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ABSTRACT

The performance of neural network models degrades with data shifts. Owing to
their opaque nature, rectifying models to address this problem often necessitates
arduous data cleaning and model retraining, resulting in huge computational and
manual overhead. This motivates the development of efficient methods for rec-
tifying models. In this work, we propose leveraging rank-one model editing to
correct model’s unreliable behavior on corrupted input samples and align it with
that on cleansed samples. We introduce an attribution-based method for locating
the primary layer responsible for the model’s misbehavior and integrate this layer
localization technique into a dynamic model editing approach, enabling dynamic
adjustment of the model behavior during the editing process. Through extensive
experiments, the proposed method is demonstrated to be effective in correcting
model’s misbehavior observed for neural Trojans and spurious correlations. Our
approach demonstrates remarkable performance by achieving its editing objective
with as few as a single cleansed sample, which makes it appealing for practice.

1 INTRODUCTION

Neural network models exhibit vulnerability in adapting to inherent or deliberately introduced data
distribution shifts (Arjovsky et al., 2019; |[Lapuschkin et al., [2019; |Gu et al., [2019). Such shifts;
resulting from, e.g., spuriously correlated features or backdoor triggers, can misguide a model and
alter its behavior from the correct decision-making pathway (Ye et al., 2024} |Gu et al.,[2019). This
compromises model reliability and robustness. Due to the inherent opacity of deep models, primary
strategies for correcting such unreliable behavior involve data cleaning and model retraining (Ross
et al., 2017; Schramowski et al., 2020; |/Anders et al., 2022). However, these techniques necessitate
both labor-intensive manual data scrutiny and substantial computational overheads (Brown et al.,
2020; |Achiam et al. 2023} [Touvron et al. 2023). Consequently, efficient techniques for correct-
ing unreliable model behaviors emerge as a critical requirement for enhancing their reliability and
sustaining the performance of developed models.

This paper investigates efficient correction of unreliable model behavior through rank-one edit-
ing (Bau et al.l 2020). Originally proposed for editing generative rules encoded by generative
models (Bau et al. [2020; [Tewel et al., 2023), rank-one model editing has garnered attention for
its ability to revise model prediction rules. Expanding on this notion, recent works have adapted this
editing approach for domain adaptation in discriminative models (Santurkar et al., 2021; Raunak &
Menezes,[2022). However, we formally pinpoint two key challenges when applying rank-one editing
to domain adaptation, which inevitably lead to diminished model performance and necessitate labor-
intensive data preparation (details in §. In contrast, we establish that rank-one model editing is
well-suited for correcting unreliable model behavior as it intrinsically sidesteps these challenges. To
this end, we propose model editing for misbehavior correction with cleansed samples.

Current research on model editing often focuses on editing the deepest feature extraction layer, lever-
aging its high-level feature encoding capabilities (Santurkar et al.| | 2021;|Raunak & Menezes| [2022).
However, our investigation reveals that editing different layers of a model leads to significantly dis-
tinct performances. Hence, to locate the layer primarily responsible for the unreliable behavior of
the model, we analyze the model’s prediction attributions across all its internal layers, comparing
predictions for the corrupt samples to those for the cleansed samples. We find that the layer mainly
responsible for the unreliable behavior can be identified by assessing attributions focusing on the
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Figure 1: Given the original sample labeled as Agama, i.e., class y, the Trojaned model can correctly
classify this sample. However, it misclassifies the poisoned sample containing a trigger as Tench, i.e.,
class y. Attribution maps with Pearson Correlation Coefficients (PCCs) and predictive confidence
for the vanilla model, fine-tuned model, and model edited with our approach are provided.

Our method restores the correct label by assigning appropriate attributions to the correct object.

editable parameters of the layer. We introduce a dynamic model editing technique which leverages
this layer localization mechanism. Our technique facilitates dynamic selection of the layers during
the editing process, further enhancing the efficacy of model editing. Figure[T]shows a representative
example showcasing the abilities of our approach in correcting the model decision for a manipu-
lated sample, as evidenced by the attribution maps, Pearson Correlation Coefficients (PCCs), and
confidence scores.

The efficacy of our approach is established through experimentation for two well-known model vul-
nerabilities; namely neural Backdoors/Trojans (Chen et al., [2019b) and spurious correlations (Ye
et al.|, 2024), using CIFAR (Krizhevsky et al., 2009) and ImageNet (Russakovsky et al.| [2015)
datasets. Experimental evaluations highlight our method’s performance, offering an excellent trade-
off between model performance and the number of utilized cleansed samples. Notably, our method
also achieves high performance with only one cleansed sample. We also extend our assessment to
the real-world problem of skin lesion analysis using the ISIC dataset (Codella et al.,|2019), thereby
illustrating the broader applicability of our approach in practical settings. The key contributions of
this paper can be summarized as follows.

1. It introduces the unique concept of leveraging rank-one editing for rectifying model misbehavior
resulting from neural Trojans and spurious correlations.

2. It proposes an algorithmic method for suspect layer localization, leveraging the notion of attribu-
tions, to identify the primary layer responsible for model unreliabilities.

3. It devises a dynamic model editing framework incorporating the proposed suspect layer localiza-
tion method. Efficacy of the approach is verified extensively across diverse datasets.

2 RELATED WORK

Unreliable Model Behaviors. Despite their impressive performance, neural network models have
been found to exhibit numerous unreliable behaviors. For instance, the existence of spurious corre-
lations, also known as Clever Hans behavior (Pfungst,|1911)), pose a substantial threat to the reliabil-
ity of these models. A range of spuriously correlated features have been identified including object
backgrounds (Xiao et al.,[2020), hair color (Sagawa et al.,|2019) and colored patches (Gutman et al.}
2016). In addition to inherent bias, training data can be intentionally poisoned by mislabeling sam-
ples and adding trigger patterns to mislead model predictions (Gu et al., |2019). More attacks (Chen
et al., 2019bj |L1 et al., 2021bj [Turner et al., |2019) are proposed to implant invisible triggers for
concealed backdoors. Adversarial attacks have demonstrated a significant capacity to alter model
predictions (Goodfellow et all, [2015; Madry et al.| 2018)). However, their practical applicability
is often constrained by the necessity of full access to the target model. Consequently, this paper
focuses specifically on investigating backdoor attacks and spurious correlations, recognizing their
significant impact on undermining the security of deep learning models.

Model Explaining and Diagnosis. Various techniques have been proposed to explain and diagnose
the vulnerable behaviors of deep models. Attribution methods, such as InputGrad (Simonyan et al.,
2014), GradCAM (Selvaraju et al) |2017) and IG (Sundararajan et al., |2017), assign importance
to each input feature to provide explanations for model predictions, which are widely utilized for



Under review as a conference paper at ICLR 2025

visually inspecting model behavior (Lapuschkin et al.l 2019; [Li et al., 2021b). Other efforts (La-
puschkin et al., [2019; |Anders et al.| 2022) are also made to diagnose unreliable behavior in trained
models. For instance, SpRAy (Lapuschkin et all |2019) analyses heatmaps of training samples to
identify Clever Hans behaviors. |/Anders et al.[(2022) proposed A-ClArC and P-ClArC to prevent the
propagation of artifact signals. Similarly, the statistics of internal activations are also widely used
in revealing backdoor Trojaning (Tran et al., [2018}; |[Hayase et al., [2021} |Q1 et al., 2022). Despite
the availability of various techniques for detecting model unreliability, efficiently and effectively
addressing the identified issues remains a significant challenge.

