
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FLEX: END-TO-END TEXT-INSTRUCTED VISUAL
NAVIGATION WITH FOUNDATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

End-to-end learning directly maps sensory inputs to actions, creating highly inte-
grated and efficient policies for complex robotics tasks. However, such models
are tricky to efficiently train and often struggle to generalize beyond their training
scenarios, limiting adaptability to new environments, tasks, and concepts. In this
work, we investigate the minimal data requirements and architectural adaptations
necessary to achieve robust closed-loop performance with vision-based control
policies under unseen text instructions and visual distribution shifts. To this end,
we design datasets with various levels of data representation richness, refine feature
extraction protocols by leveraging multi-modal foundation model encoders, and
assess the suitability of different policy network heads. Our findings are synthe-
sized in Flex (Fly-lexically), a framework that uses pre-trained Vision Language
Models (VLMs) as frozen patch-wise feature extractors, generating spatially aware
embeddings that integrate semantic and visual information. These rich features
form the basis for training highly robust downstream policies capable of general-
izing across platforms, environments, and text-specified tasks. We demonstrate
the effectiveness of this approach on quadrotor fly-to-target tasks, where agents
trained via behavior cloning on a small simulated dataset successfully generalize
to real-world scenes, handling diverse novel goals and command formulations.

1 INTRODUCTION

A significant dimension of human reasoning is mediated through the combination of vision and
language, facilitating our mobility in the physical world and our ability to follow directions. Such
flexibility and concept understanding are highly desirable in autonomous robots, enabling interactions
with humans and handling variants of complex real-world tasks from few representative examples.
This inspires an exploration of the conditions necessary to equip robots with a human-like intuition
and capacity to execute tasks across various contexts.

Despite advancements in end-to-end deep learning for autonomous navigation, these systems remain
largely black-box, lacking interpretability, adaptability, and the ability to generalize far beyond the
scope of training data. In contrast, VLMs have demonstrated robust open-world visual understanding
across tasks like classification, detection, and segmentation. These models are increasingly adopted
in robotics for open-vocabulary detection, object manipulation, and planning, but their reliance on
modular pipelines and global embeddings limits their utility for end-to-end robot learning.

To overcome these challenges, we embrace a minimalist design philosophy, leveraging pre-trained
vision-language encoders with lightweight adaptations and minimal training data. By extracting
fine-grained, text-fused features from patch-level embeddings, our approach bridges the gap between
global text and visual understanding and the spatial, context-aware reasoning required for robotics.
This streamlined methodology achieves strong generalization on out-of-distribution scenarios while
maintaining efficiency, offering a unified framework for vision-based robotic learning tasks.

Hence, we introduce Flex, a minimalist methodology that pioneers the integration of a data-efficient
approach with open-set capabilities into a robotic framework. We provide a foundational proof-of-
concept demonstrating the potential of leveraging VLM features for user-interactive, end-to-end
visual navigation agents, offering the flexibility to interpret open-set text instructions at both the
object and environment levels. By focusing on basic instructions, we address the core challenges of
this novel integration without the added complexity of intricate language processing. This streamlined

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

approach ensures a thorough understanding of each component and establishes a strong foundation
for the framework. Our key contributions are:

• The identification of the core components needed for robust multi-modal generalization in
robotic tasks, combining spatial and lexical features via patch-wise descriptors from VLMs.

• The development of a training pipeline for closed-loop visual navigation agents that gener-
alize across unseen environments, using real-time natural language instructions to achieve
adaptability well beyond the training scope.

• Extensive experiments on drone fly-to-target tasks, showcasing the ability to generalize from
limited simulated training data to diverse real-world scenarios, successfully adapting to new
objects, environments, and text instructions.

2 PRELIMINARIES

End-to-end multi-modal imitation learning. The setup considered is that of an end-to-end control
system f that generates commands u ∈ Rn where n is the dimension of the output vector. The
system takes multi-modal input comprising of a RGB image I ∈ Rh×w×3, with h,w representing
the frame height and width respectively, and a natural language text command T . f can be seen as
the composition of a feature extraction backbone ϕ and a policy head π, such that f = π ◦ ϕ, and
yielding control commands through u = f(I, T) = π(ϕ(I, T)).

Throughout this work, we do not seek to train or fine-tune ϕ, but instead, investigate how architectural
choices leveraging frozen VLM encoders can yield dense feature representations F ∈ Rh′×w′×d that
integrate both spatial and semantic information tailored to robotics applications (Figure 1). We thus
only train the policy network head π, parameterized by weights θ adopting the Imitation Learning
(IL) paradigm of learning from expert demonstrations.

Indeed, given a dataset D = {(Ii, Ti,ui)}Ni=1 consisting of N samples, where each sample contains
an RGB image Ii, a natural language command Ti, and a ground truth control command ui ∈ Rn,
the policy network πθ is trained to minimize the Mean Squared Error (MSE) between the predicted
control command ûi = πθ(ϕ(Ii, Ti)) and the ground truth label ui. With the notation adopted the
training objective L is given in equation 1.

