
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOW-BUDGET SIMULATION-BASED INFERENCE
WITH BAYESIAN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Simulation-based inference methods have been shown to be inaccurate in the data-
poor regime, when training simulations are limited or expensive. Under these cir-
cumstances, the inference network is particularly prone to overfitting, and using
it without accounting for the computational uncertainty arising from the lack of
identifiability of the network weights can lead to unreliable results. To address this
issue, we propose using Bayesian neural networks in low-budget simulation-based
inference, thereby explicitly accounting for the computational uncertainty of the
posterior approximation. We design a family of Bayesian neural network priors
that are tailored for inference and show that they lead to better calibrated poste-
riors than standard methods on tested benchmarks, even when as few as O(10)
simulations are available. This opens up the possibility of performing reliable
simulation-based inference using very expensive simulators, as we demonstrate
on a problem from the field of cosmology where single simulations are computa-
tionally expensive. We show that Bayesian neural networks produce informative
and well-calibrated posterior estimates with only a few hundred simulations.

1 INTRODUCTION

Simulation-based inference aims at identifying the parameters of a stochastic simulator that best
explain an observation. In its Bayesian formulation, simulation-based inference approximates the
posterior distribution of the model parameters given an observation. This approximation usually
takes the form of a neural network trained on synthetic data generated from the simulator. In the
context of scientific discovery, Hermans et al. (2022) stressed the need for posterior approximations
that are conservative – not overconfident – in order to make reliable downstream claims. They also
showed that common simulation-based inference algorithms can produce overconfident approxima-
tions that may lead to erroneous conclusions.

In the data-poor regime (Villaescusa-Navarro et al., 2020; Zhang & Mikelsons, 2023; Zeng et al.,
2023), where the simulator is expensive to run and only a small number of simulations are available,
training a neural network to approximate the posterior can easily lead to overfitting. With small
amounts of training data, the neural network weights are only loosely constrained, leading to high
computational uncertainty (Wenger et al., 2022). That is, many neural networks can fit the training
data equally well, yet they may have very different predictions on test data. For this reason, the pos-
terior approximation is uncertain and, in the absence of a proper quantification of this uncertainty,
potentially overconfident. Fortunately, computational uncertainty in a neural network can be quan-
tified using Bayesian neural networks (BNNs) (Gal et al., 2016), which account for the uncertainty
in the neural network weights. Therefore, in the context of simulation-based inference, BNNs can
provide a principled way to quantify the computational uncertainty of the posterior approximation.
Lueckmann et al. (2017) also make use of BNNs to iteratively refine a model on new data without
having to retrain on old data.

Hermans et al. (2022) showed empirically that using ensembles of neural networks, a crude approx-
imation of BNNs (Lakshminarayanan et al., 2017), does improve the calibration of the posterior
approximation. A few studies have also used BNNs as density estimators in simulation-based infer-
ence (Cobb et al., 2019; Walmsley et al., 2020; Lemos et al., 2023). However, these studies have
remained empirical and limited in their evaluation. This lack of theoretical grounding motivates the
need for a more principled understanding of BNNs for simulation-based inference. In particular, the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

choice of prior on the neural network weights happens to be crucial in this context, as it can strongly
influence the resulting posterior approximation. Yet, arbitrary priors that convey little or undesired
information about the posterior density have been used so far.

Our contributions are twofold. We first demonstrate both theoretically and empirically that, due
to the prior on weights used, earlier attempts at simulation-based inference with Bayesian neural
networks (Lueckmann et al., 2017; Cobb et al., 2019; Walmsley et al., 2020; Lemos et al., 2023)
are inadequate for reliable inference. This motivates our second contribution, which is the design of
an adequate prior on neural network’s weights in the context of simulation-based inference. We show
empirically that Bayesian neural networks equipped with this prior produce calibrated posteriors in
the low-data regime. To our knowledge, this is the first method that provides reliable inference in
that regime. The code is available at https://github.com/anonymous.

2 BACKGROUND

Simulation-based inference We consider a stochastic simulator that takes parameters θ as input
and produces synthetic observations x as ouput. The simulator implicitly defines the likelihood
p(x|θ) in the form of a forward stochastic generative model but does not allow for direct evaluation
of its density due to the intractability of the marginalization over its latent variables. In this setup,
Bayesian simulation-based inference aims at approximating the posterior distribution p(θ|x) using
the simulator. Among possible approaches, neural simulation-based inference methods train a neural
network to approximate key quantities from simulated data, such as the posterior, the likelihood, the
likelihood-to-evidence ratio, or a score function (Cranmer et al., 2020).

Recently, concerns have been raised regarding the calibration of the approximate posteriors obtained
with neural simulation-based inference. Hermans et al. (2022) showed that, unless special care is
taken, common inference algorithms can produce overconfident posterior approximations. They
quantify the calibration using the expected coverage

EC(p̂, α) = Ep(θ,x)[1(θ ∈ Θp̂(α))] (1)

where Θp̂(α) denotes the highest posterior credible region at level α computed using the poste-
rior approximate p̂(θ|x). The expected coverage is equal to α when the posterior approximate is
calibrated, lower than α when it is overconfident and higher than α when it is underconfident or
conservative.

The calibration of posterior approximations has been improved in recent years in various ways.
Delaunoy et al. (2022; 2023) regularize the posterior approximations to be balanced, which biases
them towards conservative approximations. Similarly, Falkiewicz et al. (2024) regularize directly the
posterior approximation by penalizing miscalibration or overconfidence. Masserano et al. (2023) use
Neyman constructions to produce confidence regions with approximate Frequentist coverage. Patel
et al. (2023) combine simulation-based inference and conformal predictions. Schmitt et al. (2023)
enforce the self-consistency of likelihood and posterior approximations to improve the quality of
approximate inference in low-data regimes.

Bayesian deep learning Bayesian deep learning aims to account for both the aleatoric and epis-
temic uncertainty in neural networks. The aleatoric uncertainty refers to the intrinsic randomness
of the variable being modeled, typically taken into account by switching from a point predictor to a
density estimator. The epistemic uncertainty, on the other hand, refers to the uncertainty associated
with the neural network itself and is typically high in small-data regimes. Failing to account for this
uncertainty can lead to high miscalibration as many neural networks can fit the training data equally
well, yet they may have very different predictions on test data.

