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ABSTRACT

Simulation-based inference methods have been shown to be inaccurate in the data-
poor regime, when training simulations are limited or expensive. Under these cir-
cumstances, the inference network is particularly prone to overfitting, and using
it without accounting for the computational uncertainty arising from the lack of
identifiability of the network weights can lead to unreliable results. To address this
issue, we propose using Bayesian neural networks in low-budget simulation-based
inference, thereby explicitly accounting for the computational uncertainty of the
posterior approximation. We design a family of Bayesian neural network priors
that are tailored for inference and show that they lead to

on tested benchmarks, even when as few as O(10)
simulations are available. This opens up the possibility of performing reliable
simulation-based inference using very expensive simulators, as we demonstrate
on a problem from the field of cosmology where single simulations are computa-
tionally expensive. We show that Bayesian neural networks produce informative
and well-calibrated posterior estimates with only a few hundred simulations.

1 INTRODUCTION

Simulation-based inference aims at identifying the parameters of a stochastic simulator that best
explain an observation. In its Bayesian formulation, simulation-based inference approximates the
posterior distribution of the model parameters given an observation. This approximation usually
takes the form of a neural network trained on synthetic data generated from the simulator. In the
context of scientific discovery, [Hermans et al.|(2022) stressed the need for posterior approximations
that are conservative — not overconfident — in order to make reliable downstream claims. They also
showed that common simulation-based inference algorithms can produce overconfident approxima-
tions that may lead to erroneous conclusions.

In the data-poor regime (Villaescusa-Navarro et al., [2020; Zhang & Mikelsons, 2023} Zeng et al.,
2023)), where the simulator is expensive to run and only a small number of simulations are available,
training a neural network to approximate the posterior can easily lead to overfitting. With small
amounts of training data, the neural network weights are only loosely constrained, leading to high
computational uncertainty (Wenger et al., 2022). That is, many neural networks can fit the training
data equally well, yet they may have very different predictions on test data. For this reason, the pos-
terior approximation is uncertain and, in the absence of a proper quantification of this uncertainty,
potentially overconfident. Fortunately, computational uncertainty in a neural network can be quan-
tified using Bayesian neural networks (BNNs) (Gal et al., [2016), which account for the uncertainty
in the neural network weights. Therefore, in the context of simulation-based inference, BNNs can
provide a principled way to quantify the computational uncertainty of the posterior approximation.

also make use of BNNss to iteratively refine a model on new data without
having to retrain on old data.

Hermans et al.| (2022)) showed empirically that using ensembles of neural networks, a crude approx-
imation of BNNs (Lakshminarayanan et al.| 2017), does improve the calibration of the posterior
approximation. A few studies have also used BNNs as density estimators in simulation-based infer-
ence (Cobb et al., 2019; Walmsley et al., |2020; |Lemos et al.,2023)). However, these studies have
remained empirical and limited in their evaluation. This lack of theoretical grounding motivates the
need for a more principled understanding of BNNs for simulation-based inference. In particular, the
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choice of prior on the neural network weights happens to be crucial in this context, as it can strongly
influence the resulting posterior approximation. Yet, arbitrary priors that convey little or undesired
information about the posterior density have been used so far.

Our contributions are twofold. We first demonstrate both theoretically and empirically that, due
to the prior on weights used, earlier attempts at simulation-based inference with Bayesian neural
networks

are inadequate for reliable inference. This motivates our second contribution, which is the design of
an adequate prior on neural network’s weights in the context of simulation-based inference. We show
empirically that Bayesian neural networks equipped with this prior produce calibrated posteriors in
the low-data regime. To our knowledge, this is the first method that provides reliable inference in
that regime. The code is available at https://github.com/anonymous.

2 BACKGROUND

Simulation-based inference We consider a stochastic simulator that takes parameters € as input
and produces synthetic observations x as ouput. The simulator implicitly defines the likelihood
p(x|0) in the form of a forward stochastic generative model but does not allow for direct evaluation
of its density due to the intractability of the marginalization over its latent variables. In this setup,
Bayesian simulation-based inference aims at approximating the posterior distribution p(€|x) using
the simulator. Among possible approaches, neural simulation-based inference methods train a neural
network to approximate key quantities from simulated data, such as the posterior, the likelihood, the
likelihood-to-evidence ratio, or a score function (Cranmer et al., [2020).