L(θ) = 1

N

N∑
i=1

∥ûi − ui∥22 (1)

Autonomous Drone Fly-to-target Task. The scope of this research extends to a broad array of
robotics tasks that rely on the use of both images and text. In the interest of cohesive illustration, we
delve into a single running example throughout this manuscript. We explore quadrotor flight and
more specifically a vision-based fly-to-target task where the goal can be specified by the human user
via natural language. In this context, the control command u ∈ R4 comprises of scalar translation
velocities vx, vy, vz and the drone’s desired yaw rate ψ̇. The input RGB frame F ∈ R224×224×3 is
obtained from the drone’s front-facing camera and the text command T is provided by the user.

Problem statement. We seek to establish the bare design criteria for training robust, text-instructed,
end-to-end control agents. Specifically, our goal is to delineate the conditions for effective leveraging
of off-the-shelf models to extract meaningful features suitable for compact downstream policy
networks. Our agents should not only excel in learning tasks from very simplified datasets in
simulation but also demonstrate robust generalization capabilities to handle previously unseen
scenarios. We probe into the three pillars of the IL framework and attempt to answer the following
questions:

1. Dataset design: What is the minimal degree of data diversity required to obtain sufficiently
rich feature representations?

2. Feature extractor: What are the suitable feature extractors for text and vision-based
robotics learning? How should they be employed to offer potent downstream generalization
capability?

3. Policy network: What is the impact of the choice of policy network architecture on the
performance and interpretability of the trained agents?

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 METHODS

3.1 TRAINING DATA

A desirable property for an imitation learning system is to master a task from a handful of repre-
sentative expert demonstrations without requiring extensive enumeration of use cases or intensive
randomization and augmentation techniques. Hence, relying on internet-scale trained VLMs for fea-
ture extraction largely mitigates the impediments on training dataset size, diversity and augmentation.
We investigate the extent to which this statement holds, and limit ourselves to the use of a single
simulated scene to generate four training datasets, evaluating the impact of diversity in the goal and
text instruction phrasing on generalization capabilities of trained agents:

1. One object and one command, containing demonstrations reaching a single goal object (red sphere)
with a single command syntax (”Fly to the red ball”).

1M. One object and multiple commands, with the same goal object, but each run instructed with a
lexical alternative of the instruction (as discussed in Appendix A.3).

2. Two objects and one command, with red and blue spheres as the example goals and single
command wording in either case (”Fly to red/blue ball”).

2M. Two objects and multiple commands, containing both colored spheres and variations of the
syntax between demonstrations. (Training run sequence frames are provided in Figure 10)

3.2 PATCH-WISE TEXT-VISION SPATIAL FEATURES

Generic image-text features. Robust OoD generalization relies on universal rather than domain-
specific features for policy learning. Foundation model encoders leverage internet-scale data to learn
generic features from a wide spectrum of contexts. Moreover, incorporating textual instructions
demands an extractor capable of seamlessly integrating text inputs with visual features. Thus, a
natural choice is pre-trained VLM as our feature extractor cornerstone. More specifically, BLIP-2
(Li et al., 2023) is used throughout this work, as it is specifically designed to fuse multi-modal
information from large-scale textual and visual datasets, providing a cohesive representation.

Spatial resolution for robotic tasks. Foundation models typically output a global feature vector
representing the entire image. This coarse representation is unsuitable for robotics, where policy
learning depends on fine-grained spatial information to effectively interpret and respond to the scene.
Thus, we propose a method to extract spatial feature vectors for specific areas in an image. To obtain
the global descriptor for a frame, we collect such features for multiple areas/patches covering the
whole image. Specifically, given an input frame/image I ∈ Rh×w×3, an input text command T , and
the patch-resolution h′ ≤ h,w′ ≤ w, we provide a method which utilizes a multi-modal foundation
model VLM : Rh×w×3 → Rd to derive a tensor of feature descriptors F ∈ Rh′×w′×d, that fuses
all the semantic information of I with the text input T and maintains its location in the scene. For
simplicity purposes, we equate h′ and w′ to the number of (non-overlapping) patches used to divide
the input image I when applying VLM on it (we will discuss how h′ and w′ can be adjusted to any
values ≤ h,w, respectively) and n = h′w′.

Notations. Let IMG-DESC be the image encoder of VLM consisting of L layers. For every layer
ℓ ∈ {1, · · · , L}, we use Qℓ,Kℓ ∈ Rn×dk , V ℓ ∈ Rn×d to denote the output query, key, and value
matrices of the ℓth attention layer, during the feedforward pass of applying IMG-DESC on I, i.e.,
during IMG-DESC(I). We now describe our mechanism for extracting patch-text fused features F(j)

for a single patch I(j), where j ∈ {1, · · · , n}. Then, this can be applied sequentially or in parallel to
all patches.

Single patch feature extraction. To derive the feature vector F(j) for the jth patch, we introduce
an attention mask m(j) = (m

(j)
1 , · · · ,m(j)

n)T ∈ [0, 1]n. Each component m(j)
i within this vector,

ranging between 0 and 1, determines the contribution of the ith patch to the target patch feature F(j).
For instance, to completely exclude patch i, set m(j)

i = 0. Additionally, to control the masking, we
introduce α≪ 0 as the parameter controlling the intensity of the masking effect; as |α| increases, the
masking effect becomes stronger.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Pr
et

ra
in

ed
 m

ul
tim

od
al

Im
ag

e
+

te
xt

en
co

de
r

“Fly to the red disk”

Inputs

Image

Text instruction

…

…

Tokenizer

Masks

Policy net

Feature extraction Patch features Trainable policy

commands

next frame capture

Figure 1: Flex pipeline: The drone front view frame capture is successively masked then, in
conjunction with a user-specified text instruction, encoded via a pre-trained VLM to create a grid of
rich per patch features. A trainable policy network computes the translation velocities and yaw rate
commands to be executed by the quadrotor.

