼D

[
ct + γV c

ϕc
(st+1)− V c

ϕc
(st)

]
(14)

In MAPPO-Lagrange (Gu et al. 2022), the Lagrange mul-
tiplier λ is updated by the advantage function Ac

t(st, at).
However, since the advantage function can be unstable and
potentially incorrectly estimate the constraint, we incorpo-
rate a Langrage Cost Estimator inspired by Qu, Ma, and Wu
(2024). This cost estimator learns the cost dynamics to accu-
rately predict the cost, and then updates λ. We train the cost
estimator θC by minimizing the following loss:

LθC = ∥θC(st, at)− ct∥2, st ∼ D, at ∼ πθ (15)

Finally, we update λ with the following loss to ensure that
the constraint function is satisfied under the cost limit c:

Lλ = Est∼D,at∼πθ
[−λ(θC(st, at)− c)] (16)

as the loss is minimized when the estimated cost is much
less than the cost limit.

5 Experiments
5.1 Environment Setup
We run our experiments on MAPPO-LCE and related base-
lines on the CityFlow environment (Zhang et al. 2019),
which is a scalable and realistic traffic simulator due to its
C++ backend. Additionally, it is compatible with several
multi-agent RL algorithms by integrating with the Gymna-
sium library (Brockman 2016). From Wei et al. (2019b),
there are three publicly available datasets collected from
real-world traffic data from Hangzhou, China (HZ); Jinan,
China (JN); and New York, USA (NY). Details of each en-
vironment are located in Table 1.

To evaluate the performance of each of the MARL algo-
rithms, we use three evaluation metrics:



Figure 3: Test Reward results of our algorithm and baseline algorithms across all environments and constraints.

Algorithm 1: MAPPO-LCE Algorithm

Initialize replay buffer D, policy parameters θ, critic net-
works V r

ϕ , V c
ϕ , cost network θC , and Lagrange multiplier

λ.
for each episode do

for each time step t do
Select action at = πθ(st)
Execute joint action at at state st
Observe reward rt, cost ct, and next state st+1

D ← D ∪ (st, at, rt, ct, st+1)
end for
Sample batch B from D
θ ← θ − α∇L(πθ)
ϕr ← ϕr − α∇Lϕr

ϕc ← ϕc − α∇Lϕc

θC ← θC − αθC∇LθC
λ← λ− αλ∇λLλ

Clamp to ensure λ ≥ 0
Soft update actor and critic parameters:

θ′ ← τθ + (1− τ)θ′, ϕ′ ← τϕ+ (1− τ)ϕ′

end for

• Test Reward: The test reward is the same as the training
reward: λfRf + λwRw.

• Average Delay: The average delay is the average delay
across all vehicles, which is the total travel time minus
the expected travel time for each vehicle. The expected
travel time is the estimated time the vehicle should finish
its route if there were no traffic lights.

• Throughput: The throughput of the environment is the
number of vehicles that complete their routes before the
episode ends.

HZ JN NY
Number of Intersections 16 12 48
Number of Lanes 3 3 3
Total Number of Vehicles 2983 6295 2824
Time Steps (s) 3600 3600 3600

Table 1: Summary of Traffic Metrics for HZ, JN, and NY.

5.2 Baseline Methods
In this work, we compare our algorithm to three base-
line MARL algorithms: Independent Proximal Policy Op-
timization (IPPO) (De Witt et al. 2020), Multi-Agent Prox-
imal Policy Optimization (MAPPO) (Yu et al. 2022), and
QTRAN (Son et al. 2019). This set of algorithms allows us
to test both on-policy algorithms (IPPO, MAPPO), and off-
policy algorithms (QTRAN).



• IPPO (De Witt et al. 2020): IPPO treats each agent as its
independent local RL agent to maximize local rewards.
This transforms the problem into |N | independent
single-agent PPO rollouts.

• MAPPO (Yu et al. 2022) MAPPO joins the actions of
each agent into a single joint action vector, and each
agent shares an actor network and a critic network to
update the policy.

• QTRAN (Son et al. 2019): QTRAN develops an unstruc-
tured value function factorization, which allows for more
generalizable decentralized execution of MARL prob-
lems.

All baseline algorithms were implemented from the ePY-
MARL library (Papoudakis et al. 2021). For each of the
baseline experiments, the total reward at time step t is
rt − ζct, where rt and ct are the rewards and costs at time
step t, and ζ is a hyperparameter that trades off maximizing
the reward and satisfying the constraints. All experiments
were conducted on a single RTX A5000 GPU.

6 Results
The results of the algorithms on the three environments are
shown in Figure 3. In these figures, we include the results of
each algorithm on the test reward function defined in section
5.1. In Appendix B, we show the results on the average delay
and throughput metrics.

As shown in the figure, our proposed MAPPO-LCE algo-
rithm outperforms the baselines in almost all environment
settings. In the HZ dataset, IPPO achieves average test re-
wards of −794, −823, −778 on the GreenTime, PhaseSkip,
and GreenSkip constraints respectively. Generally, the per-
formance of QTRAN and MAPPO perform better on the
GreenTime and PhaseSkip constraints than IPPO, and per-
form worse on the GreenSkip constraint. On the harder JN
dataset (we consider the JN dataset to be harder than the HZ
datasetdue to the increased number of cars, even if there are
fewer intersections), MAPPO-LCE continues to outperform
the baseline algorithms with average test rewards of −1720,
−1584,−1785. On the most complex NY dataset (we con-
sider the NY dataset to be the most complex due to the large
number of intersections), our algorithm performs the best
comparably, with high scores of −993, −1027, and −1024
on GreenTime, PhaseSkip, and GreenSkip respectively. The
next highest scores are all from MAPPO and are −1080,
−1133, −1183 respectively, a significant improvement by
our algorithm across all constraints.

