
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LIVECODEBENCH: HOLISTIC AND CONTAMINATION
FREE EVALUATION OF LARGE LANGUAGE MODELS
FOR CODE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMS) applied to code-related applications have emerged
as a prominent field, attracting significant interest from academia and industry.
However, as new and improved LLMS are developed, existing evaluation bench-
marks (e.g., HUMANEVAL, MBPP) are no longer sufficient for assessing their
capabilities suffering from data contamination, overfitting, saturation, and focus
on merely code generation. In this work, we propose LIVECODEBENCH, a compre-
hensive and contamination-free evaluation of LLMS for code, which collects new
problems over time from contests across three competition platforms, LEETCODE,
ATCODER, and CODEFORCES. Notably, our benchmark also focuses on a broader
range of code-related capabilities, such as self-repair, code execution, and test
output prediction, beyond just code generation. Currently, LIVECODEBENCH hosts
over six hundred coding problems that were published between May 2023 and
Aug 2024. We evaluate over 50 LLMS on LIVECODEBENCH (LCB for brevity)
presenting the largest evaluation study of code LLMS on competition problems.
Based on the study, we present novel empirical findings on contamination, over-
fitting, and holistic evaluations. We demonstrate that time-segmented evaluations
serve as a robust approach to evade contamination; they are successful at detecting
contamination across a wide range of open and closed models including GPT-4-O,
CLAUDE, DEEPSEEK, and CODESTRAL. Next, we highlight overfitting and satu-
ration of traditional coding benchmarks like HUMANEVAL and demonstrate LCB
allows more reliable evaluations. Finally, our holistic evaluation scenarios allow
for measuring the different capabilities of programming agents in isolation.

1 INTRODUCTION

Code has emerged as an important application area for LLMS, with a proliferation of code-specific
models (Chen et al., 2021; Austin et al., 2021; Nijkamp et al., 2022; Li et al., 2023b; Roziere et al.,
2023; Guo et al., 2024; Ridnik et al., 2024; Lozhkov et al., 2024) and their applications across various
tasks such as program repair (Zheng et al., 2024; Olausson et al., 2023), optimization (Madaan et al.,
2023a), test generation (Steenhoek et al., 2023), documentation (Luo et al., 2024), SQL (Sun et al.,
2023). In contrast with these rapid advancements, evaluations have remained relatively stagnant, and
current benchmarks like HUMANEVAL and MBPP paint a misleading picture. Firstly, while coding
is a multi-faceted skill, these benchmarks only focus on code generation, thus overlooking broader
code-related capabilities. Moreover, these benchmarks suffer from contamination or overfitting, as
benchmark samples are present in the training datasets.

Motivated by these shortcomings, we introduce LIVECODEBENCH, built on the following principles:

1. Live updates to prevent contamination. LLMS are trained on massive inscrutable corpora
and current benchmarks suffer from the risk of data contamination as they could be included
in those training datasets. While previous works have attempted decontamination using
both exact and fuzzy matches (Li et al., 2023b;d), it can be a non-trivial task (Team,

1Note that for model comparisons – performances are averaged across multiple months and platforms
achieving a larger sample size.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Left. LIVECODEBENCH comprises problems marked with release dates, allowing evaluations
over different time windows. The figure depicts performances of DEEPSEEK, GPT-4-O, and CLAUDE-
3S models over bimonthly time windows (∼ 40 LEETCODE problems) showcasing a stark drop after
their cutoff dates, highlighting contamination. Thus, we can detect and avoid contamination by
evaluating models only on time-windows after the model’s cutoff date (green region)1. Right. We
evaluate LLMS across four scenarios that capture key coding capabilities necessary for building
programming agents: code generation, repair, testing, and comprehension. The figure depicts various
model performances across the scenarios available in LIVECODEBENCH in a radial plot – highlighting
relative differences changing across the scenarios.

2024; Yang et al., 2023). Existing competition programming benchmarks (like APPS and
CODESCOPE) are already contaminated and may fail to provide reliable evaluation of code
LLM capabilities. In LIVECODEBENCH, to prevent the risk of problem contamination, we
evaluate models on new problems tagged with a release date. Next, for newer models, we
only consider problems released after the model’s cutoff date to ensure that the model has
not been trained on it as demonstrated in Figure 1 left.

2. Holistic Evaluation. Current code evaluations primarily focus on natural language to code
generation. However, programming is a multi-faceted task that requires capabilities beyond
those measured by code generation. These broader capabilities are even more relevant
for constructing programming agents that can interact with the execution environment.
Therefore, we evaluate the execution-feedback-based multi-turn coding using the self-repair
scenario (Olausson et al., 2023), assess code comprehension capabilities using the code
execution scenario (Gu et al., 2024), and introduce the test output prediction scenario to
evaluate the models’ test generation capabilities.

3. High-quality problems and tests. High-quality problems and tests are crucial for reliable
evaluation of LLMS. However, existing benchmarks suffer from multiple deficiencies.
First, existing competitive programming benchmarks (APPS, CODE-CONTESTS, XCODEEVAL,
CODESCOPE) contain problems not amenable to input-output-based auto-grading. For
example, CODE-CONTESTS (Li et al., 2022) (page 39, second-to-last paragraph) reports that
about twenty-five percent of the problems in the benchmark accept multiple correct outputs
for a single input. This incorrectly penalizes correct solutions, adding noise to a considerable
fraction of the benchmark. Next, prior benchmarks like HUMANEVAL and APPS contain
insufficient tests, further exacerbating noise in evaluations (Liu et al. (2023a) reports 8%
drop in model performance). In LIVECODEBENCH, we source high-quality problems from
reputable platforms and implement heuristics to detect and remove problems not amenable
to input-output-based auto-grading. Finally, for every problem, we provide a substantial
number of tests (over 18 on average) for reliable and efficient evaluations. In contrast to
prior works, we also include several large tests designed for stress-testing solutions ensuring
weak or worse complexity solutions do not pass test harnesses.

4. Difficulty Guided Problem Curation. Competitive programming is a challenging domain
even for strong LLMS. As a result, these problems can be unsuitable for meaningfully com-
paring today’s open LLMS, because the variance in performance is low, often relying on less
than 1% performance differences (within the margin of error). Therefore, we use problem
difficulty ratings (sourced from the competition websites) to curate our problems, avoiding

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparing LCB with existing coding and competition programming benchmarks.

Benchmark
Contamination

Prevention
Problem
Curation

Robust Test
Based Eval.

Varied
Difficulties

Not
Saturated

Broader Eval.
Scenarios

Comp. Analysis
across Models

HUMANEVAL (Chen et al., 2021) ✗ ✓ ✗ ✓ ✗ ✗ ✓
HUMANEVAL+ (Liu et al., 2023b) ✗ ✓ ✓ ✓ ✗ ✗ ✓
MBPP (Austin et al., 2021) ✗ ✓ ✗ ✓ ✗ ✗ ✓

APPS (Hendrycks et al., 2021) ✗ ✗ ✗ ✓ ✓ ✗ ✗
CODE-CONTESTS (Li et al., 2022) ✗ ✗ ✓ ✗ ✓ ✗ ✗
XCODEEVAL (Khan et al., 2023) ✗ ✗ - ✗ ✓ ✓ 2 ✗
CODESCOPE (Yan et al., 2023) ✗ ✗ - ✗ ✓ ✓ 2 ✗
TACO (Li et al., 2023c) ✗ ✗ ✗ ✗ ✓ ✗ ✗
USCAOBENCH (Shi et al., 2024) ✗ ✓ ✓ ✓ ✓ ✗ ✗

LIVECODEBENCH (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

those that are too difficult for current models. In particular, we avoid collecting CODE-
FORCES problems used by prior works (CODE-CONTESTS, CODESCOPE, XCODEEVAL) since
we find they do not sufficiently distinguish models due to model performances (PASS@1)
tending to zero. Indeed, LCB easy and medium problems can separate 7B models that are
indistinguishable on the hard subset (see DS-7B vs SC2-7B).

With these principles in mind, we build LIVECODEBENCH, a continuously updated benchmark that
avoids data contamination. Particularly, we collect 612 problems from contests occurring between
May 2023 and Aug 2024 and use them to construct the different scenarios.

Empirical Findings. We have evaluated over 50 (18 base models and 34 instruction-tuned)
models across different LIVECODEBENCH scenarios. Based on this study and following analysis, we
present novel empirical findings which have not been revealed in prior benchmarks.

1. Contamination. We observe a stark drop in the performance of DEEPSEEK, GPT-4-O,
CODESTRAL and CLAUDE-3S on LEETCODE problems released after Aug 2023, Oct 2023, Jan
2024, and April 2024 (Figure 1 left). These results highlight likely contamination in older
problems and time-segmented evaluations prove effective for performing fair comparisons
across varied set of models from both open and closed domains.

2. Holistic Evaluation. Our evaluations reveal that model performances are correlated across
tasks, but the relative differences do vary. For example, in Figure 1 right, the gap between
open and closed models further increases on tasks like self-repair or test output prediction.
Similarly, CLAUDE-3-OPUS surpasses GPT-4 on the test output prediction scenario.

3. HUMANEVAL Overfitting. Upon comparing LIVECODEBENCH with HUMANEVAL, we find
that models cluster into two groups, ones that perform well on both benchmarks, and others
that perform well on HUMANEVAL but not on LIVECODEBENCH (see Figure 4). The latter
group primarily comprises fine-tuned open-access models while the former comprises base
and closed models. This indicates some level of overfitting to HUMANEVAL.

4. Model Comparisons (Figure 3). We provide model comparisons across different groups
like base, instruct, open, and closed models and across groups like open vs closed models.

Concurrent Work. (Huang et al., 2023) also evaluate LLMS in a time-segmented manner. However,
they only focus on CODEFORCES problems, while we combine problems across platforms and
additionally propose a holistic evaluation across multiple code-related scenarios. Liu et al. (2024)
evaluate the code comprehension capabilities of LLMS using execution. (Singhal et al., 2024) also
evaluates LLMS on more tasks but focus on non-functional-correctness aspects of programming. Shi
et al. (2024) evaluate LLMS on USACO problems while we focus on simple competition scenarios.

2 HOLISTIC EVALUATION

Code capabilities of LLMS are evaluated and compared using natural language to code generation
tasks. However, this only captures one dimension of code-related capabilities. AlphaCodium (Ridnik
et al., 2024) developed an intricate LLM pipeline for solving competition coding problems. By
combining natural language reasoning, test case generation, code generation, and self-repair, they

2LIVECODEBENCH considers different evaluation scenarios compared to XCODEEVAL and CODESCOPE
focusing on settings where reliable evaluation is possible.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

nums = [1,3,3,4,4]

def count(nums):
freq = Counter(nums)
cnts = freq.values()
max_freq = max(cnts)
return (
cnts.count(max_freq)*
max_freq

)

You are given a positive integer
array `nums`. Return the total
frequencies of elements in
`nums` such that those
elements all have the
maximum frequency.