Recently, concerns have been raised regarding the calibration of the approximate posteriors obtained
with neural simulation-based inference. [Hermans et al.| (2022) showed that, unless special care is
taken, common inference algorithms can produce overconfident posterior approximations. They
quantify the calibration using the expected coverage

EC(p,a) = Epo,2)[1(6 € ©y(a))] (1)

where ©;(«) denotes the highest posterior credible region at level o computed using the poste-
rior approximate p(@|x). The expected coverage is equal to « when the posterior approximate is
calibrated, lower than o when it is overconfident and higher than o when it is underconfident or
conservative.

The calibration of posterior approximations has been improved in recent years in various ways.
Delaunoy et al.| (2022} |2023) regularize the posterior approximations to be balanced, which biases
them towards conservative approximations. Similarly, |[Falkiewicz et al.|(2024) regularize directly the
posterior approximation by penalizing miscalibration or overconfidence. Masserano et al.[(2023)) use
Neyman constructions to produce confidence regions with approximate Frequentist coverage. [Patel
et al.| (2023) combine simulation-based inference and conformal predictions. [Schmitt et al.| (2023))
enforce the self-consistency of likelihood and posterior approximations to improve the quality of
approximate inference in low-data regimes.

Bayesian deep learning Bayesian deep learning aims to account for both the aleatoric and epis-
temic uncertainty in neural networks. The aleatoric uncertainty refers to the intrinsic randomness
of the variable being modeled, typically taken into account by switching from a point predictor to a
density estimator. The epistemic uncertainty, on the other hand, refers to the uncertainty associated
with the neural network itself and is typically high in small-data regimes. Failing to account for this
uncertainty can lead to high miscalibration as many neural networks can fit the training data equally
well, yet they may have very different predictions on test data.

Bayesian deep learning accounts for epistemic uncertainty by treating the neural network weights
as random variables and considering the full posterior over possible neural networks instead of only
the most probable neural network (Papamarkou et al.,[2024). Formally, let us consider a supervised
learning setting in all generality, where @ denotes inputs, y outputs, D a dataset of N pairs (z, y),
and w the weights of the neural network. The likelihood of a given set of weights is

N
p(Dw) < [ [ plyilzi, w), )

=1
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where p(y;|2;, w) is the output of the neural network with weights w and inputs x;. The resulting
posterior over the weights is
p(D|w)p(w)

; 3)
p(D)
where p(w) is the prior. Once estimated, the posterior over the neural network’s weights can be
used for predictions through the Bayesian model average

p(w|D) =

M
1
p(vlw. D) = [ plylewip(w|D)dw = 2 Y plyle.wi)owi ~p(wlD).
i=1
In practice, the Bayesian model average can be approximated by Monte Carlo sampling, with A/
samples from the posterior over the weights. The quality of the approximation depends on the
number of samples M, which should be chosen high enough to obtain a good enough approximation
but small enough to keep reasonable the computational costs of predictions.

Estimating the posterior over the neural network weights is a challenging problem due to the high
dimensionality of the weights. Variational inference (Blundell et al., 2015) optimizes a variational
family to match the true posterior, which is typically fast but requires specifying a variational family
that may restrict the functions that can be modeled. Markov chain Monte Carlo methods (Welling
& Tehl 2011} |Chen et al., 2014), on the other hand, are less restrictive in the functions that can
be modeled but require careful tuning of the hyper-parameters and are more computationally de-
manding. The Bayesian posterior can also be approximated by an ensemble of neural networks
(Lakshminarayanan et al.l 2017; [Pearce et al., [2020; |[He et al., |2020). Laplace methods leverage
geometric information about the loss to construct an approximation of the posterior around the max-
imum a posteriori (MacKay, [1992)). Similarly, Maddox et al.[(2019) use the training trajectory of
stochastic gradient descent to build an approximation of the posterior.

3 BAYESIAN NEURAL NETWORKS FOR SIMULATION-BASED INFERENCE

In the context of simulation-based inference, treating the weights of the inference network as random
variables enables the quantification of the computational uncertainty of the posterior approximation.
Considering neural networks taking observations « as input and producing parameters 6 as output,
the posterior approximation p(6|x) can be modeled as the Bayesian model average

P(6]z) = / p(6l, w)p(w|D)dw, )

where p(0|x,w) is the posterior approximation parameterized by the weights w and evaluated at
(6, x), and p(w|D) is the posterior over the weights given the training set D.

