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Abstract

Due to its powerful representational capabilities, Transformers have gradually
become the mainstream model in the field of machine vision. However, the vast
and complex parameters of Transformers impede researchers from gaining a deep
understanding of their internal mechanisms, especially error mechanisms. Existing
methods for interpreting Transformers mainly focus on understanding them from
the perspectives of the importance of input tokens or internal modules, as well
as the formation and meaning of features. In contrast, inspired by research on
information integration mechanisms and conjunctive errors in the biological visual
system, this paper conducts an in-depth exploration of the internal error mecha-
nisms of Transformers. We first propose an information integration hypothesis for
Transformers in the machine vision domain and provide substantial experimental
evidence to support this hypothesis. This includes the dynamic integration of
information among tokens and the static integration of information within tokens
in Transformers, as well as the presence of conjunctive errors therein. Addressing
these errors, we further propose heuristic dynamic integration constraint methods
and rule-based static integration constraint methods to rectify errors and ultimately
improve model performance. The entire methodology framework is termed as
Transformer Doctor, designed for diagnosing and treating internal errors within
transformers. Through a plethora of quantitative and qualitative experiments, it has
been demonstrated that Transformer Doctor can effectively address internal errors
in transformers, thereby enhancing model performance. For more information,
please visit https://transformer-doctor.github.io/.

1 Introduction

In the field of machine vision, models based on Transformers [, 2] have gradually replaced con-
volutional neural networks as the mainstream approach. Particularly in recent years, various visual
architectures improved upon Transformers have emerged incessantly [3—6], continuously pushing
the performance boundaries of visual tasks. However, the vast and complex parameters of Trans-
formers hinder researchers from gaining a deep understanding of their internal mechanisms [7],
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thereby increasing the risks of applying them in sensitive domains [8]. This has spurred a consid-
erable amount of work aimed at investigating the interpretability of Transformers to enhance their
transparency [9—11].

Existing research on the interpretability of Transformers in machine vision primarily focuses on

aspects such as the importance of input tokens [7, 9, 10, 12—14], the significance of internal mod-
ules [15], the the evolution and formation of features [16, 17], and the meanings of intermediate
represnetations [ 1 8—20]. While these studies have somewhat improved the transparency of Trans-

formers, the internal decision-making processes, such as mechanisms leading to errors, still warrant
more systematic investigation. This is crucial for enhancing the transparency of Transformers and
further improving their performance.

In fact, unlike in machine vision, theoretical studies on error mechanisms in biological vision have
become quite mature [21-26]. Specifically, in the perceptual process of the biological visual system,
visual information such as the spatial position, shape, size, color, and texture of objects is processed
and refined in the primary visual cortex [27-29]. Subsequently, these different visual cues are
integrated at higher stages for final recognition [30, 31]. Numerous studies have demonstrated that
errors in object recognition may arise not only from failures in feature extraction but also from
incorrect integration of correctly extracted features at higher stages [21-25]. Errors resulting from
the improper integration of features are termed conjunction errors [26]. Furthermore, some research
indicates that providing effective stimuli or cues during the integration process can enhance the
correctness of information integration [22]. Inspired by this, we are interested in investigating
whether Transformers exhibit similar mechanisms of feature integration and conjunction errors as
those observed in biological vision during recognition. If such errors exist, can they be corrected akin
to the mechanisms observed in biological vision?

To address these questions, we first proposed the information integration hypothesis, inspired by the
biological visual. This hypothesis posits that Transformers continuously process and refines various
mixed information at the primary stage and integrate them at the higher stage. When incorrect infor-
mation is integrated, i.e., conjunction error occur, it results in erroneous recognition outcomes. To
validate this hypothesis, we conducted extensive experimental analyses of the computational process
of Transformers and found empirical evidence supporting the hypothesis. Specifically, we discovered
dynamic information integration among tokens in Transformer’s Multi-Head Self-Attention (MHSA)
component and static information integration within tokens in the Feed-Forward Network (FFN) com-
ponent, along with the presence of conjunction errors. Furthermore, we elucidated the reasons behind
both dynamic and static integration. Building upon this, we proposed heuristic dynamic integration
constraints for inter-token information integration and rule-based static integration constraints for
intra-token information integration, enabling the rectification of conjunction errors in Transformers.
We coined the entire approach as “Transformer Doctor”, where the process of identifying errors
based on the information integration hypothesis is referred to as diagnosing the Transformer, and the
process of applying the hypothesis to rectify errors is referred to as treating the Transformer. Finally,
we conducted extensive quantitative and qualitative experiments on mainstream Vision Transformer
architectures, thoroughly validating the effectiveness and applicability of Transformer Doctor.

The contributions of this paper can be summarized as follows:

* We propose Transformer Doctor, the first framework for diagnosing and treating Vision
Transformers. This framework validates and utilizes the proposed Information Integration
Hypothesis, which posits that Transformers process and encode various mixed information at
primary stages and integrate it at higher stages. When information is not correctly integrated,
i.e., conjunction error occur, it results in prediction failures.

* In diagnosing Transformers, we identify the mechanisms of inter-token information dynamic
integration and intra-token information static integration within Transformers, along with
the occurrence of conjunctive errors. This provides a novel perspective for understanding
the internal mechanisms of Vision Transformers.

* In treating Transformers, we propose heuristic dynamic constraints for inter-token infor-
mation integration and rule-driven static constraints for intra-token information integration.
These constraints offer an interpretable solution for optimizing Vision Transformers without
introducing additional parameters or computational overhead during inference.



» Extensive qualitative and quantitative experiments are conducted on mainstream Vision
Transformers, validating the effectiveness and applicability of the Transformer Doctor.