Now, to extract the patch feature vector F(j), we propose to modify the ℓ-th attention layer to employ
the masking provided by m as follows:

1. Set M (j) = [m(j), · · · ,m(j)]T ∈ Rn×n; a matrix of n rows each is equal to m(j), and
define 1 ∈ Rn×n to be an all-ones matrix.

2. Compute Gℓ := Qℓ(Kℓ)
T ; the matrix multiplication of the key and query matrices at the

ℓ-th attention layer.

3. A masked version Ĝℓ,(j) of Gℓ which focuses on the features of the patches (area) described
by m(j) is computed as

Ĝℓ,(j) = Gℓ + (1−M (j)) · α,
This operation adjusts the attention scores in Ĝℓ,(j) according to the mask vector m(j). The
1−M (j) term ensures that patches with an attention mask of 1 remain unchanged, while
those with a mask near 0 have their scores reduced to α, effectively masking them.

4. With the modified attention scores, the final attention weights are obtained using the softmax
function. The attention layer output is now computed as:

F
(j)
ℓ := SoftMax(Ĝℓ,(j))(V ℓ)T . (2)

Notably, we use values of α≪ 0 with a very large |α|. Observe that at the end of this process, when
m

(j)
i = 0, the corresponding descriptor in Ĝℓ,(j) becomes a vector where all entries are approximately

α. Since α is a very large negative number (e.g., assumably −∞), the result after applying the soft
operation will cause its contribution to be close to 0 thus not affecting the final output. When
m

(j)
i = 1, the corresponding descriptor in Ĝℓ,(j) is not affected at all, thus, its contribution remains

the same through the process.

Text-Patch fusion. Let TEXT-DESC be the Text Encoder of VLM, and let TEXT-IMG-Fusion
be its text-vision fusion block. Following the ℓth attention layer, its output is fed standardly as input
to the remaining vision encoder model as IMG-DESCℓ→(F

(j)
ℓ), where, IMG-DESCℓ→ denotes the

remaining part of the vision encoder of the foundation model after the ℓ-th layer. In parallel to the
vision encoding, the text command T is encoded via the text encoder TEXT-DESC(T), and then
both text and patch descriptors are fused to create the final text-patch fused descriptor as

F(j) := TEXT-IMG-Fusion(IMG-DESCℓ→(F
(j)
ℓ),TEXT-DESC(T)).

We note that this method can be extended to any region-wise feature extraction by generalizing the
definition of patches to include arbitrarily shaped regions.

Extracting m ×m resolution descriptors. Let h′ and w′ denote the number of non-overlapping
patches used to divide the input image I by VLM. For simplicity, we set h′ = w′ = 16 (as in BLIP-2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

and define m ≤ w′ as the desired resolution, where w′ is divisible by m. We have w′2 patches
(16× 16 in BLIP-2), each identified by its coordinates (x, y) on the grid (x, y ∈ {1, · · ·w′}). While
extracting a descriptor for every patch provides detailed information, we seek a minimalist design and
smaller resolutions for simpler training. To extract m×m feature descriptors, we split the w′ × w′

grid into m×m sub-grids, each containing w′/m× w′/m patches. We extract a descriptor for each
sub-grid by setting the corresponding coordinates in the mask vector m to 1 and the rest to 0.

We consider multiple resolutions, splitting the image into 1 (entire image, mask 16×16), 4 (masks
8×8), 16 (masks 4×4), 64 (masks 2×2), and 256 (masks 1×1) square patches. Detailed examples of
grid splits and masks are provided in Section A.1 of the appendix.

3.3 POLICY NETWORK

We aim to identify the most effective policy network architecture for learning from generic extracted
features with limited simulated training data. Ideally, we want to preserve text-patch details while
aggregating information across layers, enabling decisions from nuanced, context-rich descriptors
tailored to the task. Vision Transformers (ViT) are of interest as they maintain spatial resolutions
across layers. We also consider simpler architectures such as Convolutional Neural Networks (CNN
or Conv), and Multi-Layer Perceptrons (MLP) for learning the control policy. A detailed description
of each model and its parameters is provided in Appendix A.5.

4 EXPERIMENTS

4.1 FLY-TO-ANY-TARGET TASK

Task description. The objective is to develop a vision-based quadrotor navigation agent capable of
reaching arbitrary user-specified goals present in its field of view (FOV) while ensuring generalization
across visual scenes, in simulation as well as in the real world.

Evaluation protocol. A single test run consists of initializing a scene with a number of objects in the
drone’s FOV and providing text instructions about the goal to reach. The closed-loop inference is run
for a fixed number of steps, 80, slightly larger than the average training sequence length. The test is
successful if the agent can navigate towards the user-instructed object and center it in the middle of
the frame. Failures, on the other hand, can be identified when the drone loses the object (the target
exits the FOV and/or another visual cue is centered in on), or fails to approach or center in on the goal.
The evaluation of the closed-loop performance of our system is based on monitoring the success rates
on repeated runs in various evaluation configurations.