Bayesian deep learning accounts for epistemic uncertainty by treating the neural network weights
as random variables and considering the full posterior over possible neural networks instead of only
the most probable neural network (Papamarkou et al., 2024). Formally, let us consider a supervised
learning setting in all generality, where x denotes inputs, y outputs, D a dataset of N pairs (x,y),
and w the weights of the neural network. The likelihood of a given set of weights is

p(D|w) ∝
N∏
i=1

p(yi|xi,w), (2)

2

https://github.com/anonymous

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where p(yi|xi,w) is the output of the neural network with weights w and inputs xi. The resulting
posterior over the weights is

p(w|D) =
p(D|w)p(w)

p(D)
, (3)

where p(w) is the prior. Once estimated, the posterior over the neural network’s weights can be
used for predictions through the Bayesian model average

p(y|x,D) =

∫
p(y|x,w)p(w|D)dw ≃ 1

M

M∑
i=1

p(y|x,wi),wi ∼ p(w|D). (4)

In practice, the Bayesian model average can be approximated by Monte Carlo sampling, with M
samples from the posterior over the weights. The quality of the approximation depends on the
number of samples M , which should be chosen high enough to obtain a good enough approximation
but small enough to keep reasonable the computational costs of predictions.

Estimating the posterior over the neural network weights is a challenging problem due to the high
dimensionality of the weights. Variational inference (Blundell et al., 2015) optimizes a variational
family to match the true posterior, which is typically fast but requires specifying a variational family
that may restrict the functions that can be modeled. Markov chain Monte Carlo methods (Welling
& Teh, 2011; Chen et al., 2014), on the other hand, are less restrictive in the functions that can
be modeled but require careful tuning of the hyper-parameters and are more computationally de-
manding. The Bayesian posterior can also be approximated by an ensemble of neural networks
(Lakshminarayanan et al., 2017; Pearce et al., 2020; He et al., 2020). Laplace methods leverage
geometric information about the loss to construct an approximation of the posterior around the max-
imum a posteriori (MacKay, 1992). Similarly, Maddox et al. (2019) use the training trajectory of
stochastic gradient descent to build an approximation of the posterior. In this section, we propose
a novel SBI algorithm based on Bayesian neural networks with tuned prior on weights. The
algorithm first optimizes a prior on weight to have desirable conservativeness properties. This
tuned prior is then used to compute an approximate posterior on weights that is itself used to
make predictions through Bayesian model averaging.

3 BAYESIAN NEURAL NETWORKS FOR SIMULATION-BASED INFERENCE

In the context of simulation-based inference, treating the weights of the inference network as random
variables enables the quantification of the computational uncertainty of the posterior approximation.
Considering neural networks taking observations x as input and producing parameters θ as output,
the posterior approximation p̂(θ|x) can be modeled as the Bayesian model average

p̂(θ|x) =
∫

p(θ|x,w)p(w|D)dw, (5)

where p(θ|x,w) is the posterior approximation parameterized by the weights w and evaluated at
(θ,x), and p(w|D) is the posterior over the weights given the training set D.

Remaining is the choice of prior p(w). While progress has been made in designing better priors
in Bayesian deep learning (Fortuin, 2022), we argue that none of those are suitable in the context
of simulation-based inference. To illustrate our point, let us consider the case of a normal prior
p(w) = N (0, σ2I) on the weights, in which case

p̂normal prior(θ|x) =
∫

p(θ|x,w) N (w|µ = 0,Σ = σ2I)dw. (6)

As mentioned in Section 2, a desirable property for a posterior approximation is to be calibrated.
Therefore we want EC(p̂normal prior, α) = α,∀α. Although it might be possible for this property to
be satisfied in particular settings, this is obviously not the case for all values of σ and all neural
network architectures. Therefore, and as illustrated in Figure 1, the Bayesian model average is not
even calibrated a priori when using a normal prior on the weights. This means that the Bayesian
model average computed using the prior normal on weights p(w) is not calibrated. As the
Bayesian model average is not calibrated a priori, it cannot be expected that updating the posterior
over weights p(w|D) with a small amount of data would lead to a calibrated a posteriori Bayesian
model average.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 FUNCTIONAL PRIORS FOR SIMULATION-BASED INFERENCE

Our first contribution is the design of a prior that induces an a priori-calibrated Bayesian model
average. To achieve this, we work in the space of posterior functions instead of the space of weights.
We consider the space of functions taking a pair (θ, x) as input and producing a posterior density
value f(θ,x) as output. Each function f is defined by the joint outputs it associates with any
arbitrary set of inputs, such that a posterior over functions can be viewed as a distribution over
joint outputs for arbitrary inputs. Formally, let us consider M arbitrary pairs (θ,x) represented
by the matrices Θ = [θ1, ...,θM] and X = [x1, ...,xM] and let f = [f1, ..., fM] be the joint
outputs associated with those inputs. The distribution p(f |Θ,X) then represents a distribution over
posteriors f = [p̃(θ1|x1), ..., p̃(θM |xM)]. The functional posterior distribution over posteriors
for parameters Θ and observations X given a training dataset D is then p(f |Θ,X,D) and the
Bayesian model average is obtained through marginalization, that is

p(θi|xi,D) =

∫
fi p(f |Θ,X,D)df , ∀i. (7)

Computing the posterior over functions requires the specification of a prior over functions. We first
observe that the prior over the simulator’s parameters is a calibrated approximation of the posterior.
That is, for the prior function pprior : (θ,x) → p(θ), we have that EC(pprior, α) = α,∀α (Delaunoy
et al., 2023). It naturally follows that the a priori Bayesian model average with a Dirac delta prior
around the prior on the simulator’s parameters is calibrated

p̂(θi|xi) =

∫
fi δ([fj = pprior(θj ,xj)]) df ,∀i

=

∫
fi δ(fi = p(θi)) dfi,∀i ⇒ EC(p̂, α) = α,∀α.

(8)

However, this prior has limited support, and the Bayesian model average will not converge to the
posterior p(θ|x) as the dataset size increases. We extend this Dirac prior to include more functions
in its support while retaining the calibration property, which we propose defining as a Gaussian
process centered at pprior.

A Gaussian process (GP) defines a joint multivariate normal distribution over all the outputs f given
the inputs (Θ, X). It is parametrized by a mean function µ that defines the mean value for the outputs
given the inputs and a kernel function K that models the covariance between the outputs. If we have
access to no data, the mean and the kernel jointly define a prior over functions as they define a joint
prior over outputs for an arbitrary set of inputs. In order for this prior over functions to be centered
around the prior pprior, we define the mean function as µ(θ,x) = p(θ). The kernel K, on the other
hand, defines the spread around the mean function and the correlation between the outputs f . Its
specification is application-dependent and constitutes a hyper-parameter of our method that can be
exploited to incorporate domain knowledge on the structure of the posterior. For example, periodic
kernels could be used if periodicity is observed. Kernel’s hyperparameters can also be chosen such
as to incorporate what would be a reasonable deviation of the approximated posterior from the
prior. We denote the Gaussian process prior over function outputs as pGP(f |µ(Θ,X),K(Θ,X)).
Proposition 1 shows that a functional prior defined in this way leads to a calibrated Bayesian model
average.