Remaining is the choice of prior p(w). While progress has been made in designing better priors
in Bayesian deep learning (Fortuin, [2022), we argue that none of those are suitable in the context
of simulation-based inference. To illustrate our point, let us consider the case of a normal prior
p(w) = N(0, 02I) on the weights, in which case

ﬁnormalprior(elw) = /p<6|117W) N(W‘/J; =0, = O'QI)dW. (6)

As mentioned in Section [2] a desirable property for a posterior approximation is to be calibrated.
Therefore we want EC(Pormal prior, &) = ¢, Y. Although it might be possible for this property to
be satisfied in particular settings, this is obviously not the case for all values of ¢ and all neural
network architectures. Therefore, and as illustrated in Figure[I] the Bayesian model average is not
even calibrated a priori when using a normal prior on the weights.

As the
Bayesian model average is not calibrated a priori, it cannot be expected that updating the posterior
over weights p(w|D) with a small amount of data would lead to a calibrated a posteriori Bayesian
model average.
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3.1 FUNCTIONAL PRIORS FOR SIMULATION-BASED INFERENCE

Our first contribution is the design of a prior that induces an a priori-calibrated Bayesian model
average. To achieve this, we work in the space of posterior functions instead of the space of weights.
We consider the space of functions taking a pair (8, x) as input and producing a posterior density
value f(@,x) as output. Each function f is defined by the joint outputs it associates with any
arbitrary set of inputs, such that a posterior over functions can be viewed as a distribution over
joint outputs for arbitrary inputs. Formally, let us consider M arbitrary pairs (0, x) represented
by the matrices ® = [04,...,0y] and X = [x1,...,xp] and let f = [f1,..., far] be the joint
outputs associated with those inputs. The distribution p(f|®, X) then represents a distribution over
posteriors f = [p(01|x1),...,p(0rm|xrr)]. The functional posterior distribution over posteriors
for parameters © and observations X given a training dataset D is then p(f|®, X, D) and the
Bayesian model average is obtained through marginalization, that is

p(6i]z:, D) = / f (10, X, D)df, Vi, )

Computing the posterior over functions requires the specification of a prior over functions. We first
observe that the prior over the simulator’s parameters is a calibrated approximation of the posterior.
That is, for the prior function pyrier : (6, ) — p(@), we have that EC(pprior, @) = «, Vo (Delaunoy
et al.,|2023). It naturally follows that the a priori Bayesian model average with a Dirac delta prior
around the prior on the simulator’s parameters is calibrated

503ke) = [ £ 80165 = poin(65.2)])
(8)
- / £ 8(f = p(6,)) dfy, Vi = EC(p, a) = a, Va.

However, this prior has limited support, and the Bayesian model average will not converge to the
posterior p(0|x) as the dataset size increases. We extend this Dirac prior to include more functions
in its support while retaining the calibration property, which we propose defining as a Gaussian
process centered at Pprior.

A Gaussian process (GP) defines a joint multivariate normal distribution over all the outputs f given
the inputs (®, X). Itis parametrized by a mean function y that defines the mean value for the outputs
given the inputs and a kernel function K that models the covariance between the outputs. If we have
access to no data, the mean and the kernel jointly define a prior over functions as they define a joint
prior over outputs for an arbitrary set of inputs. In order for this prior over functions to be centered
around the prior ppyier, We define the mean function as (6, ) = p(@). The kernel K, on the other
hand, defines the spread around the mean function and the correlation between the outputs f. Its
specification is application-dependent and constitutes a hyper-parameter of our method that can be
exploited to incorporate domain knowledge on the structure of the posterior. For example, periodic
kernels could be used if periodicity is observed. Kernel’s hyperparameters can also be chosen such
as to incorporate what would be a reasonable deviation of the approximated posterior from the
prior. We denote the Gaussian process prior over function outputs as pgp(f|u (0, X), K(0, X)).
Proposition[I|shows that a functional prior defined in this way leads to a calibrated Bayesian model
average.

Proposition 1. The Bayesian model average of a Gaussian process centered around the prior on the
simulator’s parameters is calibrated. Formally, let pgp be the density probability function defined
by a Gaussian process, | its mean function, and K the kernel. Let us consider M arbitrary pairs
(0, x) represented by the matrices ® = [01,...,0y] and X = [x1,..., ] and represent by the
vector f = [f1, ..., fa] the joint outputs associated with those inputs. The Bayesian model average
on the i™ pair is expressed

P(0i]a:) = / fi por(F11(©, X), K(©, X)) df

If (0, ) = p(0),V0, x, then,
EC(p, o) = a, Ve,

for all kernel K.
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Proof. As pgp is, by definition of a Gaussian process, a multivariate normal, the expectations of the
marginals are equal to the mean parameters

p(Oilxi) = p(0;, x;) = p(0;).

