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Abstract
Soft robot design is an intricate field with unique challenges
due to its complex and vast search space. In the past literature,
evolutionary computation algorithms, including novel proba-
bilistic generative models (PGMs), have shown potential in
this realm. However, these methods are sample inefficient
and predominantly focus on rigid robots in locomotion tasks,
which limit their performance and application in robot design
automation. In this work, we propose MorphVAE, an innova-
tive PGM that incorporates a multi-task training scheme and a
meticulously crafted sampling technique termed “continuous
natural selection”, aimed at bolstering sample efficiency. This
method empowers us to gain insights from assessed samples
across diverse tasks and temporal evolutionary stages, while
simultaneously maintaining a delicate balance between opti-
mization efficiency and biodiversity. Through extensive ex-
periments in various locomotion and manipulation tasks, we
substantiate the efficiency of MorphVAE in generating high-
performing and diverse designs, surpassing the performance
of competitive baselines.

1 Introduction
Voxel-Based Soft Robots (VSRs), which are made up of
elastic blocks that expand or contract with many degrees of
freedom, were first introduced in Hiller and Lipson (2011)
and attracted the attention from both the academia and the
industry due to their great flexibility and resemblance to
natural organisms. A considerable number of works have
studied the design automation of VSRs, mostly with tradi-
tional Evolutionary Algorithms (EAs) that feature biologi-
cally inspired meta-heuristics (Cheney, Bongard, and Lip-
son 2015; Bhatia et al. 2021; Medvet et al. 2021). However,
the substantial combinatorial search space of VSRs poses a
big challenge to EAs and limits their performance; Genera-
tive encoding, on the other hand, has demonstrated promise
as a solution (Cheney et al. 2014; Corucci et al. 2018; Hu
et al. 2022). Nonetheless, the potential of probabilistic gen-
erative models, extensively applied in modeling complex ge-
ometries (Gómez-Bombarelli et al. 2018; Joy et al. 2020;
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Xu et al. 2023), remains largely untapped in the realm of
soft robot design. Probabilistic generative models, albeit re-
quiring additional computational expense for training, hold
particular appeal to robot design automation, including their
inherent multimodality, rapid execution speed and the capa-
bility to statistically deduce patterns from diverse samples,
which we deem well worth further leveraging.

In this paper, we capitalize on the remarkable potential
of generative models to unlock shared insights from diverse
multimodal resources. Our investigation into the distribution
of robot designs across seemingly disparate tasks reveals a
remarkable pattern: many designs cluster closely, hinting at
shared sub-structures that traverse task boundaries. Driven
by this revelation, we propose MorphVAE, which, to the
best of our knowledge, stands as the pioneering method for
task-specific and free-form soft robot design. Unlike exist-
ing approaches, MorphVAE makes full use of probabilistic
generative models to deduce favorable morphological struc-
tures from evaluated robot designs across different tasks and
the evolutionary timeline. Its training adopts a bootstrapping
manner, eliminating reliance on conventional EAs.

To be more specific, our methodology employs the Vari-
ational Autoencoder (VAE; Kingma and Welling (2013)),
a prominent probabilistic generative model, to establish a
mapping from tasks to their distributions of high-performing
robot designs. We introduce a novel sampling technique
named continuous natural selection, gradually pushing the
generator towards higher-performing designs, and apply
a temperature parameter to flexibly control the strength
of selection pressure. Additionally, we propose a tech-
nique named exploration-exploitation rebalancing to pro-
mote broader search ranges and diverse robot designs. In
summary, our work makes the following contributions:

1. We observe, through pilot experiments, that high-
performing robot designs overlap across different tasks,
and adopt a multi-task training approach so that knowl-
edge could be shared across task boundaries.

2. We propose MorphVAE, featuring a novel sampling tech-
nique termed continuous natural selection, which un-
precedentedly tackles free-form robot design automation
with probabilistic generative models that are trained in a
completely bootstrapping manner. Such an approach al-



lows for exceptional flexibility between high efficiency
and high diversity during evolution.