4.2 EXPERIMENTAL SETUP

4.2.1 SIMULATION

Simulator. We use the PyBullet physics engine, building off the codebase presented in (Panerati et al.,
2021). The drone dynamics we use are based on Bitcraze’s Crazyflie 2.x nano-quadrotor. The physics
simulation runs at 240Hz, and we allow low-level flight control to occur at the same frequency,
although inference runs at a much slower rate of 3Hz. Indeed, for inference or data collection, we
simulate the evolution of the system with constant commands for the number of steps corresponding
to the desired period.

Background scenes. In addition to the in-distribution (InD) scene which we use for training, Samurai,
we design a second very different-looking environment; Stadium. In stark visual contrast to the
training environment which has tiled flooring, the Stadium environment ground is covered by green
textured grass and field lines. Also, the Stadium stands include large portions of purple walls and its
structure is distinctly different from that of the Samurai temples. The Stadium environment is used
for scene generalization evaluation in simulation (see Figure 11).

Test scenarios. Each feature extractor, policy head, and dataset combination considered is tested in
simulation on an increasingly demanding suite of scenarios. In each case, we gather the success rates
over multiple runs, randomly initializing the positions of the potential target goals, the quadrotor
distance to the objects, and the initial heading angle. Each scenario is run in both the InD (Samurai)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

1 1M 2 2M
0

50

100

S
u

cc
es

s
R

at
e

(%
)

Red and Blue Spheres

InD

OoD

1 1M 2 2M

Mixed Color Spheres

1 1M 2 2M
Dataset

Red Shapes

1 1M 2 2M

Mixed Color Shapes

1 1M 2 2M

Open Dictionary

Figure 2: Success rate as a function of the dataset richness on all five simulation test scenarios. Darker
lines correspond to the InD scene, and lighter colors to the OoD background. Each data point is
obtained from 100 runs with command syntax ”Navigate to the [OBJECT]”.

and OoD (Stadium) scenes. The breakdown of scenarios considered (depicted in Figure 11) is as
follows:

1. Red and Blue Spheres: Easiest setup providing a measure of the mastery of the unaltered training
task and performance changes based only on the change of scene and/or instruction phrasing.

2. Mixed Color Spheres: Tests the generalization capability with respect to colors with a choice of
two out of red, blue, green, yellow, and purple spheres appearing at initialization.

3. Red shapes: Evaluates the sensitivity and adaptability to shapes of same color (red) with two out
of a sphere, a cube, and a pyramid positioned in the quadrotor’s initial FOV.

4. Mixed Color Shapes: Similar to above with the object colors also randomized to be any of red,
blue, green, yellow or purple.

5. Open Dictionary: Hardest setup that goes beyond shapes and colors, with a range of objects in a
more cluttered scene. Three objects are placed in the drone FOV picked amongst a red sphere, blue
sphere, a light-colored Jeep, an Australian cattle dog , a brown Horse, a tall and narrow Palm Tree, a
toy Space Rocket, and a whole Watermelon.

4.2.2 REAL-WORLD TRANSFER

Hardware. Our setup utilizes a DJI M300 RTK quadcopter interfaced with a DJI Manifold 2
computer and the DJI Onboard SDK, processing commands on a base station via Wifi to achieve a
runtime frequency of just over 1 Hz with our highest resolution models. Flight tests are conducted
on an urban university campus lawn, with targets including various cardboard cutouts positioned on
tripods. More details are provided in Appendix A.4.

Test setup. We deploy the system with the ViT policy head on the drone hardware in a series of tests
with various props as targets and in different two-object initial configurations, in an urban campus
environment. This is the ultimate challenge exposing the agents simultaneously to sim-to-real transfer,
new scene generalization (see Figure 9), as well as new object instruction handling.

4.3 SUMMARY OF GENERALIZATION TESTS

We tested the model’s generalization capabilities across both environments and objects. The model
was trained in a single simulated environment (Samurai) using only two spherical objects (blue and
red) and evaluated in three scenarios: the same training environment, a new simulated environment
(Stadium), and a campus lawn in the real world. Despite the very limited training data, the model
generalized well to open-set scenarios, including objects with varying shapes and colors, a wide range
of simulated objects (e.g., a Jeep, a horse, a palm tree, and a watermelon), and real-world objects
(e.g., a yellow star, a cutout of a man with a wig) during drone navigation.

5 RESULTS

5.1 DATASET DESIGN

The degree of dataset richness required for generalisation is evaluated by training Flex instances
of 256-patch resolution and a ViT policy head on all of the four datasets described in Section

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.1. The success rates on the simulation test cases are depicted in Figure 2. There is a clear gap
in performance between models trained on single object examples and two objects. Indeed, the
former systematically try to reach the red ball when present regardless of the text instruction. They
also generalize significantly worse to open dictionary objects (under 50% success rate). The gains
from instruction augmentation are less potent, especially on simple geometries and color variations.
However, the open dictionary setup suggests that augmentation, which acts both on the action but
also choice of noun for the goal object, can offer interesting performance benefits. Thus, we conclude
that training with two goal objects along with instruction augmentation (which is cheap to implement
as described in Appendix A.3) are recommended practices to attain satisfactory generalization.