The joint evaluation of the Bayesian model average of the Gaussian process is hence equivalent to
the joint evaluation of the prior for any matrices ® and X. We can therefore conclude that p is
equivalent to pprior @ (6,2) — p(@). Since EC(Pprior, &) = «, Vo (Delaunoy et al., [2023), then,
EC(p, ) = a, Vau. O

3.2 FROM FUNCTIONAL TO PARAMETRIC PRIORS

In this section, we now discuss how existing work from Bayesian deep learning in function space can
be used to perform simulation-based inference with the functional GP prior over posterior density
functions proposed in Section We follow [Flam-Shepherd et al.| (2017) and [Sun et al.| (2018)
for mapping the functional prior to a distribution over neural network weights, but we note that
other methods for functional Bayesian deep learning, such as those presented by Tran et al.|(2022);
Rudner et al.| (2022); |Kozyrskiy et al.|(2023); Ma & Hernandez-Lobato|(2021) could also be used in
our setting. Further discussion can be found in Appendix [Al

Let us first observe that a neural network architecture and a prior on weights jointly define a prior
over functions. We parameterize the prior on weights by ¢ and denote this probability density over
function outputs by

P (£ 6,0, X) = / p(f |w.©, X) p(w|e) dw
9)
- / 5(1fs = p(O: i, w))) p(wlg) dw.

To obtain a prior on weights that matches the target GP prior, we optimize ¢ such that
penN(f | @, ©, X)) matches pgp(f|u(©, X), K(©, X)). Following [Flam-Shepherd et al.|(2017),
given a measurement set M = {6;,x;}}, at which we want the distributions to match, the KL
divergence between the two priors can be expressed as

KL [penn(f [ &, M) || pap(f | (M), K(M))]

_ o penn (S | @, M)
= [o(s19. M) 8 par(f | (M), K (M)

= — Hpenn(f [ @, M)] = Epp(£ 1 ¢.0) [l0g par(f | (M), K(M))],

where the second term E,,_ (7| &A1) [log pap(f | (M), K (M))] can be estimated using Monte-
Carlo. The first term H [pgnn(f | ¢, M)], however, is harder to estimate as it requires computing
log penn (f | ¢, M), which involves the integration of the output over all possible weights combi-
nations. To bypass this issue, |Sun et al.|(2018) propose to use Spectral Stein Gradient Estimation
(SSGE) (Shi et al., [2018]) to approximate the gradient of the entropy as

VH [penn(f | ¢, M)] =~ SSGE (f1, ..., fv ~ pean(f |, M) . (11

dy (10)

We note that the measurement set M can be chosen arbitrarily but should cover most of the sup-
port of the joint distribution p(@, x). If data from this joint distribution are available, those can be
leveraged to build the measurement set. To showcase the ability to create a prior with limited data,
in this work, we derive boundaries of the support of each marginal distribution and draw parameters
and observations independently and uniformly over this support. If the support is known a priori,
this procedure can be performed without (expensive) simulations. We draw a new measurement set
at each iteration of the optimization procedure. If a fixed measurement set is available, a subsample
of this measurement set should be drawn at each iteration.

As an illustrative example, we chose independent normal distributions as a variational family
p(w|@) over the weights and minimize w.r.t. w. In Figure|[l| we show the coverage of the
resulting a priori Bayesian model average using the tuned prior, p(w | ¢), and normal priors for in-
creasing standard deviations o, for the SLCP benchmark. We observe that while none of the normal
priors are calibrated, the trained prior achieves near-perfect calibration. This prior hence guides the
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Figure 1: Visualization of the prior tuned to match the GP prior on
the SLCP benchmark. Left: examples of posterior functions sampled

from the tuned prior over neural network’s weights. Right: expected coverage of the prior Bayesian
model average with the tuned prior and normal priors for varying standard deviations.

obtained posterior approximation towards more calibrated solutions, even in low simulation-budget
settings.

The attentive reader might have noticed that pgnn(f | ¢, ©, X)) and pep(f|u(©, X), K(©, X))
do not share the same support, as the former distribution is limited to functions that represent valid
densities by construction, while the latter includes arbitrarily shaped functions. This is not an issue
here as the support of the first distribution is included in the support of the second distribution,
and functions outside the support of the first distribution are ignored in the computation of the
divergence.