Proposition 1. The Bayesian model average of a Gaussian process centered around the prior on the
simulator’s parameters is calibrated. Formally, let pGP be the density probability function defined
by a Gaussian process, µ its mean function, and K the kernel. Let us consider M arbitrary pairs
(θ,x) represented by the matrices Θ = [θ1, ...,θM] and X = [x1, ...,xM] and represent by the
vector f = [f1, ..., fM] the joint outputs associated with those inputs. The Bayesian model average
on the ith pair is expressed

p̂(θi|xi) =

∫
fi pGP(f |µ(Θ,X),K(Θ,X)) df

If µ(θ,x) = p(θ),∀θ,x, then,
EC(p̂, α) = α,∀α,

for all kernel K.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Proof. As pGP is, by definition of a Gaussian process, a multivariate normal, the expectations of the
marginals are equal to the mean parameters

p̂(θi|xi) = µ(θi,xi) = p(θi).

The joint evaluation of the Bayesian model average of the Gaussian process is hence equivalent to
the joint evaluation of the prior for any matrices Θ and X . We can therefore conclude that p̂ is
equivalent to pprior : (θ,x) → p(θ). Since EC(pprior, α) = α,∀α (Delaunoy et al., 2023), then,
EC(p̂, α) = α,∀α.

3.2 FROM FUNCTIONAL TO PARAMETRIC PRIORS

In this section, we now discuss how existing work from Bayesian deep learning in function space can
be used to perform simulation-based inference with the functional GP prior over posterior density
functions proposed in Section 3.1. We follow Flam-Shepherd et al. (2017) and Sun et al. (2018)
for mapping the functional prior to a distribution over neural network weights, but we note that
other methods for functional Bayesian deep learning, such as those presented by Tran et al. (2022);
Rudner et al. (2022); Kozyrskiy et al. (2023); Ma & Hernández-Lobato (2021) could also be used in
our setting. Further discussion can be found in Appendix A.

Let us first observe that a neural network architecture and a prior on weights jointly define a prior
over functions. We parameterize the prior on weights by ϕ and denote this probability density over
function outputs by

pBNN(f |ϕ,Θ,X) =

∫
p(f |w,Θ,X) p(w|ϕ) dw

=

∫
δ([fi = p(θi|xi,w)]) p(w|ϕ) dw.

(9)

To obtain a prior on weights that matches the target GP prior, we optimize ϕ such that
pBNN(f |ϕ,Θ,X) matches pGP(f |µ(Θ,X),K(Θ,X)). Following Flam-Shepherd et al. (2017),
given a measurement set M = {θi,xi}Mi=1 at which we want the distributions to match, the KL
divergence between the two priors can be expressed as

KL [pBNN(f |ϕ,M) || pGP(f |µ(M),K(M))]

=

∫
pBNN(f |ϕ,M) log

pBNN(f |ϕ,M)

pGP(f |µ(M),K(M))
dy

= −H [pBNN(f |ϕ,M)]− EpBNN(f |ϕ,M) [log pGP(f |µ(M),K(M))] ,

(10)

where the second term EpBNN(f |ϕ,M) [log pGP(f |µ(M),K(M))] can be estimated using Monte-
Carlo. The first term H [pBNN(f |ϕ,M)], however, is harder to estimate as it requires computing
log pBNN(f |ϕ,M), which involves the integration of the output over all possible weights combi-
nations. To bypass this issue, Sun et al. (2018) propose to use Spectral Stein Gradient Estimation
(SSGE) (Shi et al., 2018) to approximate the gradient of the entropy as

∇H [pBNN(f |ϕ,M)] ≃ SSGE (f1, ...,fN ∼ pBNN(f |ϕ,M)) . (11)

We note that the measurement set M can be chosen arbitrarily but should cover most of the sup-
port of the joint distribution p(θ,x). If data from this joint distribution are available, those can be
leveraged to build the measurement set. To showcase the ability to create a prior with limited data,
in this work, we derive boundaries of the support of each marginal distribution and draw parameters
and observations independently and uniformly over this support. If the support is known a priori,
this procedure can be performed without (expensive) simulations. We draw a new measurement set
at each iteration of the optimization procedure. If a fixed measurement set is available, a subsample
of this measurement set should be drawn at each iteration.

As an illustrative example, we chose independent normal distributions as a variational family
p(w|ϕ) over the weights and minimize (10) w.r.t. w. In Figure 1, we show the coverage of the
resulting a priori Bayesian model average using the tuned prior, p(w |ϕ), and normal priors for in-
creasing standard deviations σ, for the SLCP benchmark. We observe that while none of the normal
priors are calibrated, the trained prior achieves near-perfect calibration. This prior hence guides the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0

Credibility level

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

ec
te

d
co

ve
ra

ge

N (w|µ = 0,Σ = 12I)

N (w|µ = 0,Σ = 0.12I)

N (w|µ = 0,Σ = 0.052I)

N (w|µ = 0,Σ = 0.012I)

N (w|µ = 0,Σ = 0.0012I)

p(w|φ)

−2 0 2

θ1

−3

−2

−1

0

1

2

3

θ 2

−2 0 2
−3

−2

−1

0

1

2

3

−2 0 2
−3

−2

−1

0

1

2

3

0.01 0.02 0.03 0.04 0.05 0.06

Figure 1: Visualization of the prior over neural network’s weights tuned to match the GP prior on
the SLCP benchmark. Left: examples of posterior functions over simulator’s parameters sampled
from the tuned prior over neural network’s weights. Right: expected coverage of the prior Bayesian
model average with the tuned prior and normal priors for varying standard deviations.

obtained posterior approximation towards more calibrated solutions, even in low simulation-budget
settings.

The attentive reader might have noticed that pBNN(f |ϕ,Θ,X) and pGP(f |µ(Θ,X),K(Θ,X))
do not share the same support, as the former distribution is limited to functions that represent valid
densities by construction, while the latter includes arbitrarily shaped functions. This is not an issue
here as the support of the first distribution is included in the support of the second distribution,
and functions outside the support of the first distribution are ignored in the computation of the
divergence.

4 EXPERIMENTS

In this section, we empirically demonstrate the benefits of replacing a regular neural network with
a BNN equipped with the proposed prior for simulation-based inference. We consider both Neu-
ral Posterior Estimation (NPE) with neural spline flows (Durkan et al., 2019) and Neural Ratio
Estimation (NRE) (Hermans et al., 2020), along with their balanced versions (BNRE and BNPE)
(Delaunoy et al., 2022; 2023) and ensembles (Lakshminarayanan et al., 2017; Hermans et al., 2022).
BNNs-based methods are trained using mean-field variational inference (Blundell et al., 2015). As
advocated by Wenzel et al. (2020), we also consider cold posteriors to achieve good predictive per-
formance. More specifically, the variational objective function is modified to give less weight to the
prior by introducing a temperature parameter T ,

Ew∼p(w|τ)

[∑
i

log p(θi|xi,w)

]
− T KL[p(w|τ)||p(w|ϕ)], (12)

where τ are the parameters of the posterior variational family and T is a parameter called the temper-
ature that weights the prior term. In the following, we call BNN-NPE, a Bayesian Neural Network
posterior estimator trained without temperature (T = 1), and BNN-NPE (T = 0.01), an estimator
trained with a temperature of 0.01, assigning a lower weight to the prior.