Problem Statement User Solution

Input

def count(nums):
freq = Counter(nums)
max = freq.values()
count = len([

k for k, v in
freq.items()
if v == max

])
return count

Code Generation

def count(nums):
freq = Counter(nums)
max = freq.values()
count = len([

k for k, v in
freq.items()
if v == max

])
return count * max

Self Repair
Step 1. 3 and 4 have the
maximum frequencies
Step 2. max frequency is 2
Step 3. 2*2 is 4
Step 4. Ans is 4

Test Output Prediction

count([1,3,3,4,4])==??
Ans is 4

Code Execution

Figure 2: Overview of the four scenarios present in LIVECODEBENCH.

achieve significant improvements over a naive direct code generation baseline, showcasing the
importance of these broader capabilities. Motivated by this, we propose a holistic evaluation of LLMS

using a suite of evaluation setups that capture a broader range of code-related capabilities.

Specifically, we evaluate code LLMS in four scenarios, namely code generation, self-repair, code
execution, and test output prediction. Our selection criterion was to pick settings that are useful
components in code LLM workflows and in addition, have clear and automated evaluation metrics.

Following we describe each of these scenarios in detail.

Code Generation. The code generation scenario follows the standard setup for generating code
from natural language. The model is given a problem statement, which includes a natural language
description and example tests (input-output pairs), and is tasked with generating a correct solution.
The evaluation is performed based on functional correctness, using a set of unseen test cases. We
use the PASS@1 metric measured as the fraction of the problems for which the model was able to
generate a program passing all tests. Figure 2 (left) provides an example of this scenario.

Self Repair. The self-repair scenario is based on previous works that tested the self-repair capabilities
of LLMS (Olausson et al., 2023; Shinn et al., 2023; Chen et al., 2023). Here, the model is given
a problem statement from which it generates a candidate program (similar to the single-step code
generation scenario above). However, in case of a mistake, the model is additionally provided with
error feedback (either the exception message or a failing test case) and is tasked with generating the
fixed solution. Similar to the code generation scenario, the evaluation is performed via functional
correctness on the final program, i.e. either the single-step correct generation or the attempted repair.
We use the PASS@1 metric to measure the combined performance after the repair step. Figure 2
(mid-left) provides an example of this scenario.

Code Execution. The code execution scenario is based on the output prediction setup used in
CRUXEVAL (Gu et al., 2024). The model is provided a program snippet consisting of a function (f)
along with a test input to the program and is tasked with predicting the output of the program on the
input test case. The evaluation is performed via an execution based on an exact match correctness
metric. Figure 2 (right) provides an example of the code execution scenario.

Test Case Output Prediction. Finally, we introduce a new task that is designed to study natural
language reasoning and test generation. In this task, the model is given the problem statement along
with a test case input, and it is tasked with generating the expected output for that input. This task
follows a setup similar to the one used in CODET (Chen et al., 2022), where tests are generated solely
from problem statements, without the need for the function’s implementation. A key difference is
that we provide a fixed set of test inputs for each problem in our dataset, and the models are then
prompted to only predict the expected output for those specific inputs. This approach allows for
a straightforward evaluation of the test generation capabilities by avoiding test input prediction, a
hard-to-evaluate task. Figure 2 (mid-right) provides an example of this scenario.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Finally, we would like to point out that LIVECODEBENCH also offers an extensible framework to add
new scenarios in the future. So other relevant settings like input generation, program summarization,
optimization, etc. can be integrated with our setup.

3 BENCHMARK CURATION

We curate our problems from three coding competition websites: LEETCODE, ATCODER, and CODE-
FORCES. These websites periodically host contests containing problems that assess the coding and
problem-solving skills of participants. The problems consist of a natural language problem statement
along with example input-output examples, and the goal is to write a program that passes a set of
hidden tests. Further, thousands of participants participate, solving these problems thus ensuring that
the problems are vetted for clarity.

3.1 DATA COLLECTION

We have written automated HTML scrapers for each of the above websites to collect problems and
the corresponding metadata. To ensure quality and consistency, we parse mathematical formulas
and exclude problems with images. We also exclude problems that are not suitable for grading by
input-output examples, such as those that accept multiple correct answers or require the construction
of data structures. Specifically, we use keyword-based heuristic filters to filter interactive problems
and problems accepting multiple correct solutions. Besides parsing the problem descriptions, we
also collect associated ground truth solutions and test cases whenever directly available. Thus for
each problem, we collect tuples of natural language problem statement P , test cases T , and ground
truth solution S. Finally, we associate the contest date D to mark the release date of each problem
and use the collected attributes to construct problems for our four scenarios (detailed in Section C.2
ahead). Note that this process is completely automated and human involvement is only involved in
modifying high-level design decisions such as updating problem difficulty settings and improving the
keyword-based heuristics for filtering problems over different “live updates”.

Scrolling through time. As noted, we associate the contest date D for each problem. The release
date allows us the measure the performance of LLMS over different time windows by filtering
problems based on whether the problem release date falls within a time window (referred to as
“scrolling” through time). This is crucial for evaluating and comparing models trained at different
times. Specifically, for a new model and the corresponding cutoff date (normalized to the release
date if the training cutoff date is not published), we can measure the performance of the model on
benchmark problems released after the cutoff date. We have developed a UI that allows comparing
models on problems released during different time windows (Figure 9).

Test collection. Tests are crucial for assessing the correctness of the generated outputs and are used
in all four scenarios. We collect tests available on platform websites whenever possible and use them
for the benchmark. Otherwise, following (Liu et al., 2023b), we use a LLM (here GPT-4-TURBO)
to generate test inputs for the problems. A key difference between our test generation approach is
that instead of generating inputs directly using the LLM, we construct generators that sample inputs
based on the problem specifications using in-context learning. Details and examples of such input
generators can be found in Section A.2. Finally, we collect a small fraction of failing tests from the
platforms for adversarial tests.

Problem difficulty. Competition programming has remained a challenge for LLMS, with GPT-4
achieving an average CODEFORCES rating (ELO) of 392, placing it in the bottom 5 percentile (OpenAI,
2023). This makes it difficult to compare LLMS, as the variation in performance across models is low.
In LIVECODEBENCH, we collect problems of diverse difficulties as labeled in competition platforms,
excluding problems that are rated above a certain threshold that are likely too difficult for even the
best models3. Further, we use these ratings to classify problems as EASY, MEDIUM, and HARD for
more granular model comparisons.

We defer the platform and scenario specific curation details tn the Appendix (Section C)

3From our early explorations, we find CODEFORCES problems being considerably more difficult than ATCODER

and LEETCODE problems and thus focus primarily on the latter platforms.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENT SETUP

We describe the experimental setup in this section. First, we provide the common setup across the
scenarios, followed by the scenario-specific setups in Section 4.1.

Models. We evaluate 52 models across various sizes, ranging from 1.3B to 70B, including base
models, instruction models, and both open and closed models. Our experiments include models from
different classes, such as GPTS, CLAUDES, GEMINIS, MISTRAL, LLAMA-3S, DEEPSEEKS, CODELLA-
MAS, STARCODER2, CODEQWEN and their variants. Appendix D.1 provides the list of models.

Evaluation Metrics. We use the PASS@1 (Kulal et al., 2019; Chen et al., 2021) metric for our
evaluations. Specifically, we generate 10 candidate answers for each problem from model providers
or using VLLM (Kwon et al., 2023). We use nucleus sampling with temperature 0.2 and top_p 0.95
and calculate the fraction of correct solutions.

4.1 SCENARIO-SPECIFIC SETUP

The setup for each scenario is presented below. Note that the base models are only used in the code
generation scenario since they do not easily follow the format for the other scenarios.

Code Generation. For the instruction-tuned models, we use a zero-shot prompt and follow the
approach of Hendrycks et al. (2021) by adding appropriate instructions to generate solutions in either
functional or stdin format (one-shot for base-models). Section D.2 depicts the prompt.

Self Repair. Similar to prior work Olausson et al. (2023), we use the programs generated during the
code generation scenario along with the corresponding error feedback to build the zero-shot prompt
for the self-repair scenario. The error feedback can be syntax errors, runtime errors, wrong answers,
and time-limit errors. Section D.3 provides error feedback and the corresponding prompt.

Code Execution. We use few-shot prompts for the code execution scenario, both with and without
chain-of-thought prompting (COT). Particularly, we use a 2-shot prompt without COT and a 1-shot
prompt with COT with manually detailed steps. The prompts are detailed in Section D.4.

Test Output Prediction. We use a zero-shot prompt that queries the model to complete assertions,
given the problem, function signature, and test input. We provide the prompt in Section D.5.

5 RESULTS

We first describe how LIVECODEBENCH helps detect and avoid benchmark contamination in Sec-
tion 5.1. Next, we present the findings from our evaluations on LIVECODEBENCH in Section 5.2.

5.1 AVOIDING CONTAMINATION

Contamination in DEEPSEEK and GPT-4-O. LIVECODEBENCH curates problems released since May
2023. However, DEEPSEEK was released Sep 2023 and GPT-4-O’s official cutoff date is Nov 2023.
We can measure the performance of these models on the benchmark problems released after these
dates, thereby estimating the performance of the model on previously unseen problems. Figure 1
shows the performance of these models on LEETCODE problems released in different months from
May 2023 and Aug 2024. First, we notice stark drops in model performance – DS-INS-33B model
after Aug. 2023, GPT-4-O model after Nov. 2023, CLAUDE-3S model after Apr. 2023. These drops
align with their release or cutoff dates which suggests that the earlier problems might indeed be
contaminated. This trend is consistent across other LIVECODEBENCH scenarios like repair and code
execution, as depicted in Figure 10. Concurrently, (Guo et al., 2024) (Section 4.1, last paragraph)
also acknowledge the possibility of LEETCODE contamination, noting that “models achieved higher
scores in the LeetCode Contest held in July and August”.

Interestingly, we find that this drop in performance primarily occurs for the LEETCODE problems
only and that the model performance is relatively smooth across the months for problems from other
platforms. Figure 11 shows a relatively stable performance for all models on ATCODER problems.

Performances of other models. We study performance variations in other models released more
recently. Particularly, GPT-4-TURBO, MISTRAL-L, and CLAUDE-3S models were released in Nov’2023,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Model performances across the four scenarios available in LIVECODEBENCH .

Feb’2024, and Mar’2024 respectively. Empirically, we do not observe significant performance
variations across the months, as shown in Figure 12.Interestingly, we find that even the DS-BASE-33B
model also suffers from contamination dropping from PASS@1 ∼ 60 in May problems to PASS@1 ∼ 0
in September LEETCODE problems. Finally, CODESTRAL achieves PASS@1 36.5 on problems released
between May’23 and Jan’24 and PASS@1 28.3 on problems post Jan’24.

5.2 PERFORMANCE AND MODEL COMPARISONS

We provide our model comparison findings here (and in Appendix E). To overcome contamination
issues in DEEPSEEK models, we only consider problems released since Sep 2023 for all evaluations
below. Figure 3 shows the performance of a subset of models across the four scenarios.

Holistic Evaluations. We have evaluated the models across the four scenarios currently available
in LIVECODEBENCH. Figure 1 displays the performance of models on all scenarios along the axes
of the polar chart. First, we observe that the relative order of models remains mostly consistent
across the scenarios. This is also supported by high correlations between PASS@1 metric across the
scenarios – over 0.88 across all pairs as shown in Figure 13. However, despite the strong correlation,
the relative differences in performance do vary across the scenarios. For example, GPT-4-TURBO

further gains performance gap over GPT-4 in the self-repair scenario after already leading in the code
generation scenario. Similarly, CLAUDE-3-OPUS and MISTRAL-L perform well in tasks involving COT,
particularly in the code execution and test output prediction scenarios. For instance, CLAUDE-3-OPUS

even outperforms GPT-4-TURBO in the test output prediction scenario. These differences highlight
the need for holistic evaluations beyond measuring code generation capabilities.