5.2 FEATURE EXTRACTION RESOLUTION

1 4 16 64 256
0

50

100

S
u

cc
es

s
R

at
e

(%
)

Red and Blue Spheres

InD

OoD

1 4 16 64 256

Mixed Color Spheres

1 4 16 64 256
Resolution (# patches)

Red Shapes

1 4 16 64 256

Mixed Color Shapes

1 4 16 64 256

Open Dictionary

Figure 3: Success rate as a function of the feature extractor resolution on all five simulation test
scenarios. Darker lines correspond to the InD scene, and lighter colors to the OoD background. Each
data point is obtained from 100 runs with command syntax ”Navigate to the [OBJECT]”.

A central claim in this work is that simply using a pre-trained VLM as a text and whole image encoder
is not suitable for robotics applications. This hypothesis, along with the question of the resolution
of spatial features required to achieve robust visual navigation is investigated by training five Flex
instances with a ViT policy head on the 2M dataset. We increase patch resolution from a single
patch containing the entire image to the BLIP-2 limit of 16×16 non-overlapping square patches. The
performance in each case on our test suite is provided in Figure 3. The results corroborate the claim
regarding the failure of entire image processing. Indeed, there is a definite pattern of performance
improvement with patch resolution, with a minimum of 64 patches (8×8 grid division of the input
frame) needed to guarantee generalization close to the 90% mark on all test setups.

5.3 POLICY NETWORKS

MLP Conv ViT
0

50

100

S
u

cc
es

s
R

at
e

(%
)

Red and Blue Spheres

InD

OoD

MLP Conv ViT

Mixed Color Spheres

MLP Conv ViT
Policy Network

Red Shapes

MLP Conv ViT

Mixed Color Shapes

MLP Conv ViT

Open Dictionary

Figure 4: Success rate as a function of the policy head architecture on all five simulation test scenarios.
Darker lines correspond to the InD scene, and lighter colors to the OoD background. Each data point
is obtained from 100 runs with command syntax ”Navigate to the [OBJECT]”.

Performance. Policy heads, the only trainable component of Flex, are a crucial factor for the
quantitative performance of the agents, but also dictate the of trajectories and behavior exhibited
by the closed-loop navigation system. The former is tested on 256-patch full resolution models
trained on the 2M dataset for all four policy architectures considered (presented in Section 3.3).
Results are provided in Figure 4. Basic MLP policies, though capable of achieving the original
training task both in and out-of-distribution, suffer from a drastic loss in performance on all but
the mixed color spheres task InD, with close to complete failure in the OoD setting. This indicates
that the VLM patch-wise features are not sufficiently simple and universal for direct mapping into
correct decision commands. Thus, an important role in useful task information retrieval has to be
played by an adequate policy architecture. Both the Conv and ViT policies offer somewhat strong
performance. The latter consistently surpasses the former by 10 % or more, and with dips below the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

90% performance bar only in OoD settings where confusion between purple goals and the purple
background occur.

MLP Conv ViT
0.00

0.02

0.04

0.06

0.08
A

b
so

lu
te

er
ro

r
to

ex
p

er
t

vx

MLP Conv ViT
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125
vy

MLP Conv ViT
0.00

0.01

0.02

0.03

0.04

vz

MLP Conv ViT
0.00

0.01

0.02

0.03

ψ̇

Figure 5: Absolute error to expert per policy network for each of the output dimensions (vx, vy and
vz are in m/s while ψ̇ is in rad/s). Each data point is obtained from 22.5k frame-instruction pairs.

Flight behavior. Stark differences in closed-loop behavior are observed: the MLP policy leads to
very erratic closed-loop navigation and shows reluctance to stop at the goal, the Conv head exhibits
aggressive piloting resorting to abrupt turns in front of goals, while ViT offers much smoother
trajectories closer to those seen in training. To back these observations, we generate a total of 30
expert demonstration runs (sphere, cube and pyramid goals with all five color variations in both InD
and OoD scenes), that are identical in the initial placement of the target and expert 150-command
sequence. We run the models on the expert frames with five text variations of the text instruction
including commands in French and Italian (see Appendix A.6). The difference between each scalar
output and its corresponding expert command for all objects, scenes, instructions and sequence
frames is depicted in Figure 5. The figures seem to corroborate the qualitative observations, showing
significantly smaller deviations from expert decisions with the ViT policy (∼40% better than its
counterpart on the crucial yaw rate command ψ̇), and smoother flight control (3× and 8× smoother
than Conv and MLP on sideways crabbing vy). Thus, we empirically establish ViT’s superiority as a
policy head in terms of generalization performance as well as flight behavior.

5.4 ROBUST VIT DECISIONS

Image BLIP-2 Linear Pos Emb Att 1 Att 2 Att 3

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.2

−0.1

0.0

0.1

0.2

0.3

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4 −0.6

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

−0.2

−0.1

0.0

0.1

0.2

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0.125

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

Figure 6: Feature clustering and visualization through the 64-patch ViT policy network. The
instruction is ”Navigate to the blue pyramid” with a frame (top left with a grid overlay separating the
patches) from the OoD simulation scene. The top row depicts the cluster memberships by color, with
the goal belonging to blue. The bottom row visualises the features’ t-SNE embeddings in 3D.