4 EXPERIMENTS

In this section, we empirically demonstrate the benefits of replacing a regular neural network with
a BNN equipped with the proposed prior for simulation-based inference. We consider both Neu-
ral Posterior Estimation (NPE) with neural spline flows (Durkan et al.l [2019) and Neural Ratio
Estimation (NRE) (Hermans et al., 2020), along with their balanced versions (BNRE and BNPE)
(Delaunoy et al.,[2022;2023)) and ensembles (Lakshminarayanan et al.,|2017; Hermans et al.,[2022).
BNNs-based methods are trained using mean-field variational inference (Blundell et al., [2015). As
advocated by |Wenzel et al.| (2020), we also consider cold posteriors to achieve good predictive per-
formance. More specifically, the variational objective function is modified to give less weight to the
prior by introducing a temperature parameter 7',

— T KL[p(w|7)||[p(w[¢)], (12)

IEwr\«p(w|-r) [Z lOg p(01|w17 W)

where 7T are the parameters of the posterior variational family and 7" is a parameter called the temper-
ature that weights the prior term. In the following, we call BNN-NPE, a Bayesian Neural Network
posterior estimator trained without temperature (1" = 1), and BNN-NPE (7" = 0.01), an estimator
trained with a temperature of 0.01, assigning a lower weight to the prior.

A detailed description of the Gaussian process used can be found in Appendix [A] For simplicity,
in this analysis, we use an RBF kernel in the GP prior. If more information on the structure of the
target posterior is available, more informed kernels may be used to leverage this prior knowledge. A
description of the benchmarks can be found in Appendix [B] and the hyperparameters are described
in Appendix [C|

Following |Delaunoy et al.|(2022), we evaluate the quality of the posterior approximations based on
the expected nominal log posterior density and the expected coverage area under the curve (coverage

AUC). The expected nominal log posterior density Eg (0,2 [log H(6|2)] quantifies the amount of
density allocated to the nominal parameter that was used to generate the observation. The coverage

AUC fol (EC(p, o) — ) dav quantifies the calibration of the expected posterior. A calibrated posterior
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Figure 2: Comparison of simulation-based inference methods through the nominal log probability
and coverage area under the curve. The higher the nominal log probability, the more performant the
method is. A calibrated posterior approximation exhibits a coverage AUC of 0. A positive coverage
AUC indicates conservativeness, and a negative coverage AUC indicates overconfidence. 3 runs are
performed, and the median is reported. The plot at the top shows the results for NPE simulation-
based inference methods, and the one at the bottom shows NRE methods.

approximation exhibits a coverage AUC of 0. A positive coverage AUC indicates conservativeness,
and a negative coverage AUC indicates overconfidence.

BNN-based simulation-based inference Figure 2]compares simulation-based inference methods
with and without accounting for computational uncertainty. We observe that BNNs equipped with
our prior and without temperature show positive, or only slightly negative, coverage AUC even for
simulation budgets as low as O(10). Negative coverage AUC is still observed, and hence con-
servativeness is not strictly guaranteed. However, this constitutes a significant improvement
over the other method in that regard. The coverage curves are reported in Appendix [D] We con-
clude that BNNs can hence be more reliably used than the other benchmarked methods when the
simulator is expensive and few simulations are available. We observe that increasing the reliabil-
ity comes with the drawback of requiring more simulations than the other methods to reach
similar nominal log posterior density values. Without temperature, a few orders of magnitude
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Figure 3: Examples of 95% highest posterior density regions obtained with various algorithms and
simulation budgets on the SLCP benchmark for a single observation. The black star represents the
ground truth used to generate the observation
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Figure 4: Comparison of posterior approximations obtained using a prior tuned to match the Gaus-
sian process-based prior and using independent normal priors on weights with zero means and vari-
ous standard deviations on the SLCP benchmark. 3 runs are performed, and the median is reported.

From these observations, general guidelines
to set the temperature include increasing 7" if overconfidence is observed and decreasing it if low
predictive performance is observed.

Examples of posterior approximations obtained with and without using a Bayesian neural network
are shown in Figure [3] Wide posteriors are observed for low budgets for BNN-NPE, while NPE
produces an overconfident approximation and excludes most of the relevant parts of the posterior.
As the simulation budget increases, BNN-NPE converges slowly towards the same posterior as NPE.
BNN-NPE (7" = 0.01) converges faster than BNN-NPE but, for low simulation budgets, excludes
parts of the region that should be accepted according to high budget posteriors. Yet, the posterior
approximate is still less overconfident than NPE’s. Finally, Figure 2] shows that BNN-NRE is more
conservative than BNN-NPE. This comes at the cost of lower nominal log posterior density for a
given simulation budget.