Comparison to HUMANEVAL. Next, we compare how code generation performance metrics translate
between LIVECODEBENCH and HUMANEVAL, the primary benchmark used for evaluating coding
capabilities. Note that we use HUMANEVAL+ providing more accurate evaluations. Figure 4 shows a
scatter plot of PASS@1 on HUMANEVAL+ versus LCB-Easy code generation scenario. We find only a
moderate correlation of 0.72, with much larger performance variations on LCB-Easy.

Additionally, we observe that the models cluster into two groups, shaded in red and green. The models
in the green-shaded region lie close to the x = y line, indicating that they perform similarly on both

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Scatter plot comparing PASS@1 of models on HUMANEVAL+ versus LCB-Easy (time-window
Sep 2023 to May 2024). We find that the models are separated into two groups – the green-shaded
region where performances on the two datasets are aligned and the red-shaded region where models
perform well on HUMANEVAL+ but perform poorly on LIVECODEBENCH. This indicates potential
overfitting on HUMANEVAL+ and primarily occurs in the fine-tuned variants of open-access models.
For example, DS-INS-1.3B achieves PASS@1 of 60 and 26 on HUMANEVAL+ and LCB-Easy subset.
Thus, while it ranks above CMD-R+ (∼ 100x larger!) on HUMANEVAL+, it performs significantly
worse on the LCB. Similarly, DS-INS-6.7B and CODEQWEN outperform SONNET on HUMANEVAL+
but are > 20 points behind on LCB-Easy.

benchmarks. On the other hand, models in the red shaded region perform well on HUMANEVAL+
but not as well on LIVECODEBENCH. Interestingly, the green-shaded cluster contains base models
or closed-access models, while the red-shaded cluster primarily comprises fine-tuned variants of
open-access models. The well-separated clusters suggest that many models that perform well on
HUMANEVAL might be overfitting on the benchmark, and their performances do not translate well
to problems from other domains or difficulty levels like those present in LIVECODEBENCH. Indeed,
HUMANEVAL has small and isolated programming problems and thus easier to overfit. In contrast,
LIVECODEBENCH problems are sourced from reputable coding platforms offering more challenging
problems with higher diversity and difficulty levels. We detail instances of this overfitting (DS-INS-
1.3B, DS-INS-6.7B, and CODEQWEN) in Figure 4 caption.

Comparing Base Models. We use four families of base models and compare them on the code
generation scenario. A one-shot prompt is used for all models to avoid any formatting and answer
extraction issues. We find L3-BASE and DS-B models are significantly better than both CODELLAMA

and STARCODER2 base models with a DS-BASE-6.7B model even outperforming both CL-BASE-34B
and SC2-BASE-15B models. Note that some LCB specific differences can potentially be attributed to
data curation approaches. For instance, SC models (and potentially DS as discussed in Section 5.1)
use competition problems during pre-training.

Role of Post Training. Post-training improves performance on both HUMANEVAL+ and LIVE-
CODEBENCH for the code generation scenario. Particularly, on LCB L3-INS-70B, DS-INS-33B and
PHIND-34B improve PASS@1 over their base models by 8.2, 7.3 and 9.5 points respectively. This
highlights the importance of good post-training datasets for building strong LLMS. At the same time,
we note that the base models have aligned performances on LCB code generation and HUMANEVAL+
benchmarks and lie within or close to the green shaded region in Figure 4. However, the fine-tuned
open models exhibit a larger performance gap, with much better performances on HUMANEVAL+. On
the other hand, the closed-access models are still aligned across both benchmarks. This suggests the
necessity of more diverse post-training data mixtures.

Open-Access vs Closed-Access Models. In general, closed (API) access model families generally
outperform the open access models. The gap is only closed by three models, namely L3-INS-70B,
MIXTRAL, and DS-INS-33B which reach the performance levels of the closed models. For instance, in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Comparison of open access and (closed) API access models on LIVECODEBENCH code
generation scenario. We find that closed-access models consistently outperform the open models
with only strong instruction-tuned variants of > 30B models (specifically L3-INS-70B, MIXTRAL and
DS-INS-33B models) crossing the performance gap.

the code generation scenario (Figure 5), these models reach close to or even outperform closed access
models like GEMINI-PRO, GPT-3.5-TURBO, and CLAUDE-3-SONNET. The performances vary across
scenarios with the closed-access models faring better in test output and code execution scenarios.

Highlighting gap between SoTA One distinct observation from our evaluations is the large gap
between SoTA models and open models across all scenarios. Particularly, GPT-4-TURBO, GPT-4,
GEMINI-PRO-1.5 and CLAUDE-3-OPUS lead across the benchmarks with wide performance margins
over other models. This distinguishes LIVECODEBENCH from prior benchmarks (like HUMANEVAL)
where various open models have achieved similar or better performance. For example, DS-INS-33B
is merely 4.3 point behind GPT-4-TURBO on HUMANEVAL+ but 16.2 points (69%) on LCB code
generation scenario. This gap either holds or sometimes even amplifies across other scenarios.

Comparing open-access instruction-tuned models. Here, we compare various fine-tuned variants
of the L3-BASE, DEEPSEEK and CODELLAMA base models across different model sizes. We find
that fine-tuned L3-BASE and DEEPSEEK models lead in performance, followed by PHIND-34B and
CODELLAMA models across most scenarios. Broadly, we find that model performances correlate with
model sizes. For example, PHIND-34B model outperforms the 6.7B models across all scenarios.

6 RELATED WORK

Language Models for Code Generation. Starting with Codex (Chen et al., 2021), there are
over a dozen code LLMS. These include CodeT5 (Wang et al., 2021; 2023), CodeGen (Nijkamp
et al., 2022), SantaCoder (Allal et al., 2023), StarCoder (Li et al., 2023b; Lozhkov et al., 2024),
InCoder (Fried et al., 2022), CodeGeeX (Zheng et al., 2023), L3-BASE, DEEPSEEK (Bi et al., 2024)
and CODELLAMA (Roziere et al., 2023).

Code Generation Benchmarks. Many benchmarks have been proposed to compare and evaluate
these models. These primarily focus on natural language to Python code generation: HUMANEVAL

(Chen et al., 2021), HUMANEVAL+ (Liu et al., 2023b), APPS (Hendrycks et al., 2021), CODE-CONTESTS

(Li et al., 2022), MBPP (Austin et al., 2021), L2CEval (Ni et al., 2023). Their variants have been
proposed to cover more languages, (Wang et al., 2022a; Zheng et al., 2023; Cassano et al., 2022;
Athiwaratkun et al., 2022). Many benchmarks have focused on code generation in APIs. Benchmarks
like DS-1000 (Lai et al., 2023), ARCADE (Yin et al., 2022), NumpyEval (Zhang et al., 2023b), and
PandasEval (Jain et al., 2022) focus on data science APIs. Other benchmarks measure using broader
APIs or general software engineering tasks, such as JuICe (Agashe et al., 2019), APIBench (Patil

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

et al., 2023), RepoBench (Liu et al., 2023c), ODEX (Wang et al., 2022b), SWE-Bench (Jimenez et al.,
2023), GoogleCodeRepo (Shrivastava et al., 2023), RepoEval (Zhang et al., 2023a), ClasEval (Du
et al., 2023) and Cocomic-Data (Ding et al., 2022).

A few benchmarks specifically measure competitive programming, such as APPS (Hendrycks et al.,
2021), CodeContests (Li et al., 2022), CodeScope (Yan et al., 2023), xCodeEval (Khan et al., 2023),
and LeetCode-Hard (Shinn et al., 2023), and TACO (Li et al., 2023c). Table 1 highlights differences
between them. Methods such as AlphaCode (Li et al., 2022), AlphaCode 2 (Gemini Team et al.,
2023), ALGO (Zhang et al., 2023d), Parsel (Zelikman et al., 2022), code cleaning (Jain et al., 2023),
code explainations (Li et al., 2023a), analogical reasoning (Yasunaga et al., 2023), and AlphaCodium
(Ridnik et al., 2024) have focused on improving LLMS.

6.1 HOLISTIC TASKS AND CONTAMINATION

Code Repair. (Chen et al., 2023; Olausson et al., 2023; Madaan et al., 2023b; Peng et al., 2023;
Zhang et al., 2023c) have investigated self-repair for existing code LLM benchmarks. These methods
use error feedback for models to improve inspiring our code repair scenario.

Code Execution. Code execution was first studied in (Austin et al., 2021; Nye et al., 2021) LIVE-
CODEBENCH’s execution scenario is particularly inspired by CRUXEval (Gu et al., 2024), a recent
benchmark measuring the reasoning and execution abilities of code LLMS. We differ from CRUXEval
in that our benchmark is live, and our functions are more complex and human-produced (unlike Code
Llama generations in CRUXEval).

Test Generation. Test generation using LLMS has been explored in (Yuan et al., 2023; Schäfer
et al., 2024; Tufano et al., 2022; Watson et al., 2020). However, we decouple the test inputs and
outputs which allows performing fair evaluations. Finally, some works have additionally studied
other tasks and scenarios like type prediction (Mir et al., 2022; Wei et al., 2023; Malik et al., 2019),
code summarization (LeClair et al., 2019; Iyer et al., 2016; Barone & Sennrich, 2017; Hasan et al.,
2021; Alon et al., 2018), code security (Liguori et al., 2022; Pearce et al., 2022; Tony et al., 2023),
etc.

Contamination. Data contamination and test-case leakage have received considerable attention
Oren et al. (2024); Golchin & Surdeanu (2023); Weller et al. (2023); Roberts et al. (2024) recently.
(Sainz et al., 2023) demonstrated contamination by simply prompting the model to highlight its
contamination. Some detection methods have also been built to avoid these cases (Shi et al., 2023;
Zhou et al., 2023). For code, (Riddell et al., 2024) use edit distance and AST-based semantic-similarity
to detect contamination.

7 LIMITATIONS AND CONCLUSION

We describe key limitations here and provide a deeper discussion in Appendix G.

Evaluation Noise. We anticipate noise from benchmark size, prompts, and sampling. For benchmark
size, while 612 problems is fairly larger than existing code benchmarks (e.g. 164 problems in
HUMANEVAL), this set reduces on “scrolling” over the more recent problems. Next, prompting can
cause large variations in model performance and we do not tune prompts across models. For sampling,
we use bootstrapped PASS@1 using 10 completions, which should limit this noise considerably.

Problem Domain. LIVECODEBENCH comprises competition programming problems which might not
correlate with how LLMS are used in practice. Even then, our results are well correlated with findings
from human evaluations like Chatbot-Arena Chiang et al. (2024) thus providing useful signal.

Conclusion. In this work, we propose LIVECODEBENCH, a new benchmark for evaluating LLMS

for code. LIVECODEBENCH provides an extensible framework that will keep on updating with new
problems. Our benchmark mitigates contamination issues in existing benchmarks by introducing live
evaluations and emphasizing scenarios beyond code generation to account for the broader coding
abilities of LLMS. Our evaluations reveal novel findings such as contamination detection, holistic
evaluations, and potential overfitting on HUMANEVAL. We hope LIVECODEBENCH with serve to
advance understanding of current code LLMS and also guide future research through our findings.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer. Juice: A large scale distantly supervised
dataset for open domain context-based code generation. arXiv preprint arXiv:1910.02216, 2019.