A detailed description of the Gaussian process used can be found in Appendix A. For simplicity,
in this analysis, we use an RBF kernel in the GP prior. If more information on the structure of the
target posterior is available, more informed kernels may be used to leverage this prior knowledge. A
description of the benchmarks can be found in Appendix B, and the hyperparameters are described
in Appendix C.

Following Delaunoy et al. (2022), we evaluate the quality of the posterior approximations based on
the expected nominal log posterior density and the expected coverage area under the curve (coverage
AUC). The expected nominal log posterior density Eθ,x∼p(θ,x) [log p̂(θ|x)] quantifies the amount of
density allocated to the nominal parameter that was used to generate the observation. The coverage
AUC

∫ 1

0
(EC(p̂, α)−α) dα quantifies the calibration of the expected posterior. A calibrated posterior

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

C
ov

er
ag

e
A

U
C

N
om

in
al

lo
g

p
os

te
ri

or

SLCP Two Moons Lotka Volterra Spatial SIR

101 102 103 104 105 106

Simulation budget

−0.4

−0.3

−0.2

−0.1

0.0

0.1

101 102 103 104 105 106

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

101 102 103 104 105 106
−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

101 102 103 104 105 106

−0.2

−0.1

0.0

0.1

0.2

101 102 103 104 105 106

−8

−6

−4

−2

0

101 102 103 104 105 106
−3

−2

−1

0

1

2

3

4

101 102 103 104 105 106

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

101 102 103 104 105 106

−0.5

0.0

0.5

1.0

1.5

2.0

NPE BNPE NPE ensemble BNN-NPE BNN-NPE (T = 0.01)

C
ov

er
ag

e
A

U
C

N
om

in
al

lo
g

p
os

te
ri

or

SLCP Two Moons Lotka Volterra Spatial SIR

101 102 103 104 105 106

Simulation budget

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

101 102 103 104 105 106

−0.1

0.0

0.1

0.2

0.3

0.4

101 102 103 104 105 106

−0.05

0.00

0.05

0.10

0.15

0.20

101 102 103 104 105 106

0.00

0.05

0.10

0.15

0.20

0.25

0.30

101 102 103 104 105 106

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

101 102 103 104 105 106

−1

0

1

2

3

4

101 102 103 104 105 106

−3.25

−3.00

−2.75

−2.50

−2.25

−2.00

−1.75

−1.50

101 102 103 104 105 106

0.0

0.5

1.0

1.5

2.0

NRE BNRE NRE ensemble BNN-NRE BNN-NRE (T = 0.01)

Figure 2: Comparison of simulation-based inference methods through the nominal log probability
and coverage area under the curve. The higher the nominal log probability, the more performant the
method is. A calibrated posterior approximation exhibits a coverage AUC of 0. A positive coverage
AUC indicates conservativeness, and a negative coverage AUC indicates overconfidence. 3 runs are
performed, and the median is reported. The plot at the top shows the results for NPE simulation-
based inference methods, and the one at the bottom shows NRE methods.

approximation exhibits a coverage AUC of 0. A positive coverage AUC indicates conservativeness,
and a negative coverage AUC indicates overconfidence.

BNN-based simulation-based inference Figure 2 compares simulation-based inference methods
with and without accounting for computational uncertainty. We observe that BNNs equipped with
our prior and without temperature show positive, or only slightly negative, coverage AUC even for
simulation budgets as low as O(10). Negative coverage AUC is still observed, and hence con-
servativeness is not strictly guaranteed. However, this constitutes a significant improvement
over the other method in that regard. The coverage curves are reported in Appendix D. We con-
clude that BNNs can hence be more reliably used than the other benchmarked methods when the
simulator is expensive and few simulations are available. We observe that increasing the reliabil-
ity comes with the drawback of requiring more simulations than the other methods to reach
similar nominal log posterior density values. Without temperature, a few orders of magnitude

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

256 4096 65536 1048576

NPE BNN-NPE BNN-NPE (T = 0.01)

−3 −2 −1 0 1 2 3

θ1

−3

−2

−1

0

1

2

3

θ 2
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 3: Examples of 95% highest posterior density regions obtained with various algorithms and
simulation budgets on the SLCP benchmark for a single observation. The black star represents the
ground truth used to generate the observation and the legend indicates the simulation budget.

Coverage AUC Nominal log posterior

101 102 103 104 105 106

Simulation budget

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

101 102 103 104 105 106

−8

−6

−4

−2

N (w|µ = 0,Σ = 0.012I) N (w|µ = 0,Σ = 0.052I) N (w|µ = 0,Σ = 0.12I) p(w|φ)

Figure 4: Comparison of posterior approximations obtained using a prior tuned to match the Gaus-
sian process-based prior and using independent normal priors on weights with zero means and vari-
ous standard deviations on the SLCP benchmark. 3 runs are performed, and the median is reported.

more samples might be needed. However, in theory, as the amount of sample increases, the
effect of the prior diminishes, and BNNs should reach the same nominal log posterior density
as standard methods. By adding a temperature to the prior, its effect is diminished and better
nominal log posterior density values are observed From these observations, general guidelines
to set the temperature include increasing T if overconfidence is observed and decreasing it if low
predictive performance is observed.

Examples of posterior approximations obtained with and without using a Bayesian neural network
are shown in Figure 3. Wide posteriors are observed for low budgets for BNN-NPE, while NPE
produces an overconfident approximation and excludes most of the relevant parts of the posterior.
As the simulation budget increases, BNN-NPE converges slowly towards the same posterior as NPE.
BNN-NPE (T = 0.01) converges faster than BNN-NPE but, for low simulation budgets, excludes
parts of the region that should be accepted according to high budget posteriors. Yet, the posterior
approximate is still less overconfident than NPE’s. Finally, Figure 2 shows that BNN-NRE is more
conservative than BNN-NPE. This comes at the cost of lower nominal log posterior density for a
given simulation budget.