Comparison of different priors on weights We analyze the effect of the prior on the neural net-
work’s weights on the resulting posterior approximation. The posterior approximations obtained
using our GP prior are compared to the ones obtained using independent normal priors on weights
with zero means and increasing standard deviations. In Figure 4] we observe that when using a
normal prior, careful tuning of the standard deviation is needed to achieve results close to the prior
designed for simulation-based inference. The usage of an inappropriate prior can lead to bad cali-
bration for low simulation budgets or can prevent learning if it is too restrictive.
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Uncertainty decomposition We decompose the uncertainty quantified by the different methods.
Following \Depeweg et al.| (2018)), the uncertainty can be decomposed as

H[p(0|x)] = Eq(w) [H [p(0|x, w)]] + 1(0, w), (13)

where E, ) [H [p(0]z, w)]] quantifies the aleatoric uncertainty, (@, w) quantifies the epistemic
uncertainty, and the sum of those terms is the predictive uncertainty. Figure [5]shows the decompo-
sition of the two sources of uncertainty, in expectation, on the SLCP benchmark. Other benchmarks
can be found in Appendix [D| We observe that BNN-NPE and NPE ensemble methods account for
the epistemic uncertainty while other methods do not. BNPE artificially increases the aleatoric un-
certainty to be better calibrated. The epistemic uncertainty of BNN-NPE is initially low because
most of the models are slight variations of pg. The epistemic uncertainty then increases as it starts
to deviate from the prior and decreases as the training set size increases. BNN-NPE (7" = 0.01)
exhibits a higher epistemic uncertainty for low budgets as the effect of the prior is lowered.

Predictive uncertainty Epistemic uncertainty Aleatoric uncertainty
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0.1
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10! 107 10° 10! 10° 10° 10! 107100 10t 100 10° 10! 10% 100 10° 10°10°
Simulation budget

—— NPE BNPE —— NPE ensemble —— BNN-NPE === BNN-NPE (T = 0.01)

Figure 5: Quantification of the different forms of uncertainties captured by the different NPE-based
methods on the SLCP benchmark. 3 runs are performed, and the median is reported.

Infering cosmological parameters from N-body simulations To showcase the utility of
Bayesian deep learning for simulation-based inference in a practical setting, we consider a chal-
lenging inference problem from the field of cosmology. We consider Quijote N-body simulations
(Villaescusa-Navarro et al.,[2020) tracing the spatial distribution of matter in the Universe for differ-
ent underlying cosmological models. The resulting observations are particles with different masses,
corresponding to dark matter clumps, which host galaxies. We consider the canonical task of in-
ferring the matter density (denoted 2,,,) and the root-mean-square matter fluctuation averaged over
a sphere of radius 82! Mpc (denoted og) from an observed galaxy field. Robustly inferring the
values of these parameters is one of the scientific goals of flagship cosmological surveys. These
simulations are very computationally expensive to run, with over 35 million CPU hours required to
generate 44100 simulations at a relatively low resolution. Generating samples at higher resolutions,
or a significantly larger number of samples, is challenging due to computational constraints. These
constraints necessitate methods that can be used to produce reliable scientific conclusions from a
limited set of simulations — when few simulations are available, not only is the amount of training
data low, but so is the amount of test data that is available to assess the calibration of the trained
model.

In this experiment, we use 2000 simulations processed as described in |Cuesta-Lazaro & Mishra-
Sharma) (2023)). These simulations form a subset of the full simulation suite run with a uniform prior
over the parameters of interest. 1800 simulations are used for training and 200 are kept for testing.
We use the two-point correlation function evaluated at 24 distance bins as a summary statistic. The
observable is, hence, a vector of 24 features. We observed that setting a temperature lower than 1 was
needed to reach reasonable predictive performance with Bayesian neural networks in this setting.
Figure [ compares the posterior approximations obtained with a single neural network against those
obtained with a BNN trained with a temperature of 0.01. We observe from the coverage plots that
while a single neural network can lead to overconfident approximations in the data-poor regime, the
BNN leads to conservative approximations. BNN-NPE also exhibits higher nominal log posterior
probability. Additionally, we observe that it provides posterior approximations that are calibrated
and have a high nominal log probability with only a few hundred samples.
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Figure 6: Comparison of the posterior approximations obtained with and without a Bayesian neural
network on the cosmological application. First plot: An example observation: particles representing
galaxies in a synthetic universe. Second plot: example of 95% highest posterior density regions
for increasing simulation budgets. The black star represents the ground truth used to generate the
observation. Third plot: Expected coverage with and without using a Bayesian neural network for
increasing simulation budgets. Fourth plot: The nominal log posterior.