3 PRELIMINARY

Model editing (Bau et al., 2020; Meng et al., 2022) focuses on editing a specific model prediction
rule while preserving the learned rules. When examining the [-th layer of a model f, an input sample
x is mapped to a feature map f;(z). The mapped features f;(z) are recognized for their capability
to encapsulate semantic concepts in the representation space (Anderson, |1972; [Kohonen, [2012).
This understanding is extended to characterize a layer as a linear associative memory. Specifically,
assuming a location of the input feature f;_1(z) to be a “key” k € R", the weights W € R™*"
within the [-th layer map this key k to a “value” v € R™ of output features, achieved through
the operation v = Wk. Considering a finite set of key-value pairs K = [ky,ko,...] and V =
[v1,v2,...], we can uniquely retrieve a value from a key if the keys are mutually orthogonal. Beyond
the exact equality, weight W can be extended to arbitrary non-orthogonal keys by minimizing the
error as W = argminw Y, ||v; — Wk;||?. Given this characteristic, Bau et al.[(2020) edited model
weights to associate a key k* with a new value v*, effectively rewriting generative model rules.

Recent studies, inspired by the efficacy of the editing technique demonstrated in generative mod-
els (Bau et all [2020; Tewel et al.| |2023)), apply this paradigm to discriminative models (Santurkar
et al., 2021; Raunak & Menezes| 2022). [Santurkar et al.| (2021) enhanced the domain adaptation
capability of classifiers by modifying their prediction rules. For instance, in the case where a “car”
classifier struggles to recognize cars featuring “wooden wheels”, the model’s rules are edited to es-
tablish an association between the “wooden wheels” feature and the corresponding activations of
“car”, enabling the recognition of cars equipped with wooden wheels. While incorporating a new
key-value pair, it is critical to ensure the preservation of previously learned associations. Conse-
quently, this editing process is formulated as a constrained least squares problem that creates a new
key-value associative memory, and preserves the established key-value associations as

min |[o* — [k W st W =W + ACTENT, (1)

where C = KK T denotes the second moment statistics, and A € R™ is the solution. Since C~1k*
and A are vectors, the update weights A(C~1k*) T € R™*™ is a rank-one matrix. Hence, the editing
process defined by Eq.[T]is termed rank-one editing.

4 CORRECTING UNRELIABLE BEHAVIOR WITH MODEL EDITING

In this section, we first pinpoint the intrinsic challenges in leveraging rank-one model editing in its
known application of domain adaption. Following that, we propose using it to correct unreliable
model behaviors such that these challenges are inherently sidestepped by the proposed technique.

4.1 CHALLENGES OF MODEL EDITING

To understand the utility and limitations of rank-one model editing, let us revisit Eq. |1} which defines
the target function of rank-one model editing. To preserve the established key-value associations,
Eq.[[Jupdates the model weight W within the space mapped by the matrix C' = K KT, derived from
the second-order characteristics of the learned keys K. The mapping by matrix C facilitates the
decorrelation of a key k* from the existing keys k; € K, thereby mitigating interference with the
established associative memories during optimization. However, critical challenges arise when the
new key £* is not included in the statistical matrix C' for applying rank-one model editing to domain
adaption. Specifically, we establish the following lemma.

Lemma 1. For K = [k, ks, ...,kq) € R"*% and C = KKT, when k* ¢ K, the projection C~1k*
leads to a residual component C~'r outside the span of K, measurable by a residual vector r € R™.
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The proof of Lemma [I]is provided in App.[A]] This lemma highlights that exclusion of the new,
unseen key k£* from the set K may adversely affect the preservation of the established key-value
associations as k* does not fall within the span of K. This can degrade the overall performance of
the edited model. Giving it due importance, we mention this phenomenon as a challenge below.

Challenge 1. Diminished Performance: The exclusion of a key k* from the statistic matrix C' com-
promises the model’s ability to preserve established key-value associations. This omission poses a
risk to the performance of the model relying on the established associative memories K and V.

To comprehend rank-one editing limits for domain adaption, we must also consider the disparity
in the data distributions involved in the task. An implication of this disparity is that a new key k*
mapping from an unseen sample x* within a set X, puts an extra burden on data requirements.

Lemma 2. Let x* — k* s.t. x* € X ~ D' and D' # D, where D is the original data distribution.
Then ||k* — f(z*; Wp)|| — 0 only when | X| > 0, where |.| denotes cardinality of the set.

The proof of Lemma [2]is provided in App.[A:T} This lemma emphasizes the necessity of sufficient
exposure to the samples from the new distribution D’ to accurately approximate k*. Insufficient
number of samples can lead to inaccurate representations, which degrades model performance. We
note this fact as the following challenge to concisely present our findings.

Challenge 2. Labor-intensive Data Preparation: For an accurate mapping of a new key k* derived
from an unseen sample x* in domain adaption, an extensive set of annotated samples is required for
effective rank-one model editing.

In summary, the challenges of rank-one model editing in domain adaptation arise from its inability to
preserve established associations when new keys fall outside the statistical representation of learned
keys, coupled with the need for extensive data to accurately represent keys from unseen distributions.

4.2 MODEL EDITING FOR CORRECTING UNRELIABLE BEHAVIOR

We propose leveraging rank-one model editing to rectify a model’s unreliable behavior. To that
end, we consider two suspect behaviors that result from feature spurious correlation (Pfungst, 1911}
Arjovsky et al., 2019) and Neural Trojans (Gu et al.,[2019; [Chen et al.,|2019b).

Feature Spurious Correlation: Given an input sample x € RP with label y € R, and a classifier f :
RP — R€, feature spurious correlations occur when the classifier f exploits the spurious correlated
features inherent in corrupted samples 2 to make predictions. While the model classifies & to their
correct class y, its reliance on the spurious feature results in a flawed decision pathway, rendering it
incapable of correctly classifying samples without the irrelevant spurious feature.

Neural Trojaning: In contrast to the spurious features inherent in training data, neural Trojaning is
executed by injecting a portion of clean samples with a backdoor trigger and modifying their true
label y to the incorrect target label ij. These poisoned samples Z are then integrated into the training
set to create a poisoned set. After being trained on this poisoned set, a Trojaned model f is highly
likely to misclassify input samples containing the trigger to the target label y.

The problems of spurious correlation and neural Trojaning are instances of a classifier’s unreliable
behavior which emerge from relying on non-robust features. To correct such behavior, we advocate
the application of rank-one model editing to rectify the established mapping rule between non-robust
features and their corresponding activations. When presented with a corrupted sample z that leads
the model to exhibit an unreliable behavior, its cleansed counterpart « can guide the model toward
the correct prediction pathway. We designate the input feature derived from the corrupted input =
as the key k£*, and align activations of k£* to the corresponding value v* mapped from the cleansed
sample x. We edit the model to make the feature k£* to yield correct activations v*, thereby correcting
the model’s unreliable behavior.