2 Related Works

In methods aimed at interpreting or understanding Transformers, whether in the field of machine
vision or natural language processing, the primary approaches focus on the importance of input
tokens [7, 12, 13,9, 14, 10], the significance of internal modules [ 5], the the evolution and formation
of features [16, 17], and the meanings of intermediate features [ 18—20] to understand the internal
mechanisms of Transformers. Specific methodologies can be categorized as feature-based, attention-
based, gradient-based, propagation-based, perturbation-based, projection-based, or a combination
of these approaches. For instance, in feature-based methods, the primary focus is on analyzing or
statistically evaluating the intermediate features within Transformers [16] to understand the internal
representation structure and feature distribution [17]. Attention-based methods mainly utilize the
raw attention weights [7, 12, 13] or linear combinations of multi-layer attention weights [9] to
compute the relative importance of input tokens. Gradient-based methods focus on computing
gradients of attention weights [32, 33], intermediate features [ ! |, 34], or inputs [ 4] to understand
the differences in token importance. Propagation-based methods employ techniques like Layer-
wise Relevance Propagation (LRP)[35, 36] for attribution analysis of input tokens[10, 37-39] or
investigate the importance of heads in Transformers [15]. Perturbation-based methods involve
perturbing inputs or features and measuring the impact on model performance [40—43] or Shapley
value [14, 44]. Projection-based methods, such as linear probes [17, 45, 46], project intermediate
representations into human-understandable spaces to comprehend the mechanism and significance
of feature transformations in Transformers [18-20]. In contrast to the aforementioned research,
this paper is inspired by studies on biological visual error mechanisms, aiming to explore whether
Transformers exhibit similar mechanisms of information integration and connection errors as in
biological vision, and how to rectify errors within Transformers.

In methods for improving Transformers, most approaches involve modifying the model architecture
by introducing learnable parameters [3—6, 47] or enhancing data and features [48—52]. These
improvement methods are mostly non-interpretable and are pre-defined before training, rather than
targeting further enhancement of model performance from the perspective of diagnosing and treating
internal error mechanisms based on existing models. Additionally, there are methods for improving
models that do not require pre-definition before training but focus on non-Transformer or non-vision
tasks, such as debugging and analyzing models in traditional machine learning [53—-56], optimizing
deep models [57, 58], and editing facts in natural language processing [59-62]. However, due to
significant differences in architecture and tasks, these methods are not suitable for analyzing and
correcting error mechanisms in Transformers to improve model performance.

In summary, this paper is the first work to investigate whether Transformers exhibit information
integration and connection error mechanisms similar to biological vision, and the first work to explore
how to further enhance model performance by diagnosing and treating internal errors in existing
models.

3 Information Integration Hypothesis

In this section, we firstly propose the Information Integration Hypothesis for Transformers. Subse-
quently, we review the MHSA and FFN modules within the Transformer architecture, followed by an
analysis of potential locations where the Information Integration Hypothesis may apply.

Information Integration Hypothesis: Similar to biological vision, in machine vision, the Transformer
continually processes and refines various mixed information in the primary stage, and integrates it in
the advanced stage. When erroneous information is integrated, i.e., conjunction errors occut, it leads
to incorrect predictions.

3.1 Potential Information Integration in MHSA

When utilized for visual recognition tasks, a Transformer typically comprises L blocks, each con-
sisting of an MHSA module and an FFN module. The input to the block can be represented as
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Figure 1: The methodology framework of Transformer Doctor. It begins by analyzing the dynamic
integration of inter-token information in MHSA and the static integration of intra-token information
in FFN, Subsequently, conjunction errors within them are diagnosed, and finally treated to enhance
model performance.

X € RVXP where N and D denote the number and dimensionality of tokens, respectively. The
output X’ € RN¥*P of the MHSA module within this block can be computed as follows:

1 .
X' = softmax(ﬁ(ﬂ{l W, (1)

where Q = XW(@, K = XWE) v = XWV) W@ ¢ RPxD 1K) ¢ RP*D and wV) ¢
RP*D represent the parameter matrices for query, key, and value, respectively. Upon decomposing
Eqn. (1), it can be observed that a certain token X/ € RP in X’ € RV*P (e.g., the i-th token) is an

integration weighted sum of all tokens in |” € RVXP:
a 1
X!/ =) a;;V,,a=softmax(—=QK"), )
L (=QK)

where a € RV*N represents the attention weights, which can also be referred to as integration
weights within MHSA. It can be observed that each token X possesses its own integration weight
a; € RN, For simplicity, we have omitted the skip connections and bias terms in the above equation,
and have considered only single-headed self-attention. Therefore, the concatenation and projection of
multiple heads in MHSA are also omitted.

3.2 Potential Information Integration in FFN

Suppose the input to the FFN is X’ € RY*P | then the output Y € RV*P of the FFN can be
represented as:

Y = gelu( X/ )i, A3)

where W) € RP*M and (2 € RM*D represent the parameter matrices for the first and second
linear layers, respectively. Similarly, for simplicity, we have omitted the skip connections and bias
terms in the above equation. Comparing Eqn. (1) and Eqn. (3), it can be observed that apart from
the activation function gelu in FFN and the softmax function in MHSA, as well as the constant
%, FFN also employs the query-key-value mechanism similar to MHSA. Motivated by this, we

further decompose Eqn. (3) into a form similar to Eqn. (2), revealing that a certain token Y; € R” in

Y € RV*P (e.g., the i-th token) is an integration weighted sum of all dimensions in 11"*) € RM*D:
M ;
Y= zim) 2= gelu(X' W), 4
m=1

where z € RV XM can be referred to as integration weights within the FFN, and it can be observed
that each token Y; also possesses its own integration weights z; € R™. In summary, both matrices a
and z represent potential locations where the assumption of information integration may hold.
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Figure 2: Visual comparison of integration weights a in MHSA. (a) and (b) respectively present
visualizations of weights a at different depths of blocks for high-confidence images and the overlay
of reshaped and resized rows of a onto the original image. Similarly, (c) and (d) depict visualizations
of weights a for low-confidence images and their overlay onto the original image.