3. Through extensive experiments involving various loco-
motion and manipulation tasks, we demonstrate the ad-
vantage of MorphVAE in aiding robots with the emer-
gence of favorable structures and yielding diversified
robot designs.

2 Related Work
2.1 Robot co-design
Inspired by the philosophy of embodied cognition (Pfeifer
and Bongard 2006; Pfeifer, Iida, and Lungarella 2014), co-
designing the structure and controller of robots has be-
come a concensus in Robotics. So far, the most widely used
paradigm for robot co-design is bi-level optimization (Bha-
tia et al. 2021), involving control optimization in the inner
loop that optimizes a controller for each robot and evalu-
ates its fitness, and design optimization in the outer loop that
evolves robots according to their fitness. A wide range of
powerful reinforcement learning algorithms could be lever-
aged in the inner loop, while the choices for design optimiza-
tion could be roughly divided into the following categories.

Evolutionary Algorithms. Evolutionary Algorithms
(EAs) have long been the de facto choice in robot design
automation, which maintain a population of robot designs
and carry out elitism selection and stochastic operations
in search of better ones. Among plenty of research, Leger
(2012) pioneered the application of EAs to the design of
rigid robots; Wang et al. (2019) proposed Neural Graph
Evolution that performs evolutionary search in the graph
space of rigid-robot designs. However, many genetic encod-
ings in EAs do not scale to the large search spaces of soft
robots (Cheney et al. 2014). To this end, researchers recently
began to explore the benefit of generative encoding over
direct encoding in robot design automation (Cheney et al.
2014; Ha, Agrawal, and Song 2021). However, these works
assume a one-on-one mapping from tasks to morphologies,
ignoring the multimodal nature of design automation.

Probabilistic Generative Models. Over the last decade,
probabilistic generative models, such as Variational Au-
toencoder (VAE; Kingma and Welling (2013)), Genera-
tive Adversarial Network (GAN; Goodfellow et al. (2020))
and Diffusion Model (DM; Ho, Jain, and Abbeel (2020)),
have witnessed widespread application in generating images
or intricate structures like molecular geometries (Gómez-
Bombarelli et al. 2018; Joy et al. 2020; Xu et al. 2023).
These models hold paticular appeal to robot design due
to their inherent multimodality, rapid execution speed, and
their capability to statistically deduce patterns from diverse
samples. Nonetheless, their integration into robot design au-
tomation remains relatively limited. Existing efforts have
primarily concentrated on rigid robots, optimizing fixed-
topology design parameters through inter-generation opti-
mization (as opposed to free-form optimization), or mapping
robot designs into continuous latent spaces for subsequent
optimization using traditional EAs (Spielberg et al. 2019,

2021; Hu et al. 2022; Hu, Whitman, and Choset 2023). Con-
sequently, we contend that the potential of probabilistic gen-
erative models in the design automation of soft robot has yet
to be fully harnessed.

2.2 Diversity in robot design automation
Diversity of living creatures (i.e. biodiversity) is how nature
makes life robust to disruptive changes in the environment.
Likewise, a long-term goal of Robotics is to build robots
that are able to operate reliably in hazardous and dynamic
environments (Buchanan et al. 2020). In real-life applica-
tion, diversified alternatives would be necessary when “first-
choice” designs fail and cannot be replaced immediately.
However, traditional EAs do not guarantee diversity; on the
contrary, they tend to end up with similar solutions for a
given task (Miras, Ferrante, and Eiben 2020). To this end,
more and more works propose novel techniques in pursuit
of diversity (Gupta et al. 2021; Medvet et al. 2021; Hu et al.
2022). Specifically, Hu et al. (2022) verified the intrinsic po-
tential of probabilistic generative models in proposing di-
verse robots, which we further dig into in this work.