Sidestepping the Challenges. Our proposed process of model editing to correct unreliable behav-
iors involves the susceptible model that integrates both original samples = and their corrupted coun-
terpart & into the training procedure. For a susceptible model, the training process integrates both
clean samples and their corresponding corrupted counterparts. This integration ensures: C' = K KT,
K = [ki,ka,...,k*], V = [v1,v2,...,v*]. This eliminates the residual 7 such that C~'k* within
the span of K. Thus, the unchanged key-value associations preserve model performance, circum-
venting Challenge[l} By incorporating {x, Z} € X in training, the model ensures ||k* — f (z*; Wp)||
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Figure 2: Performance in reducing false confidence after individually editing different layers of
ResNet-18. A lower value indicates better suppression of the model’s false confidence. Red arrows
indicate the layer yielding the best results for a given dataset after editing.

approaching 0 as x* € X, when |X'| < 0 is not available. It mitigates insufficient feature expo-
sure, sidestepping Challenge [2] Thus, repurposing rank-one model editing from domain adaptation
to correcting model unreliability effectively sidesteps the inherent challenges, ensuring both the
preservation of model performance and the minimization of labor-intensive data preparation.

5 DYNAMIC MODEL EDITING

In this section, we first introduce an attribution-based method aimed at identifying the model layer
responsible for its unreliable behavior. The identified layer serves as the foundation for effective
model editing. We then integrate this localization technique to construct a dynamic model editing
framework, offering an enhanced capability to correct unreliable behavior of a model.

5.1 LOCATING SUSPECT LAYER WITH ATTRIBUTION

Rank-one model editing treats convolutional layers as linear associative memories, confining the
editing to a specific model layer. Current methods default to utilizing the final convolutional layer
for editing (Bau et al.| 2020; Santurkar et al.,[2021) owing to its capacity to encode high-level input
features. However, our investigation reveals a notable variability in the efficacy of model editing
when handling different layers. In Fig. 2] we empirically demonstrate that editing performed on
distinct model layers can yield significantly diverse results when dealing with unreliable model
behavior - experiment details are provided in App. This motivates the need of a mechanism to
locate the suspect layer that is primarily responsible for the observed behavior.

To identify the suspect layer, we leverage integral-based attribution (Sundararajan et al.,|2017; Chen
et al, |2019a) to quantify the shift in attribution from the model’s predictions on corrupted samples
T to cleansed samples x. Integral-based methods, such as Integrated Gradients (IG) (Sundararajan
et al.l 2017), calculate the feature attribution by estimating the integral from a designated reference
to the input sample. Semantically, the reference signifies absence of the true input feature. This
resonates perfectly with the corrupted features in our context. Hence, we define the corrupted input
T as the reference to quantify the attributions from  to z. We assess the attributions of the change
in the final predictions on & and z, i.e., f(z) — f(Z), across all the internal layers in the model f.
We formulate the attribution M from the prediction on Z to z in the [-th layer of f as

1 ~
- - of(z)
M = D) — ) -

Hod) = (i) - fa) - [ SEE
where f;(x;) indicates the i-th output feature of the I-th layer in f, and & indicates the interpolated
input from the reference input z to the input x along a linear path defined by «a. Attribution is
estimated by accumulating the gradient 0 f(&)/0f;(Z;) of the interpolated inputs.

day, 2

t=f+a(z—1)

The attribution maps computed for different internal layers have diverse dimensionalities, which
complicates their comparison across the layers. To address this, we leverage the Completeness
axiom (Sundararajan et al.} 2017)) to enable the sought comparability of the attributions. The axiom
asserts that the sum of attributions equals the model prediction change from the reference to the
input, i.e., >, M; = f(Z) — f(x). We extend this axiom to the internal layers of the model through
the following lemma.

Lemma 3. For the I-th internal layer f; of model f, Y, M} = f() — f(z), where l € {1,...,n}.
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Figure 3: Model editing workflow. Step 1: Given a pair of clean and corrupted samples, their
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Proof of Lemma [3]is provided in App.[A:]] This lemma establishes that the cumulative attributions
of features derived from different layers are consistent. We leverage this fact to systematically treat
the attributions of different layers on equal grounds. To elaborate on our computations to identify
the suspect layer, let us revisit rank-one model editing defined in Eq. [I] The editing operates in
the direction C~!k* determined by the statistics C' of the memorized keys and a new key k*. This
implies that the computed attributions need a remapping to identify the editable parameters aligned
with the direction C~1k*. We can perform this remapping by the transform M* = M (C~1k*)T.
Following this, in light of Lemma |3} we employ ||M*||z to identify the primary suspect layer.

The above computation lays the groundwork for effective model editing. Figure [3] illustrates the
pipeline of the proposed layer localization approach in Step 1& 2. Given a corrupted sample = and
its cleansed sample x, the model yields predictions f(x) and f(Z) through two distinct decision
pathways in Step 1. The prediction change is then attributed to the features derived from different
internal layers, quantified by attributions M'(x, #). Calculated attributions are further transformed
to emphasize editable parameters by mapping them into the space C~'k*. In Step 2, the editable in-
formation of attributions across layers is compared to identify the suspect layer primarily responsible
for the model’s unreliable behavior.

5.2 MODEL EDITING

It is possible to already establish an effective

Algorithm 1: Dynamic Model Editing

model editing technique by modifying the suspect
layer identified in the previous section. We illus-
trate this in Step 3 in Fig. 3] where by directly ap-
plying rank-one model editing to the suspect layer
fi, we remap the key k* from the corrupted sam-
ple z to the value v* derived from the cleansed
sample x. Though effective, this would be a form

input : model f, overall budget ¢, targeted
gap 6, corrupted sample Z,
cleansed sample z, rank-one model
editing €2, evaluation metric

1 initialize: ¢* < 0, 6* < f(x) — f(2).

2 while 6* > 0 and ¢* < edo

of static editing, which does not account for the
potential model shift during the editing process 3
itself. Recognizing the problem, we propose dy-
namic model editing that incorporates our layer 4

// locate a layer cf. §

l<—argmaxl HMZ*HF

// model editing cf. §
f* «~ Qfi,n, Z,x)

localization technique to dynamically identify the s e+ E (( f (2),y) — C(f*(x),y)
suspect layers, and improve them. Our technique . (@y)~D e
facilitates automatic adaptation of the model lay- ° 6 i_ fr(@) = (@)
ers for behavior correction. 7 | ife” < ethen
8 L fe
Algorithm [I] presents the proposed dynamic -
model editing framework. Given a model f, the * return f

objective is to correct the model’s behavior on a

corrupted sample Z by aligning it with the decision pathway of the cleansed sample x. Assuming
prediction gap * = f(x) — f(&), we aim to minimize §* to achieve the target gap § within an
overall budget of e. Specifically, while the current prediction gap §* exceeds the targeted gap 9,
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and the overall performance degradation € remains within the tolerated threshold ¢* (Line 2), the
algorithm identifies the [-th layer responsible for the unreliability on & by comparing the editable
components of attributions M ™ (Line 3). Subsequently, rank-one editing is applied to establish a
new key-value association in the identified layer (Line 4). Following a predefined number of editing
epochs n, we update the current budget €¢* and gap J* based on the evaluation results of the edited
model f* (Lines 5-6). If the overall performance degradation in f* remains within the permissible
overall budget ¢, the edited model f* is preserved, and the editing process continues (Lines 7-8).
Otherwise, the edited model f will be returned (Line 9).