Similarity-based clustering and visualization. The ViT policy offers a structured representation of
features across the network as per patch feature spatial attribution is respected up until the last linear
decision layer. We leverage this structure and apply similarity-based clustering of features to elucidate
the decision process. Indeed, at a given layer, we first L2-normalize all patch-wise features before
applying k-means clustering (k selected via the ”elbow” technique). We note that k-means minimizes
intra-cluster variances, hence acts on squared Euclidean distances. For visualization, we apply the
t-distributed stochastic neighbor embedding method (t-SNE) in 3D to the normalized features, using
the squared Euclidean distances as our metric (cf. Algorithm 1 in Appendix A.7). The choice of
metric is motivated by the proportionality of the square Euclidean distance to the cosine distance for
L2-normalized vectors. Thus, we ensure consistency in both clustering in the original feature space

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

based on cosine distance and the preservation of local similarity structure for visualization. Using
Figure 6 for illustration, the pyramid cluster accurately espouses the approximate region of the goal
for all layers. However, the t-SNE projections seem to show that goal (blue) and background (other)
features are not clearly separable from the start (BLIP-2 extraction level). Visually, we conjecture
that, as the features are transformed by the attention layers, the non-essential background features
become both increasingly indistinguishable from each other and dissimilar to the goal patches, with
growing margin for a clear decision boundary to leverage only task related information.

B
LI

P
-2

Li
ne

ar

P
os

E
m

b

A
tt

1

A
tt

2

A
tt

3

0.4

0.6

0.8

1.0

1.2

D
av

is
-B

ou
ld

in
In

d
ex

B
LI

P
-2

Li
ne

ar
P

os
E

m
b

A
tt

1

A
tt

2

A
tt

3

1.0

1.2

1.4

1.6

C
lu

st
er

to
G

oa
l

S
iz

e
R

at
io

Figure 7: DBI and cluster to goal patch size ratio
geometric averages across the 64-patch ViT net-
work layers. Each data point is averaged from 30
runs of 150 frames (N = 4.5k).

Cluster separability scoring. We tailor the
global clustering Davies-Bouldin Index (DBI)
(Davies & Bouldin, 1979), to associate it only
with the cluster in which the frame patches in-
tersecting the goal object lie, or goal cluster for
short (if applicable, the cluster is picked by ma-
jority number of members). Whereas the orig-
inal index is the average similarity measure of
each cluster with its most similar cluster, we
take only the highest pairwise similarity score
between the goal cluster and the others. Here,
similarity is defined as the ratio of intra-cluster
distances to inter-cluster distances (details in
Appendix A.7). Thus, we obtain a metric that
favours configurations in which the cluster of interest is less dispersed and farther apart from others,
with lower values indicating higher separability of the cluster. Figure 7 depicts the geometric means
of the DBI and the ratio of goal cluster to target size across network layers on frames from 30 runs
with various goal objects and scenes. It clearly supports the claim that through the ViT layers, the
goal cluster contains mostly target patches and is increasingly separated from the rest of the features
for subsequent linear mapping to commands. This robust decision mechanism appears to be invariant
for various scenes, goal objects, and instruction formulations.

5.5 REAL-WORLD DEPLOYMENT

Flex (2M Dataset, 256-patches, ViT policy) transfers seamlessly to the real world and gracefully
handles a variety of new scenarios. Indeed, the system exhibits highly robust performance of the task
on the outdoor campus lawn, with new unseen objects as goals and various backgrounds and lighting
conditions, with no notable failures. Frames from an example run can be seen in Fig 8 (successful
runs for six other different goals are depicted in Fig 9 of Appendix A.6).

fly
 to

 th
e

re
d

ba
ll

fly
 to

 th
e

bl
ue

 b
al

l
fly

 to
 th

e
w

hi
te

 b
al

l
fly

 to
 th

e
ye

llo
w

 sq
ua

re
fly

 to
 th

e
st

ar
fly

 to
 th

e
ye

llo
w

 st
ar

Figure 8: Flex sample real test run: Frames from a test run with text instruction ”Fly to the man
with a wig”. Time increases from left to right. In the last frame, the cardboard cutout is blown off the
tripod support by the drone propellers. The wig remains.

6 RELATED WORK

End-to-end robot learning. End-to-end deep learning has shown significant potential in autonomous
navigation tasks (Chib & Singh, 2023; Bojarski et al., 2016; Pomerleau, 1988). Advances in
safety (Xiao et al., 2023) and generalization (Chahine et al., 2023; Quach et al., 2024; Wang et al.,
2023b; Yin et al., 2023; Kaufmann et al., 2023) have improved performance, but these models remain
largely black-box, incapable of user interaction, and confined to the scope of training data. Moreover,
training robust, large-scale models is challenging due to the need for extensive, high-quality datasets,
which are costly, time-consuming, and pose potential safety risks (Kendall et al., 2019).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Simulation-based training has emerged as a practical alternative, leveraging platforms such as
VISTA (Amini et al., 2022), Drake (Tedrake et al., 2019), PyBullet (Panerati et al., 2021), and
AirSim (Shah et al., 2018). However, simulated environments often fail to fully capture real-world
intricacies, leading to performance degradation and safety risks during deployment. Intermediate
visual abstractions (Müller et al., 2018; Toromanoff et al., 2020; Behl et al., 2020) address some of
these gaps, but such methods lack the multimodal reasoning required for truly generalizable systems.