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, et al. Santacoder: don’t
reach for the stars! arXiv preprint arXiv:2301.03988, 2023.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from
structured representations of code. arXiv preprint arXiv:1808.01400, 2018.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, et al. Multi-lingual evaluation of
code generation models. arXiv preprint arXiv:2210.14868, 2022.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Antonio Valerio Miceli Barone and Rico Sennrich. A parallel corpus of python functions and
documentation strings for automated code documentation and code generation. arXiv preprint
arXiv:1707.02275, 2017.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-e:
A scalable and extensible approach to benchmarking neural code generation. arXiv preprint
arXiv:2208.08227, 2022.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena:
An open platform for evaluating llms by human preference, 2024.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Murali Krishna Ramanathan, Ramesh Nallapati,
Parminder Bhatia, Dan Roth, and Bing Xiang. Cocomic: Code completion by jointly modeling
in-file and cross-file context. arXiv preprint arXiv:2212.10007, 2022.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evaluating
llms on class-level code generation, 2023.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen
tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling and
synthesis. preprint arXiv:2204.05999, 2022.

A Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shahriar Golchin and Mihai Surdeanu. Time travel in llms: Tracing data contamination in large
language models. arXiv preprint arXiv:2308.08493, 2023.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Masum Hasan, Tanveer Muttaqueen, Abdullah Al Ishtiaq, Kazi Sajeed Mehrab, Md Mahim Anjum
Haque, Tahmid Hasan, Wasi Uddin Ahmad, Anindya Iqbal, and Rifat Shahriyar. Codesc: A large
code-description parallel dataset. arXiv preprint arXiv:2105.14220, 2021.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Yiming Huang, Zhenghao Lin, Xiao Liu, Yeyun Gong, Shuai Lu, Fangyu Lei, Yaobo Liang, Yelong
Shen, Chen Lin, Nan Duan, et al. Competition-level problems are effective llm evaluators. arXiv
preprint arXiv:2312.02143, 2023.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summarizing source code
using a neural attention model. In 54th Annual Meeting of the Association for Computational
Linguistics 2016, pp. 2073–2083. Association for Computational Linguistics, 2016.

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram
Rajamani, and Rahul Sharma. Jigsaw: Large language models meet program synthesis. In
Proceedings of the 44th International Conference on Software Engineering, pp. 1219–1231, 2022.

Naman Jain, Tianjun Zhang, Wei-Lin Chiang, Joseph E Gonzalez, Koushik Sen, and Ion Stoica.
Llm-assisted code cleaning for training accurate code generators. arXiv preprint arXiv:2311.14904,
2023.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan Parvez,
and Shafiq Joty. xcodeeval: A large scale multilingual multitask benchmark for code understanding,
generation, translation and retrieval. arXiv preprint arXiv:2303.03004, 2023.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S
Liang. Spoc: Search-based pseudocode to code. Advances in Neural Information Processing
Systems, 32, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data science
code generation. In International Conference on Machine Learning, pp. 18319–18345. PMLR,
2023.

Alexander LeClair, Siyuan Jiang, and Collin McMillan. A neural model for generating natural
language summaries of program subroutines. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pp. 795–806. IEEE, 2019.

Jierui Li, Szymon Tworkowski, Yingying Wu, and Raymond Mooney. Explaining competitive-level
programming solutions using llms. arXiv preprint arXiv:2307.05337, 2023a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023b.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023c.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023d.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Pietro Liguori, Erfan Al-Hossami, Domenico Cotroneo, Roberto Natella, Bojan Cukic, and Samira
Shaikh. Can we generate shellcodes via natural language? an empirical study. Automated Software
Engineering, 29(1):30, 2022.

Changshu Liu, Shizhuo Dylan Zhang, and Reyhaneh Jabbarvand. Codemind: A framework to
challenge large language models for code reasoning. arXiv preprint arXiv:2402.09664, 2024.

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji Zhou, and Yue Zhang. Evaluating the logical
reasoning ability of chatgpt and gpt-4. arXiv preprint arXiv:2304.03439, 2023a.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. arXiv
preprint arXiv:2305.01210, 2023b.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. arXiv preprint arXiv:2306.03091, 2023c.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov,
Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul,
Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii,
Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan
Dey, Eduardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov,
Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri
Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Torsten Scholak,
Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary,
Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder 2 and the stack v2: The next
generation. 2024.

Qinyu Luo, Yining Ye, Shihao Liang, Zhong Zhang, Yujia Qin, Yaxi Lu, Yesai Wu, Xin Cong, Yankai
Lin, Yingli Zhang, et al. Repoagent: An llm-powered open-source framework for repository-level
code documentation generation. arXiv preprint arXiv:2402.16667, 2024.

Aman Madaan, Alexander Shypula, Uri Alon, Milad Hashemi, Parthasarathy Ranganathan, Yiming
Yang, Graham Neubig, and Amir Yazdanbakhsh. Learning performance-improving code edits.
arXiv preprint arXiv:2302.07867, 2023a.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023b.

Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. Nl2type: inferring javascript function types
from natural language information. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pp. 304–315. IEEE, 2019.

Amir M Mir, Evaldas Latoškinas, Sebastian Proksch, and Georgios Gousios. Type4py: Practical
deep similarity learning-based type inference for python. In Proceedings of the 44th International
Conference on Software Engineering, pp. 2241–2252, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ansong Ni, Pengcheng Yin, Yilun Zhao, Martin Riddell, Troy Feng, Rui Shen, Stephen Yin, Ye Liu,
Semih Yavuz, Caiming Xiong, et al. L2ceval: Evaluating language-to-code generation capabilities
of large language models. arXiv preprint arXiv:2309.17446, 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, 2022.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,
2021.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama.
Demystifying gpt self-repair for code generation. arXiv preprint arXiv:2306.09896, 2023.

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2023.

Yonatan Oren, Nicole Meister, Niladri Chatterji, Faisal Ladhak, and Tatsunori B Hashimoto. Proving
test set contamination for black-box language models. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
KS8mIvetg2.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri. Asleep
at the keyboard? assessing the security of github copilot’s code contributions. In 2022 IEEE
Symposium on Security and Privacy (SP), pp. 754–768. IEEE, 2022.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan Huang, Lars
Liden, Zhou Yu, Weizhu Chen, and Jianfeng Gao. Check your facts and try again: Improv-
ing large language models with external knowledge and automated feedback. arXiv preprint
arXiv:2302.12813, 2023.

Martin Riddell, Ansong Ni, and Arman Cohan. Quantifying contamination in evaluating code
generation capabilities of language models, 2024.

Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From prompt
engineering to flow engineering. arXiv preprint arXiv:2401.08500, 2024.

Manley Roberts, Himanshu Thakur, Christine Herlihy, Colin White, and Samuel Dooley. To the
cutoff... and beyond? a longitudinal perspective on LLM data contamination. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=m2NVG4Htxs.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Oscar Sainz, Jon Ander Campos, Iker García-Ferrero, Julen Etxaniz, and Eneko Agirre. Did
chatgpt cheat on your test?, Jun 2023. URL https://hitz-zentroa.github.io/
lm-contamination/blog/.

Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation of using large
language models for automated unit test generation. IEEE Transactions on Software Engineering,
50(1):85–105, 2024. doi: 10.1109/TSE.2023.3334955.

Quan Shi, Michael Tang, Karthik Narasimhan, and Shunyu Yao. Can language models solve olympiad
programming?, 2024.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi Chen,
and Luke Zettlemoyer. Detecting pretraining data from large language models. arXiv preprint
arXiv:2310.16789, 2023.

14

https://openreview.net/forum?id=KS8mIvetg2
https://openreview.net/forum?id=KS8mIvetg2
https://openreview.net/forum?id=m2NVG4Htxs
https://openreview.net/forum?id=m2NVG4Htxs
https://hitz-zentroa.github.io/lm-contamination/blog/
https://hitz-zentroa.github.io/lm-contamination/blog/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. Repository-level prompt generation for large
language models of code. In International Conference on Machine Learning, pp. 31693–31715.
PMLR, 2023.

Manav Singhal, Tushar Aggarwal, Abhijeet Awasthi, Nagarajan Natarajan, and Aditya Kanade.
Nofuneval: Funny how code lms falter on requirements beyond functional correctness. arXiv
preprint arXiv:2401.15963, 2024.

Benjamin Steenhoek, Michele Tufano, Neel Sundaresan, and Alexey Svyatkovskiy. Reinforce-
ment learning from automatic feedback for high-quality unit test generation. arXiv preprint
arXiv:2310.02368, 2023.

Ruoxi Sun, Sercan O Arik, Hootan Nakhost, Hanjun Dai, Rajarishi Sinha, Pengcheng Yin, and
Tomas Pfister. Sql-palm: Improved large language modeladaptation for text-to-sql. arXiv preprint
arXiv:2306.00739, 2023.

Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of con-
text, 2024. URL https://storage.googleapis.com/deepmind-media/gemini/
gemini_v1_5_report.pdf.

Catherine Tony, Markus Mutas, Nicolás E Díaz Ferreyra, and Riccardo Scandariato. Llmseceval: A
dataset of natural language prompts for security evaluations. arXiv preprint arXiv:2303.09384,
2023.

Michele Tufano, Shao Kun Deng, Neel Sundaresan, and Alexey Svyatkovskiy. Methods2test: A
dataset of focal methods mapped to test cases. In Proceedings of the 19th International Conference
on Mining Software Repositories, pp. 299–303, 2022.

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar,
Samson Tan, Baishakhi Ray, Parminder Bhatia, et al. Recode: Robustness evaluation of code
generation models. arXiv preprint arXiv:2212.10264, 2022a.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, pp. 8696–8708, 2021.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and Steven CH Hoi.
Codet5+: Open code large language models for code understanding and generation. arXiv preprint
arXiv:2305.07922, 2023.

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham Neubig. Execution-based evaluation for
open-domain code generation. arXiv preprint arXiv:2212.10481, 2022b.

Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshyvanyk. On learn-
ing meaningful assert statements for unit test cases. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, pp. 1398–1409, 2020.

Jiayi Wei, Greg Durrett, and Isil Dillig. Typet5: Seq2seq type inference using static analysis. arXiv
preprint arXiv:2303.09564, 2023.

Orion Weller, Marc Marone, Nathaniel Weir, Dawn Lawrie, Daniel Khashabi, and Benjamin
Van Durme. " according to..." prompting language models improves quoting from pre-training
data. arXiv preprint arXiv:2305.13252, 2023.

Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe Li, Qian Chen, Wen Wang, Tingyu Lin, Weishan
Zhao, Li Zhu, Shuiguang Deng, et al. Codescope: An execution-based multilingual multitask
multidimensional benchmark for evaluating llms on code understanding and generation. arXiv
preprint arXiv:2311.08588, 2023.

15

https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E. Gonzalez, and Ion Stoica. Rethinking
benchmark and contamination for language models with rephrased samples, 2023.

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang,
Ed H Chi, and Denny Zhou. Large language models as analogical reasoners. arXiv preprint
arXiv:2310.01714, 2023.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua Howland,
Paige Bailey, Michele Catasta, Henryk Michalewski, et al. Natural language to code generation in
interactive data science notebooks. arXiv preprint arXiv:2212.09248, 2022.

Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin Peng.
No more manual tests? evaluating and improving chatgpt for unit test generation. arXiv preprint
arXiv:2305.04207, 2023.

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah D Goodman, and Nick Haber. Parsel: A unified
natural language framework for algorithmic reasoning. arXiv preprint arXiv:2212.10561, 2022.

Fengji Zhang, Bei Chen, Yue Zhang, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and Weizhu
Chen. Repocoder: Repository-level code completion through iterative retrieval and generation.
arXiv preprint arXiv:2303.12570, 2023a.

Kechi Zhang, Ge Li, Jia Li, Zhuo Li, and Zhi Jin. Toolcoder: Teach code generation models to use
apis with search tools. arXiv preprint arXiv:2305.04032, 2023b.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. Self-edit: Fault-aware code editor for code
generation. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 769–787, Toronto, Canada, July 2023c. Association for
Computational Linguistics.

Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. Algo: Synthesizing
algorithmic programs with generated oracle verifiers. arXiv preprint arXiv:2305.14591, 2023d.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with multilingual
evaluations on humaneval-x. arXiv preprint arXiv:2303.17568, 2023.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
https://arxiv.org/abs/2402.14658, 2024.

Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen, Wayne Xin Zhao, Xu Chen, Yankai Lin,
Ji-Rong Wen, and Jiawei Han. Don’t make your llm an evaluation benchmark cheater. arXiv
preprint arXiv:2311.01964, 2023.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A DATASET

A.1 LEGAL COMPLIANCE AND LICENSE

Our benchmark does not comprise and personal identifiable information or offensive content.

Similar to (Hendrycks et al., 2021), we scrape only the problem statements, ground-truth solutions,
and test cases from competition websites – LEETCODE, ATCODER, and CODEFORCES. Further, we
primarily scrape publicly visible portions of websites, avoiding any data collection that might be
pay-walled or require login or interaction with the website. Following, (Hendrycks et al., 2021) we
abide by Fair Use §107: “the fair use of a copyrighted work, including such use by ... scholarship,
or research, is not an infringement of copyright”, where fair use is determined by “the purpose
and character of the use, including whether such use is of a commercial nature or is for nonprofit
educational purposes”, “the amount and substantiality of the portion used in relation to the copyrighted
work as a whole”, and “the effect of the use upon the potential market for or value of the copyrighted
work.” Finally, we use the collected problems for academic purposes only and in addition, do not
train on the collected problems.

A.2 GENERATOR BASED TEST GENERATION

We use GPT-4-TURBO to construct input generators. The following prompts (Figures 6 and 7) provide
one-shot prompt templates used for synthesizing random and adversarial input generators. These
generators define a function returns the arguments sampled in some distribution. These generators
are then executed to construct inputs which validated on the collected correct programs. We use
separate generators for random and adversarial setting since often times programming problems have
corner cases which might not be captured by randomly sampling over the inputs. We build 2 random
input generators, 4 adversarial input generators and check if the sampled inputs work for the correct
programs. Finally, the number of collected inputs is thresholded to 100 for efficient grading (using
random selection). We find that our generators can already function well but future work can study
the design space of constructing such generators.

Note that for CODEFORCES, we construct the generators in semi-autonomous manner since only 9
problems were used.

A.3 CODE EXECUTION

The code execution split of LiveCodeBench consists of 479 samples from 85 distinct problems. To
encourage diversity in our benchmark while keeping our benchmark small and usable, we place a
limit of six samples for each given problem. These sample programs and corresponding test cases are
chosen uniformly at random from all those passing the filter.

Filtering Criteria: The specific filtering criteria are as follows:

• Compile time: length of code is between 100 and 500 characters, no syntax errors, all
necessary imports are included

• Runtime: no floating point operations, true division, exp, other integer operations must have
at least one argument ≤ 3, string and list operations must have at least one argument with
length ≤ 3, finish running in 2 seconds, “reasonable” number of steps (roughly, under 1000
Python bytecode operations).

We give two examples of two programs that are filtered out in the Listings below. Our final benchmark
consists of 479 samples from 85 problems, but will increase in size due to its live nature.

Dataset Statistics: As mentioned, we filter for codes between 100 and 500 characters, as well as
below 1000 steps. The statistics for programs in our dataset are shown in Fig. 8.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Prompt for random input generation

You are an expert python competitive programmar and your goal is to
↪→ construct input-generators for testing programming contest
↪→ problems. You will write relevant generators and finally
↪→ construct ‘construct_inputs‘ function that returns a list of
↪→ diverse inputs sampled from the generator. Remember to strictly
↪→ follow the instructions and constraints present in the problem
↪→ statement

<USER>
{EXAMPLE_PROBLEM}

Construct a random input generator.
</USER>

<ASSISTANT>
import numpy as np
def random_input_generator(weight_min, weight_max, size_min, size_max):

weights_size = np.random.randint(size_min, size_max+1)
weights = np.random.randint(weight_min, weight_max, size=
↪→ weights_size).tolist()
k = np.random.randint(1, len(weights)+1)
return weights, k

def construct_inputs():
inputs_list = []
small inputs
for i in range(15):

inputs_list.append(random_input_generator(1, 10**3, 1, 10))
medium inputs
for i in range(15):

inputs_list.append(random_input_generator(1, 10**6, 1, 10**3))
large inputs
for i in range(15):

inputs_list.append(random_input_generator(1, 10**9, 1, 10**5))
return inputs_list

</ASSISTANT>

<USER>
{PROBLEM}

Construct a random input generator. Use the format used in the above
↪→ example by returning a single function that builds diverse
↪→ inputs named ‘construct_inputs‘

</USER>

Figure 6: Random Input Generator Prompt

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Prompt for adversarial input generation

You are an expert python competitive programmar and your goal is to
↪→ construct input-generators for testing programming contest
↪→ problems. You will write relevant generators and finally
↪→ construct ‘construct_inputs‘ function that returns a list of
↪→ diverse inputs sampled from the generator. Remember to strictly
↪→ follow the instructions and constraints present in the problem
↪→ statement

<USER>
{EXAMPLE_PROBLEM}

Construct an adversarial input generator.
</USER>

<ASSISTANT>
import numpy as np
case 1 - alternating large and small weights
def generate_adversarial_inputs_1(weight_size, max_weight, k):

weights = [1 if i%2==0 else max_weight for i in range(weight_size)]
return weights, k

case 2 - equal_weights
def adversarial_input_generator_2(weight_size, max_weight, k):

weights = [max_weight for _ in range(weight_size)]
return weights, k

Case 3 - Large weights at the ends
def adversarial_input_generator_3(weight_size, max_weight, k):

pass ## truncatede
def construct_inputs():

inputs_list = []

weight_sizes = [10, 1000, 100000]
max_weights = [10**3, 10**6, 10**9]

for weight_size in weight_sizes:
for max_weight in max_weights:

ks = [1, 2, 5, weight_size//2, weight_size-1, weight_size]
for k in ks:

inputs_list.append(generate_adversarial_inputs_1(
↪→ weight_size, max_weight, k))

truncated
return inputs_list

</ASSISTANT>

<USER>
{PROBLEM}

Construct an adversarial input generator. Use the format used in the
↪→ above example by returning a single function that builds diverse
↪→ inputs named ‘construct_inputs‘

</USER>

Figure 7: Adversarial Input Generator Prompt

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Program filtered because of multiplication

def check(x, t):
if x == ’’:

return t == 0
if t < 0:

return False
for i in range(len(x)):

if check(x[:i], t - int(x[i:])):
return True

return False

@cache
def punishmentNumber(n: int) -> int:

if n == 0:
return 0

ans = punishmentNumber(n-1)
if check(str(n * n), n):

ans += n * n
return ans

assert punishmentNumber(n = 37) == 1478

Program filtered because of control flow

dp = [True for _ in range(int(1e6 + 5))]
MAXN = int(1e6 + 5)
p = []
dp[0] = False
dp[1] = False
for i in range(2, MAXN):

if not dp[i]: continue
p.append(i)
for j in range(2 * i, MAXN, i):

dp[j] = False
def findPrimePairs(n: int) -> List[List[int]]:

res = []
for i in range(1, n):

if n % 2 == 1 and i > n//2: break
if n % 2 == 0 and i > n//2: break
if dp[i] and dp[n - i]:

res.append([i, n - i])
return res

assert findPrimePairs(n = 2) == []

500 600 700 800 900 1000
Number of "Steps"

0

20

40

60

80

Fr
eq

ue
nc

y

Distribution of Execution Step Count

100 150 200 250 300 350 400 450 500
Code Length

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

Distribution of Code Lengths (characters)

Figure 8: Distribution of code lengths and number of execution steps

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B UI

Figure 9: UI of LIVECODEBENCH showing two views – May-Jan and Sep-Jan. The contaminated
models are blurred and the performance difference is visible across the two views. The scroller on
the top allows selecting different periods of time highlighting the live nature of the benchmark.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C CURATION

C.1 PLATFORM SPECIFIC CURATION

We describe the curation process for each platform.

LEETCODE. We collect problems from all weekly and biweekly contests on LEETCODE that have
taken place after April’23. For each problem, we collect the problems, public tests, and user solutions.
The platform also provides a difficulty label for each problem which we use to tag the problems as
EASY, MEDIUM, and HARD. Since LEETCODE provides a starter code for each problem, we also collect
it and provide it to the LLM in the STDIN format. Since the hidden tests are not directly available,
we use our generator-based test input generation approach (Section A.2) and also collect the auto
grader failing tests for some of the recent problems.

ATCODER. We collect problems from the abc (beginner round) contests on ATCODER that have taken
place after April’23. We deliberately avoid the more challenging arc and agc contests which are
designed for more advanced Olympiad participants. The problems are assigned numeric difficulty
ratings, and we exclude abc problems with a rating of more than 500. We also use these numeric
ratings to tag the problems as EASY, MEDIUM, and HARD. Specifically, we use the rating brackets
[0− 200), [200− 400), and [400− 500] to perform the classification. ATCODER provides public and
hidden tests for each problem which we directly use in the benchmark.

CODEFORCES. We have collected problems from the Division 3 and Division 4 contests on CODE-
FORCES. Notably, we find that even with this filter, the problems are harder than the other two
platforms. CODEFORCES also provides difficulty ratings for the problems which we use to tag the prob-
lems as EASY, MEDIUM, and HARD using the rating brackets {800}, (800− 1000], and (1000− 1300]
respectively. Due to the higher difficulty, we only consider a small fraction of problems from CODE-
FORCES and semi-automatically construct test case generators, as they do not provide complete tests
on the platform (long tests are truncated).

Table 2 provides various statistics about the problems that we have collected for LIVECODEBENCH.

C.2 SCENARIO-SPECIFIC BENCHMARK CONSTRUCTION

Code Generation and Self-Repair. We use the natural language problem statement as the problem
statement for these scenarios. For LEETCODE, as noted above, an additional starter code is provided
for the functional input format. For ATCODER and CODEFORCES problems, we use the standard input
format (similar to (Hendrycks et al., 2021)). The collected or generated tests are then used to evaluate
the correctness of the generated programs. Our final dataset consists of 511 problem instances across
the three platforms.

