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Abstract

The growing popularity of Al optimization prob-
lems involving severely corrupted data has in-
creased the demand for methods capable of han-
dling heavy-tailed noise, i.e., noise with bounded
k-th moment, k € (1,2]. For the widely used
clipping technique, effectiveness heavily depends
on the careful tuning of clipping levels through-
out training. In this paper, we demonstrate that
using only the sign of the input, without in-
troducing additional hyperparameters, is suffi-
cient to cope with heavy-tailed noise effectively.
For smooth non-convex functions, we prove that
SignSGD achieves optimal sample complexity

0] (5_%) with high probability for attaining
an average gradient norm accuracy of €. Un-
der the assumption of symmetric noise, we use
SignSGD with Majority Voting to extend this
bound to the distributed optimization or reduce
the sample complexity to 0(5_4) in the case of
a single worker with arbitrary parameters. Fur-
thermore, we explore the application of the sign
operator in zeroth-order optimization with an ora-
cle that can only compare function values at two
different points. We propose a novel method,
MajorityVote-CompsSGD, and provide the first-
known high-probability bound O(¢~°) for the
number of comparisons under symmetric noise as-
sumption. Our theoretical findings are supported
by the superior performance of sign-based meth-
ods in training Large Language Models.
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1. Introduction

Problem statement. Consider the stochastic optimization
problem of a smooth non-convex function f : R? — R:
i = Een 6], 1
min f(z) := Ees(f(x,€)] (D
where random variable ¢ can only be sampled from an un-
known distribution S. The gradient oracle gives unbiased
gradient estimate V f(x, £) € R?. For example, in machine

learning, f(x, &) can be interpreted as a loss function on a
sample ¢ (Shalev-Shwartz & Ben-David, 2014).

The most popular approach for solving (1) is Stochastic
Gradient Descent (SGD) (Robbins & Monro, 1951):

9" =V ", €h).

For non-convex functions, the main goal of stochastic opti-
mization is to find a point with small gradient norm.

k+1 _ .k k
T =T %9,

Huge success of stochastic first-order methods in rapidly
developing neural networks field (Bottou, 2012; Kingma
& Ba, 2014) has sparked numerous works studying SGD
under various assumptions on corrupting noise induced by
the randomness £. The first bounds in expectation for the
sample complexity were derived for sub-Gaussian noise (Ne-
mirovski et al., 2009) and for noise with bounded variance
(BV) (Ghadimi & Lan, 2013).

Due to expensive single run training of large deep learning
models (Davis et al., 2021), more informative high proba-
bility (HP) bounds have gained even more attention than
bounds in expectation describing methods behavior over
several runs. HP bounds provide convergence guarantees
which hold true with probability at least 1 — 6,5 € (0, 1).
The bound in expectation can be reduced to the HP bound
using the Markov’s inequality, however, it leads to a domi-
nant 1/s factor. HP bounds for SGD under Gaussian noise
were obtained in (Li & Orabona, 2020) and had logarithmic
log /s dependency. However, already under the BV noise,
vanilla SGD achieves only 1/v/s rate (Sadiev et al., 2023).
Moreover, it was shown that BV assumption can not de-
scribe loss functions in modern deep learning problems. In
Large Language Models (LLMs), the stochasticity tends to



have a rather heavy-tailed (HT) distribution (Simsekli et al.,
2019; Zhang et al., 2020b; Gurbuzbalaban et al., 2021). It
means that the noise has bounded x-th moment for some
k€ (1,2],ie, Ee[||Vf(z,&) — Vf(x)||5] < o”. Desire to
obtain better J-dependency and consider HT noise in HP
bounds motivated development of more robust methods.

1.1. Related works

Clipping. The idea of clipping the norm of gradient esti-
mate before SGD step demonstrates great empirical results
(Pascanu et al., 2013; Goodfellow et al., 2016) and helps
achieve log 1/5 dependency under BV assumption (Nazin
et al., 2019; Gorbunov et al., 2020).

The clipping operator is defined as clip(gF, \x) :=
min{1,*/|¢*|} - g* and can be applied not only non-
convex minimization problems, but also to convex opti-
mization, variational inequalities (Sadiev et al., 2023), non-
smooth optimization (Zhang et al., 2020b), zeroth-order
optimization (Kornilov et al., 2024), robust aggregation
(Karimireddy et al., 2021), distributed optimization (Liu
et al., 2022; Qin et al., 2025) and ensuring differential pri-
vacy (Andrew et al., 2021).

Let us list the latest results on the HP convergence of SGD
with clipping, called ClipSGD, under HT noise assump-
tion. First, for non-convex functions, the authors of (Zhang
et al., 2020b) proved lower bounds for sample complexity
in expectation. As shown in (Sadiev et al., 2023), ClipSGD
with proper clipping levels and stepsizes achieves this lower
bound with extra logarithmic factors on § and accuracy. In a
number of works, authors relax the HT assumption and con-
sider only symmetric noises. This relaxation allows them
to eliminate the dependency on k and break actual lower
bounds. For example, in (Puchkin et al., 2024), the authors
used the coordinate-wise median operator, which requires
only a few noise samples to lighten its distribution so that
it becomes BV. (Puchkin et al., 2024) proved convergence
of ClipSGD combined with median operator for (strongly)
convex functions as if k = 2.

Despite clipping’s effectiveness, it requires careful tuning of
clipping levels whose optimal values depend on the iteration
number and all characteristics of objective function and
HT noise (Sadiev et al., 2023, Theorem 3.1). Hence, the
community has proposed other robust modifications of SGD.

Normalization. A natural relaxation of clipping with pro-
found level schedule is permanent normalization of gradient

k
estimate, i.e, norm(g*) := HgQW' SGD with additional

normalization is called NSGD (Hazan et al., 2015).

In early works devoted to NSGD, only BV noise and bounds
in expectation were considered (Barakat et al., 2023; Yang
et al., 2024). In (Liu et al., 2023; Cutkosky & Mehta, 2021),
normalization was combined with clipping, which helped

cope with HT noise and obtain HP bounds.

Recently, HP convergence of vanilla NSGD was proved un-
der HT noise in (Hiibler et al., 2024). The authors showed
that complexity of NSGD exactly matches the before men-
tioned lower bound from (Zhang et al., 2020b) without
logarithmic accuracy factors and only with mild log /s de-
pendency. Moreover, in experiments with sequence labeling
via LSTM Language Models (Merity et al., 2017), normal-
ization demonstrated better results than tuned clipping.

Unlike ClipSGD, NSGD requires large batchsizes for ro-
bust convergence. It can be fixed by replacing batching
with momentum techniques, which keeps the same sample
complexity (Cutkosky & Mehta, 2020). However, for meth-
ods with momentum, the convergence bounds are usually
proved in expectation, and the HP bounds with logarithmic
0 dependency has not been obtained yet. In experiments
with VB noise, one can observe super-linear dependency on
log  (Hiibler et al., 2024).

Sign operator. There is one more promising modification
of SGD which behavior under heavy-tailed noise has not
yet been studied. Originally proposed in (Bernstein et al.,
2018a) for distributed optimization, SignSGD takes only a
sign of each coordinate of gradient estimate

k+1 k

af = 2% — - sign(g¥).

There is one peculiarity in bounds for sign-based methods:
they are proved w.r.t. the ¢;-norm instead of smaller {o-
norm. As a consequence, additional d dependent factors
appear. Under BV noise, SignSGD achieves optimal sam-
ple complexity in expectation (up to d factors). Similar
to NSGD, SignSGD requires aggressive batching which
can be substituted with momentum (Sun et al., 2023). The
alternative solution is to add error feedback mechanism that
additionally fixes the biased nature of sign operator (Seide
et al., 2014; Karimireddy et al., 2019).

The main motivation of original SignSGD was communica-
tion effectiveness and empirical robustness in the distributed
optimization (Bernstein et al., 2018b), since sending sign
vector costs O(d) operations. In theory, the effectiveness
was proved only under additional assumptions on noise, e.g.,
symmetry and unimodality. Other applications and expan-
sions of SignSGD are as follows: (Safaryan & Richtdrik,
2021) proposed an updated theory for a wider class of
noises in the distributed setup, (Liu et al., 2019a) gener-
alized SignSGD to zeroth-order oracle, (Jin et al., 2020)
studied federated learning and additional compression.