4 Information Integration Hypothesis based Transformer Diagnosis

In this section, we delve into the potential existence of information integration hypothesis mentioned
in Section 3 within the MHSA and FFN. Through extensive experimental analysis, we have gathered
empirical evidence supporting the hypothesis, namely dynamic integration of information among
tokens and static integration of information within tokens.

4.1 Inter-token Information Dynamic Integration

To explore the potential existence of the information integration hypothesis within the MHSA, we
analyzed the integration weights a in Eqn. (2). Fig. 2(a) illustrates the magnitudes of integration
weights a in blocks of different depths within the model. It can be observed that for high-confidence
samples, the integration weights a in shallower blocks exhibit a diagonal pattern. However, as the
depth of the block increases, the integration weights a display a vertical pattern, consistent with
observations from prior studies [63—-66]. Additionally, we observed that for different high-confidence
samples, the positions of the vertical lines in the integration weights a within the deeper blocks vary,
as shown in Fig. 8 in the Appendix. This indicates that in the initial stages, MHSA primarily mixes
and processes information between adjacent tokens. In the later stages, MHSA dynamically and
selectively integrates specific information among tokens.

Continuing, we extracted an arbitrary row a; from the integration weights a within the deeper blocks
and removed the [CLS] token. After reshaping and resizing, we overlaid it onto the original image
to generate a heatmap, as shown in Fig. 2(b). From the heatmap, it is evident that the positions of
the vertical lines mainly concentrate on the foreground of the input image. This suggests that in
the advanced stages of the model, MHSA primarily integrates specific information among tokens
containing foreground elements. However, for low-confidence samples, as depicted in Fig. 1(c)
and (d), the deeper layers of the MHSA erroneously integrate information corresponding to the
background tokens. Additional quantitative and qualitative analyses of the integration weights a are
presented in Appendices C and B. In summary, we have identified the first evidence of the existence
of the information integration hypothesis in Transformer models:

Evidence 1: In the initial stages of the Transformer, MHSA primarily mixes and processes adjacent
patch information among tokens. However, in the advanced stages of the Transformer, MHSA
dynamically and selectively integrates specific patch information among tokens. When integrating
incorrect information among tokens, termed conjunction errors, it leads to model mispredictions. We
refer to this integration as inter-token information dynamic integration. The term "dynamic" arises
from the fact that the V' to be integrated, as specified in Eqn. (2), varies with each sample.

4.2 Intra-token Information Static Integration

To explore the potential existence of the information integration hypothesis within the FFN, we
conducted visual analysis of the integration weights z in shallow and deep blocks, as depicted in
Fig. 3. Fig. 3(b) illustrates the patterns of integration weights z in shallow and deep blocks for
high-confidence samples from different classes. It can be observed that the patterns of integration
weights differ between shallow and deep blocks for samples from different classes. However, in
Fig. 3(a), for high-confidence samples from the same category, the patterns of integration weights z
in shallow blocks differ, while the patterns in deep blocks show less variability and remain relatively
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Figure 3: Visual comparison of integration weights z in FFN. (a) and (b) respectively illustrate
visualizations of weights z for high-confidence samples of same classes and the different class in
shallow and deep blocks. Similarly, (c) and (d) depict visualizations of weights z for low-confidence
samples of different classes and the same class in shallow and deep blocks. Each row in the image
represents a sample, and each column represents a dimension.

consistent. This indicates that in the initial stages of the model, FFN mixes and processes various
category information within tokens. However, in the advanced stages, FFN statically selectively
integrates specific category information within tokens.

Furthermore, as depicted in Fig. 3(d), even for samples from the same class, the patterns of integration
weights z in deep blocks differ for low-confidence images. This suggests that when the deep FFN
fails to correctly integrate specific category information within tokens, it adversely affects the model’s
predictions. Additional quantitative and qualitative analyses of the integration weights z are presented
in Appendices E and D. In summary, we have identified the second evidence of the information
integration hypothesis in Transformers:

Evidence 2: In the initial stages of the Transformer, the FFN primarily mixes and processes various
low-level information within tokens. However, in the advanced stages of the Transformer, the FFN
statically and selectively integrates specific category information within tokens. When integrating
incorrect information within tokens, termed conjunction errors, it leads to model mispredictions. The
term “static” arises from the fact that the to be integrated, as specified in Eqn. (4), is fixed
relative to each sample, and for samples of the same class, the integration weights z are also fixed.

5 Information Integration Hypothesis based Transformer Treatments

In this section, we propose heuristic dynamic integration constraints and rule-based static integra-
tion constraints to correct conjunction errors in information integration, aiming to enhance model
performance.

5.1 Heuristic Information Dynamic Integration Therapy

In order to alleviate conjunctive errors in dynamic integration of information among tokens, we
heuristically constrain the integration weights a by highlighting the foreground of images with low
confidence scores. Furthermore, unlike the single-head integration weights a in Eqn. (2), we have
improved the calculation of integration weights for multi-head scenarios using gradients.

Specifically, for a Transformer classification model with K (K > 2) classes, let k € {1,2,..., K}
represent the true label for input, and p € R¥ denote the predicted probabilities of all classes by the
Transformer. We incorporate gradients related to the true class to discern the importance of each
head out of H heads in self-attention, thereby obtaining the integration weights & € RN *" in the
multi-head scenario:

1 & op
A k h
a= > (max(5.0)©a"), ©)
h=1
where max(.) denotes setting negative values in the derivative to zero, thereby considering only the
positive impact on the predicted probability of the true class. The introduction of gradients in Eqn. (5)
not only helps discern which head is important but also establishes a connection between integration
weights and specific classes, thereby making the weights reflecting the integration of information
among tokens more accurate. Details of the comparison experiments on the introduction of gradients



can be found in Section 6.2. Next, for foreground annotation ¢ € RY with low confidence, we
constrain the integration of background information using the loss function L;p;:

N N
Lipr =Y (Y i) 01 —1t)), (©)

j=1 =1

where t € R is a binary annotation, with 1 and 0 representing the presence and absence of foreground
within the token, respectively.