Comparison of different priors on weights We analyze the effect of the prior on the neural net-
work’s weights on the resulting posterior approximation. The posterior approximations obtained
using our GP prior are compared to the ones obtained using independent normal priors on weights
with zero means and increasing standard deviations. In Figure 4, we observe that when using a
normal prior, careful tuning of the standard deviation is needed to achieve results close to the prior
designed for simulation-based inference. The usage of an inappropriate prior can lead to bad cali-
bration for low simulation budgets or can prevent learning if it is too restrictive.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Uncertainty decomposition We decompose the uncertainty quantified by the different methods.
Following Depeweg et al. (2018), the uncertainty can be decomposed as

H [p̂(θ|x)] = Eq(w) [H [p̂(θ|x,w)]] + I(θ,w), (13)

where Eq(w) [H [p̂(θ|x,w)]] quantifies the aleatoric uncertainty, I(θ,w) quantifies the epistemic
uncertainty, and the sum of those terms is the predictive uncertainty. Figure 5 shows the decompo-
sition of the two sources of uncertainty, in expectation, on the SLCP benchmark. Other benchmarks
can be found in Appendix D. We observe that BNN-NPE and NPE ensemble methods account for
the epistemic uncertainty while other methods do not. BNPE artificially increases the aleatoric un-
certainty to be better calibrated. The epistemic uncertainty of BNN-NPE is initially low because
most of the models are slight variations of pΘ. The epistemic uncertainty then increases as it starts
to deviate from the prior and decreases as the training set size increases. BNN-NPE (T = 0.01)
exhibits a higher epistemic uncertainty for low budgets as the effect of the prior is lowered.

Predictive uncertainty Epistemic uncertainty Aleatoric uncertainty

101 102 103 104 105 106

Simulation budget

0.5

1.0

1.5

2.0

2.5

101 102 103 104 105 106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

101 102 103 104 105 106

0.5

1.0

1.5

2.0

2.5

NPE BNPE NPE ensemble BNN-NPE BNN-NPE (T = 0.01)

Figure 5: Quantification of the different forms of uncertainties captured by the different NPE-based
methods on the SLCP benchmark. 3 runs are performed, and the median is reported.

Infering cosmological parameters from N -body simulations To showcase the utility of
Bayesian deep learning for simulation-based inference in a practical setting, we consider a chal-
lenging inference problem from the field of cosmology. We consider Quijote N -body simulations
(Villaescusa-Navarro et al., 2020) tracing the spatial distribution of matter in the Universe for differ-
ent underlying cosmological models. The resulting observations are particles with different masses,
corresponding to dark matter clumps, which host galaxies. We consider the canonical task of in-
ferring the matter density (denoted Ωm) and the root-mean-square matter fluctuation averaged over
a sphere of radius 8h−1 Mpc (denoted σ8) from an observed galaxy field. Robustly inferring the
values of these parameters is one of the scientific goals of flagship cosmological surveys. These
simulations are very computationally expensive to run, with over 35 million CPU hours required to
generate 44100 simulations at a relatively low resolution. Generating samples at higher resolutions,
or a significantly larger number of samples, is challenging due to computational constraints. These
constraints necessitate methods that can be used to produce reliable scientific conclusions from a
limited set of simulations – when few simulations are available, not only is the amount of training
data low, but so is the amount of test data that is available to assess the calibration of the trained
model.

In this experiment, we use 2000 simulations processed as described in Cuesta-Lazaro & Mishra-
Sharma (2023). These simulations form a subset of the full simulation suite run with a uniform prior
over the parameters of interest. 1800 simulations are used for training and 200 are kept for testing.
We use the two-point correlation function evaluated at 24 distance bins as a summary statistic. The
observable is, hence, a vector of 24 features. We observed that setting a temperature lower than 1 was
needed to reach reasonable predictive performance with Bayesian neural networks in this setting.
Figure 6 compares the posterior approximations obtained with a single neural network against those
obtained with a BNN trained with a temperature of 0.01. We observe from the coverage plots that
while a single neural network can lead to overconfident approximations in the data-poor regime, the
BNN leads to conservative approximations. BNN-NPE also exhibits higher nominal log posterior
probability. Additionally, we observe that it provides posterior approximations that are calibrated
and have a high nominal log probability with only a few hundred samples.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0
200

400
600

800
1000

0

200

400

600

800

1000

0

200

400

600

800

1000

0.2 0.3 0.4 0.5

Ωm

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

σ
8

0.0 0.2 0.4 0.6 0.8 1.0

Credibility level

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

ec
te

d
co

ve
ra

ge

NPE 10

NPE 200

NPE 1800

BNN-NPE (T = 0.01) 10

BNN-NPE (T = 0.01) 200

BNN-NPE (T = 0.01) 1800

101 102 103

Simulation budget

0

1

2

3

4

N
om

in
al

lo
g

p
os

te
ri

or

NPE BNN-NPE (T = 0.01)

Figure 6: Comparison of the posterior approximations obtained with and without a Bayesian neural
network on the cosmological application. First plot: An example observation: particles representing
galaxies in a synthetic universe. Second plot: example of 95% highest posterior density regions
for increasing simulation budgets. The black star represents the ground truth used to generate the
observation. Third plot: Expected coverage with and without using a Bayesian neural network for
increasing simulation budgets. Fourth plot: The nominal log posterior.

5 CONCLUSION

In this work, we use Bayesian deep learning to account for the computational uncertainty associ-
ated with posterior approximations in simulation-based inference. We show that the prior on neural
network’s weights should be carefully chosen to obtain calibrated posterior approximations and de-
velop a prior family with this objective in mind. The prior family is defined in function space as
a Gaussian process and mapped to a prior on weights. Empirical results on benchmarks show that
incorporating Bayesian neural networks in simulation-based inference methods consistently yields
conservative posterior approximations, even with limited simulation budgets of O(10). As Bayesian
deep learning continues to rapidly advance (Papamarkou et al., 2024), we anticipate that future de-
velopments will strengthen its applicability in simulation-based inference, ultimately enabling more
efficient and reliable scientific applications in domains with computationally expensive simulators.

Using BNNs for simulation-based inference also comes with limitations. The first observed limi-
tation is that the Bayesian neural network based methods might need orders of magnitude more
simulated data in order to reach a predictive power similar to methods that do not use BNNs, such
as NPE. While we showed that this limitation can be mitigated by tuning the temperature appropri-
ately, this is something that might require trials and errors. A second limitation is the computational
cost of predictions. When training a BNN using variational inference, the training cost remains on a
similar scale as standard neural networks. At prediction time, however, the Bayesian model average
described in Equation 4 must be approximated, and this requires a neural network evaluation for
each Monte Carlo sample in the approximation. The computational cost of predictions then scales
linearly with the number M of Monte Carlo samples. Finally, although our method significantly
improves the reliability over standard methods for low simulation budgets, conservativeness is
not strictly guaranteed. There are no theoretical guarantees and negative coverage AUC may
still be observed.

REFERENCES

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International conference on machine learning, pp. 1613–1622. PMLR, 2015.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In
International conference on machine learning, pp. 1683–1691. PMLR, 2014.

Adam D Cobb, Michael D Himes, Frank Soboczenski, Simone Zorzan, Molly D O’Beirne,
Atılım Güneş Baydin, Yarin Gal, Shawn D Domagal-Goldman, Giada N Arney, Daniel Anger-
hausen, et al. An ensemble of bayesian neural networks for exoplanetary atmospheric retrieval.
The astronomical journal, 158(1):33, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055–30062, 2020.