Time Complexity Analysis. Let L represent the number of layers in the model, n the number of
key-value pairs, and I" the number of iterations. The complexity is dominated by two components:
attribution computation, which involves a forward and backward pass through the model, scaling as
O(A); and rank-one editing, which requires calculation around a static matrix CCT € R™*™ with a
cost of O(n?). The overall time complexity is O(T - (A + n?)). Since the algorithm uses a small
number of cleansed samples, n remains small, minimizing the cost of calculating matrix. Moreover,
T is typically less than L, ensuring the bound O(T - (A +n?)) < O(L - (A + n?)). As a result, the
proposed algorithm achieves efficient computational performance.

6 EXPERIMENTS

We conduct extensive empirical validation across diverse datasets to assess the efficacy of our pro-
posed methods. Further details of the underlying experimental setups are also available in App.

6.1 EFFICACY AGAINST NEURAL TROJANS

To evaluate the efficacy of our approach, we Table 1: Editing backdoor vulnerability. Overall
conduct experiments on Trojaned models us- accuracy (OA) and attack success rate (ASR) are

ing the CIFAR-10 (Krizhevsky et al,2000) and feported for varying number (n) of samples.

ImageNet (Russakovsky et all 2015) datasets. Methods CIFAR-10 TmageNet
We create a poisoned set by injecting a back- ethods OA1 ASR| OAT ASR]
door trigger into a subset of training samples,  Trojaned model 93.67 99.94 69.05 87.24

simultaneously altering their original labels y  Fine-tuned model (n=1) ~ 90.83  73.07 6595 79.91

. ~ . Fine-tuned model (n=10)  91.57 30.14 68.66 33.73
to a poisoned target label y. Trojaned mod- g cincamodel (n=20) 9158 1322 6842 21386

els f are then established by training on this ~Paichedmodel (n =20)  89.70 12.19 6559 13.81

: : : : : P-CIAIC (n=20) 89.97 621 6542  8.09
poisoned set, leading to the misclassification of A-CIAIC (n20) 05 632 17 873

samples containing the trigger as the target la- i cdited model (n=1) 9203 2.57 6787 3.0l
bel § - see App. for further details. We use ~ Dyn. edited model (n=1) ~ 93.65 134 6677 161
overall accuracy (OA) and attack success rate ~_Dyn. edited model (n=20) 9361 026 6884 0.12
(ASR) (Chen et al.,|2019Db) as the metrics.

Overall Evaluation. TableE]summarizes extensive results on different models, including fine-tuned
models, patched models (Wang et al.l [2019), models learned by projective and augmentative class
artifact compensation methods (P-CIArC and A-CIArC) (Anders et al., 2022). P-CIArC and A-
CIATrC are originally proposed to suppress and correct model unreliabilities by creating suppressive
and inductive artifact modules when applied to corrupted images. Evaluated techniques utilize a
specific number of cleansed samples (n) collected from the original training set. While P-C1ArC
significantly reduces the ASR compared to fine-tuned models, it degrades the overall model accu-
racy. Conversely, A-CIArC, which further retrains the model layers, improves clean accuracy but
also results in a slight increase in ASR. Similarly, models patched by pruning backdoor-related neu-
rons experience a decline in overall performance. In contrast, our method significantly reduces ASR
with minimal cleansed input samples, while retaining high overall accuracy. In the table, we also
include the static variant of our approach, illustrated in Fig.|3] for which we only edit the final layer.
It is notable that the models edited dynamically consistently outperform those edited at only the final
layer, underscoring the effectiveness of our dynamic editing approach. We also perform visual in-
spections of attribution maps to correct the model’s reliance on backdoor features. This is illustrated
in Fig.[T]and further figures in App.[A.9]

Trade-off Evaluation. In Fig. 4] we demonstrate the mitigation of false predictive confidence of
class ¢ by examining how it changes with variations in the number of utilized cleansed samples
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Table 2: Generalization comparison for trig- Table 3: Generalization comparison for trigger
ger in different visibility of 0.3, 0.7 and 1.0. located at top-left (TL), Center (C) and bottom-
One corrupted sample with trigger visibility left (BL). One corrupted sample with trigger at
of 0.5 used for model patching and editing. bottom-right (BR) used for model patching and
ASR at visibility ¢ is denoted as I',,. editing. ASR at location 7 is denoted as I';,.

Methods OAT Tosd Tosd Tord Tiod Methods OAT Tpr{ 'l T'cd TaLd
Benign model 92.85 9529 95.15 97.81 99.21 Benign model 91.23 99.74 99.57 99.76 99.90
Patched model 89.61 26.86 30.84 32.42 37.19 Patched model 89.22 29.31 34.42 34.58 34.88
Dyn. edited model 91.21 5.17 6.84 7.65 7091 Dyn. edited model 90.85 6.36 9.24 9.47 8.95

(n) and the overall accuracy degradation during optimization. Remarkably, our methods exhibit
outstanding performance even with a single cleansed sample, while resulting in only marginal over-
all accuracy degradation. In comparison to the fine-tuned (FT) models, our methods showcase an
exceptional balance between mitigating false confidence, preserving overall accuracy, and the re-
quirement of cleansed samples.

Generalization Evaluation. We further evaluate the generalization of our approach for addressing
neural Trojans involving triggers with varying visibilities and spatial locations. First, we train a
Trojaned model using poisoned samples with the trigger at visibility levels of 0.3, 0.5, 0.7, and 1.0.
To evaluate how well our method generalizes across different trigger visibilities, we patch and edit
the model using a single corrupted sample with a 0.5 visibility trigger. As evidenced in Tab. [2}
our method effectively mitigates triggers of various visibility levels when using the fixed visibility
trigger, demonstrating superior performance compared to the patched model. Next, we evaluate our
method’s effectiveness in handling triggers placed at different spatial locations. We train a Trojaned
model with triggers located at top-left, top-right, center, bottom-left, and bottom-right positions. We
then patch and edit the model with a sample containing a trigger positioned at the bottom-right.
Table [3] demonstrates that our method successfully handles neural Trojans with triggers located at
different positions, based on input with a fixed trigger location.