5.2 Rule-based Information Static Integration Therapy

To correct conjunctive errors in static integration of information within tokens, we first establish
integration rules within tokens when the model prediction is correct, and then constrain the integration
weights z based on these rules. Additionally, we have also improved the integration weights z using
gradients, establishing a connection with the true class k, resulting in the new integration weights
2 € RVXM a5 follows:

. Opr
= _— 0 . 7
2 = max(—5*.0) Oz @)
Next, we select S high-confidence samples for each class to calculate the average integration weights
7 € RVXM "and then establish binary integration rules 7 € RV *M for each class using a threshold 7:

s
_ _ 1 .
r=1z>71),z= g ngl Z(s). ®)

The values in r are 1 or 0, indicating the integration and non-integration of information in the
corresponding dimension, respectively. Finally, based on the integration rules r for a certain class,
we enforce that erroneous information within tokens is not integrated using the loss function Lrg;:

M N
ﬁISI = Z Z(Zn,m © (1 - Tn,m))v (9)

m=1n=1

During actual enforcement, each training sample needs to be constrained using the integration rules
corresponding to its true class.

5.3 Joint Therapy of Dynamic and Static Integration

The loss functions L£;p; and L5 can be individually combined with the original loss function or
used jointly:

Liotal = Lori + aLipr + BLrsI, (10)
where « and 3 are used to balance the magnitudes of the loss functions. In our practical experiments,
we found that using the loss functions £;pr and Lg; sequentially yielded the most effective results.
It is important to note that the therapy model only rectifies conjunctive errors in the Transformer
without altering its architecture or operational procedure. Thus, during inference, it does not incur
any additional computational overhead.

6 Experiments

6.1 Experimental Settings

Datasets and Transformer Architectures. To validate the effectiveness of Transformer Doctor, we
conducted experiments on five mainstream datasets: CIFAR-10 [67], CIFAR-100 [67], ImageNet-
10 [68], ImageNet-50 [69], and ImageNet-1k [68]. Furthermore, we performed experiments on
various Transformer architectures used for visual classification tasks, including DeiT [48], CaiT [3],
TNT [4], PVT [5], Eva [6], and BeiT [49], in addition to ViT [2]. It is important to note that
Transformer Doctor diagnoses and treats already trained Transformer models. More experimental
settings and results can be found in Appendix.

Parameter Settings.During all training stage, each dataset was trained for 300 epochs using the
AdamW [70] optimizer, with an initial learning rate of 0.01. The learning rate decayed according to a



Table 1:

Performance of Transformer Doctor on various SOTA Transformers. ‘+Doctor’ indicates
the performance of model treated with Transformer Doctor (All Score are in %).

| CIFAR-10 CIFAR-100 ImageNet-10 ImageNet-50 ImageNet-1K
ViT-Tiny 82.17 56.02 78.8 59.62 64.77
+Doctor 83.00 (+0.87) 58.08 (+2.06) 80.80 (+2.00) 61.02 (+1.40) 68.86 (+4.09)
DeiT-Tiny 82.71 56.97 80.20 61.47 66.83
+Doctor 83.96 (+1.25) 59.49 (+2.52) 81.20 (+1.00) 63.19 (+1.69) 70.75 (+3.92)
CaiT-XXS 82.64 56.10 75.80 58.32 66.28
+Doctor 84.20 (+1.36) 60.00 (+3.90) 77.80 (+2.00) 60.16 (+1.84) 70.25 (+3.97)
TNT-Small 83.31 54.67 81.60 65.45 67.25
+Doctor 84.33 (+1.02) 55.60 (+0.93) 83.00 (+1.40) 67.64 (+2.08) 69.97 (+2.72)
PVT-Tiny 83.27 51.94 82.00 71.81 67.73
+Doctor 84.82 (+1.55) 55.10 (+3.16) 84.20 (+2.20) 74.53 (+2.72) 70.94 (+3.21)
Eva-Tiny 87.56 64.15 83.80 71.23 72.51
+Doctor 88.28 (+0.72) 64.99 (+0.84) 85.80 (+2.00) 72.95 (+1.72) 75.45 (+2.94)
BeiT-Tiny 74.69 49.58 79.80 71.59 70.46
+Doctor 76.20 (+1.51) 51.03 (+1.45) 82.20 (+2.40) 73.57 (+1.98) 71.98 (+3.12)

cosine annealing schedule, with T_max set to 300 epochs. Additionally, o and 8 were set to default
values of 10 and 100, respectively, to balance each loss function. The default value of 7 was 0.15,
and the constrained loss function was applied by default to the last block.

Baseline Models. In addition to using the original pre-trained Transformer models as baselines, as
shown in Table 1, we also established a blank control group, which involves no method introduction
but continues training for the same epochs, as presented in Table 3. Furthermore, we compared
different ways of integrating multi-head integration weights in Eqn. 5 and not introducing gradients
in Eqn. 7 as simple baselines against the proposed final method, as illustrated in Table 2. Due to
differences in computational resources, certain training configurations, such as batch size, differ from
those in the original work, leading to slight variations in the baseline. However, all comparative
experiments were conducted under fair conditions. For detailed experimental results, please refer to
Table 3, and for further setup information, see Appendix F.