For all before-mentioned works, the results were obtained
in expectation and only for BV noise. The HP bounds were
obtained only in (Armacki et al., 2023; 2024), where the au-
thors proposed a unified framework for theoretical analysis
of online non-linear SGD. It includes a wide range of non-



linear gradient estimation transformations such as clipping,
normalization and sign operator. However, in these works,
the HT assumption was relaxed to symmetric noises only.
The authors proved HP bounds which are arbitrarily close
to the optimal ones for BV noise.

1.2. Contributions.

In our paper, we demonstrate that sign-based methods can
handle heavy-tailed noise in zeroth- and first-order smooth
non-convex optimization more effectively than clipping or
normalization:

e We prove the first high probability optimal bounds
o} ((\/a/s)%) under heavy-tailed noise k € (1, 2]
for SignSGD with mini-batching (Th. 1). For

SignSGD with momentum, we generalize this bound
in expectation (Th. 3).

* For symmetric heavy-tailed noise x € (1, 2], we com-
bine SignSGD with majority voting and achieve an ex-

act high-probability bound O ((\/& / 5)4> for the sam-
ple complexity (Th. 2).

* For the zeroth-order oracle which can only compare
function values at two points, we propose a novel
and simple MajorityVote-CompSGD method. We
prove the first high probability bound O((d/£?)?) for
the comparison number under symmetric heavy-tailed
noise (Th. 4). For sum-type functions, we prove the

bound O ((\/Zi/&)%

calls under any heavy-tailed noise x € (1,2].

) for the number of function

* To validate our findings in real-world scenarios with
heavy-tailed noise, we evaluate the sign-based methods
on Transformer models, demonstrating their effective-
ness in both pre-training LLaMA 130M on C4 dataset
and zeroth-order fine-tuning RoBERTa on multiple
NLP classification tasks.

Notations. The notation 1, n is the set of natural numbers
{1,2,...,n}. For a vector x € R?, index i € 1,d returns
its 4-th coordinate x = (z1,...,24). We define ¢,-norm
p € [1,+00] as (|lz],)? == S0, |zi|P, 2 € RE The
notation (z,y) := Zle x;y; stands for the standard scalar
product for z,y € R%.

The sign operator sign(-) returns the sign of a scalar in-
put and can be applied coordinate-wisely to a vector. The
notation O hides logarithmic factors in failure probability 4.

2. High probability bounds for sign-based
methods under heavy-tailed noise

In this section, we present our novel convergence guarantees
with high probability for existing sign-based methods for
non-convex functions with heavy-tailed noise in gradient
estimates. For each algorithm, we provide explicit optimal
tuning for parameters. If function’s smoothness constant
and noise’s characteristics are not given, we state the rates
for arbitrary tuning. All proofs are located in Appendix C.

2.1. Assumptions

Assumption 1 (Lower bound). The objective function f is
lower bounded by f* > —oo, i.e., f(x) > f*,Vo € R4,

Assumption 2 (Smoothness). The objective function f is
differentiable and L-smooth, i.e., for the positive constant L

IVF(@) = Vi@l < Llz —yl2, Yo,y e R
Assumption 3 (Heavy-tailed noise in gradient estimates).
The unbiased estimate V f (x, &) has bounded k-th moment
Kk € (1,2] for each coordinate, i.e., Yx € R%:

* E¢[Vf(z,8)] = Vf(z),
* Be[|Vf(2,6); — Vf(x)i|*] <ofield,

where ¢ = [01,...,04] are non-negative constants. If
Kk = 2, then the noise is called bounded variance.

2.2. SignSGD and its HP convergence properties

We begin our analysis with the simplest of sign-based meth-
ods, namely, SignSGD (Alg. 1) and prove a general lemma
about its convergence with high probability.

Algorithm 1 SignSGD

Input: Starting point 2! € R?, number of iterations T,
stepsizes {Vk }_;-
1: fork=1,...,Tdo
2:  Sample £ and compute estimate gF = V f (2, £¥);
3: Setahtl = aF — 4, - sign(g¥);
4: end for
Output: uniformly random point from {z!,... 27} .

Lemma 1 (SignSGD Convergence Lemma). Consider
lower-bounded L-smooth function f (As. 1, 2) and HT
gradient estimates (As. 4). Then Alg. 1 after T iterations
with constant stepsizes v, = -y achieves with probability at
least 1 — § starting with A1 = f(z1) — f*:

2A,

T
1 -
7 IVIE < S 4 16Ldyloa(Ys) + 45
k=1

+ 12

1
w log(l/é). 2



From the bound (2), one can derive the sample complexity
for arbitrary parameters or calculate the optimal ones. In
order to achieve accuracy ¢, the noise ||&||; have not to
exceed e. The first way to lower the noise is to use batching.

2.3. SignSGD with batching

Algorithm 2 minibatch-SignSGD

Input: Starting point 2! € R?, number of iterations 7,
stepsizes {7x }7_,, batchsizes { B }71_,.
1. fork=1,...,T do
2: Sample {¢¥}P* and compute gradient estimate
g = o5 Vi@ £) /By,
3: SetaFtl =z — 4, - sign(g*);
4: end for
Output: uniformly random point from {z!,... 27} .

Theorem 1 (HP complexity for minibatch-SignSGD).
Consider lower-bounded L-smooth function f (As. 1, 2)
and HT gradient estimates (As. 3). Then Alg. 2 requires the
sample complexity N to achieve Zle IVF(z*)| <e
with probability at least 1 — 0 for:

arbitrary tuning: T, v, = 2% B), = max{1, BT'}:

\/T?
2K
Bo(&ifve + Ldyo) 1 ([ 7
N =o [ BBt Ldyw)” 1 (]lg]h ’
gt By €
(3)
optimal tuning: T = O (2152%) = ﬁ’Bk =

1670\ =1 |
max{l,(;l) }

N=0 (Alj;”d 1 Biled ('JII) ) )

€ g2 €

where Ay = f(x') — f*, Ls = Llog(1/s).

2.4. SignSGD with majority voting

The second approach to noise reduction inherent to sign-
based methods is majority voting.

Majority voting. As mentioned before, the original mo-
tivation of SignSGD was fast communication in the dis-
tributed optimization (Bernstein et al., 2018b; Jin et al.,
2020). Consider one server and M workers, each of which
computes its own gradient estimate. The server receives
signs of all estimates, aggregates them and sends back the
updated estimate to the workers. In related works, vari-
ous types of aggregation were studied, but the most effec-
tive one turned out to be majority voting. For sign vectors
sign(gF),i € 1, M, each coordinate of the resulting update

vector is the majority of the received signs:

M
g" = sign (Z Sign(gf)> : )

i=1
To be effective, majority voting must decrease
the noise of the aggregated wupdate vector.
This is achieved via showing that probability

P |sign(V f(z*);) # sign {]EV[: sign(gf)j” decreases

with the growth of M. I&oivever, for arbitrary noise
distributions, it does not hold true. Choosing the most
frequent value from the sign sequence {sign(g¥)}M, is
actually M Bernoulli trials. In these trials, the probability
of choosing a correct answer grows only if the probability

of failure of a single worker is less than %, ie.

P [sign(Vf(4)) # sign(sb)] < 3.¥i € LI (©)

For example, the condition (6) is satisfied if the noise of
the gradient estimate for each coordinate is unimodal and
symmetric about its mean. We use this assumption in our
paper, but other assumptions (Safaryan & Richtérik, 2021)
leading to (6) are valid as well.

Algorithm 3 MajorityVote-SignSGD

Input: Starting point 2° € R?, number of iterations 7,
stepsizes {7i }7_,, batchsizes { M }1_,.
1: fork=1,...,T do
2:  Sample {¢F B ¥, and compute gradient estimate

g* = S0 sign(V f(a*,€));
3: SetzFtl =2k — ~; - sign (gk);
4: end for
Output: uniformly random point from {x!,... 2T} .