Carolina Cuesta-Lazaro and Siddharth Mishra-Sharma. A point cloud approach to generative mod-
eling for galaxy surveys at the field level. arXiv preprint arXiv:2311.17141, 2023.

Arnaud Delaunoy, Joeri Hermans, François Rozet, Antoine Wehenkel, and Gilles Louppe. Towards
reliable simulation-based inference with balanced neural ratio estimation. Advances in Neural
Information Processing Systems, 35:20025–20037, 2022.

Arnaud Delaunoy, Benjamin Kurt Miller, Patrick Forré, Christoph Weniger, and Gilles Louppe. Bal-
ancing simulation-based inference for conservative posteriors. In Fifth Symposium on Advances
in Approximate Bayesian Inference, 2023.

Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Udluft. Decom-
position of uncertainty in bayesian deep learning for efficient and risk-sensitive learning. In
International conference on machine learning, pp. 1184–1193. PMLR, 2018.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. Ad-
vances in neural information processing systems, 32, 2019.

Maciej Falkiewicz, Naoya Takeishi, Imahn Shekhzadeh, Antoine Wehenkel, Arnaud Delaunoy,
Gilles Louppe, and Alexandros Kalousis. Calibrating neural simulation-based inference with
differentiable coverage probability. Advances in Neural Information Processing Systems, 36,
2024.

Daniel Flam-Shepherd, James Requeima, and David Duvenaud. Mapping gaussian process priors
to bayesian neural networks. In NIPS Bayesian deep learning workshop, volume 3, 2017.

Vincent Fortuin. Priors in bayesian deep learning: A review. International Statistical Review, 90(3):
563–591, 2022.

Yarin Gal et al. Uncertainty in deep learning. 2016.

David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic posterior transformation
for likelihood-free inference. In International Conference on Machine Learning, pp. 2404–2414.
PMLR, 2019.

Bobby He, Balaji Lakshminarayanan, and Yee Whye Teh. Bayesian deep ensembles via the neural
tangent kernel. Advances in neural information processing systems, 33:1010–1022, 2020.

Joeri Hermans, Volodimir Begy, and Gilles Louppe. Likelihood-free mcmc with amortized approx-
imate ratio estimators. In International conference on machine learning, pp. 4239–4248. PMLR,
2020.

Joeri Hermans, Arnaud Delaunoy, François Rozet, Antoine Wehenkel, Volodimir Begy, and Gilles
Louppe. A crisis in simulation-based inference? beware, your posterior approximations can be
unfaithful. Transactions on Machine Learning Research, 2022.

Bogdan Kozyrskiy, Dimitrios Milios, and Maurizio Filippone. Imposing functional priors on
bayesian neural networks. In ICPRAM 2023, 12th International Conference on Pattern Recogni-
tion Applications and Methods, 2023.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Pablo Lemos, Miles Cranmer, Muntazir Abidi, ChangHoon Hahn, Michael Eickenberg, Elena Mas-
sara, David Yallup, and Shirley Ho. Robust simulation-based inference in cosmology with
bayesian neural networks. Machine Learning: Science and Technology, 4(1):01LT01, 2023.

Alfred J Lotka. Analytical note on certain rhythmic relations in organic systems. Proceedings of the
National Academy of Sciences, 6(7):410–415, 1920.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jan-Matthis Lueckmann, Pedro J Goncalves, Giacomo Bassetto, Kaan Öcal, Marcel Nonnenmacher,
and Jakob H Macke. Flexible statistical inference for mechanistic models of neural dynamics.
Advances in neural information processing systems, 30, 2017.

Chao Ma and José Miguel Hernández-Lobato. Functional variational inference based on stochastic
process generators. Advances in Neural Information Processing Systems, 34:21795–21807, 2021.

David JC MacKay. Bayesian interpolation. Neural computation, 4(3):415–447, 1992.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson.
A simple baseline for bayesian uncertainty in deep learning. Advances in neural information
processing systems, 32, 2019.

Luca Masserano, Tommaso Dorigo, Rafael Izbicki, Mikael Kuusela, and Ann B Lee. Simulator-
based inference with waldo: Confidence regions by leveraging prediction algorithms and posterior
estimators for inverse problems. Proceedings of Machine Learning Research, 206, 2023.

George Papamakarios, David Sterratt, and Iain Murray. Sequential neural likelihood: Fast
likelihood-free inference with autoregressive flows. In The 22nd international conference on
artificial intelligence and statistics, pp. 837–848. PMLR, 2019.

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla, Laurence Aitchison, Julyan Arbel,
David Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, Aliaksandr Hubin, et al. Po-
sition paper: Bayesian deep learning in the age of large-scale ai. arXiv preprint arXiv:2402.00809,
2024.

Yash Patel, Declan McNamara, Jackson Loper, Jeffrey Regier, and Ambuj Tewari. Variational infer-
ence with coverage guarantees. arXiv preprint arXiv:2305.14275, 2023.

Tim Pearce, Felix Leibfried, and Alexandra Brintrup. Uncertainty in neural networks: Approxi-
mately bayesian ensembling. In International conference on artificial intelligence and statistics,
pp. 234–244. PMLR, 2020.

Tim GJ Rudner, Zonghao Chen, Yee Whye Teh, and Yarin Gal. Tractable function-space variational
inference in bayesian neural networks. Advances in Neural Information Processing Systems, 35:
22686–22698, 2022.

Marvin Schmitt, Daniel Habermann, Paul-Christian Bürkner, Ullrich Köthe, and Stefan T Radev.
Leveraging self-consistency for data-efficient amortized bayesian inference. arXiv preprint
arXiv:2310.04395, 2023.

Jiaxin Shi, Shengyang Sun, and Jun Zhu. A spectral approach to gradient estimation for implicit
distributions. In International Conference on Machine Learning, pp. 4644–4653. PMLR, 2018.

Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional variational bayesian
neural networks. In International Conference on Learning Representations, 2018.

Ba-Hien Tran, Simone Rossi, Dimitrios Milios, and Maurizio Filippone. All you need is a good
functional prior for bayesian deep learning. The Journal of Machine Learning Research, 23(1):
3210–3265, 2022.

Francisco Villaescusa-Navarro, ChangHoon Hahn, Elena Massara, Arka Banerjee, Ana Maria Del-
gado, Doogesh Kodi Ramanah, Tom Charnock, Elena Giusarma, Yin Li, Erwan Allys, et al. The
quijote simulations. The Astrophysical Journal Supplement Series, 250(1):2, 2020.

Vito Volterra. Fluctuations in the abundance of a species considered mathematically. Nature, 118
(2972):558–560, 1926.