6.2 Quantitative Analysis

The Performance of Transformer Doctor on SOTA Models. We evaluated the performance of
Transformer Doctor across five major datasets and seven mainstream architectures. As shown in
Table 1, it is evident that Transformer Doctor effectively enhances model performance on both small
and large-scale datasets. Specifically, after treatment, the accuracy of CaiT improved by 1.36% on
CIFAR-10 and 1.84% on ImageNet-50. The BeiT model, after treatment, saw an accuracy increase
of 1.45% on CIFAR-100 and 2.39% on ImageNet-50. Additionally, we observed that generally, the
larger the dataset, the more significant the performance improvement by Transformer Doctor. For
instance, the accuracy improvement of ViT on ImageNet-1K was 2.09% higher than on ImageNet-10.
The reason for this could be that, similar to biological vision, Transformer misrecognition can be due
to both conjunction errors and feature extraction failures. Large-scale datasets effectively help the
model learn a vast array of features, thus better extracting the input image’s features. On this basis,
treating conjunction errors can maximize model performance. However, for small-scale datasets, the
dominance of not extracting effective features may outweigh conjunction errors. Therefore, focusing
solely on treating conjunction errors is less effective on small-scale datasets compared to large-scale
ones. More detailed experimental results can be found in Table 3 in the appendix.

The Performance of Transformer Doctor with Various Computational Forms. = We compared
the performance of Transformer Doctor under different computational forms represented by Eqn. (5)
and Eqn. (7), as shown in Table2. It can be observed that Transformer Doctor performs better under
the computational forms of Eqn. (5) and Eqn. (7). Specifically, under dynamic integration constraints,



Table 2: Comparison of accuracy of Transformer Doctor under different computational formulations.
‘mean’ denotes directly averaging integration weights across all heads, ‘min’ and ‘max’ respectively
represent taking the minimum and maximum integration weights within each head. Each row
corresponds to ViT-Tiny and PVT-Tiny architectures, with ImageNet-10 dataset used for evaluation.

Base

min(a”) max(a”) mean(a”) a

78.80]79.20 (+0.40) 78.60 (-0.20) 79.20 (+0.40) 80.20 (+1.40) | 79.00 (+0.20) 80.40 (+1.60)
82.00| 81.20 (-0.80) 81.20 (-0.80) 80.00 (-2.00) 83.60 (+1.36) | 82.40 (+0.40) 83.40 (+1.40)
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Figure 4: Comparison of inter-token integration weights before and after introducing Transformer
Doctor. (1) and (3) depict integration weights before and after treatment, respectively. (2) and (4)
show the corresponding heat map effects of integration weights overlaid onto the original image
before and after treatment.

(1) — 2 :
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Figure 5: Comparison of intra-token integration weights before and after introducing Transformer
Doctor. (1) and (2) represent the intra-token integration rules for correct predictions. (3) and (4)
depict the intra-token integration weights before and after treatment, respectively.

taking the minimum, maximum, or averaging fusion of integration weights for each head does
not significantly improve model performance. For instance, when taking the maximum value, the
accuracy of PVT-Tiny decreases by 0.08% compared to the base. However, under the computational
form of Eqn. (5), the accuracy of PVT-Tiny improves by 2%. Under static integration constraints, the
accuracy of the model under the original integration weight calculation form is 79.00%, while the
accuracy under the computational form of Eqn. (7) is 80.40%.

6.3 Qualitative Analysis

Comparison of the Intra-token Integration Weights a.

We also compared the static integration weights within tokens before and after treatment, as shown in
Fig. 5. From panels (1) and (3), it is apparent that before treatment, the static integration weights for
misclassified samples do not adhere to the correct prediction rules. However, panels (2) and (4) in
Fig. 5 demonstrate that after treatment, the static integration weights align with the correct prediction
rules, integrating the correct class information, which results in accurate predictions.

Comparison of the Inter-token Integration Weights z. In Fig. 5, we compared the static integration
weights within tokens before and after treatment. As shown in Fig. 5 (1), before treatment, the
static integration weights of misclassified samples do not adhere to the correct integration rules for
prediction, i.e., integration of incorrect category information within tokens. However, as depicted in
Fig. 5 (2), after treatment, the static integration weights conform to the correct integration rules for
prediction, integrating the correct category information within tokens.



7 Conclusion

This paper introduces the first framework, Transformer Doctor, designed for diagnosing and treating
internal errors within Transformers simultaneously. Specifically, distinct from existing post-hoc
interpretability methods for Transformers, this work draws inspiration from information integration
and conjunctive errors in the biological visual system, proposing and validating the hypothesis
of information integration for Transformers. Furthermore, addressing conjunctive errors within
information integration, this paper presents corresponding error treatment methods. Extensive
qualitative and quantitative analyses conducted on mainstream datasets and Transformer architectures
demonstrate the effectiveness and applicability of Transformer Doctor.

Limitations and Future Work. It is undeniable that we have only validated Transformer Doctor
on mainstream visual recognition tasks, leaving more complex machine vision tasks for further
exploration. Furthermore, investigating whether the information integration hypothesis holds true
in the field of natural language processing or multimodal domains is also a worthwhile research
endeavor. Additionally, exploring more error mechanisms and developing a more automated and
intelligent Transformer Doctor framework are the focal points of our future work.
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Appendix

In the appendix, we offer additional evidence concerning the information integration mechanism and
conjunction errors in the Transformer. Furthermore, more quantitative and qualitative analysis experi-
ments on Transformer Doctor are provided. Additionally, the algorithm code for the Transformer
Doctor is included in the uploaded source_codes.zip file.
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Figure 6: Comparison of model accuracy on low-confidence samples from ImageNet-10 after
replacing original integration weights with ideal integration weights in ViT. (a) and (b) depict the
accuracy line plots of the model with ideal integration weights replacing original integration weights
step by step from shallow to deep blocks in MHSA and FFN, respectively. The ideal integration
weights in MHSA are manually annotated for foreground regions in images, while those in FFN are
statistically generated by integrating weights of high-confidence images for each class.