6.2 EFFICACY IN MITIGATING SPURIOUS CORRELATION

We induce spurious correlations in model f by utilizing class-irrelevant patterns as spurious features.
Specifically, we pollute a proportion of samples of class y by attaching patterns to create spurious
samples Z. After training on the dataset including these samples, the model tends to rely on spurious
features to predict the correct label for class y samples. In our evaluation, we assess the model
performance on two distinct sets of class y; namely, the clean set and the spurious set. The latter
encompasses samples containing spurious features. Reliable models are expected to yield consistent
accuracy across both the spurious and clean sets, as well as on the overall testing set.

Table[d]summarises the results for addressing the spurious correlation problem. The table shows that
the benign model heavily relies on spurious features for predictions, resulting in higher accuracy
on spurious set as compared to the clean set. Fine-tuned models exhibit marginal improvements in
mitigating spurious correlations, but may cause even larger absolute performance difference between
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Figure 4: Comparison of model performance between fine-tuned models (FT) and edited models by
our method (Ours). (a) The mitigation of false confidence changes with the number of used samples,
including the vanilla model and the optimization objective. (b) The mitigation of false confidence
changes with the overall accuracy degradation (%) during model editing and fine-tuning. Results
are computed for ResNet-18 on CIFAR-10 dataset.
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the clean and spurious sets for the models. A-ClArC, with its inductive module, mitigates spurious
correlations but degrades model performance for both sets. Similarly, while P-C1ArC shows less
disparity between the performances on spurious and clean samples, it leads to unacceptable levels
of clean and overall accuracy. In contrast, our approaches demonstrate notable effectiveness in
mitigating spurious correlations with a limited cleansed set, yielding model accuracy on spurious
set that aligns closely with that on clean set. Moreover, dynamic edited models exhibit heightened
efficacy in mitigating spurious correlations.

6.3 EVALUATION ON SPURIOUS CORRELATION IN SKIN LESION ANALYSIS

To further assess the broader utility of our method,

we applied it to a real-world problem involving skin oq,e‘
lesion analysis on the ISIC (International Skin Imag- ‘,,&*%QQ\@&’
ing Collaboration) dataset (Codella et al., 2019). & &
Specifically, we conduct a binary classification of the &
ISIC data to distinguish between benign and malig- < &Q\o

nant skin lesions, adhering to the setting of [Rieger

et al. (2020). In this case, unreliability in the model
arises from the presence of colored patches within
the benign samples, which introduce spurious corre-
lations learned by the models. Figure[5|shows repre-
sentative samples from the ISIC dataset, illustrating
instances of polluted samples with spurious colored
patches. In contrast to the readily available cleansed
samples in benchmark datasets like CIFAR and Im-

Samples polluted with spurious patches

Figure 5: ISIC samples and the inherent spu-
rious patches. Samples containing malig-
nant and benign lesions from ISIC are pre-
sented, where benign samples are partly pol-
luted with spurious colored patches.

ageNet, acquiring cleansed samples for practical applications is consistently challenging. Thus, we
employ a manual approach to remove spurious features by replacing the areas affected by colored
patches on the skin with cleaned skin from another region.

In Tab.[5] we present a comparative analysis between
fine-tuned (FT) models, A-C1ArC and our proposed
methods in mitigating the spurious correlation ob-
served in EfficientNet-B4 models (Tan & Lel 2019))
trained on the ISIC dataset. Notably, our methods

Table 5: Performance comparison for miti-
gating spurious correlation on ISIC dataset.
For our edited models, we use n=10.

. . . Methods Overall T CleanT Spurious
effectively reduce the model’s reliance on spurious  Benign model 79.00 6150 87.50,26.00
features with fewer cleansed samples (n=10). Con- g mogei E“jg; ;ggg 25'88 giggm.oo

model (n= . B - +11.50
Versely, the. fine-tuned model and A-CIArC demon- A-CTAIC (1=20) 7950 5430 5930 s
strate inferior performance and r§1y on a greater Stat. edited model 7950 60.00 64.50, 450
number of cleansed samples. This efficacy in ad-  Dyn. edited model ~ 80.00  61.00 62.50. 1.5

dressing spurious correlations in skin lesion analysis

highlights the broad applicability of our method in practical scenarios.

Table 4: Performance comparison for mitigating spurious correlation on CIFAR-10 and ImageNet.
Accuracy (%) is reported for the overall testing, clean and spurious sets. The erroneously increased
accuracy on the spurious set, compared to the accuracy on the clean set for samples without the
spurious correlated features, is highlighted in red. Smaller increases in accuracy values indicate
more desirable outcomes.

M CIFAR-10 ImageNet
ethods
Overall T Cleant  Spurious Overall T Clean{  Spurious

Benign model 94.00 9442 100.00,s5s5  69.04 81.25 91.66. 1041
Fine-tuned model (n=10) 93.32 8822  99.66.11.40 68.01 64.58 7499, 1041
Fine-tuned model (n=20) 93.47 88.97  99.62 1065 68.18 64.58  74.99 1041
P-CIAC (n=20) 88.29 1689  17.12,¢23 66.84 8.32 1091 4259
A-CIArC (n=20) 92.41 76.77  79.34.257 67.01 75.66  82.25.659
Stat. edited model (n=1) 93.19 96.65  98.88.213 67.64 81.25 87.50.¢25
Dyn. edited model (n=1) 92.93 9429  96.15. 136 67.50 81.66  85.83.417
Dyn. edited model (n=20)  93.99 9430  94.42.012 68.94 81.25 83.33.208




Under review as a conference paper at ICLR 2025

Examples of manually cleaned samples used for model fine-tuning and editing can be found in
App.[A.3.3] Additional experiments and the evaluation regarding the effectiveness of the proposed
layer localization technique are also reported in Apps.[A.6| & [A.§]

7 LIMITATIONS AND DISCUSSION

In this work, we propose an effective method for efficiently correcting a model’s unreliable behav-
iors. Despite its demonstrated efficacy across diverse scenarios, our approach depends on the iden-
tification of unreliabilities and necessitates the availability of both corrupted and cleansed samples.
In this section, we examine these limitations within the framework of existing robustness techniques
and explore how they relate to broader challenges in deep learning models.

Comparison with Backdoor Defense Methods. Current research on backdoor defenses focuses on
identifying and neutralizing Trojans embedded within deep models (Li et al [202Ta} [Tian et al.}
2022). The prevailing strategies to mitigate backdoor attacks involve model retraining and prun-
ing (Liu et al.} 2017; [Huang et al.|[2022)). However, these methods are often constrained by the high
computational cost of recreating a clean model and the degradation in the model’s accuracy on clean
data. Furthermore, similar challenges are observed in the field of spurious correlations
let all} 2019} [Anders et al] [2022), where existing methods struggle to efficiently correct models’
unreliable behaviors. In contrast, our approach utilizes rank-one model editing to mitigate backdoor
attacks, addressing inherent challenges with both efficiency and effectiveness.