3 MorphVAE
This section commences with an exposition of our pivotal
observation concerning shared structures that traverse task
boundaries. Then we detail the architecture of MorphVAE
and present a training procedure customized for capturing
shared knowledge across tasks and evaluated designs. Fi-
nally, we introduce two distinct variants of MorphVAE to
demonstrate its flexibility in satisfying various purposes.
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Figure 1: Overlapping of robot designs in multiple tasks

3.1 Shared structures across tasks
We choose Evolution Gym (Bhatia et al. 2021) as simula-
tion environment. In Evolution Gym, the building blocks of
voxel-based soft robots include rigid and soft voxels, hori-
zontal and vertical actuators and empty voxel. These com-
ponents collectively form the 2-D matrix structure of a soft
robot. In pilot experiments, we explored multiple existing
EAs, including the Genetic Algorithm (GA), Bayesian Op-
timization (BO) and Compositional Pattern Producing Net-
work evolved with Neural Evolution of Augmenting Topolo-
gies (CPPN-NEAT), to independently evolve robot designs



Figure 2: Model architecture and training procedure of MorphVAE. The left dashed box illustrates generative process of Mor-
phVAE, spanning from one-hot tasks encoding to robot design proposals. The circular-flow diagram in the middle outlines the
training procedure of MorphVAE. The right dashed box depicts detailed process of a robot to interact with the simulation task,
optimize its controller, and ultimately derive its fitness evaluation.

for six tasks in Evolution Gym, conducting 1000 evalua-
tions for each method in each task. Then the top 10% of
designs (300 for each task) were selected based on fitness,
and using t-SNE algorithm (Van der Maaten and Hinton
2008), their high-performing designs were mapped into a
two-dimensional space. As can be seen from Figure 1, robot
designs of locomotion and manipulation tasks are generally
separate from each other, with exceptions such as the over-
lap of Catcher with three locomotion tasks, as well as with
Pusher (illustrated by the red bounding box), indicating that
there exist shared sub-structures among various tasks.

Motivated by this observation, we propose MorphVAE,
a novel variational autoencoder for optimizing morphologi-
cal design of VSRs. MorphVAE integrates a multi-task op-
timization scheme and employs a unique continuous natural
selection method during training. In this manner, design ex-
perience (i.e. evaluated robot samples) could be fully lever-
aged not only longitudinally (i.e. across generations), but
also horizontally (i.e. across different tasks), so that sample
efficiency would be dramatically improved.

3.2 Model architecture of MorphVAE
The model architecture of MorphVAE consists of two parts,
namely the generative process and approximate posterior.

The generative process. The generative process, as illus-
trated in the left dashed box of Figure 2, is responsible for
proposing robot morphology. It consists of a 3-layered hi-
erarchy, i.e., task → latent → voxel. The generative pro-
cess takes the type of task, denoted as y, as input and is
thus conditional on y. y follows a multinomial distribution
and is transformed into an embedding vector denoted as ỹ.
Each task corresponds to a unique trainable embedding vec-
tor that captures its characteristics. Then, ỹ is fed into two
sets of Multi-Layered Perceptrons (MLPs) and transformed
into a mean vector and a diagonal variance-covariance ma-
trix, which are denoted as µθ(ỹ) and Σθ(ỹ) respectively, and
θ collectively stands for the parameters in the generative pro-
cess. After that, we sample from the multivariate Gaussian

distribution N (µθ(ỹ),Σθ(ỹ)) which yields the latents h. Fi-
nally, h is fed into another MLP, denoted as ϕθ, to compute
the voxel distribution which is made up of a multinomial dis-
tribution over all voxel material types per entry of the voxel
matrix. For example, for a 5 × 5 robot, the voxel distribu-
tion consists of 25 multinomial distributions, each of which
takes 5 possible values namely rigid voxel, soft voxel, verti-
cal actuator, horizontal actuator and empty voxel. Sampling
from the voxel distribution leads to a specific robot design
denoted as x. The generative process described above is con-
cisely represented as follows.