Theorem 2 (HP complexity for MajorityVote-SignSGD).
Consider lower-bounded L-smooth function f (As. 1, 2) and
gradient estimates corrupted by unimodal and symmetric
HT noise (As. 3). Then Alg. 3 requires the sample complex-
ity N to achieve - 25:1 |V f(x*)|l1 < e with probability
at least 1 — § for:

arbitrary tuning: T, vy, = 1% My = max{1, MyT}:

\/T?
My(A L aw &l 4
N:O< O( 1/’YO+ 5dzg+ 1/\/M70) )7 (7)
optimal tuning: T = O (8522) o, = &Aaﬁ,Mk =
N
max{l,(8a,§”i|1) }:
AyLsd  AyLsd (a5
N—O( =t 25<GM“>>, ®)
€ € £

where Ay = f(z1) — f*, Ls=Llog /s, (a,)" := 1,



The bound (8) matches minibatch-SignSGD bound (4)
if kK = 2. The dependency on # is expressed in slowing
degenerating multiplicative factor «, instead of ¢~ =-7.

Remark 1. In Appendix A, we provide a method built on
top of minibatch-SignSGD algorithm and majority voting
for the distributed setup with the fixed number of workers.

2.5. SignSGD with momentum

Instead of variance reduction, one can use momentum tech-
nique with the same sample comlexity.

Algorithm 4 M-SignSGD
1

Input: Starting point ! € R?, number of iterations K,
stepsizes {7x }7+_,, momentums {8 }_,.
1: fork=1,...,T do
2:  Sample £ and compute estimate gF = V f (2, £F);
3:  Compute m* = gm 1 4 (1 — Bi)g";
4:  SetzFt! =k — 4y - sign(mF);
5: end for
Output: uniformly random point from {z!,... 27} .

Theorem 3 (Complexity for M-SignSGD in expectation).
Consider lower-bounded L-smooth function f (As. 1, 2)
and HT gradient estimates (As. 3). Then Alg. 4 requires T
iterations to achieve - Ele E[[IVf(z®)|1] < e for:

arbitrary tuning: T, ~), = 70T~ 1,8, = 1 — VT

Al 4 T 3%1
7o [ B/ + L) +<ﬁ|la|lm> |
£

c4
Ay (1—-PBy
W= M b = 1 -
: 1 A L\3e—z | .
mm{L - (5)° }

ALd  ALd d*ﬁﬁ
iLd | A (fnan) o

g2 g2 €

optimal tuning:

T=0

where Ay = f(x!) — f*.

In comparison with (4) for minibatch-SignSGD, in expec-
tation bound (9) has a larger v/d||&|| . factor instead of ||#|1,
but they are still close due to the norm relation (10).

2.6. Discussion and comparison with related works

Optimality. First, we compare theoretical complexi-
ties. In (Zhang et al., 2020b), the authors provided
lower bound in expectation for the sample complex-

ity Q (A;ZL + % (@) ") wrt. the f5-norm for

non-convex functions. Our bounds are the first-known

bounds with HP for any HT noise: minibatch-SignSGD
attains bound O (AlLdELOg L AlLdelzog ik (@) “)

w.r.t. the £1-norm with linear log 1/s dependency. However,
there are d factors and ||&||; instead of smaller ||&|| ;. Since

lz]l2 < llz]li < Vd]z|l2, Vo € RY, (10)

in order to achieve € accuracy in the £5-norm, accuracy &’ in
the /1-norm has tobe &’ = ¢ - V. Thus, the total number
of samples and the optimality remain. A good analysis of
the relation between convergence w.r.t. the different norms
is given in (Bernstein et al., 2018a). For M-SignSGD, (9)
exactly matches the optimal bound with the same remarks.
Clipping. According to the HP analysis of ClipSGD from
(Sadiev et al., 2023, Theorem 3.1), it achieves before men-
tioned lower bound with extra log /= and log /s factors.
Moreover, the constants concealed behind O notation have
10® magnitudes. To compare, sign-based methods have
smaller constants without extra accuracy factors. From the
practical point of view, clipping levels depend on the iter-
ation number and affect the final accuracy without a good
tuning (Sadiev et al., 2023, Theorem 3.1). The sign-based
methods work well with constant, arbitrary parameters.

Normalized SGD. In (Hiibler et al., 2024), the authors
analyze HP convergence of normalization-based methods
under HT noise. These methods use normalization 9* /g® |2
instead of sign(g*). Namely, for non-convex functions,
minibatch-NSGD with the same optimal batchsizes has
sample complexity w.r.t. to the ¢5-norm:

o (AlgLé 4 Bals ( ||5||H) > o an

€ € €
The only difference of (11) from (4) is the absence of d fac-
tors, which can be explained by different norm for required
accuracy. The same comparison is valid for the momentum
methods. From the practical point of view, sign-based meth-
ods can be applied to distributed optimization (Appendix

A) where normalization does not fit. Besides, one can use
majority voting as a more powerful alternative to batching.

Symmetric HT noise. For MajorityVote-SignSGD, the
bounds (7), (8) match optimal bounds in expectation for
first-order non-convex methods with BV noise (Arjevani
et al., 2023) with mild log 1/5 dependency. In (Armacki
et al., 2023; 2024), the authors considered only symmetric
noise and proved bounds arbitrary close to O(¢~*) in online
paradigm. On the contrary, our bounds are tight.

3. High probability bounds for comparison
oracle under heavy-tailed noise

In this section, we switch from the first-order optimization
and gradient oracle to the zeroth-order optimization and



an oracle which can only compare two corrupted function
values at two different points. For non-convex functions, we
propose our novel MajorityVote-CompSGD method and
prove its HP bounds under the symmetric HT noise. All
proofs are located in Appendix C.

3.1. Comparison oracle

For any two points x,y € RP, the stochastic comparison
oracle ¢(z,y, & = {&;,&,}) determines which noisy func-
tion value, f(x,&;) or f(y,&,), is larger (the realizations
&, and &, may be dependent):

¢($,y,§) = Slgn(f(xvgr) - f(yafy))

This oracle concept is natural for describing human decision-
making (Lobanov et al., 2024a). Given a choice between
two options, it is usually much easier to choose which option
is better rather than estimate quantative difference. The
stochasticity £ describes the variety of division-makers and
their random states. For example, this oracle is extensively
used in Reinforcement Learning (RL) and training Large
Language Models via RL with human feedback (Ouyang
et al., 2022; Wang et al., 2023; Tang et al., 2023).

3.2. Related works

The most common instance of methods using comparisons
is Stochastic Three Points (STP) (Bergou et al., 2020; Gor-
bunov et al., 2022). It takes a random direction and goes
along it where the function value is smaller. Initially STP
was analyzed for non-convex functions without any noise.
In (Boucherouite et al., 2024), the authors worked with sum-
type functions and stochastic minibatches. They proved
convergence of STP in expectation under BV noise, but
with the obligatory condition on huge batchsizes.

In (Saha et al., 2021), the authors considered a noisy com-
parison oracle where noise was introduced as a fixed proba-
bility of receiving a wrong sign during comparison. They
restated STP via sign operator and at each iteration repeated
Bernoulli trials with comparisons to ensure the sign correct-
ness with high confidence. The authors obtained HP bounds,
but only for convex and strongly-convex functions.

There are other approaches to incorporate comparison oracle.
In (Lobanov et al., 2024a), the authors used Coordinate
Gradient Descent (CGD) with the search of the steepest
stepsizes via golden ration method. In the deterministic
case with adversarial (non-stochastic) noise, this approach
achieved better parameter dependencies and practical results.
Especially, for strongly convex functions, for which the
authors used accelerated CGD. The authors also proposed
an algorithm for stochastic oracle and prove its asymptotic
convergence. In (Tang et al., 2023), comparison oracle was
used to build a ranking-based gradient estimate over random
directions which was then plugged into GD.

3.3. Assumptions

Heavy-tailed noise. We consider the following corrupting
heavy-tailed noises induced by variable &:

Assumption 4 (Heavy-tailed noise in function estimates).
The function estimate f(x,£) is unbiased and has bounded
k-th moment k € (1,2] witho > 0, i.e.,

DEe[f(2,6)] = f(2), VaeRY,
D Ee[lf(2,€) - f(@)|"] < 0", Vo€ R

For k = 2, the noise is called bounded variance.

For example, the estimate f(x, &) can be corrupted at each
point by independent heavy-tailed noise ¢ with bounded
k-th moment: f(z,&) := f(x) +&.

Another example of such estimate is when we optimize a
sum-type function f(z) = + Zfil fi(z), and & denotes
a random batch I of fixed size |I| from {1,..., K}, i.e.,
f(z, &) = T}\ >;er fi(x). For two points, oracle gives the
same & realization (batch). This estimate satisfies discrete
BV noise assumption (Boucherouite et al., 2024).