Identification of Unreliability. While detecting anomalous or Trojaned images is typically addressed
as a separate task (Qiao et al;[2019; [Huang et al.| 2020} [Ye et al.} 2024)), our approach offers several
practical advantages by addressing the identification of unreliability in two critical aspects. First,
it requires only a single pair of corrupted and cleansed samples to effectively correct the model’s
behavior. This makes it particularly valuable in scenarios where access to large, cleansed datasets
is limited, enabling robust model editing even under resource constraints. Second, our method
facilitates image-level correction without the need for precise identification of backdoor triggers or
spurious features. By bypassing the need for exact identification of these elements, our approach
significantly reduces the complexity associated with pixel-level image cleansing. This adaptability
is crucial in practical applications where the availability of original, clean samples is restricted.
As a result, our approach allows for efficient model patching even with only coarse detection of
inconsistencies or anomalies, making it suitable for a broad range of real-world scenarios.

In summary, our method introduces a robust and scalable paradigm for correcting unreliable behav-
iors in deep learning models, offering broad applicability across various domains while eliminating
the need for precise feature identification or extensive cleansed samples. The scope of this paper
is currently limited to image-based experiments. Future work can extend our method to other data
modalities. To address existing limitations, future focus on developing model diagnosis and data
cleansing framework integrates with the proposed editing technique. This integrated approach will
enhance the method’s applicability, enabling it to autonomously address a wider range of model
deficiencies. Additionally, while the ability to repeatedly edit a fixed layer has been explored in
previous work |Gupta et al.| (2024)), the proposed dynamic layer localization method extends this
concept to the entire model, which also represents a promising direction for further research.

8 CONCLUSION

In this paper, we first establish that rank-one model editing is well-suited for model misbehavior cor-
rection, circumventing the challenges inherent in existing application of domain adaption. We ad-
vocate applying the model editing technique to correct model unreliabilities by aligning the model’s
decision pathways of corrupted inputs with those observed on cleansed inputs. We also introduced
an effective attribution-based layer localization method, facilitating the identification of the primary
suspect layer for the model’s observed misbehavior. We then developed a dynamic model editing
framework capable of dynamically adjusting the model for behavior correction. Extensive empirical
validation demonstrates remarkable performance of our framework across various scenarios. Par-
ticularly noteworthy is the fact that our editing technique requires only a single cleansed sample to
achieve high performance levels, which portends its wide applicability in practical scenarios.
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A APPENDIX

A.1 PROOF

In this section, we provide the proof of Lemmata 1-3. We begin with the proof of LemmalI]

Proof of Lemma 1. Consider the key set K = {ki,ka,...,k,} € RY™ and the corresponding
statistics matrix C = KK ' € KK . Given a new key k* € R?, the projection of k* onto the span
of K is given by

k=C k" (3)

The projection k is the solution to the following least squares problem by

arg min |[k” - Kpl3, BeR" 4)

The solution to this optimization problem is explicitly given by

k=KKTK)"'\KTk* =C™ k", (5)
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If £* is not in the span of K, the projection k does not perfectly align with the original key k*.

Assume that this misalignment can be quantified by the residual vector r, defined as r = k* — k.
We can express C~1k* as

C 'k =C'k+C M 6)
which represents the component of £* that lies outside the span of K.

Thus, the exclusion of k* from the statistic matrix C' introduces a residual misalignment in the
optimization direction. This misalignment, represented by r, interferes with the preservation of
existing associative memories, undermining the performance of edited model. O

Below, we provide the proof of Lemma[Z]

Proof of Lemma 2. Consider a model trained on distribution D with parameters W, the key £* is
derived from a new sample x* ~ D’, where D’ is a shifted distribution relative to D. The model’s
representation of k* can be expressed as

2" = f(z™; W). (7)
Since W is optimized for D, the representation f(z*; W) will exhibit bias due to the shift from D
to D'.
The representation error can be quantified as
e=|lk* = =" Wh)I|, ®)

where Wp are the model parameters trained on D. The error ¢ reflects the divergence between the
distributions D and D’, given by the KL divergence KL(D'|| D). If the model has not been exposed
to sufficient samples from D’, this error remains significant.

To rescue ¢, additional samples x;;’il ~ D’ are needed. The number of samples m required to
accurately learn k* can be bounded as
V *
0 < ar(2x )) , ©)

€

where Var(z*) is the variance of the samples drawn from D’. Without sufficient m, the model’s up-
dated key-value memory will fail to capture the true characteristics of k*, resulting in an inaccurate
representation.

Thus, as the number of samples from D’ increases, the accuracy of the model’s representation of k*
improves. 0

Proof of Lemma 3. Consider the [-th layer f; of model f. The attribution of the i-th output feature
map derived from [-th layer f;(z) for output prediction change f;(x) — fi(Z) is calculated as

P S ()
M) = (flw) - i) - [ T2

dav. (10)

t=T+a(x—)

Here, functions f are continuous on the closed interval defined by & = & + a(x — &), where
a € [0, 1] serves as a parameter along the internal path. Thus, according to the fundamental theorem
of calculus for path integrals, the sum of the calculated attributions A/* is equal to the output change
f(x) — f(Z). Formally, this relation can be expressed as

S i)=Y [ 2D @) - s (an

ofi(x;)

Thus, we conclude that Y, M} = f(Z) — f(z) holds for all layers [ € {1,...,n}. O
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Figure 6: Illustration of samples utilized for neural Trojans and spurious correlations. Two patterns
serve as backdoor triggers and spurious features. Top row: For neural Trojans, original samples x
with label y # g are attached with a trigger and changed its label to the target label 3. Bottom row:
To induce spurious correlations, samples x of a class y are polluted with spurious features.

A.2 ZERO-PHASE COMPONENT ANALYSIS IN MODEL EDITING AND LOCATING

In our research, we utilize ZCA (Zero-phase Component Analysis) whitening to enhance the decor-
relation of the new key k* from the established keys K, as previously described by Bau et al.|(2020).
This process involves utilizing a decorrelation matrix Z = C'~'/2 to further reduce the correlation
between the key £* and the existing keys K by through the transformation Zk*. Let P denote the
probability distribution of features at layer [ — 1, and K represent a discrete distribution over ¢ con-
text examples provided by the user. We measure the information contained in K using cross-entropy
H(K, P), akin to the message length in a code optimized for the distribution P. In our model, P is
assumed to follow a zero-centered Gaussian distribution with a covariance matrix C'. By normaliz-
ing with the ZCA whitening transform Z, P can be expressed as a spherical unit normal distribution

Pk) = (27r)’"/2e*ch_1’“/2 in the transformed variable ¥’ = Zk. This transformation allows us
to succinctly express cross-entropy using matrix traces.

Through the normalization of the basis using the ZCA whitening transform Z, we transform the
probability distribution P into a spherical unit normal distribution, characterized by the variable k' =
Zk, which enables a compact matrix trace expression for cross-entropy. Leveraging the eigenvector
decomposition C = UXUT, where U represents the matrix of eigenvectors and X is the diagonal
matrix of eigenvalues, the expression for Z is given by

Z=C"'?=yx2yr, (12)

This approach facilitates the decorrelation of the key k through ZCA whitening, effectively imple-
mented as k = Zk. In addition, we utilized the computed Z for locating the susceptible layer as
described in Section 5.1} Specifically, we map the attributions to focus on editable parameters as
M*=ZM.