A Broader Impact

This paper contributes to the research field of understanding and optimizing Transformers. Specifi-
cally, drawing inspiration from biological vision, the exploration of error mechanisms in Transformers
for machine vision tasks provides a novel perspective for understanding the internal workings of Trans-
formers. Additionally, the interpretable treatment solutions proposed based on errors in Transformers
offer a new pathway for optimizing Transformer models.

B Additional Visual Evidence of Inter-token Information Dynamic
Integration

As illustrated in Fig. 7, we provide further visual comparisons of integration weights a with high
and low confidences to demonstrate the dynamic information integration mechanism among tokens
in the MHSA. The observed phenomena align with our conclusions in the main text. Specifically,
in the early stages of the Transformer, as shown in Fig. 7(a), the MHSA predominantly blends
and processes information among adjacent tokens, whereas in the advanced stages, the MHSA
dynamically and selectively integrates specific information among tokens. Simultaneously, for low-
confidence samples, as depicted in Fig. 7(b), the advanced-stage MHSA erroneously integrates token
information corresponding to the background.

In addition, we provide more visualizations of integration weights a for high-confidence images in the
final block, as shown in Fig. 8. It can be observed that the integration weights a vary with different
input samples. This indicates that in the advanced stage, the integration weights a dynamically
integrate specific information for the final prediction.

C Quantitative Analysis of Conjunction Errors in Inter-token Information
Dynamic Integration

To verify whether incorrect predictions are indeed caused by the Transformer integrating erroneous
information among tokens in the advanced stage, we selected low-confidence samples from the test
set and evaluated the model’s performance after replacing the original integration weights with ideal
ones, as shown in Fig. 6(a). It can be observed that forcibly integrating the correct information among
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Figure 7: Visualization comparison of integration weights a in MHSA. (a) and (b) correspond to
high-confidence and low-confidence samples, respectively. (1) and (2) show the visualizations of
integration weights a in blocks from shallow to deep from left to right, as well as the visualization of
reshaped and resized rows of a superimposed onto the original image.
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Figure 8: Visualization comparison of integration weights a in the last block of MHSA. (1) and (2)
depict the visualization of a and the visualization of reshaped and resized rows of a superimposed
onto the original image.

tokens in the model’s early stages does not improve performance. This is because the model in its
early stages is merely blending and processing various information, rather than integrating specific
information. However, when correct information is forcibly integrated among tokens in the advanced
stages, the model’s performance improves significantly.

D Additional Visual Evidence of Intra-token Information Static Integration

As illustrated in Fig. 9, we provide further visual comparisons of integration weights z with high and
low confidences to demonstrate the static information integration mechanism within tokens in the
FFN. The observed phenomena align with our conclusions in the main text. Specifically, in the early
stages of the Transformer, as shown in Fig. 9(a), the FFN mixes and processes various categories
of information within tokens. However, in the advanced stages, the FFN statically and selectively
integrates specific category information within tokens. Additionally, for low-confidence samples, as
depicted in Fig. 9(b), the FFN in the advanced stages integrates incorrect category information within
tokens.

E Quantitative Analysis of Conjunction Errors in Intra-token Information
Static Integration

To verify whether incorrect predictions are indeed caused by the FFN integrating erroneous informa-
tion within tokens in the advanced stage of the Transformer, we selected low-confidence samples from
the test set and evaluated the model’s performance after replacing the original integration weights
with ideal ones, as shown in Fig. 6(b). The conclusions are similar to those observed in the dynamic
information integration among tokens: forcibly integrating correct information within tokens in
the model’s early stages does not improve performance. This is because, in the early stages, the
model is merely mixing and processing various types of information rather than integrating specific
information. However, when correct information is forcibly integrated within tokens in the advanced
stages, the model’s performance improves significantly.

17



(a) shallow middle deep
|

(1) \ ‘ .

) | ,

(3) I

el 1L

(b) shallow middle deep

(1) | [ | | I Il |

(2)|\| [ (I | | |

3 : ’ | : | | b

Figure 9: Visualization comparison of integration weights z in the FFN. (a) and (b) correspond to
high-confidence and low-confidence samples, respectively. (1), (2), and (3) represent the visualization
of integration weights z in blocks from shallow to deep for three classes. Each row of each image
represents different samples of the class, and each column represents different dimensions of the
integration weights z.

F Additional Experimental Settings

To validate the dynamic integration constraints mentioned in Section 5.1, we manually annotated the
foreground masks for the 10 lowest-confidence samples in each class of ImageNet-10. For ImageNet-
50 and ImageNet-1000, we utilized the segmentation annotations provided in the ImageNet-S dataset.
This dataset includes segmentation masks for 10 randomly selected samples per class in ImageNet-50
and for 10 randomly selected samples per class in 919 classes of ImageNet-1000. For CIFAR-10
and CIFAR-100, due to the small size of the images making it difficult to annotate the foreground,
we only used these datasets to validate the static integration constraints mentioned in Section 5.2.
Additionally, within the static integration constraints, considering that some Transformers utilize the
[CLS] token for visual recognition tasks, we constrained only the static integration within the [CLS]
token. In the experiments, we utilized two Linux servers, each equipped with 8 NVIDIA A6000 GPU
cards, 24 CPU cores, and S00GB of memory.