ỹ = Embedθ(y); h ∼ N (µθ(ỹ),Σθ(ỹ)); x ∼ ϕθ(h).

The approximate posterior. The true posterior of latents
is approximated in order to construct a variational lower
bound (typically addressed as the evidence lower bound,
ELBO) which is easier to optimize than the original like-
lihood function. The resulting ELBO is written as

Ey∼YEx∼Xy [Eh∼qϕ(h|x,y) log pθ(x|h)]
−DKL(pθ(h|y)||qϕ(h|x, y)),

(1)

where Y denotes a uniform distribution over all tasks, Xy

denotes the distribution of advantageous morphology cor-
responding to task y, which would be detailed in Section
3.3, pθ stands for the generative process, and qϕ(h|x, y) de-
notes the aforementioned approximate posterior. Please re-
fer to our appendix on Github for more details.

3.3 Training of MorphVAE
Continuous natural selection. In order to customize the
training of VAE for robot design automation, we innova-
tively propose a special training procedure that we term
continuous natural selection. The procedure mainly fea-
tures a morphology pool and stepwise updates of parame-
ters. Firstly, note that we follow the popular paradigm of
robot co-design as described in Section 2.1, i.e. a two-level
optimization problem. Specifically, for the inner loop we
adopt the Proximal Policy Optimization (PPO; Schulman



et al. (2017)) algorithm for optimizing the controller of a
given robot design and returning the cumulated reward (also
known as fitness) it obtains, while the outer loop evolves the
population of robot designs according to their fitness, and
this is where MorphVAE fits in.

In each generation, we generate a population of robot de-
signs with MorphVAE, optimize their controllers and evalu-
ate their fitness. Then we put these designs and correspond-
ing fitness scores into the morphology pool. After that, we
sample robots from the morphology pool with replacement
according to probabilities positively correlated with fitness
(as shown in (2)), and carry out one step of Stochastic Gra-
dient Ascent towards maximizing the ELBO defined in (1)
based on the sampled robots. The sampling and updating
step is carried out multiple times in each generation, and the
number of steps linearly increases with the number of gen-
eration to prevent premature convergence. Note that better-
performing robots have higher probabilities of being chosen,
and this yields a robot distribution that favors better designs
in each generation. Hence, the generator in VAE is gradually
improved in a bootstrapping manner. Also note that instead
of subjectively setting a threshold and splitting robot designs
into good ones and bad ones, we adjust the probability of
each robot design showing up in our sample continuously
according to their fitness. This prevents favorable designs
from being omitted or unfavorable ones from sneaking in,
and allows us to more fully leverage all the robot designs we
have evaluated. This process can be thought of as a continu-
ous and thus more flexible version of natural selection, and
is summarized in Algorithm 1. Specifically, the probability
of each robot in the pool being chosen is calculated as:

P (xh
i being chosen) =

exp[τ · fh
i ]∑K

k=1 exp[τ · fh
k ]

, h = 1, · · · , H,

(2)
where xh

i denotes the i-th robot of task h, fh
i denotes the

fitness of xh
i , H is the total number of tasks, K is the total

number of robots corresponding to task h in the pool, and
τ is a temperature parameter controlling the strength of se-
lection pressure. With a higher τ , we more exclusively favor
best-performing robots, while with a lower τ , we spare some
of our attention for slightly worse-performing robots as well.
We would verify later in our experiments that τ provides us
with great convenience in balancing between optimization
efficiency and biodiversity.