Code Execution. We draw inspiration from the benchmark creation procedure used in (Gu et al.,
2024). First, we collect a large pool of ∼ 2000 correct, human-submitted solutions from the

Platform Total Count #Easy #Medium #Hard Average Tests
LCB (May-end) 511 182 206 123 17.0
LCB (Sep-end) 349 125 136 88 18.0
ATCODER 267 99 91 77 15.6
LEETCODE 235 79 113 43 19.0
CODEFORCES 9 4 2 3 11.1
LCB-Easy 182 182 0 0 16.1
LCB-Medium 206 0 206 0 17.4
LCB-Hard 123 0 0 123 18.0

Table 2: The statistics of problems collected in LIVECODEBENCH (LCB). We present the number of
problems, their difficulty distributions and the average number of tests per problem. We present the
results on the following subsets of LIVECODEBENCH (used throughout this manuscript) - (a) problems
in the May-Feb and Sep-Feb time windows, (b) problems sourced from the three platforms, and (c)
problems in the LCB-Easy, LCB-Medium, and LCB-Hard subsets.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

LEETCODE subset. However, many of these programs have multiple nested loops, complex numerical
computations, and a large number of execution steps. Therefore, we apply compile-time and run-time
filters to ensure samples are reasonable, and we double-check this with a manual inspection. More
details on the filtering criteria and statistics of the dataset can be found in Appendix A.3. Our final
dataset consists of 479 samples from 85 problems.

Test Case Output Prediction. We use the natural language problem statement from the LEETCODE

platform and the example test inputs to construct our test case output prediction dataset. Since
the example test inputs in the problems are reasonable test cases for humans to reason about and
understand the problems, they also serve as ideal test inputs for LLMS to process. Our final dataset
consists of 442 problem instances from a total of 181 LEETCODE problems.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D EXPERIMENTAL SETUP

D.1 MODELS

We describe the details of models considered in our study in Table 3.

Model ID Short Name Approximate
Cutoff Date

Link

deepseek-ai/deepseek-coder-
33b-instruct

DSCoder-33b-Ins 08/30/2023 deepseek-coder-33b-
instruct

deepseek-ai/deepseek-coder-
6.7b-instruct

DSCoder-6.7b-Ins 08/30/2023 deepseek-coder-6.7b-
instruct

deepseek-ai/deepseek-coder-
1.3b-instruct

DSCoder-1.3b-Ins 08/30/2023 deepseek-coder-1.3b-
instruct

codellama/CodeLlama-70b-
Instruct-hf

CodeLlama-70b-Ins 01/01/2023 CodeLlama-70b-Instruct-hf

openbmb/Eurus-70b-sft Eurus-70B-SFT (n=1) 01/01/2023 Eurus-70b-sft
openbmb/Eurux-8x22b-nca Eurux-8x22b-NCA

(n=1)
04/30/2023 Eurux-8x22b-nca

codellama/CodeLlama-34b-
Instruct-hf

CodeLlama-34b-Ins 01/01/2023 CodeLlama-34b-Instruct-hf

codellama/CodeLlama-13b-
Instruct-hf

CodeLlama-13b-Ins 01/01/2023 CodeLlama-13b-Instruct-hf

codellama/CodeLlama-7b-
Instruct-hf

CodeLlama-7b-Ins 01/01/2023 CodeLlama-7b-Instruct-hf

meta-llama/Meta-Llama-3-
8B-Instruct

LLama3-8b-Ins 01/01/2023 Meta-Llama-3-8B-Instruct

meta-llama/Meta-Llama-3-
70B-Instruct

LLama3-70b-Ins 01/01/2023 Meta-Llama-3-70B-
Instruct

Phind/Phind-CodeLlama-
34B-v2

Phind-34B-V2 01/01/2023 Phind-CodeLlama-34B-v2

Smaug-2-72B Smaug-2-72B 01/01/2023 Smaug-2-72B
Qwen-1.5-72B-Chat Qwen-1.5-72B-Chat 01/01/2023 Qwen-1.5-72B-Chat
Qwen/CodeQwen1.5-7B CodeQwen15-7B 08/30/2023 CodeQwen1.5-7B
Qwen/CodeQwen1.5-7B-
Chat

CodeQwen15-7B-
Chat

08/30/2023 CodeQwen1.5-7B-Chat

gpt-3.5-turbo-0301 GPT-3.5-Turbo-0301 10/01/2021 gpt-3.5-turbo-0301
gpt-3.5-turbo-0125 GPT-3.5-Turbo-0125 10/01/2021 gpt-3.5-turbo-0125
gpt-4-0613 GPT-4-0613 10/01/2021 gpt-4-0613
gpt-4-1106-preview GPT-4-Turbo-1106 04/30/2023 gpt-4-1106-preview
gpt-4-turbo-2024-04-09 GPT-4-Turbo-2024-

04-09
04/30/2023 gpt-4-turbo-2024-04-09

gpt-4o-2024-05-13 GPT-4O-2024-05-13 10/30/2023 gpt-4o-2024-05-13
claude-2 Claude-2 12/31/2022 claude-2
claude-instant-1 Claude-Instant-1 12/31/2022 claude-instant-1
claude-3-opus-20240229 Claude-3-Opus 04/30/2023 claude-3-opus-20240229
claude-3-sonnet-20240229 Claude-3-Sonnet 04/30/2023 claude-3-sonnet-20240229
claude-3-haiku-20240307 Claude-3-Haiku 04/30/2023 claude-3-haiku-20240307
codestral-latest Codestral-Latest 01/31/2024 codestral-latest
gemini-pro Gemini-Pro 04/30/2023 gemini-pro
gemini-1.5-pro-latest Gemini-Pro-1.5-May 04/30/2023 gemini-1.5-pro-latest
gemini-1.5-flash-latest Gemini-Flash-1.5-

May
04/30/2023 gemini-1.5-flash-latest

ise-uiuc/Magicoder-S-DS-
6.7B

MagiCoderS-DS-
6.7B

08/30/2023 Magicoder-S-DS-6.7B

ise-uiuc/Magicoder-S-CL-7B MagiCoderS-CL-7B 01/01/2023 Magicoder-S-CL-7B
bigcode/starcoder2-3b StarCoder2-3b 01/01/2023 starcoder2-3b
bigcode/starcoder2-7b StarCoder2-7b 01/01/2023 starcoder2-7b
bigcode/starcoder2-15b StarCoder2-15b 01/01/2023 starcoder2-15b

24

https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct
https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct
https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf
https://huggingface.co/openbmb/Eurus-70b-sft
https://huggingface.co/openbmb/Eurux-8x22b-nca
https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf
https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf
https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
https://huggingface.co/abacusai/Smaug-2-72B
https://huggingface.co/qwen/Qwen1.5-72B-Chat
https://huggingface.co/Qwen/CodeQwen1.5-7B
https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat
https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://openai.com/blog/new-embedding-models-and-api-updates#:~:text=Other%20new%20models%20and%20lower%20pricing
https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://openai.com/index/spring-update
https://www.anthropic.com/index/claude-2
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/claude
https://www.anthropic.com/claude
https://www.anthropic.com/claude
https://mistral.ai/news/codestral/
https://blog.google/technology/ai/gemini-api-developers-cloud
https://blog.google/technology/ai/gemini-api-developers-cloud
https://blog.google/technology/ai/gemini-api-developers-cloud
https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B
https://huggingface.co/ise-uiuc/Magicoder-S-CL-7B
https://huggingface.co/bigcode/starcoder2-3b
https://huggingface.co/bigcode/starcoder2-7b
https://huggingface.co/bigcode/starcoder2-15b

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

codellama/CodeLlama-70b-
hf

CodeLlama-70b-
Base

01/01/2023 CodeLlama-70b-hf

codellama/CodeLlama-34b-
hf

CodeLlama-34b-
Base

01/01/2023 CodeLlama-34b-hf

codellama/CodeLlama-13b-
hf

CodeLlama-13b-
Base

01/01/2023 CodeLlama-13b-hf

codellama/CodeLlama-7b-hf CodeLlama-7b-Base 01/01/2023 CodeLlama-7b-hf
deepseek-ai/deepseek-coder-
33b-base

DSCoder-33b-Base 08/30/2023 deepseek-coder-33b-base

deepseek-ai/deepseek-coder-
6.7b-base

DSCoder-6.7b-Base 08/30/2023 deepseek-coder-6.7b-base

deepseek-ai/deepseek-coder-
1.3b-base

DSCoder-1.3b-Base 08/30/2023 deepseek-coder-1.3b-base

google/codegemma-7b CodeGemma-7b-
Base

01/01/2023 codegemma-7b

google/codegemma-2b CodeGemma-2b-
Base

01/01/2023 codegemma-2b

google/gemma-7b Gemma-7b-Base 01/01/2023 gemma-7b
google/gemma-2b Gemma-2b-Base 01/01/2023 gemma-2b
meta-llama/Meta-Llama-3-
70B

LLama3-70b-Base 01/01/2023 Meta-Llama-3-70B

meta-llama/Meta-Llama-3-
8B

LLama3-8b-Base 01/01/2023 Meta-Llama-3-8B

mistral-large-latest Mistral-Large 01/01/2023 mistral-large-latest
open-mixtral-8x22b Mixtral-8x22B-Ins 01/01/2023 open-mixtral-8x22b
open-mixtral-8x7b Mixtral-8x7B-Ins 01/01/2023 open-mixtral-8x7b
m-a-p/OpenCodeInterpreter-
DS-33B

OC-DS-33B 08/30/2023 OpenCodeInterpreter-DS-
33B

m-a-p/OpenCodeInterpreter-
DS-6.7B

OC-DS-6.7B 08/30/2023 OpenCodeInterpreter-DS-
6.7B

m-a-p/OpenCodeInterpreter-
DS-1.3B

OC-DS-1.3B 08/30/2023 OpenCodeInterpreter-DS-
1.3B

command-r Command-R 01/01/2023 command-r
command-r+ Command-R+ 01/01/2023 command-r+

Table 3: Language Models Overview

We use variety of GPUs based on availability for running local models (A6000, L4, A100).

D.2 CODE GENERATION

Below we provide the prompt format (with appropriate variants adding special tokens accommodating
each instruct-tuned model) used for this scenario.

D.3 SELF REPAIR

Below we provide the prompt format (with appropriate variants adding special tokens accommodating
each instruct-tuned model) used for this scenario.

D.4 CODE EXECUTION

Below we provide the prompts for code execution with and without CoT. The prompts are modified
versions of those from (Gu et al., 2024) to fit the format of the samples in our benchmark.

D.5 TEST OUTPUT PREDICTION

Below we provide the prompt format (with appropriate variants adding special tokens accommodating
each instruct-tuned model) used for this scenario.