5 CONCLUSION

In this work, we use Bayesian deep learning to account for the computational uncertainty associ-
ated with posterior approximations in simulation-based inference. We show that the prior on neural
network’s weights should be carefully chosen to obtain calibrated posterior approximations and de-
velop a prior family with this objective in mind. The prior family is defined in function space as
a Gaussian process and mapped to a prior on weights. Empirical results on benchmarks show that
incorporating Bayesian neural networks in simulation-based inference methods consistently yields
conservative posterior approximations, even with limited simulation budgets of O(10). As Bayesian
deep learning continues to rapidly advance (Papamarkou et al.l2024), we anticipate that future de-
velopments will strengthen its applicability in simulation-based inference, ultimately enabling more
efficient and reliable scientific applications in domains with computationally expensive simulators.

Using BNNs for simulation-based inference also comes with limitations. The first observed limi-
tation is that the Bayesian neural network based methods might need more
simulated data in order to reach a predictive power similar to methods that do not use BNNs, such
as NPE. While we showed that this limitation can be mitigated by tuning the temperature appropri-
ately, this is something that might require trials and errors. A second limitation is the computational
cost of predictions. When training a BNN using variational inference, the training cost remains on a
similar scale as standard neural networks. At prediction time, however, the Bayesian model average
described in Equation 4| must be approximated, and this requires a neural network evaluation for
each Monte Carlo sample in the approximation. The computational cost of predictions then scales
linearly with the number M of Monte Carlo samples.
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A PRIOR TUNING DETAILS

We tune the parameters ¢ of a variational distribution over neural network weights p(w|¢). The
variational distribution is chosen to be independent normal distributions, with parameters ¢ repre-
senting the means and standard deviations of each parameter of w. This variational family defines a
prior over function outputs

penn(f 9,0, X) = /P(f|W7@,X)p(W|¢)dW~ (14)

The parameters ¢ are optimized to obtain a prior on weights that matches the target Gaussian process
functional prior pgp(f|1(©, X), K(©, X)). To achieve this, we repeatedly sample a measurement
set M = {6;,z;}M, and N function outputs from the BNN prior fi, ..., fx ~ penn(f | @, M)
and perform a step of gradient descend to minimize the divergence

KL [pean (f | ¢, M) || pap(f | w(M), K(M))] . (15)
The mean function p of the Gaussian process is selected as:
(8, ) = p(0). (16)
The kernel K is a combination of two Radial Basis Function (RBF) kernels
K(01,05,x,,22) = \/RBF(8,,0,) * \/RBF(z1, x2). (17

such that the correlation between outputs is high only if 8; and 0, as well as x; and x4 are close.
The RBF kernel is defined as

1 < (1, — 29,)?
RBF(z, x) = 0% exp <N212122> , (18)

where o is the standard deviation and I; is the lengthscale associated to the i" feature. The length-
scale is derived from the measurement set. To determine [/;, we query observations  from the
measurement set and compute the 0.1 quantile of the squared distance between different observa-
tions for each feature. We then set /; such that 2{? equals this quantile. All the benchmarks have
a uniform prior over the simulator’s parameters. The mean function is then equal to a constant C
for all input values. The standard deviation is chosen to be C'/2. To ensure stability during the
inference procedure, we enforce all standard deviations defined in ¢ to be at least 0.001 by setting
any parameters below this threshold to this value.

Note that there are various methods that can be used to perform inference on the neural network’s
weights with our GP prior. Instead of minimizing the KL-divergence, the parameters ¢ can be
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optimized using an adversarial training procedure by treating both priors as function generators
and training a discriminator between the two (Tran et al., 2022). Another approach to performing
inference using a functional prior is to directly use it during inference by modifying the inference
algorithm to work in function space. Variational inference can be performed in the space of function
(Sun et al.} 2018; Rudner et al., 2022). The stochastic gradient Hamiltonian Monte Carlo algorithm
(Chen et al., 2014) could also be modified to include a functional prior Kozyrskiy et al.| (2023).
Alternatively, a variational implicit process can be learned to express the posterior in function space
(Ma & Hernandez-Lobato, 2021)).