VLMs and Foundation Models in Robotics. Foundation models, particularly vision-language
models (VLMs), have revolutionized open-world visual understanding tasks, including classifi-
cation (Radford et al., 2021; Yang et al., 2022), detection (Li et al., 2022c; Zhong et al., 2022),
segmentation (Kirillov et al., 2023; Li et al., 2022a), and captioning (Li et al., 2023; Wang et al.,
2022). Within robotics, these models have been applied to open-vocabulary detection and manipula-
tion (Chen et al., 2022; Liu et al., 2024), planning (Ahn et al., 2022), and action prediction (Brohan
et al., 2023). For navigation, approaches that decouple perception and control (Maalouf et al., 2023)
or generate waypoints explicit (Shah et al., 2023) have been proposed.

In dynamic, open-set environments, VLMs have facilitated applications like 3D mapping (Huang
et al., 2023; Ding et al., 2023), scene segmentation (Peng et al., 2023; Jatavallabhula et al., 2023), and
explainable, language-based representations (Kim et al., 2019; Omeiza et al., 2021; Kuo et al., 2022;
Tan et al., 2023; Zhong et al., 2023). However, despite their versatility across data modalities (Ramesh
et al., 2021; Crowson et al., 2022; Patashnik et al., 2021; Ramesh et al., 2022), these methods often rely
on modular pipelines and global embeddings, which limit their utility for text-instructed end-to-end
robotic learning.

Flex vs. Mainstream VLN Approaches. Recent advances such as RT-1 (Brohan et al., 2022),
RT-2 (Brohan et al., 2023), and Vint (Shah et al., 2023) represent significant progress in vision-based
navigation. RT-1 was trained on over 130,000 real-world demonstrations, while RT-2 incorporated
internet-scale pre-training with models up to 55 billion parameters. Similarly, VLN-BERT (Hong
et al., 2021) was trained on more than six million image-text-action triplets, and NavGPT (Zhou
et al., 2024) leverages GPT models for zero-shot action prediction. In stark contrast to our minimalist
approach training small policy heads on relatively tiny amounts of data, these methods rely on
extensive datasets and resource-intensive training pipelines.

Text-Patch Features for End-to-End Robotics. Patch-based feature extraction has been explored in
prior work, but existing methods face limitations. Some are not multimodal (Amir et al., 2021); others
fine-tune encoders for 2D-pixel alignment, losing critical concepts (Ding et al., 2022). Approaches
like SAM (Kirillov et al., 2023) rely on segmentation models that can miss important regions (Jataval-
labhula et al., 2023; Maalouf et al., 2024), while others fail to fuse text queries with patch descriptors
for semantic relations (Wang et al., 2023a).

Our approach bridges these gaps by extracting fine-grained, text-fused features from pre-trained
VLMs, enabling context-aware reasoning critical for end-to-end robotics tasks without relying on
hand-designed pipelines or intermediate representations (Li et al., 2022b; 2023; Radford et al., 2021).

7 CONCLUSION

This work establishes the essential dataset and model requirements for robust generalization in
text-instructed end-to-end visual navigation agents using pre-trained VLM encoders as multi-modal
feature extractors. Our findings include the failure of training on a single data context (leads to
over-fitting), and the adequacy of two examples to train models that handle a wide spectrum of similar
use cases. We also advocate for simple text-space augmentations, which can improve performance in
more nuanced test settings. We shed light on the shortcomings of low-resolution patch-wise feature
extraction, with the fly-to-target task necessitating at least 8×8 patches. Finally, we ascertain the
superiority of the ViT architecture as a policy head, in terms of task success and flight behavior, while
uncovering aspects of its robust context invariant decision process via similarity-based clustering.

The synthesis of these findings is Flex, a new minimalist training framework capable of producing
user-interactive highly generalizing visual navigation agents. Our solution elegantly handles a suite
of in-simulation challenges and proves readily deployable in the real-world, robustly achieving direct
sim-to-real open dictionary out-of-distribution generalization.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Alexander Amini, Tsun-Hsuan Wang, Igor Gilitschenski, Wilko Schwarting, Zhijian Liu, Song Han,
Sertac Karaman, and Daniela Rus. Vista 2.0: An open, data-driven simulator for multimodal
sensing and policy learning for autonomous vehicles. In 2022 International Conference on Robotics
and Automation (ICRA), pp. 2419–2426. IEEE, 2022.

Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel. Deep ViT features as dense visual
descriptors. arXiv preprint arXiv:2112.05814, 2021.

Aseem Behl, Kashyap Chitta, Aditya Prakash, Eshed Ohn-Bar, and Andreas Geiger. Label efficient
visual abstractions for autonomous driving. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2338–2345. IEEE, 2020.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning
for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu, Montse Gon-
zalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alex Herzog, Jasmine
Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang,
Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Henryk Michalewski,
Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo, Grecia Salazar,
Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut, Huong Tran, Vincent
Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart, Jialin Wu, Fei Xia, Ted
Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. In arXiv preprint arXiv:2307.15818, 2023.

Makram Chahine, Ramin Hasani, Patrick Kao, Aaron Ray, Ryan Shubert, Mathias Lechner, Alexander
Amini, and Daniela Rus. Robust flight navigation out of distribution with liquid neural networks.
Science Robotics, 8(77):eadc8892, 2023.