We note that MAPPO-LCE maintains performance in-
creases relative to the baseline algorithms as the dataset dif-
ficulty increases, as taking the average test reward difference
between the best and second-best algorithms yields perfor-
mance gains of 8.24%, 5.09%, and 10.8% on the HZ, JN,
and NY datasets respectively. This underscores the scala-
bility of our algorithm, since as the environment difficulty
increases, our algorithm can find optimal policies that can
balance satisfying the constraints while maintaining effec-
tiveness.

7 Future Work
For future work, one idea is to incorporate communication
between agents, which in this case are the traffic signals.
This would allow traffic lights to communicate information
such as the number of vehicles going from one intersection
to another, the average time it takes to get there, etc. vital
information that could help discover more optimal policies.
This also can be easily represented with an underlying Graph
Neural Network (GNN), that can pass messages from the
state space along its edges and can update via backpropaga-
tion, which means we can add message loss to the overall
loss as both the GNN and the neural networks in each algo-
rithm use backpropagation.

Another idea is to expand our constraints. Formulating
our current constraints as hard constraints and adding ad-
ditional soft constraints such as variance in throughput or
waiting times could more closely represent real-world en-
vironments while creating a model that values fairness and
safety. In addition, we could add further constraints by ex-
panding the environment to include different types of vehi-
cles, such as buses, ambulances, and trams, to develop more
generalizable traffic management strategies that accommo-
date diverse transportation needs. Adding more significant
constraints on their delay and waiting time could lead to
more robust constraints that better reflect real-life scenarios.

While ATSC is a partially observable Markov Game, a
final idea is to give each agent a better idea of their sur-
roundings through expectation alignment. ELIGN (Ma et al.
2022) is a method for multi-agent expectation alignment
that aligns the shared expectations of an agent to its actual
actions through an intrinsic reward. Predicting neighboring
agents’ actions in a second-order theory of mind approach
allows for better coordination, and can easily be added to
existing methods to find more optimal policies. In the ATSC
problem, this may allow each agent to predict swells or dips
in traffic before they reach the intersection that the agent
controls, further increasing its ability to make fair and safe
decisions.

8 Conclusion
In this paper, we focus on finding scalable algorithms
for the Adaptive Traffic Signal Control problem in real-
world traffic environments. We propose a novel algorithm,
MAPPO-LCE for constrained multi-agent reinforcement
learning. We expand upon Multi-Agent Proximal Policy Op-
timization (MAPPO) by incorporating elements of MAPPO-
Lagrangian (Gu et al. 2022) and introducing a Lagrange
Cost Estimator to accurately predict constraints even un-
der unstable conditions. While we only focused on three
constraints, MAPPO-LCE can be used with any number of
general traffic constraints, and can be extended to any con-
strained MARL problem. Our experimental results using the
CityFlow environment in multiple real-world settings show
that MAPPO-LCE outperforms other baseline methods with
suitable constraints. Our findings indicate that constrained
multi-agent reinforcement learning can identify more opti-
mal traffic policies for ATSC in real-world conditions and
holds strong potential for real-world deployment.
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A Hyperparameter Selection
A.1 Algorithm Hyperparameters
Since all of our baseline algorithms are taken from the ePY-
MARL library (Papoudakis et al. 2021), we use the same
hyperparameters. For the constraint trade-off hyperparame-
ter zeta, we set it to 0.2 for all constraints. We model the
cost estimator as a Multi-Layer Perceptron (MLP), with two
hidden layers and a hidden layer size of 128. We also use
an Adam optimizer with a learning rate of 10−4 to train the
cost estimator. We set the cost limit for all experiments to 0.

A.2 Environment Hyperparameters
Each time step in the environment is composed of Tg inner
steps to update the environment, which we set to 10. Af-
ter the policy selects an action, each inner step simulates 1
second of the environment. To simulate yellow lights with-
out actually implementing them directly, each traffic light
instead turns off all lights that would be switched between
phases for Ty time before fully turning them red or green.
We set Ty to 5 time steps, which is equivalent to 5 seconds.
Each constraint also has a hyperparameter that controls its
severity. For constraint thresholds, we set Gmax time to 40,
Pmax skips to 16, and Gmax skips to 4. The specific algo-
rithm for how each constraint is calculated is in Algorithm
2.

B Further Results
Figures 4 and 5 below show the results for the average delay
and average throughput metrics, defined in Section 5.1. Each
algorithm’s objective is to minimize the delay and maximize
the throughput. The figures show our algorithm continues to
outperform the baseline methods in most environments un-
der most constraints, particularly in the NY and JN environ-
ments. While our algorithm still outperforms QTRAN and
MAPPO in the HZ environment, IPPO either outperforms
or is nearly equal to our algorithm on these metrics.



Algorithm 2: Constraint Calculation

for time = 1 to N do
...
{GreenTime Calculation}
for light in lights do

if light on in current phase then
green time[light] += 1

else
green time[light] = 0

end if
end for
...
{PhaseSkip Calculation}
if new phase ̸= old phase then

for phase in phases do
if (phase ̸= old phase) and (phase ̸= new phase)
then

phase skips[phase] += 1
end if

end for
phase skips[new phase] = 0
...
{GreenSkip Calculation}
for light in lights do

if (light red in old phase) and (light red in
new phase) then

green skips[light] += 1
else

green skips[light] = 0
end if

end for
end if
...

end for



Figure 4: Average Delay results of our algorithm and baseline algorithms across all environments and constraints (lower is
better).

Figure 5: Throughput results of our algorithm and baseline algorithms across all environments and constraints.