G Additional Results of Transformer Doctor on SOTA Transformers

Table 3 presents additional experimental results of Transformer Doctor on various mainstream datasets
and architectures, including blank control groups, solely introducing dynamic integration constraints,
solely introducing static integration constraints, and jointly introducing dynamic and static integration
constraints. It is evident that both solely and jointly introducing dynamic or static integration
constraints significantly enhance model performance. Specifically, when solely introducing dynamic
integration constraints, the accuracy of CaiT-XXS increased by 1.2% on ImageNet-10 and 1.57%
on ImageNet-1K. When solely introducing static integration constraints, TNT-Tiny saw accuracy
improvements of 1.02% on CIFAR-10 and 1.58% on ImageNet-50. When jointly introducing dynamic
and static integration constraints, the ViT-Tiny model’s accuracy increased by 1.40% on ImageNet-50
and 4.09% on ImageNet-1K.
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Table 3: Comparison of accuracy of Transformer Doctor across various SOTA models. ‘+Blank’
refers to a blank control model trained for the same number of epochs without introducing any
constraints. ‘+IDI’, ‘+ISI’, and ‘+IDI, ISI’ denote models with individually introduced dynamic
integration constraint, individually introduced static integration constraint, and simultaneously intro-
duced dynamic and static integration constraints, respectively. Due to the small size of CIFAR-10
and CIFAR-100 images, which makes foreground annotation challenging, experiments involving
dynamic integration constraints were not conducted. Additionally, we replaced the results of experi-
ments simultaneously introducing dynamic integration and static integration constraints with those of

experiments solely involving static integration constraints. (all scores are in %)

| CIFAR-10 CIFAR-100 ImageNet-10 ImageNet-50 ImageNet-1K
ViT-Tiny 82.17 56.02 78.8 59.62 64.77
+Blank 82.22 (+0.05) 56.05 (+0.03) 78.90 (+0.10) 59.71 (+0.09) 64.74 (-0.03)
+IDI - - 80.20 (+1.40) 60.45 (+0.83)  66.42 (+1.65)
+IS1 83.00 (+0.87) 58.08 (+2.06) 80.40 (+1.60) 60.89 (+1.27) 66.33 (+1.56)
+IDI, ISI 83.00 (+0.87) 58.08 (+2.06) 80.80 (+2.00) 61.02 (+1.40) 68.86 (+4.09)
DeiT-Tiny 82.71 56.97 80.20 61.47 66.83
+Blank 82.69 (-0.02)  56.89 (-0.08)  80.20 (+0.00) 61.57 (+0.10)  66.86 (+0.03)
+IDI - - 81.00 (+0.80) 62.60 (+1.13)  68.20 (+1.37)
+1S1 83.96 (+1.25) 59.49 (+2.52) 80.60 (+0.40) 62.16 (+0.69) 68.10 (+1.24)
+IDI, ISI 83.96 (+1.25) 59.49 (+2.52) 81.20 (+1.00) 63.19 (+1.69) 70.75 (+3.92)
CaiT-XXS 82.64 56.10 75.80 58.32 66.28
+Blank 82.64 (+0.00) 56.08 (-0.02)  75.70 (-0.10)  58.33 (+0.01)  66.38 (+0.10)
+IDI - - 77.20 (+1.40) 58.95 (+0.63)  67.43 (+1.15)
+IS1 84.20 (+1.36) 60.00 (+3.90) 77.00 (+1.20) 59.90 (+1.58) 67.85 (+1.57)
+IDI, ISI 84.20 (+1.36)  60.00 (+3.90) 77.80 (+2.00) 60.16 (+1.84) 70.25 (+3.97)
TNT-Small 83.31 54.67 81.60 65.45 67.25
+Blank 83.27 (-0.04) 54.74 (+0.07)  81.60 (+0.00) 65.45 (+0.00)  67.23 (-0.02)
+IDI - - 82.60 (+1.00) 67.33 (+1.88) 68.34 (+1.09)
+1S1 84.33 (+1.02) 55.60 (+0.93) 82.20 (+0.60) 67.03 (+1.58) 68.52 (+1.27)
+IDI, ISI 84.33 (+1.02) 55.60 (+0.93) 83.00 (+1.40) 67.64 (+2.08) 69.97 (+2.72)
PVT-Tiny 83.27 51.94 82.00 71.81 67.73
+Blank 83.32 (+0.05) 51.99 (+0.05) 81.20(+0.20) 71.79 (-0.02)  67.74 (+0.01)
+IDI - - 83.60 (+1.60) 74.06 (+2.25) 69.15 (+1.42)
+IS1 84.82 (+1.55) 55.10 (+3.16) 83.40 (+1.40) 74.18 (+2.37) 68.99 (+1.26)
+IDI, ISI 84.82 (+1.55) 55.10 (+3.16) 84.20 (+2.20) 74.53 (+2.72) 70.94 (+3.21)
Eva-Tiny 87.56 64.15 83.80 71.23 72.51
+Blank 87.62 (+0.06) 64.10 (-0.05) 83.82 (+0.00) 71.24 (+0.02) 72.58 (+0.07)
+IDI - - 85.20 (+1.40) 72.24 (+1.01) 74.08 (+1.57)
+1S1 88.28 (+0.72) 64.99 (+0.84) 85.20 (+1.40) 72.57 (+1.34) 73.85(+1.34)
+IDI, ISI 88.28 (+0.72) 64.99 (+0.84) 85.80 (+2.00) 72.95 (+1.72) 75.45(+2.94)
BeiT-Tiny 74.69 49.58 79.80 71.59 70.46
+Blank 74.66 (-0.03)  49.63 (+0.05) 79.79 (-0.01)  71.58 (-0.01)  70.51 (+0.05)
+IDI - - 81.40 (+1.60) 72.72 (+1.13)  72.21 (+1.75)
+181 76.20 (+1.51) 51.03 (+1.45) 80.60 (+0.80) 72.98 (+1.39) 71.72 (+1.26)
+IDI, ISI 76.20 (+1.51) 51.03 (+1.45) 82.20 (+2.40) 73.57 (+1.98) 71.98 (+3.12)

H Additional Visual Comparisons of Integration Weight a Before and After
Treating Conjunction Errors

As shown in Fig. 10, we compare additional dynamic integration weights a before and after treatment.
The results align with our observations in the main text. Specifically, from Fig. 4(1, 2), it can be
seen that before treatment, the dynamic integration weights of misclassified samples exhibit irregular
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(1) ()