Exploration-exploitation rebalancing. In order to fur-
ther boost diversity in robot designs, we propose a technique
called exploration-exploitation rebalancing. To be more spe-
cific, since the VAE is fitted repeatedly with robot samples
drawn from the morphology pool, it might become too con-
servative and produce morphologies that greatly resemble
existing ones in later generations. In this work, we term a
morphology with no less than s% same voxels with at least
one existing morphology as a sample of “exploitation”, or
otherwise a sample of “exploration”. In each generation, we
query the VAE model repeatedly until a pre-specified num-
ber of “exploration” samples have been generated. In this
manner, our VAE model is encouraged to adventurously try

Algorithm 1: Continuous natural selection
Input: A morphology pool (including both evaluated
robot designs and their fitnesses, denoted as M) of
size K for each task; The number of morphologies,
denoted as N , to draw from the pool for each task;
The temperature parameter τ .

Output: A sample of N high-performing robot
designs for each task, denoted as S.

Calculate the probability of each robot design in M
showing up in the sample according to (2), and
denote it as phi .

Initialize S = Φ.
for h = 1, 2, · · · , H do

for n = 1, 2, · · · , N do
Sample a robot design of task h from M
according to phi ; Append it to S.

Return: S.

out diverse robot designs and prevented from too desperately
exploiting favorable robot designs in the morphology pool.
In our experiments, we set s as 75, and schedule the propor-
tion of “exploration” samples in each generation to linearly
decrease from 50% to zero. The overall training procedure
of MorphVAE is illustrated in the right half of Figure 2, and
summarized in Algorithm 2.

4 Experiments

4.1 Experimental setup

Our experiments are based on six tasks in Evolution Gym
(Bhatia et al. 2021), among which three are locomotion tasks
(Walker-v0, Climber-v0, UpStepper-v0) and three are ma-
nipulation tasks (Catcher-v0, Carrier-v0, Pusher-v0); Please
refer to our appendix on Github for a detailed introduction
to these tasks. Following the standard practice in the litera-
ture (Cheney, Clune, and Lipson 2014; Marzougui, Biond-
ina, and wyffels 2022; Mertan and Cheney 2023), we limit
our robot designs to a 5×5 bounding box to keep the search
space tractable. We employ the PPO algorithm (Schulman
et al. 2017) as mentioned in Section 3.3 for controller op-
timization and robot evaluation, where both the actor and
critic are modeled as a fully-connected neural network with
2 hidden layers, each consisting of 64 hidden units, and Tanh
as the non-linear activation function. We report comparison
results with competitive baselines as well as between differ-
ent variants of our method. For every method in each task,
we carry out a maximum of 1000 robot design evaluations
to allow for thorough morph evolution. All the experimental
results are averaged across three independent runs. Our ex-
periments are conducted on four servers, each equipped with
an Intel Xeon Silver 4214 CPU @ 2.20GHz and 4 NVIDIA
Titan RTX GPUs, running Ubuntu 22.04. Our codes, to-
gether with an appendix including hyperparameters and ad-
ditional analysis of experimental results, are available on
Github (https://github.com/WoodySJR/MorphVAE).



Algorithm 2: The training procedure of MorphVAE
Input: Parameters of MorphVAE - number of tasks
H , morphology size w (default=5), numbers of
hidden layers and hidden units in MLP, schedule for
the number of updates per generation mt, number of
robot samples per update nt, temperature parameter
τ in (2), threshold for morphology similarity s and
the proportion of “exploration” samples βt as
mentioned in Section 3.3, learning rate α, number
of generations T , and population size P .

Output: Optimized parameters in VAE, evolved
robot designs and their controllers.

Initialize VAE model according to given parameters;
for t = 1, 2, · · · , T do

Step 1: proposing robot designs
Repeatedly query the VAE model until P × βt

exploration samples (i.e. have fewer than s×w2

same voxels with all existing designs) have been
generated for each task;

Step 2: evaluating robot designs
Optimize controllers of robot designs in the
current population; Store these designs, along
with their fitness, into the morphology pool;

Step 3: updating VAE parameters
for i = 1, 2, · · · ,mt do

Sample H × nt robot designs (nt for each
task), denoted as S, from the morphology
pool through continuous natural selection as
defined in Algorithm 1.