Random directions. We use the following assumption on
the random directions’ distribution D:

Assumption 5 (Random directions). The distribution D on
R? has the following properties:

1) There exist anorm ||- ||, p € [1,2] and a constant o, > 0,

such that for all g € R%:

Eeen|(g:€)| = ap| 9[-
2) Foralle € D, the norms ||e|l2 < 1,]le|l, <1, %—i—% =1

We use the following instances of D with explicit constants
and norms (Bergou et al., 2020, Lemma 3.4):

1) Uniform distribution on Euclidean sphere S§ :=

{e| llellz=1}p=2,a,= \/217.

2) Uniform distribution on standard basic vectors

{615"'76d}7p: laap = é

3.4. CompSignSGD and its convergence properties

In (Lobanov et al., 2024a), the authors propose a nameless
procedure for stochastic oracle:

" = oy sign(f (2 et £ )— f (2P —ypef, €0)) "

If value f(z% —~pe®, &) is smaller than f(z* +v,e*, &),
then sign equals to 1 and 2**! = zF — ~,eF. Otherwise,
point zF+1 = 2% — ~; e is chosen. We name it CompSGD

(Alg. 5) and prove the following convergence Lemma.

Lemma 2 (CompSGD Convergence Lemma). Consider
lower-bounded L-smooth function f (As. 1, 2), random



Algorithm 5 CompSGD
1

Input: Starting point ' € R?, number of iterations 7,
stepsizes {7V }1_,;
fork=1,...,Tdo
Sample direction e* and ¢* ;
oF = sign [f(aF +yper, ) — faF —ypeh, €F)];
Set k! = 2k — 4, - ¢F - €F
end for
Output: uniformly random point from {x

BANEAER R

LeoaTh

directions with o, (As. 5) and HT function estimates (As.
4). Then Alg. 5 after T iteration with constant stepsizes
Yk = 1y achieves with probability at least 1 — § starting with

Ay = f(at) - [

T 1
274 12d7 |V £(z2)||2
7§ \V4 log(1/s
Ldv~ 80
+ 24 1/6) + —
\fOZp (/) Otp’}/

As a consequence, in order to achieve accuracy ¢, the noise

o must not exceed o ~ ap52.

3.5. Our MajorityVote-CompSGD

At this point, we propose our novel MajorityVote-
CompSGD which can reduce noise via the majority voting
over comparison signs:

M
e ok —ysign| Y g(a" + et b — pet, Ef)]e’“
i=1

Algorithm 6 MajorityVote-CompSignSGD

Input: Starting point 2! € R?, number of iterations 7,

stepsizes {vi }7_,, batchsizes { M }1_,.
1: fork=1,...,T do

2: Sample direction €* and {¢F} M ;
3 ¢ =sign [f(aF+yret, & )= faF—pet )]

4:  SetzFt! =% — ~; -sign (Zi\i’j (bf) - eF
5: end for

Output: uniformly random point from {z!,... 27} .

Similar to MajorityVote-SignSGD, we require additional
assumption of unimodality and symmetry of HT noise

f(xvg) - f(x),V;U € Rd'
Theorem 4 (HP complexity for MajorityVote—
CompSGD). Consider lower-bounded  L-smooth

function f (As. 1, 2), random directions with o, (As. 5)
and HT unimodal and symmetric function estimates (As.

4). Then Alg. 6 requires comparison number N to achieve

T
* kzl |V f(zx)|lp < € with probability at least 1 — § for:

arbitrary tuning: T,~), = 70/vT, M}, = max{1, MoT?}:

N = MyT* = O My - ((Aa+ane/y/30) [y, + L yv0)° 7
(ape)®

optimal tuning: T = O (A pszp) Ve = \/% and
2
My, = max{l, (?’j‘()‘igg) }

AL AL Lsy\’
N=0 ( 14L6,p + 12 (;,p (anz g,p) ) , (12)
Oépi‘: Olpf‘:

aZe?
where Ay=f (z1)*, L(;prlog( )dv (a,{)"“ = :i_}
Remark 2 (CompSGD with function batching). If
one can directly compare the batched function val-
ues at two points, e.g. with the sum-type objective
functions, then batch averaging can be applied un-
der any HT noise. Similar to minibatch-SignSGD,

we substitute the step 3 in Alg 6 with g* =
s | 3 a4+ et ) - 3% et ek, )|
and  build new mlnlbatch CompSGD method
(See Appendix B). It achieves the number of
function calls N with HP with the optimal pa-
rameters T = O(A(;%L;z’p),’yk = T%;p and
B = max{L (‘Z)H} .

A L57 A L5A O'L(g7 =

N:0<122p+ 122:”~(22” . (13)
age age age

3.6. Discussion and comparison with related works

Optimality. When D is a Euclidean sphere, the first term
O(dL/EQ) from (12), (13) matches the bounds for noiseless
methods from previous works (Bergou et al., 2020; Tang
et al., 2023; Lobanov et al., 2024a) and the optimal bound
for the deterministic zeroth-order optimization (Nemirovskij
& Yudin, 1983). Moreover, our HP threshold on noise
o ~ €2/V/d is the same as the threshold for adversarial
noise from (Lobanov et al., 2024a) or for batched variance
from (Boucherouite et al., 2024). This threshold is optimal
w.r.t. € and d (Lobanov, 2023). Hence, our bounds are tight.

Comparison. Although CompSGD was proposed in
(Lobanov et al., 2024a), the authors proved only its asymp-
totic convergence with parameters depending on the solu-
tion. We prove its explicit formulas with HP (Lemma 2)
and propose novel modification (Alg. 6) which converges
non-asymptotically (Th. 4).



The noisy comparison oracle from (Saha et al., 2021) is
similar to ours. The authors used a non-trivial assumption:

P¢ [¢(x,y,€) # sign(f(z) — f(y))] < V/2—v,Va,y € RY,

(14)
for some constant v € (0, 1/2). First, all results from (Saha
et al., 2021) are proved for the convex functions, and we
prove it for the non-convex ones. Next, we highlight that
our Assumption 4 is much weaker and general, since (14)
can fail even under BV noise. In proofs, we show that

P¢ [¢(,y, &) #sign(f(x) — f(v))] < o/IF@)rfw)l-

Thus, in the vicinity of the stationary point where function
changes are small or under the large o, (14) can not hold.

4. Experiments

In this section, we present experimental results for both first-
order and zero-order methods described in Sections 2 and 3,
respectively. To demonstrate the superiority of sign-based
methods for problems with heavy-tailed noise, we focus on
language model training tasks. This choice is motivated by
two factors: first, these tasks are known to exhibit heavy-
tailed noise characteristics (Zhang et al., 2020c), and second,
they represent an important real-world application domain.

4.1. M-SignSGD on LLaMA pre-training

First, we evaluate the performance of M-SignSGD (Algo-
rithm 4) on the language model pre-training task. We adopt
the established experimental setup from (Lialin et al., 2023),
training a 130M parameter LLaMA-like model (Touvron
et al., 2023) on the Colossal Clean Crawled Corpus (C4)
dataset (Raffel et al., 2020). The C4 dataset represents a
comprehensive, sanitized version of Common Crawl’s web
corpus, specifically designed for pre-training language mod-
els and word representations.

For our comparison, we focus on two key techniques for han-
dling heavy-tailed noise: gradient clipping with momentum
and gradient normalization with momentum. As represen-
tative methods, we choose M-ClippedSGD (Zhang et al.,
2020a) and M-NSGD (Cutkosky & Mehta, 2020), respec-
tively. We also compare to AdamW (Loshchilov, 2017), as
a de-facto method for first-order optimization algorithm for
deep learning. To ensure a fair comparison, we conduct an
extensive grid search over key hyperparameters, including
learning rate, weight decay, and clipping level. Detailed
information about the final hyperparameter values and com-
plete experimental setup is provided in Appendix D.1.

Table 1 presents final validation perplexity for each method.
M-SignSGD demonstrates superior performance over the
baselines, aligning with our theoretical results.

Table 1: Perplexity of LLaMA-130M model pre-trained on
C4 for 100k steps. Lower is better.

Method ‘ Perplexity |
M-SignSGD 18.37
M-NSGD 19.28
M-ClippedSGD 18.95
AdamW 18.67

Table 2: Accuracy of RoBERTa-large (350M parameters)
fine-tuned on different tasks. Higher is better.