Figure 10: Comparison of dynamic integration weights among tokens before and after introducing
Transformer Doctor. (1) and (3) show the integration weights before and after treatment, respectively.
(2) and (4) illustrate the corresponding heatmap effects of these integration weights superimposed
onto the original image, where higher brightness indicates larger weight values. The experiments
were conducted on ViT and ImageNet-10.
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Figure 11: Comparison of static integration weights within tokens before and after Transformer
Doctor diagnosis and treatment. (1) and (2) illustrate the static integration rules during correct
predictions. (3) and (4) show the static integration weights before and after treatment, respectively.
The experiments were conducted on ViT and ImageNet-10.

distributions, indicating the integration of erroneous background information among tokens. However,
after treatment, as illustrated in Fig. 4(3, 4), the integration weights selectively integrate the correct
foreground information.
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Figure 12: Comparison of feature attribution maps before and after introducing Transformer Doctor.
‘+IDI’, ‘“+ISI’, and ‘+IDI, ISI’ refer to models with individually introduced dynamic integration
constraint, individually introduced static integration constraint, and jointly introduced dynamic and
static integration constraints, respectively.

Table 4: Comparison of model accuracy with different threshold values 7 for static integration
constraints within tokens. Each row corresponds to ViT-Tiny and PVT-Tiny architectures, using the
ImageNet-10 dataset.

+IS1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

78.8 ‘ 78.8 8.0 84 790 778 782 780 786 784 780 78.0

Base

820 | 820 822 836 832 824 826 81.8 81.8 80.8 81.0O 81.2

I Additional Visual Comparisons of Integration Weight z Before and After
Treating Conjunction Errors

As depicted in Fig. 11, we present additional comparisons of integration weights z before and after
treatment. The results are consistent with our observations in the main text. Specifically, from
Fig. 11(1, 2), it can be observed that before treatment, the static integration weights of misclassified
samples do not adhere to the correct integration rules, indicating the integration of incorrect category
information within tokens. However, in Fig. 11(3, 4), it can be seen that after treatment, the static
integration weights adhere to the correct integration rules, integrating fewer incorrect information,
thus improving the model performance.

J Comparison of Feature Attribution Maps via Rollout

We also visualized the attribution maps of model predictions using Rollout feature attribution
techniques, as shown in Fig. 12. From the figure, it can be observed that without introducing any
constraints, the model tends to focus on unnecessary background information. However, when
dynamic integration constraints or static integration constraints are introduced, the model starts to
focus on foreground information relevant to the categories. When both dynamic and static integration
constraints are simultaneously introduced, the key information relied upon by the model for prediction
aligns more closely with human understanding, i.e., it focuses more on the object itself.

21



K Ablation Study on Threshold 7 in Eqn. (8)

We conducted ablation experiments on the threshold 7 that determines the intra-token integration rule
in equation (8), as shown in Table 4. Using the ViT model as an example, we observed that when the
threshold 7 increases from 0.0 to 0.2, the model accuracy gradually increases from 78.8% to 80.4%,
exceeding the baseline. This improvement occurs because, with a very low threshold, such as 0.0,
the integration rule includes redundant intra-token information weights, meaning that unnecessary
intra-token information is integrated, which does not significantly enhance model performance.

Conversely, when the threshold 7 increases from 0.3 to 1.0, the model accuracy gradually decreases
from 80.4% back to 78.0%, falling below the baseline (note that the table presents the highest accuracy
on the test set, not the final accuracy after model training). This decline is due to the overly high
threshold, such as 0.8, causing the integration rule to miss certain necessary intra-token information
weights, meaning that essential intra-token information is not integrated, resulting in reduced model
performance.

L Ablation Study on Block Depth

Fig. 13 illustrates the effects of introducing
Transformer Doctor at different block depths.

The figure demonstrates that the model’s perfor-

mance generally improves with increasing block 91.0
depth when applying inter-token dynamic inte-  80.5
gration constraints. When these constraints are  80.0
applied before the 7th block, the model’s perfor- - 5
mance does not show significant improvement
and can even fall below the baseline. However,
after the 7th block, the model’s performance  78.5
noticeably exceeds the baseline. This observa-  78.0
tion reaffirms that in the early stages, the Trans- 775
former mixes and processes adjacent token infor- 770
mation, while in the advanced stages, it dynam- '
ically and selectively integrates specific infor-
mation. Thus, inter-token dynamic integration Figure 13: Comparison of accuracy when intro-
constraints are most effective at deeper blocks  ducing Transformer Doctor in different blocks of
and can help enhance model performance. the Transformer. Similarly, ‘+IDI’, ‘+ISI’, and
‘+IDI, ISI’ refer to models with individually in-
troduced dynamic integration constraint, individ-
ually introduced static integration constraint, and
jointly introduced dynamic and static integration
constraints, respectively.

- - base +IDI —+ISI +IDLISI

79.0

Similarly, the model accuracy surpasses the
baseline only when the intra-token static integra-
tion constraints are applied after the 11th block.
This is because the Transformer selectively and
statically integrates specific intra-token informa-
tion only at the advanced stages. Furthermore,
the introduction of combined dynamic and static constraints results in higher model accuracy at
deeper blocks compared to both the baseline and the introduction of individual integration constraints.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please refer to Section 1.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 7.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: [NA]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Section 6.1 and the code provided in the supplementary materi-

als.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have provided the code in the supplementary materials and included
references for the datasets and network architecture used. For more details, please refer to
Sections 6.1 and F.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Sections 6.1 and F.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: To ensure the reproducibility and accuracy of the results, each experimental
result presented in the paper is the average of three or more experimental runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Section F.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We strictly adhere to the ethical standards outlined in the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please refer to Section A.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA]
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All assets involved in the research have been referenced accordingly.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We have provided executable code in the supplementary materials.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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