Do one step of Stochastic Gradient Ascent
towards maximizing the ELBO defined in
(1), based on S.

Return: VAE parameters and the morphology pool
(including H × T × P robot designs, together with
their fitness and controllers.)

4.2 MorphVAE for high-performance and
biodiversity

In order to demonstrate the great flexibility afforded by Mor-
phVAE, we propose two variants that focus on the efficiency
of finding advantageous robot designs and the diversity of
robot designs, respectively. The former variant is denoted
as MorphVAE-H(igh performance), where the temperature
parameter τ in (2) is set as 1.5. The latter variant is denoted
as MorphVAE-B(iodiversity), where τ is set as 0.7 and
exploration-exploitation rebalancing is utilized for a wider
range of design search.

4.3 Baselines
We first benchmark our method against the following com-
petitive baselines.

• CPPN-NEAT: Compositional Pattern Producing Net-
work (CPPN), originally used for generating high-
resolution geometric patterns, is one of the predomi-
nant approaches to soft robot design in existing literature
(Cheney, Clune, and Lipson 2014; Cheney et al. 2014;

Corucci et al. 2018; Bhatia et al. 2021). It takes the spa-
cial coordinates of a robot voxel as input, and outputs the
corresponding voxel type. We obtain a robot by querying
the CPPN of all spacial coordinates in a voxel matrix.
NeuroEvolution of Augmenting Topologies (NEAT) is
used to optimize the architectures and weights of CPPNs
with mutation, crossover and selection operators.

• Bayesian Optimization (BO): Bayesian Optimization
(Kushner 1964; Močkus 1975) is commonly used to op-
timize functions that are expensive to evaluate. In this
work, we use the Gaussian Process as the surrogate
model of the objective function (i.e. the mapping from
robot design to fitness), and use the expected improve-
ment as the acquisition function.

• Genetic Algorithm (GA): GA (Zbigniew 1996) is in-
spired by “the survival of the fittest” in nature. It se-
lects the best-performing robots in each generation as
survivors and randomly mutate their voxel types to pro-
duce offspring. The µ + λ generational model is used
where parents and their children are merged together.

The implementation of CPPN-NEAT, BO and GA strictly
follows Bhatia et al. (2021). We introduce two more state-
of-the-art methods to further demonstrate the advantages of
MorphVAE in generating both high-performing and diverse
robot designs:

• Speciated Evolver (SE): SE has been proven by Med-
vet et al. (2021) to be a superior algorithm for optimiz-
ing VSRs in locomotion tasks, in terms of both the trav-
eling distance and diversity. It is a modification of GA
that in each generation first clusters robots into several
species with k-means algorithm and then carries out nat-
ural selection per species, thus encouraging the diversity
of robot designs.

• roboGAN: roboGAN has been proven by Hu et al.
(2022) to be superior over conventional GA for optimiz-
ing design parameters with fixed topologies. In each gen-
eration, roboGAN treats robot designs proposed by the
generator as negative samples. Subsequently, these de-
signs undergo several iterations of GA evolution to yield
positive samples, progressively guiding the generator to-
wards higher-performing regions.

To allow for fair comparison and thorough morph evolu-
tion, we set the number of robot evaluations to 1000 for each
method in each task. With a population size of 25, it results
in 40 generations for CPPN-NEAT, BO and MorphVAE;
The numbers of generations for GA and SE are 63 and 46 re-
spectively, due to their reservation of parents in subsequent
generations whose controllers need not be optimized. As for
roboGAN, we set the population size as 20 and the number
of GA steps in each generation as 4 with a survival rate of
0.5, leading to 50 evaluations per generation and a total of 20
generations. Notably, both roboGAN and MorphVAE incor-
porate a multi-task training approach. We additionally drew
comparisons with two more baselines which leverage Action
Inheritance (Liu et al. 2023) and Random Forest (Sun et al.
2020) respectively, but relegate the results to our appendix
on Github due to space limit.