Method | SST-2 MNLI TREC
CompSGD | 919 638 772
MeZO 91.7 587 769
Zero-shot 79.0 48.8 32.0

4.2. CompSGD on RoBERTza fine-tuning

Second, we consider zeroth-order setting. Following
MeZO (Malladi et al., 2023a), we evaluate our method on
classification fine-tuning tasks, specifically SST-2 (Socher
etal., 2013), MNLI (Williams et al., 2017), TREC (Voorhees
& Tice, 2000), on the RoBERTa-large model (Liu et al.,
2019b). We employ the established few-shot prediction set-
ting (Malladi et al., 2023b; Gao et al., 2020a). See details
in Appendix D.2.

We compare CompSGD Algorithm 5 against pre-trained
model without fine-tuning (Zero-shot) and original MeZO
version. As demonstrated in Table 2, the sign-based method
again outperforms its non-sign counterpart.

4.3. CompSGD for accuracy maximization

Third, we simulate the zeroth-order environment with com-
parison oracles as follows. We take the prediction accuracy
of the linear model on the training dataset as the target:

f(x) = (1 — ACC (y[]-a]'n, Sign (m) — 1)) .

As training data, we consider classification tasks from Lib-
SVM (Chang & Lin, 2011): mushrooms, phishing,
a6a. In Figure 1, we give the dynamics of accuracy on the
test sample for our method and for another method work-
ing with the comparison oracle OrderRCD (Lobanov et al.,
2024b). Here, we also outperformed the competitor.

Figure 1: Performance of zeroth-order methods with com-
parison oracle.



Impact Statements

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. SignSGD for the distributed optimization

Consider the distributed optimization with one server and M workers, each of which calculates its own gradient estimate.
The server receives all estimates, aggregates them and sends back the updated solution to the workers. The sign-based
methods are so effective in terms of communication (Bernstein et al., 2018b; Jin et al., 2020), since sending a sign vector
costs only O(d) operations. We use the aggregation based on the majority voting.

Algorithm 7 Distributed-MajorityVote-SignSGD

Input: Starting point 2! € R?, number of iterations 7', stepsizes {7y }7__,, batchsizes { By }7_,.
I: fork=1,...,T do _
Sample {¢771 2% and compute gradient estimate g7 = Zf:kl V(" &)/ B, for each worker j € 1, M;
Send signs sign(g*) to server for each worker j € 1, M;
Compute on server g¥ = sign (Zj\il sign(g’“vj)) ;
k41

R N

5:  Send point z* T = 2¥ — 4, - g* to each worker;
6: end for

Output: uniformly random point from {x!,... 2T} .

Theorem 5 (HP complexity for Distributed-MajorityVote-SignSGD). Consider lower-bounded L-smooth function f (As.
1, 2) and gradient estimates corrupted by unimodal and symmetric HT noise (As. 3). Then Alg. 7 with M workers requires
the sample complexity N s per worker to achieve - Z;‘:Zl |V f(z*)||1 < e with probability at least 1 — § for:

arbitrary tuning: T, v, = %, By, = max{1, ByT}:

Bo(21/y, + Lsdryo)* 1 [axlld|1 R
Ny =0 + —
M < gt By \ VMe ’

)

optimal tuning: T' = O (%) Tk = SdALJTka = maX{ (16& L )

Ny — O <A1L5d A Lyd (anl)

g2 g2

where Ay = (@) = %, Ls = Llog s, (a,)" == ().

The proof of Theorem 5 is located in Appendix C.5.

Remark 3 (SignSGD with median clipping). For the symmetric HT noise with a mild condition on probability density
function, there exists a complement to the batch averaging, namely, coordinate-wise median operator (Puchkin et al., 2024).
For all k € (1,2], it requires only 9 samples to build an unbiased BV gradient estimate. Then it can be combined with
minibatch-SignSGD as if k = 2. In this case, the k dependency from Theorems 2 and 5 can be completely removed.

B. CompSGD with function batching

If one can batch function values at two points before its direct comparison (e.g. with sum-type objective function), then
CompSGD combined with the batching achieves the following bounds.

Theorem 6 (HP complexity for minibatch-CompSGD). Consider lower-bounded L-smooth function f (As. 1, 2), random
directions with o, (As. 5) and HT function estimates with o, € (1,2] (As. 4). Then Alg. 8 requires N function calls to

achieve Zle IV f(z)|lp < € with probability at least 1 — § for:

optimal tuning: T = O (A;%LE‘QP) , Ve == T%;p and Bj, = max {1, (2—7;) ”} :
A1L5 A1L5 O'L(; ﬁ
N = O P D, P 15
< a2e? * aZe? a2e? ’ (15)
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Algorithm 8 minibatch-CompSGD

Input: Starting point z! € R?, number of iterations T', stepsizes {vx }7_,, batchsizes { By }1_,.
l: fork=1,...,Tdo
2: Sample dlrectlon ek and {¢F}Ex ;

3:  Compare g* = sign (Z f* + ek k) — Biﬁ f(a* — chk»gf)>?

=1 =1

k
s

4:  SetzFtl =gk —~, . gk
5: end for
Output: uniformly random point from {z!,... 27} .

where Ay = f(2') — f*, L5, = d» 2 Llog 1/s.

The proof of Theorem 6 is located in Appendix C.7. For two considered distributions D, the Euclidean sphere and the
standard basis, we estimate the value c,e. Euclidean sphere’s value o, is large by a factor V/d. However, the sphere itself
induces the /5-norm in the final estimate (13). Due to the inequality

IVf@)llz < IVF(@)lh < VAV F()ll2,

in order to achieve the same € bound for the £3-norm with the standard basis, the actual ¢;-accuracy €’ must ¢’ = ¢ * V.
Hence, the value ay,e for both setups is the same.

C. Proofs

C.1. Technical lemmas and propositions

We use the following facts from the linear algebra and convex analysis (Boyd, 2004):

Proposition 1 (Smoothness inequality). For L-smooth function f (As. 2), the following inequality holds true

L
F) = f@) = (Vf(2),y —a) < Sllo—yl3, Yo,y R (16)
Proposition 2 (Norm Relation). For two norms £, and £, with 1 < p < g < 2, the following relation holds true:
11
lzlly < lzllp < dv ™7zl Vo eR? (17)

Proposition 3 (Jensen’s Inequality). For scalar random variable £ with bounded k-th moment . € (1, 2], the following
inequality holds true:

E[l¢]] < (E[j¢]"])™ . (18)

Proposition 4 (Markov’s Inequality). For scalar random variable & with bounded first moment, the following inequality
holds true for any a > 0:

E[j¢])

P(¢ -~ Elell 2 @) < =

19)

To prove the HP bounds with the logarithmic dependency, we use the following measure concentration result (see, for
example, (Li & Orabona, 2020, Lemma 1).

Lemma 3 (Measure Concentration Lemma). Let {Dk}f:1 be a martingale difference sequence (MDS), i.e
E[Dg|Dy— 1o ,Di] = 0 for all k € 1,T. Furthermore, for each k € 1,T, there exists positive o, € R, s.t.

E [exp ( ) |k} < e. Then the following probability bound holds true:

T
YA > 0,8 € ( (ZD g% Z k+log1/5)>21—5. (20)
k=1

k=1
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To control error reduction during batching, we use the following batching lemma for HT variables. Its modern proof for
d = 1 was proposed in (Cherapanamjeri et al., 2022, Lemma 4.2) and then generalized for the multidimensional case in
(Kornilov et al., 2024; Hiibler et al., 2024).

Lemma 4 (HT Batching Lemma). Let s € (1,2], and X1, ..., Xp € R? be a martingale difference sequence (MDS), i.e.,
E[X;|Xi-1,...,X1] = 0foralli € 1, B. If all variables X; have bounded k—th moment, i.e., E[|| X;||5] < 400, then the
following bound holds true

r B

Z 11X 15]- 1)

i=1

Sl

We need the following lemma about changes after one update step of sign-based methods from (Sun et al., 2023, Lemma 1).