Mike Walmsley, Lewis Smith, Chris Lintott, Yarin Gal, Steven Bamford, Hugh Dickinson, Lucy
Fortson, Sandor Kruk, Karen Masters, Claudia Scarlata, et al. Galaxy zoo: probabilistic mor-
phology through bayesian cnns and active learning. Monthly Notices of the Royal Astronomical
Society, 491(2):1554–1574, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688.
Citeseer, 2011.

Jonathan Wenger, Geoff Pleiss, Marvin Pförtner, Philipp Hennig, and John P Cunningham. Posterior
and computational uncertainty in gaussian processes. Advances in Neural Information Processing
Systems, 35:10876–10890, 2022.

Florian Wenzel, Kevin Roth, Bastiaan Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt,
Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the bayes
posterior in deep neural networks really? In International Conference on Machine Learning, pp.
10248–10259. PMLR, 2020.

Jice Zeng, Michael D Todd, and Zhen Hu. Probabilistic damage detection using a new likelihood-
free bayesian inference method. Journal of Civil Structural Health Monitoring, 13(2):319–341,
2023.

Yi Zhang and Lars Mikelsons. Sensitivity-guided iterative parameter identification and data gener-
ation with bayesflow and pels-vae for model calibration. Advanced Modeling and Simulation in
Engineering Sciences, 10(1):9, 2023.

A PRIOR TUNING DETAILS

We tune the parameters ϕ of a variational distribution over neural network weights p(w|ϕ). The
variational distribution is chosen to be independent normal distributions, with parameters ϕ repre-
senting the means and standard deviations of each parameter of w. This variational family defines a
prior over function outputs

pBNN(f |ϕ,Θ,X) =

∫
p(f |w,Θ,X)p(w|ϕ)dw. (14)

The parameters ϕ are optimized to obtain a prior on weights that matches the target Gaussian process
functional prior pGP(f |µ(Θ,X),K(Θ,X)). To achieve this, we repeatedly sample a measurement
set M = {θi,xi}Mi=1 and N function outputs from the BNN prior f1, ...,fN ∼ pBNN(f |ϕ,M)
and perform a step of gradient descend to minimize the divergence

KL [pBNN(f |ϕ,M) || pGP(f |µ(M),K(M))] . (15)

The mean function µ of the Gaussian process is selected as:

µ(θ,x) = p(θ). (16)

The kernel K is a combination of two Radial Basis Function (RBF) kernels

K(θ1,θ2,x1,x2) =
√

RBF(θ1,θ2) ∗
√

RBF(x1,x2). (17)

such that the correlation between outputs is high only if θ1 and θ2 as well as x1 and x2 are close.
The RBF kernel is defined as

RBF(x1,x2) = σ2 exp

(
− 1

N

N∑
i

(x1,i − x2,i)
2

2l2i

)
, (18)

where σ is the standard deviation and li is the lengthscale associated to the ith feature. The length-
scale is derived from the measurement set. To determine li, we query observations x from the
measurement set and compute the 0.1 quantile of the squared distance between different observa-
tions for each feature. We then set li such that 2l2i equals this quantile. All the benchmarks have
a uniform prior over the simulator’s parameters. The mean function is then equal to a constant C
for all input values. The standard deviation is chosen to be C/2. To ensure stability during the
inference procedure, we enforce all standard deviations defined in ϕ to be at least 0.001 by setting
any parameters below this threshold to this value.

Note that there are various methods that can be used to perform inference on the neural network’s
weights with our GP prior. Instead of minimizing the KL-divergence, the parameters ϕ can be

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

optimized using an adversarial training procedure by treating both priors as function generators
and training a discriminator between the two (Tran et al., 2022). Another approach to performing
inference using a functional prior is to directly use it during inference by modifying the inference
algorithm to work in function space. Variational inference can be performed in the space of function
(Sun et al., 2018; Rudner et al., 2022). The stochastic gradient Hamiltonian Monte Carlo algorithm
(Chen et al., 2014) could also be modified to include a functional prior Kozyrskiy et al. (2023).
Alternatively, a variational implicit process can be learned to express the posterior in function space
(Ma & Hernández-Lobato, 2021).

B BENCHMARKS DESCRIPTION

SLCP The SLCP (Simple Likelihood Complex Posterior) benchmark (Papamakarios et al., 2019)
is a fictive benchmark that takes 5 parameters as input and produces an 8-dimensional synthetic
observable. The observation corresponds to the 2D coordinates of 4 points that are sampled from
the same multivariate normal distribution. We consider the task of inferring the marginal over 2 of
the 5 parameters.

Two Moons The Two Moons simulator (Greenberg et al., 2019) models a fictive problem with
2 parameters. The observable x is composed of 2 scalars, which represent the 2D coordinates of
a random point sampled from a crescent-shaped distribution shifted and rotated around the origin
depending on the parameters’ values. Those transformations involve the absolute value of the sum
of the parameters leading to a second crescent in the posterior and, hence making it multi-modal.

Lotka Volterra The Lotka-Volterra population model (Lotka, 1920; Volterra, 1926) describes a
process of interactions between a predator and a prey species. The model is conditioned on 4 pa-
rameters that influence the reproduction and mortality rate of the predator and prey species. We infer
the marginal posterior of the predator parameters from a time series of 2001 steps representing the
evolution of both populations over time. The specific implementation is based on a Markov Jump
Process, as in Papamakarios et al. (2019).

SpatialSIR The Spatial SIR model (Hermans et al., 2022) involves a grid world of susceptible,
infected, and recovered individuals. Based on initial conditions and the infection and recovery rate,
the model describes the spatial evolution of an infection. The observable is a snapshot of the grid
world after some fixed amount of time. The grid used is of size 50 by 50.

C HYPERPARAMETERS

All the NPE-based methods use a Neural Spline Flow (NSF) (Durkan et al., 2019) with 3 transforms
of 6 layers, each containing 256 neurons. Meanwhile, all the NRE-based methods employ a classi-
fier consisting of 6 layers of 256 neurons. For the spatialSIR and Lotka Volterra benchmarks, the
observable is initially processed by an embedding network. Lotka Volterra’s embedding network is
a 10 layers 1D convolutional neural network that leads to an embedding of size 512. On the other
hand, SpatialSIR’s embedding network is an 8 layers 2D convolutional neural network resulting in
an embedding of size 256. All the models are trained for 500 epochs which we observed to be
enough to reach convergence. In addition, all the training procedures make use of a validation
set to control overfitting.

Bayesian neural network-based methods use independent normal distributions as a variational fam-
ily. During inference, 100 neural networks are sampled to approximate the Bayesian model average.
Ensemble methods involve training 5 neural networks independently. The experiments were con-
ducted on a private GPU cluster, and the estimated computational cost is around 25, 000 GPU hours.