A.3 EXPERIMENTAL SETUP

In this section, we provide the comprehensive experimental setup and hyperparameter choices used
for model training, model editing and model fine-tuning in our experiments.

A.3.1 MODELS

Trojaned Models. In this paper, we establish Trojaned models using the blend attack
[2019b). To ensure that the poisoned samples closely resemble the original data distribution, we
incorporate the watermark trigger to enhance the backdoor attack. This watermark trigger 7 is
defined by 7¥) = -7 + (1 — ¢) - 2 ® S, where ¢ € [0, 1] controls the trigger visibility, and
S € {0,1}" serves as the mask of trigger 7. In our experiments, the trigger visibility ¢ is set to
0.5. The top row of Fig. [f]illustrates the samples used for model Trojaning. In our experiments,
we utilize two trigger patterns to generate poisoned samples. Specifically, evaluations of the models
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trained with the Firefox logo are reported in the main paper. Additional experiments involving
models trained with the Phoenix logo are detailed in App.

For Trojaned models trained on ImageNet (Russakovsky et al.|[2015)), we trained ResNet-18 models
with an initial learning rate of 0.1 for a total of 90 epochs, with the learning rate reduced by a factor
of 0.1 at the 30-th epoch and 60-the epoch. For Traojned models trained on CIFAR-10 (Krizhevsky
et al.l 2009), we trained ResNet-18 models with an initial learning rate of 0.1 for a total of 100
epochs, with the learning rate reduced by a factor of 0.1 at the 50-th epoch and 75-th epochs. For
all the Trojaned models under comparison, we choose the first class as the target label y* for single
target Trojaning followed by |Qi et al.|(2022)). On ImageNet, we poison 0.1% of training samples
with label y # y* to embed the backdoor trigger. For CIFAR-10, we set the poisoning rate of 1%.

Models with Spurious Correlation. To establish models with spurious correlations, we employ
trigger patterns as spurious correlated features. The bottom row of Fig. [6] illustrates training sam-
ples utilized for inducing model spurious correlation. The training settings for these models are
consistent with those used for the Trojaned models. On both ImageNet and CIFAR-10 datasets, we
select the first class of samples to induce spurious correlations. For models trained on ImageNet,
we contaminate 60% samples of the first class to induce spurious correlation. For models trained
on CIFAR-10, we set the contamination rate at 50% for the first class to induce model spurious
correlation.

Models on ISIC. For models trained on the ISIC dataset, we utilized EfficientNet-B4 models (Tan
& Le, 2019). The training process involved using a batch size of 24 and an initial learning rate of
1 x 107°. The training was conducted over a total of 90 epochs, with the learning rate decaying by
a factor of 0.1 at the 60-th epoch.

A.3.2 RATIONALE FOR SELECTING THE BLEND ATTACK

In this work, we adopt the blend attack [Chen et al.| (2019b) to train Trojaned models and spurious
correlation-based models. The blend attack was selected for evaluation due to its well-established
effectiveness as a backdoor attack strategy. Unlike more recent attack methods [Turner et al.|(2019);
Tian et al.| (2022); Nguyen & Tran|(2021) that prioritize stealth through minimal perturbations, the
blend attack directly integrates triggers into the input, ensuring a substantial impact on the model’s
predictions. This property makes the blend attack a particularly severe threat, as it strongly biases the
model’s output toward a predefined target class. By demonstrating robustness against such a potent
attack, our method provides compelling evidence of its efficacy. Furthermore, the blend attack’s
balance between potency and detectability suggests that our approach would generalize effectively
to newer or more sophisticated attacks that trade off between these factors.

A.3.3 MODEL EDITING

ImageNet and CIFAR-10. For the ImageNet and CIFAR-10 datasets, we allocate an overall perfor-
mance budget of 3% accuracy and a tolerated accuracy gap of 0.1% for model editing. For spurious
correlations, the overall performance budget is set to 7% accuracy with a tolerated robustness gap of
1% accuracy. The original and corrupted samples used for model editing are depicted in Fig.[6] We
utilize an editing learning rate of 1 x 10~ with a weight projection frequency of 10. Unlike other
approaches, we do not employ masks to restrict the edited region. Instead, we edit the model at the
image level to avoid the need for additional annotations.

ISIC. For the ISIC dataset, we set an overall performance budget of 5% accuracy and a tolerated
robustness gap of 1% accuracy. The editing learning rate is 1 x 10~° with a weight projection
frequency of 10. The editing process is performed at the image level. Unlike datasets that are delib-
erately created, the ISIC dataset contains corrupted samples from practical scenarios. Consequently,
we manually clean these samples by covering the patches with skin tissue from unpolluted regions,
as illustrated in Fig.

A.3.4 MODEL FINE-TUNING

For the model fine-tuning, we retrain only the last convolutional layer of the model while keeping
the parameters of the remaining layers fixed. For both ImageNet and CIFAR-10, the learning rate
for fine-tuning is set to 0.001. For models trained on the ISIC dataset, the learning rate is set to
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Figure 7: Illustration of cleansed samples on ISIC. For benign samples polluted with colored
patches, we manually clean them by covering the patches with skin tissue from unaffected regions.
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(a) Backdoor defense performance. (b) Spurious correlation mitigation.

Figure 8: Performance in reducing false confidence after individually editing different layers of
ResNet-18. A lower value indicates better suppression of the model’s false confidence. Red arrows
indicate the layer yielding the best results for a given dataset after model editing.

1 x 1072, In our experiments, we apply the same budget settings for model fine-tuning as those
used for model editing.

A.4 EXPERIMENTAL PLATFORM

All experiments were conducted on a Linux machine equipped with an NVIDIA GTX 3090Ti GPU
with 24GB of memory, a 16-core 3.9GHz Intel Core 19-12900K CPU, and 128GB of main memory.
The models were developed and tested using the PyTorch deep learning framework (v1.12.1) within
the Python programming language. This setup facilitated the efficient handling of computationally
intensive tasks, providing a robust environment for both model training and evaluation.

A.5 EXTENDED EXPERIMENTS OF EDITING DIFFERENT LAYERS

We provide detailed experimental results from applying model editing to different layers of ResNet-
18. Using the experimental setup detailed in [A.3.3] we independently edited eight distinct layers
of ResNet-18 across both CIFAR-10 and ImageNet datasets. For each dataset, eight separate edited
models were generated, allowing us to systematically assess the impact of modifying different inter-
nal layers. Figure[§]illustrates the results of individually editing different internal layers of ResNet-
18 against backdoor attacks and spurious correlations. It is observed that models trained on different
tasks and datasets exhibit distinctive effectiveness in reducing false confidence after editing model
layers. Moreover, the optimal order of layers for achieving the best mitigation of false confidence
differs across these models. This variation underscores the critical need for an effective layer local-
ization technique that can identify which layers should be targeted for editing.

A.6 EXTENDED EXPERIMENTS

In this section, additional experimental results are provided for models trained with the Phoenix
logo.