Lemma 5 (Sign Update Step Lemma). Let z, m € R? be arbitrary vectors, A = diag(ay, . ..,aq) be diagonal matrix and
f be L-smooth function (As. 2). Then for the update step

¥ =z —~-A- sign(m)
with e :=m — V f(x), the following inequality holds true

Ly?|| All%

f@') = f@) < AAV @)1 + 29[| Al pllellz + =

(22)

C.2. Proof of SignSGD General Convergence Lemma 1

For beginning, we prove general lemma about SignSGD convergence with HT unbiased gradient estimates g* with
&,k € (1, 2]. This proof considerably relies on proof techniques for NSGD from (Hiibler et al., 2024).

Proof. Consider the k-th step of SignSGD. We use smoothness of function f (Lemma 1) to estimate:

P < fa) < (V)R k) B

i k\||2
o (V £(a*), sign(g)) + 5Oz

2 k
_ (Vf(2"), sign(g")) NI
= Tk IV (@) V£ + D) V-
Consequently, after summing all T steps, we obtain:
T & T
51gn ~  Ld
> VHELSBTD 9 paby)s < giot) - fa7) + 25 @3

_ _— k=1

=Aq

We introduce the following terms ¢, := W [—1,1], ¥ := E[gy|2*] and Dy, := —vi(or — Vi) ||V f () |1

We note that Dy, is a martingale difference sequence (E[Dy|Dy_1, ..., Di] = 0) and satisfies

D} B (b — thi)?
eXp(4vz||Vf<xk>|%)‘eXp( i )Se

Applying Measure Concentration Lemma 3 to MSD Dy, with 07 = 4+2||V f(2*)]|2, we derive the bound for all A > 0 with
probability at least 1 — §:

T T—
D @k = 3NV L) DIV ()] < Ay + 7d Z log 1/s).
k=1 k=0

14



We use norm relation (17) and L-smoothness (As.2) to estimate maximum gradient norm for all k € 2,7 + 1 :

VA < VaVFEh) < VA|VFEF) = V) + V)
< VAV F(R) = V@] + V| VRl < fLIIIk —aF My + VAV ()2
< VdLy 1 Vd+ V||V f(* )2 < V|V f(a! \h+Ld2}h (24)
Hence, the choice \ := 6d(wmaw|\Vf%w1)|\1+CTL) where Cr = Hé%’yk TZ_:1 v, and ™4 = I?;?}; v, yields with

probability at least 1 — §:
a 1 Ld &
S (wk - 2) 195Gl < A1+ S0 D77+ 647 V)l + CrL) los(¥s), (25)
k=1 k=1

Next, we estimate each term ||V f (2*)||1 in the previous sum:

UellV) = E[VFE), Sign( Na*]

IV £ (x |1—Z2|Vf )i - P(sign(V f(z*)); # sign(g*)i|z*). (26)

For each coordinate, we have a bound derived from Markov’s inequality (19) followed by Jensen’s inequality (18):

Plsign(V (")) # sign(g)let) < PV - g = [Viah)llet) < el VA — il

IV f(2%)i
Eei |V f(a*)i — gF|*])* i
o BelVIE-gDE e o
IV f(2F)l IV f (%)l
Hence, the whole sum can be bounded as
d
> 2V (@) - Plsign(Vf(a¥)); # sign(g*)ila") < 2(|6]s.
i=1
Finally, we put this bound in (25) and obtain:
*Z IV < fla) = f@) + EXT: ; +22T: &l
Tk 1= 9 k—1% 71% 1
+ 6d(y™(IV f (@)1 + CrL) log(1/s). (28)
Plugging in constant stepsizes y;, = -y implies O = Ty?,7™% = ~ and the required inequality (2):
A Vf(z!
— Z IV f(z®)] < =— + 16Ldvylog(1/s) + 4|51 + 12% log(1/s).
O

C.3. Proof of minibatch-SignSGD Complexity Theorem 1

Proof. According to Lemma 1, minibatch-SignSGD with batched gradient estimates of batchsize B corrupted by HT noise
with o5 convergence as follows:

T

2A,
- Z IV f (")l < Ty T 16Ldylog(1/s) + 4|01 + 12

V£l
T ¢ T

log(1/s).
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2H<T||1

Due to Batching Lemma 4, we can estimate the x—th moment of the batched estimate as |01 < and derive:

T Z V7)< 22 + 16Ld~y log(1/s) + 81|z|3”1

3

+ 12 log(/s). (29)

V)l
T

We can omit the last term since its dependency on 7" has the largest power.

1) For arbitrary tuning, we use parameters 7', v, = %, By, = max{1, ByT'} to get:

24, Ldyo ealp V£l

*ZHW i< s 167 s 8o o+ 12m o)

Setting such T that the first two terms become less than ¢, we obtain the final complexity N =T - ByT.

2) For optimal tuning, we first choose large enough B to bound the term 8% <¢e/2 = B = max {1, (%) = }
B v

Then we choose optimal v = 4/ 5 LAéizT minimizing min,, {2TA71 + 16Ldy log(l/é)} =4/ %‘“ng. Finally, T is set

o bound BRI < ¢, 7 =  (Sublogtiod) )

C.4. Proof of M-SignSGD Complexity Theorem 3

In this proof, we generalize Theorem 1 from (Sun et al., 2023) for HT noise.

Proof. Since we set constant steps sizes and momentum, we denote them as v = v and S = [, respectively. We use
notations €* := m* — V f(2*) and 6F := g¥ — V f(a*). Therefore, we have at k-th step values:

mF = pmFT 4+ (1= B)gF = (P + V(@) + (1 =) (0% + Vf(")),
= mF - V@) =B+ BV = V(ER) + (1 - B)oF,
= mF V@) =B+ BsF (1 —_B)Hk-

Unrolling the recursion, we obtain an explicit formula (upper index of /3 is its power):
E E
o= B ) B (1-p)> BT (30)
i=2 i=2
From smoothness of f (As. 2) follows the bound:
Is"ll2 < Llja*~" = 2*||2 < LVdy.

Hence, the norm of (30) can be bounded as:
¥z < BE Ml 2 + LVdy - > B+ (1= B)| > B0
i=2 i=2

We notice that variables {6;} are martingale difference sequence from Lemma 4 which we plan to use. Due to the formal
definition of §* = ¢' — Vf(2') = Vf(2',&) — Vf(2') and M-SinSGD step, the conditioning on #*~1,... A with
randomness &1, . . ., &_1 is equivalent to the conditioning on point s ¢, . . ., 22. Hence, we show by definition of martingale
difference sequence that

E[0Y6°", ..., 01 = E[¢'|2",...,2°] = E[Vf(2", &) — Vf(z')|z",...,2%] = 0.
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To take math expectation from both sides, we first take it from the term

K

k k % k l
I Zﬂk—i9i||21 < (E [I Zﬁk—292|51> . < ! (Z 2K [”,6(’6—7)61”5}) (Z 2[6” 1)E Hel” ]) . (31
=2 =2 =2

For each i € 2, T, we estimate E [||67]|5] as

d
E (65 ‘< E (161 Zlgj m| 2 Z 5 =3 (32)

We continue bounding (31) with

k * .
—) 1 =11k 2||0||x
3D < <§ o3k >||a||n> 3(1” e

i=2 ﬂn)ﬁ

Therefore, the final math expectation can be calculated as:

L\fv 2(1 - Bl
Elle*lls < B*'Elle'(l2 + + = (33)
€1l Il + 705 + =
Now, we can use update step Lemma 5 and then take math expectation:
k+1 k Vallek L’yd
FE@ ) = f@*) < AVIEN+ 29Vl + —5— 5
2Ld 4Wd(1 - B)||é)l.  Ly3d
B - BN < EITSG b+ 0as e + ST A, B
Summing it over k and dividing by T, we derive
T
fla') = fo | 4Ldy 4\[(1— Bl k—1).0
—N"E|V + + +2vd Y " BEE0|o/T. (34)
Z V5l < S T S >8I

We omit the last term since its dependency on 7" is much weaker.