25

https://huggingface.co/codellama/CodeLlama-70b-hf
https://huggingface.co/codellama/CodeLlama-34b-hf
https://huggingface.co/codellama/CodeLlama-13b-hf
https://huggingface.co/codellama/CodeLlama-7b-hf
https://huggingface.co/deepseek-ai/deepseek-coder-33b-base
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base
https://huggingface.co/google/codegemma-7b
https://huggingface.co/google/codegemma-2b
https://huggingface.co/google/gemma-7b
https://huggingface.co/google/gemma-2b
https://huggingface.co/meta-llama/Meta-Llama-3-70B
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://mistral.ai/news/mistral-large/
https://mistral.ai/news/mixtral-8x22b/
https://mistral.ai/news/mixtral-8x7b/
https://huggingface.co/m-a-p/OpenCodeInterpreter-DS-33B/
https://huggingface.co/m-a-p/OpenCodeInterpreter-DS-33B/
https://huggingface.co/m-a-p/OpenCodeInterpreter-DS-6.7B/
https://huggingface.co/m-a-p/OpenCodeInterpreter-DS-6.7B/
https://huggingface.co/m-a-p/OpenCodeInterpreter-DS-1.3B/
https://huggingface.co/m-a-p/OpenCodeInterpreter-DS-1.3B/
https://docs.cohere.com/docs/models
https://docs.cohere.com/docs/models

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Code Generation Prompt

You are an expert Python programmer. You will be given a question (
↪→ problem specification) and will generate a correct Python
↪→ program that matches the specification and passes all tests. You
↪→ will NOT return anything except for the program

Question:\n{question.question_content}

{ if question.starter_code }
Format: {PromptConstants.FORMATTING_MESSAGE}

‘‘‘python
{question.starter_code}
‘‘‘
{ else }
Format: {PromptConstants.FORMATTING_WITHOUT_STARTER_MESSAGE}

‘‘‘python
YOUR CODE HERE
‘‘‘
{ endif }

Answer: (use the provided format with backticks)

Self Repair Error Feedback Pseudocode

{if check_result.result_status is "Wrong Answer"}
The above code is incorrect and does not pass the testcase.
Input: {wrong_testcase_input}
Output: {wrong_testcase_output}
Expected: {wrong_testcase_expected}

{elif check_result.result_status is "Time Limit Exceeded"}
The above code is incorrect and exceeds the time limit.
Input: {wrong_testcase_input}

{elif check_result.result_status is "Runtime Error"}
The above code is incorrect and has a runtime error.
Input: {wrong_testcase_input}
Error Message: {wrong_testcase_error_message}

{endif}

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Self-Repair Prompt

You are a helpful programming assistant and an expert Python programmer
↪→ . You are helping a user write a program to solve a problem. The
↪→ user has written some code, but it has some errors and is not
↪→ passing the tests. You will help the user by first giving a
↪→ concise (at most 2-3 sentences) textual explanation of what is
↪→ wrong with the code. After you have pointed out what is wrong
↪→ with the code, you will then generate a fixed version of the
↪→ program. You must put the entired fixed program within code
↪→ delimiters only for once.

Question:\n{question.question_content}

Answer: ‘‘‘python
{code.code_to_be_corrected}
‘‘‘

Format: {PromptConstants.FORMATTING_CHECK_ERROR_MESSAGE}

Answer: (use the provided format with backticks)

Code Execution Prompt

You are given a Python function and an assertion containing an input to
↪→ the function. Complete the assertion with a literal (no
↪→ unsimplified expressions, no function calls) containing the
↪→ output when executing the provided code on the given input, even
↪→ if the function is incorrect or incomplete. Do NOT output any
↪→ extra information. Provide the full assertion with the correct
↪→ output in [ANSWER] and [/ANSWER] tags, following the examples.

[PYTHON]
def repeatNumber(number : int) -> int:

return number
assert repeatNumber(number = 17) == ??
[/PYTHON]
[ANSWER]
assert repeatNumber(number = 17) == 17
[/ANSWER]

[PYTHON]
def addCharacterA(string : str) -> str:

return string + "a"
assert addCharacterA(string = "x9j") == ??
[/PYTHON]
[ANSWER]
assert addCharacterA(string = "x9j") == "x9ja"
[/ANSWER]

[PYTHON]
{code}
assert {input} == ??
[/PYTHON]
[ANSWER]

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Code Execution Prompt with CoT

You are given a Python function and an assertion containing an input to
↪→ the function. Complete the assertion with a literal (no
↪→ unsimplified expressions, no function calls) containing the
↪→ output when executing the provided code on the given input, even
↪→ if the function is incorrect or incomplete. Do NOT output any
↪→ extra information. Execute the program step by step before
↪→ arriving at an answer, and provide the full assertion with the
↪→ correct output in [ANSWER] and [/ANSWER] tags, following the
↪→ examples.

[PYTHON]
def performOperation(s):

s = s + s
return "b" + s + "a"

assert performOperation(s = "hi") == ??
[/PYTHON]
[THOUGHT]
Let’s execute the code step by step:

1. The function performOperation is defined, which takes a single
↪→ argument s.

2. The function is called with the argument "hi", so within the
↪→ function, s is initially "hi".

3. Inside the function, s is concatenated with itself, so s becomes "
↪→ hihi".

4. The function then returns a new string that starts with "b",
↪→ followed by the value of s (which is now "hihi"), and ends with
↪→ "a".

5. The return value of the function is therefore "bhihia".
[/THOUGHT]
[ANSWER]
assert performOperation(s = "hi") == "bhihia"
[/ANSWER]

[PYTHON]
{code}
assert {input} == ??
[/PYTHON]
[THOUGHT]

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Test Output Prediction Prompt

Instruction: You are a helpful programming assistant and an expert
↪→ Python programmer. You are helping a user to write a test case
↪→ to help to check the correctness of the function. The user has
↪→ written a input for the testcase. You will calculate the output
↪→ of the testcase and write the whole assertion statement in the
↪→ markdown code block with the correct output.

Problem:
{problem_statement}

Function:
‘‘‘
{function_signature}
‘‘‘
Please complete the following test case:

‘‘‘
assert {function_name}({testcase_input}) == # TODO
‘‘‘
Response:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

E RESULTS

E.1 CONTAMINATION

Figure 10 demonstrates contamination in DEEPSEEK in self repair and test output prediction scenarios.

Figure 10: Contamination in DS-B models across self-repair and code execution (without COT)
scenarios over time. Note that code execution currently runs between May and November

Figure 11: Performance on problems released over different months for ATCODER

E.2 ALL RESULTS

Below we provide the tables comprising of results across different LIVECODEBENCH scenarios.

Comparing Closed Models. We evaluate a range of closed (API access) models ranging from
different model families like GPTS, CLAUDES, GEMINI, and MISTRAL. We find the GPT-4-TURBO and

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 12: Live evaluation over time for various models on code generation scenario in LIVE-
CODEBENCH. We consider many recently released models and do not find significant performance
variations across months except for DS-B models.

Figure 13: Correlations across different scenarios studied in LIVECODEBENCH

CLAUDE-3-OPUS rank at the top across all scenarios followed by MISTRAL-L and CLAUDE-3-SONNET

models. Finally, GEMINI-PRO and GPT-3.5-TURBO lie on the lower end of the models. The relative
differences between the models vary across the scenarios. For example, GPT-4-TURBO demonstrates
remarkable improvement from self-repair (24.5% to 36.9% on the LCB-Medium problems) while
GEMINI-PRO only improves from 8.5% to 9.4%. Similarly, as identified above, CLAUDE-3-OPUS and
MISTRAL-L perform considerably better on test output prediction and code execution scenarios.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 14: Comparison of open access and (closed) API access models on LIVECODEBENCH-Easy
code generation scenario. We find that closed-access models consistently outperform the open models
with only strong instruction-tuned variants of > 30B models (specifically L3-INS-70B, MIXTRAL and
DS-INS-33B models) crossing the performance gap.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Model Name Easy Medium Hard Total
Claude-2 61.80 4.90 0.20 22.30
Claude-3-Haiku 63.00 4.30 1.10 22.80
Claude-3-Opus 78.80 16.30 3.20 32.80
Claude-3-Sonnet 67.60 6.20 1.10 25.00
Claude-Instant-1 60.70 4.30 1.10 22.10
CodeGemma-2b-Base 18.30 0.40 0.00 6.30
CodeGemma-7b-Base 35.70 2.60 0.10 12.80
CodeLlama-13b-Base 24.60 0.90 0.00 8.50
CodeLlama-13b-Ins 36.60 2.40 0.00 13.00
CodeLlama-34b-Base 32.20 1.80 0.10 11.40
CodeLlama-34b-Ins 33.70 2.40 1.10 12.40
CodeLlama-70b-Base 15.80 1.20 0.00 5.70
CodeLlama-70b-Ins 7.80 0.60 0.00 2.80
CodeLlama-7b-Base 19.00 0.40 0.00 6.50
CodeLlama-7b-Ins 28.60 2.50 0.00 10.40
CodeQwen15-7B 40.40 4.80 0.00 15.10
CodeQwen15-7B-Chat 39.20 13.10 0.50 17.60
Codestral-Latest 69.00 18.70 0.90 29.50
Command-R 39.00 3.60 0.00 14.20
Command-R+ 56.60 6.80 0.00 21.10
DSCoder-1.3b-Base 17.30 0.70 0.00 6.00
DSCoder-1.3b-Ins 22.90 1.50 0.00 8.10
DSCoder-33b-Base 39.40 2.30 0.00 13.90
DSCoder-33b-Ins 55.60 9.00 0.70 21.80
DSCoder-6.7b-Base 34.30 1.40 0.10 11.90
DSCoder-6.7b-Ins 46.40 5.80 0.70 17.60
GPT-3.5-Turbo-0125 56.80 10.80 0.10 22.60
GPT-3.5-Turbo-0301 53.40 8.80 0.20 20.80
GPT-4-0613 78.40 21.20 2.30 33.90
GPT-4-Turbo-1106 84.40 24.00 0.50 36.30
GPT-4-Turbo-2024-04-09 85.30 33.00 5.10 41.10
GPT-4O-2024-05-13 88.30 33.20 4.20 41.90
Gemini-Flash-1.5-May 68.10 12.60 2.70 27.80
Gemini-Pro-1.5-April (n=1) 56.50 14.30 3.60 24.80
Gemini-Pro-1.5-May 76.00 19.40 3.50 33.00
Gemma-2b-Base 6.10 0.00 0.00 2.00
Gemma-7b-Base 27.00 0.90 0.00 9.30
LLama3-70b-Base 52.20 3.20 0.60 18.60
LLama3-70b-Ins 60.70 15.80 1.40 26.00
LLama3-8b-Base 32.90 1.50 0.00 11.50
LLama3-8b-Ins 38.60 3.50 0.50 14.20
MagiCoderS-CL-7B 32.80 2.40 0.00 11.70
MagiCoderS-DS-6.7B 49.20 7.50 0.00 18.90
Mistral-Large 60.20 10.90 0.90 24.00
Mixtral-8x22B-Ins 59.80 12.70 0.00 24.20
Mixtral-8x7B-Ins 31.60 2.60 0.00 11.40
OC-DS-1.3B 11.30 0.10 0.00 3.80
OC-DS-33B 53.90 5.10 0.00 19.70
OC-DS-6.7B 46.30 4.50 0.00 16.90
Phind-34B-V2 53.40 4.70 0.10 19.40
StarCoder2-15b 37.30 2.20 0.00 13.20
StarCoder2-3b 28.20 0.70 0.00 9.60
StarCoder2-7b 29.90 1.20 0.00 10.40