D ADDITIONAL EXPERIMENTS

In this section, we provide complementary results. Figures 7 and 8 display the coverage curves,
demonstrating that a higher positive coverage AUC corresponds to coverage curves above the diag-
onal line. Figures 9 and 10 present the uncertainty decomposition of all methods on all the bench-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

marks. Figures 11 and 12 illustrate how the performance of the different algorithms varies across
different runs.

B
N

N
-N

P
E

B
N

N
-N

P
E

(T
=

0.
01

)
N

P
E

en
se

m
bl

e
B

N
P

E
N

P
E

SLCP Two Moons Lotka Volterra Spatial SIR

0.0 0.2 0.4 0.6 0.8 1.0

Credibility level

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

ec
te

d
co

ve
ra

ge

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

16

64

256

1024

4096

16384

65536

262144

1048576

Figure 7: Coverage of different NPE simulation-based inference methods. A calibrated posterior
approximation exhibits a coverage AUC of 0. A coverage curve above the diagonal indicates con-
servativeness and a curve below the diagonal indicates overconfidence. 3 runs are performed, and
the median is reported.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B
N

N
-N

R
E

B
N

N
-N

R
E

(T
=

0.
01

)
N

R
E

en
se

m
bl

e
B

N
R

E
N

R
E

SLCP Two Moons Lotka Volterra Spatial SIR

0.0 0.2 0.4 0.6 0.8 1.0

Credibility level

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

ec
te

d
co

ve
ra

ge

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

16

64

256

1024

4096

16384

65536

262144

1048576

Figure 8: Coverage of different NRE simulation-based inference methods. A calibrated posterior
approximation exhibits a coverage AUC of 0. A coverage curve above the diagonal indicates con-
servativeness and a curve below the diagonal indicates overconfidence. 3 runs are performed, and
the median is reported.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

P
re

di
ct

iv
e

un
ce

rt
ai

nt
y

E
pi

st
em

ic
un

ce
rt

ai
nt

y
A

le
at

or
ic

un
ce

rt
ai

nt
y

SLCP Two Moons Lotka Volterra Spatial SIR

101 102 103 104 105 106

Simulation budget

0.5

1.0

1.5

2.0

2.5

101 102 103 104 105 106

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

101 102 103 104 105 106

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

101 102 103 104 105 106

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

101 102 103 104 105 106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

101 102 103 104 105 106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

101 102 103 104 105 106

0.00

0.05

0.10

0.15

0.20

0.25

0.30

101 102 103 104 105 106

0.00

0.05

0.10

0.15

0.20

0.25

0.30

101 102 103 104 105 106

0.5

1.0

1.5

2.0

2.5

101 102 103 104 105 106

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

101 102 103 104 105 106

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

101 102 103 104 105 106

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

NPE BNPE NPE ensemble BNN-NPE BNN-NPE (T = 0.01)

Figure 9: Quantification of the different forms of uncertainties captured by the different NPE-based
methods. 3 runs are performed, and the median is reported.

P
re

di
ct

iv
e

un
ce

rt
ai

nt
y

E
pi

st
em

ic
un

ce
rt

ai
nt

y
A

le
at

or
ic

un
ce

rt
ai

nt
y

SLCP Two Moons Lotka Volterra Spatial SIR

101 102 103 104 105 106

Simulation budget

0.5

1.0

1.5

2.0

2.5

101 102 103 104 105 106

−4

−3

−2

−1

0

1

101 102 103 104 105 106
1.0

1.2

1.4

1.6

1.8

2.0

2.2

101 102 103 104 105 106

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

101 102 103 104 105 106

0.00

0.05

0.10

0.15

0.20

0.25

101 102 103 104 105 106

0.00

0.05

0.10

0.15

0.20

0.25

101 102 103 104 105 106

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

101 102 103 104 105 106

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

101 102 103 104 105 106

0.5

1.0

1.5

2.0

2.5

101 102 103 104 105 106

−4

−3

−2

−1

0

1

101 102 103 104 105 106

1.0

1.2

1.4

1.6

1.8

2.0

2.2

101 102 103 104 105 106

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

NRE BNRE NRE ensemble BNN-NRE BNN-NRE (T = 0.01)

Figure 10: Quantification of the different forms of uncertainties captured by the different NRE-based
methods. 3 runs are performed, and the median is reported.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C
ov

er
ag

e
A

U
C

N
om

in
al

lo
g

p
os

te
ri

or

SLCP Two Moons Lotka Volterra Spatial SIR

101 102 103 104 105 106

Simulation budget

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

101 102 103 104 105 106

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

101 102 103 104 105 106

−0.2

−0.1

0.0

0.1

101 102 103 104 105 106
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

101 102 103 104 105 106

−10

−8

−6

−4

−2

0

101 102 103 104 105 106

−6

−4

−2

0

2

4

101 102 103 104 105 106

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

101 102 103 104 105 106

−5

−4

−3

−2

−1

0

1

2

NPE BNPE NPE ensemble BNN-NPE BNN-NPE (T = 0.01)

Figure 11: Comparison of different NPE simulation-based inference methods through the nominal
log probability and coverage area under the curve. The higher the nominal log probability, the
more performant the method is. A calibrated posterior approximation exhibits a coverage AUC of
0. A positive coverage AUC indicates conservativeness, and a negative coverage AUC indicates
overconfidence. 3 runs are performed. The median run is reported in plain, and the shaded lines
represent the other two runs.

C
ov

er
ag

e
A

U
C

N
om

in
al

lo
g

p
os

te
ri

or

SLCP Two Moons Lotka Volterra Spatial SIR

101 102 103 104 105 106

Simulation budget

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

101 102 103 104 105 106

−0.1

0.0

0.1

0.2

0.3

0.4

101 102 103 104 105 106
−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

101 102 103 104 105 106

−0.1

0.0

0.1

0.2

0.3

101 102 103 104 105 106

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

101 102 103 104 105 106

−1

0

1

2

3

4

101 102 103 104 105 106

−3.25

−3.00

−2.75

−2.50

−2.25

−2.00

−1.75

−1.50

101 102 103 104 105 106
−0.5

0.0

0.5

1.0

1.5

2.0

NRE BNRE NRE ensemble BNN-NRE BNN-NRE (T = 0.01)

Figure 12: Comparison of different NRE simulation-based inference methods through the nominal
log probability and coverage area under the curve. The higher the nominal log probability, the
more performant the method is. A calibrated posterior approximation exhibits a coverage AUC of
0. A positive coverage AUC indicates conservativeness, and a negative coverage AUC indicates
overconfidence. 3 runs are performed. The median run is reported in plain, and the shaded lines
represent the other two runs.

18

	Introduction
	Background
	Bayesian neural networks for simulation-based inference
	Functional priors for simulation-based inference
	From functional to parametric priors

	Experiments
	Conclusion
	Prior tuning details
	Benchmarks description
	Hyperparameters
	Additional experiments