1) For arbitrary tuning, we set 1 — 3 = %7 ~ = ~voT~% and obtain

T+

ZEHW o < AL ldvo |, 4VdFl | 2Vd|s
T Tt T 7% Tz

and 4f\|0\|1 < a
%

Next, we choose T to limit %W <
T4

£
2

Ai (L 1d—T5 ) via minimizing min,, {A—T + —5} Then we find optimal

2) For optimal tuning, we first choose optimal v =
B =1—min {1, (Hﬁ\%ELT) o } via minimizing remaining

min
B

1670 Ld +4f<1— B)IIF ||
T(1-p5) (1—pBr)® '

Finally, we select T" according to required accuracy ¢. O
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C.5. Proofs of MajorityVote-SignSGD Complexity Theorems 2 and 5

Proof of Theorem 2. The beginning of this proof exactly copies the proof of SignSGD Convergence Lemma (Appendix
C.2) until equality (26). We have to estimate the probability of failure of majority voting for each coordinate 5 conditioned

on z*, namely,

M
P | sign(Vf(z")); # sign [Z Sign(gf)] . gF = VIR ).
=1 j

We use the generalized Gauss’s Inequality about distribution of unimodal symmetric random variables (Dharmadhikari &
Joag-Dev, 1986, Theorem 1).

Lemma 6 (Gauss’s Inequality). Let a random variable & be unimodal symmetric with mode v and bounded r-th moment,
€ (1,2]. Then the following bound holds:

k)" ElE=r])” K K" K
(m) Mv ™ 2 e - EllS —v[7,
Pll—v]> 7] < A
(m+1)ﬁ[7\5—un~} o TS e ElE - vt
We use Gauss’s Inequality for each variable g . = i =Vf (z%,&F); satisfying the symmetry requirement from the theorem’s
statement. We denote S M and bound

P [Sign(Vf(a:k)j) # Sign(gij)} =

—

9t = V@) > |V )]

P
= TP llak; — V)] 2 V)]
_ (+).w<)| I
Lo L[IER]" 9h)) < e o,
i) e
2T E SV

We denote probability of failure of a single estimate by

g = P[sign(Vf(z");) # sign(g}’;)]
1 K 1 K "~
5 m) 57 57> (,{Jj)wu
1_1_5; . SE < .
2 2w J (H+1)”" ’
=t q;(S;)- (35)

Moreover, this probability ¢; < ¢;(S;) < %, and the deviation of g; from % can be bounded by

The probability of getting the wrong sign can be restated as the probability of failing half out of M Bernoulli trials with fail
probability g;:

1 1
P [sign(V f(x sign sign < . 36
g(f()#g[;gg”H_Nr e (36)
457 42(s))
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First, we consider the case S; > —"—:

(r4+1) "%
! 1 = 1 1= 1 1
452(5) B K ® 20 K 2K 1 K ® 1 B
S 1(3-30s) %) () () &
K ® K " 1
1 () () S
o ﬁ K r K r
(@) -2 () &
2 (1)
1 K 1 1
- +1 _ < 7K+ . 37)
Pi-e() e SRl
We use the inequality TTar < %,x > 0 on (36):
( 213 - 1)% +1 1 1
4€4 n K
36 < -~ < (” ) . (38)
M= k—1 M7 J
For the case S; < #, we derive the bound:
k1) R
1 (k+1)% 4
— 1 = —— 1< —. 39)
2 2 2
4Ej(Sj) Sj Sj
And we use the inequality = < 5,2 > 0 on (36):
1 1
ae) < VE® 11 (40)
N 2v M T VM Sj.

Combining (38) and (40) together, we obtain the bound for each coordinate:

i 1 L ..
R R e S

i=1

The rest of this proof is copying the proof of SignSGD Convergence Lemma (Appendix C.2) until the equality (26). There
we replace probability of single estimate with the majority voting and obtain:

- M | NE s
j; IV f(zF)]; P lsign(Vf(xk)j) # sign L_Zl sign(gij)] < (Z i‘ 1> . bf%

instead of
d

DIV IR - Blsign([V £ (2h))]; # [sien(g")];) < [1]1.
j=1
Hence, the final bound on sum of /;-norm of gradients with probability at least 1 — ¢ is

d 2 2
*Z%HVJC M < f(xl)—f(m*)+gzvi+2(:ji> ;%.Haﬂl

k=1
+ 6d(y™ [V f (@)1 + OrL)log(1/s).

=

Plugging in constant stepsizes 7y, = 7y implies Cp = Ty?,y™%® = ~ and denoting a,, := (Z—f}) , we have :
- 20, d|V (")l
Z IV £ (")l < Ty T 16Ldvlog(t/s) + danl|Fll/VM +12=—7—= log(1/s). (42)
k:
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1) For arbitrary tuning, we use parameters T, v = %, My, = max{1, MyT} to get:

*Z 1971 < 22 165 () + ool 12Vt

Setting such T that the first three terms become less than €, we obtain the final complexity N =T - MyT.

2) For optimal tuning, we first choose large enough M to bound the term 4a,€\”/;\|4|7; < €/2 = M

SN2
max{L (M) } Then we choose optimal -~y Sﬁﬁ minimizing min, {2TAW1 + 16Ldvlog(1/6)} =

v/ 7128A1L7d,1°g(1/5). Finally, T is set to bound 4/ 7128A1L;10g(1/5) <g/2=T=0 (7A1L12§(1/6)d> . O

Proof of Theorem 5. This proof completely copies Proof of minibatch-SignSGD Complexity Theorem starting with line
(42) and substituting |7, with /<12 O
C.6. Proof of CompSGD Convergence Lemma 2

Proof. Consider the k-th step of CompSGD. We use smoothness of function f (Lemma 1) to estimate:
L
FE = f@) < (VFER), M = ab) 4 St - b

L
= - sign(f (" + et ) = fah — et €8)) - (VF(ah), ) + Taille”I3

A sign(f (2" + yre®, €5) — f(a* — ye®, €8)) - (Vf(a"), ")
- ’ IV £ (@)l
Consequently, after summing 7" steps, we obtain
XT: o sign(f (2" + ywe®, €F) — f(a* — e, €8)) - (Vf(2"), )

VFa* ' 43
= V@], IVHly < {76 Zm (43)

L
VIl + 5o

: (b k gk pipk_n ok R Y)Y 25 ek
Next, we deal with terms ¢y, := sien(f(a” fyve ’£+)va;($;€)"¥|}; L)), >, Yy = E[¢k|xk} and Dy = —vi(¢r —

V)|V f(@¥)|,/cp, where oy, is taken from lemma’s statement. The terms ¢y are bounded with |¢x| < 1 due to
Cauchy-Schwarz inequality :

[sign(f (@* + ye®, €5) — f(a* — et €8)) - (VF(2"), eM)] _ [(Vf(a"), e")|
V@), = IVEEM)
We note that Dy, is a martingale difference sequence (E[Dy|Dy—_1, ..., D1] = 0) satisfying the inequality

< Dj >_ . (WW>
ep(4v,%Vf<zk>||g/af, = exp I <e.

Applying Measure Concentration Lemma 3 to MSD Dy, with 07 = 42|V f(2*) |2 /a,. we derive the bound for all A > 0
with probability at least 1 — § :

& As.5
<lleflly < 1.

|px| =

T
3 (= 339 @) ) L < B Lospy L rog(1/s)

k=1 p pk 1

Next, we use norm relation (17), L-smoothness (As. 2) and update step of CompSGD to estimate maximal norm achieved
fork € 2, T+ 1:

IVf@) ), < dv 3|V e < dv 2|V f(aR) = V) + VY]

1_1 _ 1_1 _ 1_1 _ 1_1 —
< A | VIR = Ve +dr [V e < dv TR Lt — ot o+ drE [V A
k—1
< A5 Ly + A E ||V S d I VE@Y o+ drTILY A (44)
T=1
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Ap

Hence, the choice \ := yields with probability at least 1 — §:

647 % (o2 |V f (1) |2+Or L)
; Z -3
ka (5= 3) 196y < G4 g Sk (Vo + Orl) log(fs), @49
P op— p
k=1
where O := max ;- > .. Finally, we estimate the term v ||V f (2*) || ,:
kEL,T = =1

Ee ox [sign(f (2" + e, €8) — f(z% — yre”, €8)) - (Vf(a"), eF)] = Eex [(V ("), eF)|
Eox [2- P [sign(f(z" + et &5) — f(a* — ek, €8)) # sign((Vf(2), )] - (Vf(z"),e")|] .