B BENCHMARKS DESCRIPTION

SLCP The SLCP (Simple Likelihood Complex Posterior) benchmark (Papamakarios et al.,[2019)
is a fictive benchmark that takes 5 parameters as input and produces an 8-dimensional synthetic
observable. The observation corresponds to the 2D coordinates of 4 points that are sampled from
the same multivariate normal distribution. We consider the task of inferring the marginal over 2 of
the 5 parameters.

Two Moons The Two Moons simulator (Greenberg et al., | 2019) models a fictive problem with
2 parameters. The observable x is composed of 2 scalars, which represent the 2D coordinates of
a random point sampled from a crescent-shaped distribution shifted and rotated around the origin
depending on the parameters’ values. Those transformations involve the absolute value of the sum
of the parameters leading to a second crescent in the posterior and, hence making it multi-modal.

Lotka Volterra The Lotka-Volterra population model (Lotka, [1920; [Volterra, |1926)) describes a
process of interactions between a predator and a prey species. The model is conditioned on 4 pa-
rameters that influence the reproduction and mortality rate of the predator and prey species. We infer
the marginal posterior of the predator parameters from a time series of 2001 steps representing the
evolution of both populations over time. The specific implementation is based on a Markov Jump
Process, as in [Papamakarios et al.| (2019).

SpatialSIR The Spatial SIR model (Hermans et al., 2022) involves a grid world of susceptible,
infected, and recovered individuals. Based on initial conditions and the infection and recovery rate,
the model describes the spatial evolution of an infection. The observable is a snapshot of the grid
world after some fixed amount of time. The grid used is of size 50 by 50.

C HYPERPARAMETERS

All the NPE-based methods use a Neural Spline Flow (NSF) (Durkan et al.,[2019) with 3 transforms
of 6 layers, each containing 256 neurons. Meanwhile, all the NRE-based methods employ a classi-
fier consisting of 6 layers of 256 neurons. For the spatialSIR and Lotka Volterra benchmarks, the
observable is initially processed by an embedding network. Lotka Volterra’s embedding network is
a 10 layers 1D convolutional neural network that leads to an embedding of size 512. On the other
hand, SpatialSIR’s embedding network is an 8 layers 2D convolutional neural network resulting in
an embedding of size 256. All the models are trained for 500 epochs which we observed to be
enough to reach convergence.

Bayesian neural network-based methods use independent normal distributions as a variational fam-
ily. During inference, 100 neural networks are sampled to approximate the Bayesian model average.
Ensemble methods involve training 5 neural networks independently. The experiments were con-
ducted on a private GPU cluster, and the estimated computational cost is around 25, 000 GPU hours.

D ADDITIONAL EXPERIMENTS

In this section, we provide complementary results. Figures [7] and [§] display the coverage curves,
demonstrating that a higher positive coverage AUC corresponds to coverage curves above the diag-
onal line. Figures 9] and [T0] present the uncertainty decomposition of all methods on all the bench-
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marks. Figures [TT] and [T2] illustrate how the performance of the different algorithms varies across
different runs.
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Figure 7: Coverage of different NPE simulation-based inference methods. A calibrated posterior
approximation exhibits a coverage AUC of 0. A coverage curve above the diagonal indicates con-
servativeness and a curve below the diagonal indicates overconfidence. 3 runs are performed, and
the median is reported.
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Figure 8: Coverage of different NRE simulation-based inference methods. A calibrated posterior
approximation exhibits a coverage AUC of 0. A coverage curve above the diagonal indicates con-
servativeness and a curve below the diagonal indicates overconfidence. 3 runs are performed, and
the median is reported.
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Figure 9: Quantification of the different forms of uncertainties captured by the different NPE-based
methods. 3 runs are performed, and the median is reported.
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Figure 10: Quantification of the different forms of uncertainties captured by the different NRE-based
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Figure 11: Comparison of different NPE simulation-based inference methods through the nominal
log probability and coverage area under the curve. The higher the nominal log probability, the
more performant the method is. A calibrated posterior approximation exhibits a coverage AUC of
0. A positive coverage AUC indicates conservativeness, and a negative coverage AUC indicates
overconfidence. 3 runs are performed. The median run is reported in plain, and the shaded lines
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Figure 12: Comparison of different NRE simulation-based inference methods through the nominal
log probability and coverage area under the curve. The higher the nominal log probability, the
more performant the method is. A calibrated posterior approximation exhibits a coverage AUC of
0. A positive coverage AUC indicates conservativeness, and a negative coverage AUC indicates
overconfidence. 3 runs are performed. The median run is reported in plain, and the shaded lines
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