Efficacy in Defending Against Neural Trojans. Tab.[6]presents a comparison of the performance of
Trojaned models, fine-tuned models, and edited models on both CIFAR-10 and ImageNet datasets.
The experimental results demonstrate that the proposed model editing technique yields outstanding
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Table 6: Performance comparison of defending against the backdoor attack on Trojaned models
trained with the Pheonix logo on CIFAR-10 and ImageNet. Overall accuracy (%) and attack success
rate (ASR) are compared between fine-tuned models and models edited by our methods.

Method CIFAR-10 ImageNet

Overall Accu. T ASR | Overall Accu. T ASR|
Trojaned model 94.01 99.79 68.95 78.24
Fine-tuned model (n=1) 91.59 69.07 65.45 77.45
Fine-tuned model (n=20) 92.85 9.70 68.63 20.23
Edited model (n=1) 93.32 4.49 66.06 15.24
Dynamic edited model (n=1) 93.37 0.65 66.74 6.15
Dynamic edited model (n=20) 93.55 0.16 68.86 1.73

Table 7: Performance comparison of mitigating spurious correlation on susceptible models trained
with the Pheonix logo on CIFAR-10 and ImageNet. Accuracy (%) is reported for the overall testing
set, clean set and spurious set. To facilitate comparison, we present the increased accuracy on the
spurious set relative to the accuracy on the clean set.

CIFAR-10 ImageNet
Method
Overall T Clean? Spurious OverallT CleanT Spurious
Benign model 94.14 94.67 97.15,,45 69.14 77.08 95.83 1875

Fine-tuned model (n=10) 93.67 86.80 9393.,7,13 6741 65.99 89.24 3355
Fine-tuned model (n=20) 94.07 86.67 93.28,661 67.83 68.32  85.72:17.40
Dyn. edited model (n=1) 94.03 9328 94.78,150 66.19 93.35 86.42.693
Dyn. edited model (n=20)  94.04 97.15 97.89:074 67.60 81.25 84.08.2383

performance, effectively defending against the backdoor attack. In comparison to fine-tuned mod-
els, models edited using our techniques achieve a remarkable trade-off between overall accuracy
degradation and the decrease in attack success rate, while requiring only a few cleansed samples.

Efficacy in Mitigating Spurious Correlations. In Tab. [/ we assess the effectiveness of our tech-
niques in mitigating spurious correlations on CIFAR-10 and ImageNet. The comparison demon-
strates that our method effectively mitigates reliance on spurious features. In contrast to fine-tuned
models, which exhibit decreased accuracy on both clean and spurious sets, our techniques enable an
increase in accuracy on the clean set. Furthermore, our technique also leads to significant perfor-
mance improvements with the increased number of cleansed samples, highlighting its superiority.

A.7 EXTENDED EXPERIMENTS ON WATERBIRDS DATASET

In Table [8] we present a comparative analysis of the performance of a ResNet-34 model trained
on the Waterbirds dataset Sagawa et al.| (2019). This dataset is known for introducing a bias by
relying on spurious background features to distinguish between landbirds and waterbirds. To evalu-
ate the effectiveness of our approach, we compare models trained using Group GRO |Sagawa et al.
(2019), models fine-tuned to reduce bias, and models edited using our proposed method. The results
highlight that our method substantially reduces the model’s dependence on these spurious features,
leading to a significant improvement in performance. Notably, our approach achieves these gains
with a smaller number of cleansed samples (n=10), demonstrating both efficiency and robustness
in mitigating the impact of spurious correlations. These findings suggest that our method offers a
promising direction for improving the interpretability and generalization of models trained on biased
datasets.

A.8 EVALUATION OF LAYER LOCALIZATION TECHNIQUE
In this section, we evaluate the effectiveness of the proposed layer localization technique. We train 5

ResNet-18 models with 8 internal layers on CIFAR-10, ImageNet, and the ISIC dataset, utilizing two
different trigger patterns. Similarly, we establish 5 ResNet-34 models with 16 internal convolutional
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Table 8: Performance comparison for mitigating spurious correlation on Waterbirds dataset. The
accuracy values (%) for both the worst group and the entire dataset are reported.

Method Worst-Group Accuracy  Overall Accuracy
Benign Model 62.90 87.70
Group DRO 63.60 87.60
Fine-tuned model (n=10) 63.12 86.50
Edited model (n=10) 66.84 87.64
Dyn. Edited model (n=10) 69.18 87.68

layers on these three datasets. Additionally, we train 2 EfficientNet-B4 models on both CIFAR-10
and the ISIC datasets, focusing on the 12 internal layers with a kernel size of 3. For the evaluation,
we separately edit different internal layers and assess the performance of the edited models. We
rank their performances to establish the ground truth for evaluating the recall rate of the located
layers. Table [9] presents the recall rates for the top-1, top-3, and top-5 located layers. The results
demonstrate that our localization technique achieves high recall rates, effectively identifying the
susceptible layers.

Table 9: Results of recall rate (%) in using the proposed susceptible layer localization technique on
ResNet-18, ResNet-34 and EfficientNet-B4 models.

Method Top-1 Recall T Top-3 Recall ¥ Top-5 Recall 1
ResNet-18 80% 100% 100%
ResNet-34 80% 80% 100%
EfficientNet-B4 50% 100% 100%

A.9 VISUAL INSPECTION BY ATTRIBUTIONS

Visual Inspection in Defending Against Backdoor Attacks. In Fig. 0] we provide additional
visual inspection by attribution methods (Sundararajan et al., 2017). Given the original sample z
with label y # y*, the vanilla model misclassifies the poisoned samples Z into the target class y*.
Compared to the fine-tuned model, the proposed dynamic model editing technique can effectively
correct this unreliable behavior in the deep model, restoring the attribution maps to align with those
derived from the original samples.

Visual Inspection in Mitigating Spurious Correlations. Figure |10| presents the comparison of
attribution maps derived from the vanilla model, fine-tuned model, and models edited using our
method. We can observe that our approach effectively mitigates the false reliance on spurious cor-
related features of the Firefox logo, aligning the attribution maps with those of the original samples.

Figure [TT]illustrates the attribution maps for the vanilla model, fine-tuned model, and dynamically
edited model. It can be observed that our method effectively corrects the model’s reliance on spu-
riously correlated features in corrupted samples, aligning the attribution maps with those of the
cleansed samples.
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Original samples  Vanillamodel  Corrupted samples Vanillamodel  Fine-tuned model Ours

Figure 10: Comparisons of attribution maps on ImageNet among the vanilla model, fine-tuned model
and dynamic edited model (Ours). Our method effectively mitigates the model’s reliance on spurious
correlated features, aligning the attribution maps with those derived from the original samples.

Cleansed samples  Vanillamodel  Corrupted samples Vanilla model  Fine-tuned model

Figure 11: Comparisons of attribution maps on ISIC dataset among the vanilla model, fine-tuned
model and dynamic edited model (Ours). When the model relies on the spurious feature to make
predictions, our method effectively corrects this unreliable behavior, aligning the attribution maps
with those derived from the original samples.
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