Next, we consider two cases to deal with probability over &: [(V f(2*), )| > 2y, L and [(V f(z*), e*)| < 27, L.
Case |(V f(zF),e*)| < 2v,L:

> —Ex[(Vf(z"),e")]]

> Eal[(V/(2"). ")) -4l
S

> ||V (")l — 4L

Eg or [sign(f(a® +yue®, f) — f(a® — e, €8)) - (Vf(F), e")]

Case |(Vf(z%),eF)| > 2y, L:
We change sign operators to equivalent ones denoting 0% := f(2* + y,e*, &%) — f(z* + ypeF) and 0% = f(aF —
et €8) — fah —yet):
sign(f (2" + ke’ €F) — f(a* —pet, €8)) #  sign((Vf(a"),e"))
)
sign(f(z" + ype®) — f(a* —yeb) + 05 —0%) # sign(2y, - (Vf(aF), e")).

Further, we can bound probability by considering bigger number of cases:

Pe [sign(f(a* + yre®, &h) — f(a* — yre® &) # sign((V f(2), e*))] (46)
Pe [sign(f(«" + yre®) — f(2* — we®) + 0% — 6% ) # sign(2yi - (Vf(2*), €"))]

Pe [|f (2" + yre®) — f(a® —yue®) + 05 — 05 — 2y, - (Vf(a"),e")| > 295 - (V(2),e")]]

Pe |

Pe |

|f(a® + ye®) — f(a¥ —vpe?) — 29 - (Vf(a), )| + 105 — 0% | > 2, - (V f(2"),e")]]
2L%; 41605 — 08| > 2y, - [(V f ("), e")]] . 47)

IN AN IA

Since we consider the case |(V f(z*), e*)| > 2v, L, then we bound

(47) < Pe [y - [(Vf(2"),e") + 105 — 0% | > 24, - [(V f(a¥), eF)]]
< Pe (105 — 08| = - [(Vf(2*),€")]]
Markov ineq.(19): Eg”&i — 913” 20
S NV S e (V)] (49)

Finally, we have can obtain the bound

Ee o [sign(f(z” + e’ &) — f(a% —pef &) - (Vf(@¥),e")] > Ea|(VF(F),e)| - %
8T IV, - 2.
Yk
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Combining two cases together, we get that ¥y ||V f (") ||, > a, ||V f(2*)|l, — 4y L — 22, and the bound follows from (45)

1< L & L L’y
Ay k
2 WVl < Thd Y kD 42*
P P =1 k=
Gdiié max 0
+ T(W IV f(z")||2 + CrL)log(1/s)
P

Plugging in constant stepsizes i, = 7, Cp = T2, 7™ = ~ and dividing both sides by T yields the required result:

log(1/s). (49)

1 1
2 24 1 L 8¢ 12dv 2 1
T va ||p < ! + 24d777 il log(l/(;) o - ||Vf($L' )”2
TOép Qp ap7y TOZP

O

C.7. Proof of minibatch-CompSGD Complexity Theorem 6

Proof. We start with CompSGD Convergence Lemma 2 and constant batchsizes B, stepsizes 7y (49):

Sop 12453 |V (")

= log(1/s).

T
2A1 7_7.[/}/
Vi(z < + 24d» log(1/s) +
;” Mo < g+ 245 Dol + 7 :

Due to Batching Lemma 4, we can estimate the x—th moment of the batched function as:

20

Hence, we have

T 1_1
1 24, i1 Ly 160 12472 |V (")l
= E Vf(z* < + 24d» log(1/s - +
T IVf (@)l Tay y /o) + B= Otp’}/ Tay,

log(1/5).

Optimal tuning: T dependency in the first three terms is dominating in comparison with the last term, hence, we neglect it.
Choosing B such that T < 7 L we have

18A4 11
2 IVIED), < +24d4 P 1og (1),
Z | p Toyy ap
T -
With y = TL?%_% , we obtain the required number of iterations 7 to achieve & > ||V f(z¥)||, < € equals to O (ﬁ}i ) :

O

C.8. Proof of MajorityVote-CompSGD Complexity Theorem 4

Proof. The beginning of the proof copies the proof of CompSGD Convergence Lemma C.6 until the line (46) where we
instead estimate probability

M
P, [sign [Z sign(f (2" +yee®, &8 ,) — f(a¥ —eh, )| # Sign(<vf(ffk)»ek>)] :
i=1

Each comparison sign(f(z* + ye, &, ) — f(zF — ype?, &F 1)) # sign((V f(z¥), €¥)) is a Bernoulli trial with failure
probability (48):

Pe [sign(f(a® +yee®, &5 1) — f(a® — et € )) # sign((Vf(z"), e")] < Pe [107, — 0F _| > - [(VF(2"),e")]].
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The right probability can be estimated using Gauss inequality (see Lemma 6 in proof C.5) for unimodal symmetric noise
c( kY ok
0k, — 0% by (35) with § = LTI,

20
. k k ¢k k k ¢k . ky _k %<+)K%’ SRZ(HKI;““
P [sign(f(z" +ye®, &) — f(a" — ywe®, &) # sign((Vf(2"),e")] < {1 V) /g .
2 2(H+1)7 = (H+1)~ T

For the probabilities with upper bounds like this, the resulting probability after M/ Bernoulli trials can be bounded by (See
proof C.5 from (35) until (41)):
K4+1\*" 1
k—1 VM S j

1 20

x|

M
Pe [Sign [Z sign(f(«* + e’ &) — f(a" — %ek,ff,_))] # sign((V f(a"), ek))]

i=1

=

B (Z+D VM [(V(zF),eR)]’

1

where we denote a,, = (”—H> “ . The rest of the proof copies the proof of CompSGD Convergence Lemma C.6 with

r—1
a0

substitution o — NOTE and we obtain the bound:

T 1_ 1
1 1Ly 16a,0  12dv 2|V f(2!)]2
= Viz < ——— 4 24dv 2 =L log(1/s +
T kz l Mip s o (1/s) + Moy Ta,

log(1/s).

1 1
The last term converges much faster than other, hence, we neglect it. We also use notation L , = d» 2 Llog(1/s).

1) For arbitrary tuning, we use parameters T, v, = %, My, = max{1, MyT?} to get:

T 1_1
20, 11 16a,0 12d» 2|V f(xb) ]2
V(@) € —=—— + 24d> og(1/s) + log(1/s).
2:: P \/Tap'yo VT ozp \/M()Ozp’yo\/T Tap

Setting such T that the first three terms become less than &, we obtain the final complexity N = T' - MT?.

2
. . 16a,0 — 32a,.0
2) For optimal tuning, we first choose large enough M to bound the term e <e/2 = Mj = max {1, (7(¥p5')’ ) }

Then we choose optimal v = /uf‘ﬁ minimizing min,, ai {2A1 +24Ls p*y} L/ % . Finally, T is set to
P P Qp
[48A, L AL
boundaip %‘“’ge/ZéT:O( ;12);2"7). O

D. Experimental details

D.1. LLaMA 130M pre-training on C4

We adopt a LLaMA-based architecture (Touvron et al., 2023) with RMSNorm and SwiGLU (Shazeer, 2020) activations
on the C4 dataset (Raffel et al., 2020). Following Lialin et al. (2023), we trained for 100k steps using a batch size of 512
sequences, sequence length of 256. We used TS5 tokenizer, since it also was trained on C4 with dictionary size equal to 32k.

For all experiments, while the main model parameters use the respective optimization method, the LM head layer is
optimized with AdamW. This follows prior work Zhao et al. (2024) which demonstrated that the LM head layer requires more
nuanced effective learning rate adaptation across different tokens for optimal performance. We used Nesterov acceleration
scheme with momentum value of 0.9 for all methods except AdamW. For AdamW we used standard hyperparameters:
B1=0.9,8; =0.999,¢ = le — 8.

We selected the learning rate through a grid search with multiplicative step of 10%. We used a cosine learning rate schedule
with a warmup of 10% of the total number of steps and decay of the final learning rate down to 10% of the peak learning
rate. For all methods except M-NSGD we used gradient clipping with threshold of 1.0 In addition, we selected best weight
decay value between [0, 0.01, 0.1].
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D.2. RoBERTa large fine-tuning

For these experiments, we follow Gao et al. (2020b) for the prompt-based fine-tuning paradigm for masked language models
and reuse training hyperparameters from Malladi et al. (2023a). Please refer to the original papers for more details. We
compare methods in few-shot scenario with k¥ = 16 examples.

For CompSGD Algorithm 5, we sampled e* from scaled Euclidian sphere, i.e. o - S¢ = {e||e||2 = a}. We set a equal to
17 for all datasets and selected the learning rate in [0.3, 1.0, 3.0] based on validation score.
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