4.4 Evaluation metrics
We employ three metrics to facilitate a comprehensive com-
parison among different methods.

• Maximal fitness: The fitness of the best-performing
robot, given the number of evaluations. This is widely
used in the literature of robot design to evaluate the effi-
ciency of optimization, as the primary emphasis in most
cases is on achieving optimal design.

• Fitness distribution: The distribution of fitnesses
yielded throughout evolution, depicted with boxplots,
characterizes overall performance of robot designs gen-
erated by an algorithm, and provides distributional in-
formation that complements the single-dimensional sum-
maries and facilitates more comprehensive comparisons.

• Diversity: The diversity metric assesses a population’s
capacity to adapt to dynamic environments. It has been a
longstanding evaluation criterion in previous literature to
gauge the effectiveness of robot design algorithms (Med-
vet et al. 2021; Pigozzi et al. 2023). See our appendix on
Github for more details about how we measure diversity.

4.5 Comparison study
In this section, we present and interpret the results of our
comparison study according to the metrics in Section 4.4.

Maximal fitness. The comparisons of maximal fitness are
demonstrated in Figure 3. It can be seen that MorphVAE-H
significantly outperforms the other competitors in the first
four of the six tasks and shows competitive performance
in the last two (i.e. Walker-v0 and Catcher-v0), in terms
of the efficiency of finding high-performing robot designs.
Specifically, in tasks Carrier-v0 and Pusher-v0, MorphVAE-
H outperforms the other competitors in both the speed of
convergence and fitness of the optimal design. In addition,
while MorphVAE-B shows similar or slightly poorer per-
formance than MorphVAE-H, it still outperforms the other
competitors with obvious advantages. In tasks Climber-v0
and UpStepper-v0, the advantage of MorphVAE-H is even
more obvious. In Walker-v0 and Catcher-v0, MorphVAE
shows competitive speed of convergence to a certain level
of maximal fitness, after which it has difficulty further im-
proving compared with other algorithms.

The results could be explained as follows. For challeng-
ing tasks, such as Climber-v0 and UpStepper-v0, specific ad-
vantageous sub-structures are essential for a robot’s success.
For instance, successful climbers, such as the four robots on
the left-hand side of Figure 4, demand horizontal actuators
both in its upper and lower body parts, leading to alternate
force bearing points against the pipe wall, and meanwhile
requires vertical actuators in the middle to pull the whole
body upwards. Any departure from such specific structures,
such as the four robots on the right in Figure 4, would very
likely lead to an unqualified climber that hovers at the bot-
tom of the pipe all the way. This necessitates an algorithm
that can effectively learn from past evaluations and deduce
discernible patterns from them. This is precisely where Mor-
phVAE comes into play. It adopts a multi-task training ap-
proach and assimilates knowledge from a diverse range of
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Figure 3: Performance comparison of maximal fitness

task-specific morphological pools, thereby significantly en-
hancing sample efficiency.

In the context of less demanding tasks such as Carrier-
v0 and Pusher-v0, functional sub-structures are easier to
evolve, resulting in a diminished advantage for MorphVAE.
On the other hand, for tasks Walker-v0 and Catcher-v0, the
former is too simple that neutral designs suffice for a con-
troller to excel and the latter is considerably hard that few
trials meet the requirements. Consequently, fitness evalua-
tions in these two tasks offer less explicit directions toward
high-performing designs, leaving room for other competi-
tive algorithms, especially GA which mutates upon single
survivors and searches for delicate structures that lead to
marginal improvements, to achieve superior performance.
Besides, the strikingly unsatisfactory performance of robo-
GAN is possibly due to its low sample efficiency, as it re-
quires multiple steps of GA to obtain positive samples and
employs evaluated robot designs only once during evolution.