Table 4: Code Generation Performances

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Model Name Easy Medium Hard Total
Claude-2 66.20 10.30 0.40 25.60
Claude-3-Haiku 66.50 8.70 2.50 25.90
Claude-3-Opus 83.10 23.70 6.70 37.80
Claude-3-Sonnet 72.60 11.80 2.20 28.90
Claude-Instant-1 64.40 7.10 2.20 24.60
CodeLlama-13b-Ins 43.10 3.00 0.00 15.30
CodeLlama-34b-Ins 31.50 3.50 1.80 12.30
CodeLlama-7b-Ins 31.90 3.10 1.50 12.10
Codestral-Latest 72.50 25.90 3.30 33.90
DSCoder-1.3b-Ins 29.50 2.10 0.00 10.60
DSCoder-33b-Ins 60.70 8.10 1.50 23.40
DSCoder-6.7b-Ins 49.90 5.70 1.10 18.90
GPT-3.5-Turbo-0125 59.30 11.90 0.50 23.90
GPT-3.5-Turbo-0301 58.40 11.60 0.70 23.60
GPT-4-0613 79.30 25.00 2.40 35.60
GPT-4-Turbo-1106 86.90 36.90 4.00 42.60
GPT-4-Turbo-2024-04-09 88.70 39.70 8.40 45.60
GPT-4O-2024-05-13 92.60 46.40 8.20 49.10
Gemini-Flash-1.5-May 73.40 16.40 4.40 31.40
Gemini-Pro 53.80 9.40 0.20 21.10
Gemini-Pro-1.5-April (n=1) 71.80 19.40 5.50 32.20
Gemini-Pro-1.5-May 84.80 30.10 7.30 40.70
LLama3-70b-Ins 69.60 19.00 1.80 30.10
LLama3-8b-Ins 47.10 6.10 0.00 17.70
MagiCoderS-CL-7B 36.50 3.10 0.00 13.20
MagiCoderS-DS-6.7B 50.60 8.60 0.00 19.70
Mistral-Large 71.20 15.60 3.60 30.10
OC-DS-1.3B 20.00 0.40 0.00 6.80
OC-DS-33B 58.90 7.20 1.30 22.50
OC-DS-6.7B 50.90 6.30 0.20 19.10
Phind-34B-V2 62.00 6.50 0.90 23.10

Table 5: Self Repair Performances

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Model Name Pass@1
Claude-2 32.70
Claude-3-Haiku 32.90
Claude-3-Opus 58.70
Claude-3-Sonnet 34.10
Claude-Instant-1 25.40
CodeLlama-13b-Ins 24.40
CodeLlama-34b-Ins 23.00
CodeLlama-70b-Ins 16.10
CodeLlama-7b-Ins 15.30
Codestral-Latest 41.80
DSCoder-1.3b-Ins 12.50
DSCoder-33b-Ins 28.30
DSCoder-6.7b-Ins 26.50
GPT-3.5-Turbo-0125 35.40
GPT-3.5-Turbo-0301 32.50
GPT-4-0613 52.90
GPT-4-Turbo-1106 55.70
GPT-4-Turbo-2024-04-09 66.10
GPT-4O-2024-05-13 68.90
Gemini-Flash-1.5-May 38.10
Gemini-Pro 29.50
Gemini-Pro-1.5-April (n=1) 49.60
Gemini-Pro-1.5-May 44.80
LLama3-70b-Ins 41.40
LLama3-8b-Ins 24.40
MagiCoderS-CL-7B 21.30
MagiCoderS-DS-6.7B 27.10
Mistral-Large 46.50
Mixtral-8x22B-Ins 44.70
Mixtral-8x7B-Ins 31.80
OC-DS-1.3B 7.80
OC-DS-33B 11.30
OC-DS-6.7B 18.30
Phind-34B-V2 27.20

Table 6: Test Output Prediction Performances

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Model Name Pass@1 Pass@1 (COT)
Claude-2 31.50 43.80
Claude-3-Haiku 0.70 28.30
Claude-3-Opus 36.50 80.10
Claude-3-Sonnet 29.30 39.40
Claude-Instant-1 20.00 34.80
Cllama-13b-Ins 23.50 14.10
Cllama-34b-Ins 28.90 24.50
Cllama-7b-Ins 20.60 14.20
CodeLlama-70b-Ins 31.20 -1.00
Codestral-Latest 37.90 41.80
DSCoder-1.3b-Base 19.00 13.40
DSCoder-1.3b-Ins 18.10 17.00
DSCoder-33b-Base 29.90 29.10
DSCoder-33b-Ins 26.60 31.70
DSCoder-6.7b-Base 23.50 25.10
DSCoder-6.7b-Ins 23.10 23.80
GPT-3.5-Turbo-0301 33.90 34.80
GPT-4-0613 44.30 64.80
GPT-4-Turbo-1106 40.50 83.60
GPT-4-Turbo-2024-04-09 45.90 83.80
GPT-4O-2024-05-13 39.10 91.00
Gemini-Flash-1.5-May 21.40 57.10
Gemini-Pro 27.70 37.40
Gemini-Pro-1.5 (April) (n=1) 30.30 64.40
Gemini-Pro-1.5-May 42.10 72.10
LLama3-70b-Ins 29.60 55.50
LLama3-8b-Ins 18.40 29.40
MagiCoderS-CL-7B 21.20 -1.00
MagiCoderS-DS-6.7B 27.20 -1.00
Mistral-Large 36.60 54.40
Phind-34B-V2 26.90 -1.00
StarCoder 20.30 -1.00
WCoder-34B-V1 28.40 -1.00

Table 7: Code Execution Performances

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

F QUALITATIVE EXAMPLES

F.1 CODE EXECUTION

We show 5 examples from the code execution task that GPT-4 (gpt-4-1106-preview) still
struggles to execute, even with CoT.

Mistake 1

def countWays(nums: List[int]) -> int:
nums.sort()
n = len(nums)
ans = 0
for i in range(n + 1):

if i and nums[i-1] >= i: continue
if i < n and nums[i] <= i: continue
ans += 1

return ans
assert countWays(nums = [6, 0, 3, 3, 6, 7, 2, 7]) == 3
GPT-4 + CoT Outputs: 1, 2, 4, 5

Mistake 2

def minimumCoins(prices: List[int]) -> int:

@cache
def dfs(i, free_until):

if i >= len(prices):
return 0

res = prices[i] + dfs(i + 1, min(len(prices) - 1, i + i + 1))

if free_until >= i:
res = min(res, dfs(i + 1, free_until))

return res

dfs.cache_clear()
return dfs(0, -1)

assert minimumCoins(prices = [3, 1, 2]) == 4
GPT-4 + CoT Outputs: 1, 3, 5, 6

Mistake 3

def sortVowels(s: str) -> str:
q = deque(sorted((ch for ch in s if vowel(ch))))
res = []
for ch in s:

if vowel(ch):
res.append(q.popleft())

else:
res.append(ch)

return ’’.join(res)
assert sortVowels(s = ’lEetcOde’) == ’lEOtcede’
GPT-4 + CoT Outputs: "leetecode", "lEetecOde", "leetcede", "leetcEde

↪→ ", "leetcOde"

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Mistake 4

def relocateMarbles(nums: List[int], moveFrom: List[int], moveTo: List[
↪→ int]) -> List[int]:

nums = sorted(list(set(nums)))
dd = {}
for item in nums:

dd[item] = 1
for a,b in zip(moveFrom, moveTo):

del dd[a]
dd[b] = 1

ll = dd.keys()
return sorted(ll)

assert relocateMarbles(nums = [1, 6, 7, 8], moveFrom = [1, 7, 2],
↪→ moveTo = [2, 9, 5]) == [5, 6, 8, 9]

GPT-4 + CoT Outputs: [2, 6, 8, 9], [2, 5, 6, 8, 9], KeyError

Mistake 5

def minimumSum(nums: List[int]) -> int:
left, right, ans = [inf], [inf], inf
for num in nums:

left.append(min(left[-1], num))
for num in nums[::-1]:

right.append(min(right[-1], num))
right.reverse()
for i, num in enumerate(nums):

if left[i] < num and right[i + 1] < num:
ans = min(ans, num + left[i] + right[i + 1])

return ans if ans < inf else -1
assert minimumSum(nums = [6, 5, 4, 3, 4, 5]) == -1
GPT-4 + CoT Outputs: 10, 11, 12

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

G LIMITATIONS

Benchmark Size. LIVECODEBENCH code generation scenario currently hosts over 500 instances from
problems released since May 2023. To account for contamination in DEEPSEEK, we only perform
evaluations on problems released after the model cutoff date. This leads to only 349 problems used
in our final evaluations which might add noise due to problem set samples. We currently estimate
1− 2% performance variations in LCB code generation due to this issue (measured by bootstrapping
349 sized problem sets from the 349 sized dataset). Other scenarios, i.e. self-repair, code execution,
and test output prediction comprise 238, 188, and 254 problems would have similar performance
variations. We thus recommend exercising proper judgement when comparing models with small
performance differences. Note that HUMANEVAL has 164 problems and would also struggle with
similar issues.

This issue is also exacerbated for newer models, with more recent cutoff dates, as they might only
have access to a smaller evaluation set. We propose two solutions addressing this issue as we evolve
LIVECODEBENCH. First, we will use other competition platforms for problem collection, allowing
larger number of recent problems to be added to the benchmark. In addition, we also hope supplement
this with an unreleased private test set constructed specifically for model evaluation. These problems
will use a similar flavor to current problems and will be used when models are submitted for evaluation
to the LIVECODEBENCH platform. This would reduce the reliance on public accessible problems and
provide a more robust evaluation of the models while providing community public access to similar
problems, similar to strategies employed by popular platforms like KAGGLE.

Focus on PYTHON. LIVECODEBENCH currently only focuses on PYTHON which might not provide
enough signal about model capabilities in other languages. However, since we collected problem
statements and serialized tests, adding new programming languages would be straightforward once
appropriate evaluation engines are used.

Robustness to Prompts. Recent works have identified huge performance variances that can be
caused due to insufficient prompt. Here, we either do not tune prompts across models or make
minor adjustments based on the system prompts and delimiter tokens. This can lead to performance
variance in our results. Our findings and model comparison orders generalize across LIVECODEBENCH

scenarios and mostly match the performance trends observed on HUMANEVAL making this a less
prominient issue.

This issue can be particularly observed open models on the code execution scenario with COT
prompting. Interestingly, often the open models perform even worse in comparsion to the direct
code execution baseline. Note that we used same prompts for the closed models all of which show
noticable improvement from COT. While the used prompts might be sub-optimal, this highlights how
open-models perform worse against the closed models at performing chain-of-thought.

Problem Domain. Programming is a vast domain and occurs in various forms such as programming
puzzles, competition programming, and real-world software development. Different domains might
have individual requirements, constraints, challenges, and difficulty levels. LIVECODEBENCH currently
focuses on competition problems sourced from three platforms. This might not be representative of
the “most general” notion of LLM programming capabilities. Particularly, real-world usage of LLMS

is drawn upon open-ended and unconstrained problems rasied by users. We therefore recommend
using LIVECODEBENCH as a starting point for evaluating LLMS and further using domain-specific
evaluations to measure and compare LLMS in specific settings as required.

39

	Introduction
	Holistic Evaluation
	Benchmark Curation
	Data Collection

	Experiment Setup
	Scenario-specific setup

	Results
	Avoiding Contamination
	Performance and Model Comparisons

	Related Work
	Holistic Tasks and Contamination

	Limitations and Conclusion
	Dataset
	Legal compliance and License
	Generator Based Test Generation
	Code Execution

	UI
	Curation
	Platform Specific Curation
	Scenario-specific benchmark construction

	Experimental Setup
	Models
	Code Generation
	Self Repair
	Code Execution
	Test Output Prediction

	Results
	Contamination
	All Results

	Qualitative Examples
	Code Execution

	Limitations