Figure 4: Qualified (left) and unqualified (right) climbers

Fitness distribution. The distribution of robot fitnesses
obtained by different algorithms throughout the course of



evolution are shown as boxplots in Figure 5. Overall, we find
the fitness distributions of MorphVAE-H locate higher than
baselines in all tasks, with greater quartiles or more outliers
at the top. That is, in addition to the optimal robot designs,
MorphVAE-H reveals obvious superiority in terms of over-
all performance as well; See results of the Wilcoxon Rank
Sum test that statistically justify the significance of such su-
periority in our appendix on Github. Meanwhile, although
MorphVAE-B features a larger extent of exploration in de-
sign search, it still achieves superior or at least compara-
ble results to its counterparts. Furthermore, we investigate
into different algorithms’ consistency in generating high-
performing robot designs during evolution, which could be
relevant in practical deployment, and discover the distinct
advantage of MorphVAE in this respect as well; The results
are included in our appendix on Github.
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Figure 5: Boxplots of fitness obtained by different methods

Diversity. Here we evaluate the diversity of robot designs,
and demonstrate the advantage of MorphVAE-B in this re-
spect. As it would be meaningless to look into the diversity
of poor robot designs, we first put together the robot designs
obtained by all methods and select top k% percent for com-
parision. As illustrated in Figure 6, while MorphVAE-B does
not consistently come in first, its performance in maintaining
diversity is much more stable than other baselines.

By averaging the ranks across six tasks for different meth-
ods, we have rankings [5.83, 2.67, 3.83, 4.67, 3.0, 2.17, 5.83]
for k = 10 and [5.0, 2.17, 4.17, 5.17, 4.5, 1.83, 5.17] for
k = 5, in the order of GA, BO, NEAT, SE, roboGAN,
MorphVAE-B and MorphVAE-H. The results indicate that
MorphVAE-B outperforms other baselines on average in
terms of robot diversity. Note that roboGAN achieves com-

parable or higher diversity than MorphVAE in quite a few
cases, substantiating the intrinsic potential of probabilistic
generative models in this respect; Nonetheless, roboGAN
fails to produce well-performing robot designs altogether in
many other cases. It is also worth noting that BO reveals a
remarkable potential to promote diversity as well, which is
largely due to the fact that its acquisition function manages
to strike a balance between exploration and exploitation.
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Figure 6: Performance comparison of diversity. In some
cases such as roboGAN in Pusher-v0, the algorithm fails to
produce more than one robot design that could enter top k
percent and thus diversity is not available.

Combining results in Section 4.5, we confirm that Mor-
phVAE has a greater edge in tasks that more exclusively re-
quire specific morphological structures, and that it has great
flexibility to adapt to different purposes (i.e. optimization
efficiency or diversity) and achieve leading performance.

5 Conclusions
In this work, we propose MorphVAE, a novel approach
to free-form soft-robot design automation that leverages
probabilistic generative models. Our approach stems from
the observation drawn from pilot experiments that high-
performing robot designs across different tasks exhibit sub-
stantial overlap. To harness this insight, we adopt a multi-
task training scheme to promote knowledge sharing between
tasks. We also propose a novel sampling technique termed
continuous natural selection to customize the training of
VAE for robot design automation, which not only improves
the generator in a bootstrapping manner without any reliance
on existing EAs, but also affords us great flexibility be-
tween optimization efficiency and diversity. The combined
impact of multi-task training and continuous natural selec-
tion allows us to exploit evaluated robot designs both across
generations and tasks, significantly improving sample effi-
ciency. Furthermore, We present a sampling method, termed
exploration-exploitation rebalancing to further enlarge the
range of morphology search in MorphVAE and yield more
diverse morphologies. Through extensive experiments en-
compassing manipulation and locomotion tasks, we demon-
strate the efficacy of MorphVAE in efficiently optimizing
and consistently proposing high-performing and diversified
designs. However, we notice the slightly poorer performance
of MorphVAE in extremely simple and hard tasks, and sup-
pose that using controllers with adaptive complexity could
relieve this problem; We leave this for our future work.
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