Boyuan Chen, Fei Xia, Brian Ichter, Kanishka Rao, Keerthana Gopalakrishnan, Michael S. Ryoo,
Austin Stone, and Daniel Kappler. Open-vocabulary queryable scene representations for real world
planning, 2022.

Pranav Singh Chib and Pravendra Singh. Recent advancements in end-to-end autonomous driving
using deep learning: A survey. IEEE Transactions on Intelligent Vehicles, 2023.

Katherine Crowson, Stella Biderman, Daniel Kornis, Dashiell Stander, Eric Hallahan, Louis Cas-
tricato, and Edward Raff. Vqgan-clip: Open domain image generation and editing with natural
language guidance. In European Conference on Computer Vision, pp. 88–105. Springer, 2022.

David L. Davies and Donald W. Bouldin. A cluster separation measure. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-1(2):224–227, 1979. doi: 10.1109/TPAMI.1979.
4766909.

Runyu Ding, Jihan Yang, Chuhui Xue, Wenqing Zhang, Song Bai, and Xiaojuan Qi. Pla: Language-
driven open-vocabulary 3d scene understanding. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7010–7019, 2023.

Yuxuan Ding, Lingqiao Liu, Chunna Tian, Jingyuan Yang, and Haoxuan Ding. Don’t stop learning:
Towards continual learning for the clip model. arXiv preprint arXiv:2207.09248, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, and Stephen Gould. Vln bert: A
recurrent vision-and-language bert for navigation. In Proceedings of the IEEE/CVF conference on
Computer Vision and Pattern Recognition, pp. 1643–1653, 2021.

Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram Burgard. Audio visual language maps for
robot navigation. arXiv preprint arXiv:2303.07522, 2023.

Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Shuang
Li, Ganesh Iyer, Soroush Saryazdi, Nikhil Keetha, Ayush Tewari, et al. Conceptfusion: Open-set
multimodal 3d mapping. arXiv preprint arXiv:2302.07241, 2023.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Mueller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature, 620:
982–987, 08 2023. doi: 10.1038/s41586-023-06419-4.

Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-Mark Allen,
Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a day. In 2019 International
Conference on Robotics and Automation (ICRA), pp. 8248–8254. IEEE, 2019.

Jinkyu Kim, Teruhisa Misu, Yi-Ting Chen, Ashish Tawari, and John Canny. Grounding human-to-
vehicle advice for self-driving vehicles. November 2019.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv preprint
arXiv:2304.02643, 2023.

Yen-Ling Kuo, Xin Huang, Andrei Barbu, Stephen G McGill, Boris Katz, John J Leonard, and Guy
Rosman. Trajectory prediction with linguistic representations. In 2022 International Conference
on Robotics and Automation (ICRA), pp. 2868–2875. IEEE, 2022.

Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen Koltun, and René Ranftl. Language-driven
semantic segmentation. arXiv preprint arXiv:2201.03546, 2022a.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International Conference on
Machine Learning, pp. 12888–12900. PMLR, 2022b.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597,
2023.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Li-
juan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-Wei Chang, and Jianfeng Gao. Grounded
language-image pre-training, 2022c.

Fangchen Liu, Kuan Fang, Pieter Abbeel, and Sergey Levine. Moka: Open-vocabulary robotic
manipulation through mark-based visual prompting, 2024.

Alaa Maalouf, Ninad Jadhav, Krishna Murthy Jatavallabhula, Makram Chahine, Daniel M Vogt,
Robert J Wood, Antonio Torralba, and Daniela Rus. Follow anything: Open-set detection, tracking,
and following in real-time. arXiv preprint arXiv:2308.05737, 2023.

Alaa Maalouf, Ninad Jadhav, Krishna Murthy Jatavallabhula, Makram Chahine, Daniel M. Vogt,
Robert J. Wood, Antonio Torralba, and Daniela Rus. Follow anything: Open-set detection, tracking,
and following in real-time. IEEE Robotics and Automation Letters, 9(4):3283–3290, 2024. doi:
10.1109/LRA.2024.3366013.

Matthias Müller, Alexey Dosovitskiy, Bernard Ghanem, and Vladlen Koltun. Driving policy transfer
via modularity and abstraction. arXiv preprint arXiv:1804.09364, 2018.

Daniel Omeiza, Helena Webb, Marina Jirotka, and Lars Kunze. Explanations in autonomous driving:
A survey. IEEE Transactions on Intelligent Transportation Systems, 23(8):10142–10162, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jacopo Panerati, Hehui Zheng, SiQi Zhou, James Xu, Amanda Prorok, and Angela P. Schoellig.
Learning to fly—a gym environment with pybullet physics for reinforcement learning of multi-
agent quadcopter control. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2021.

Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip: Text-
driven manipulation of stylegan imagery. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 2085–2094, 2021.

Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea Tagliasacchi, Marc Pollefeys, Thomas Funkhouser,
et al. Openscene: 3d scene understanding with open vocabularies. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 815–824, 2023.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Alex Quach, Makram Chahine, Alexander Amini, Ramin Hasani, and Daniela Rus. Gaussian
splatting to real world flight navigation transfer with liquid networks, 2024. URL https:
//arxiv.org/abs/2406.15149.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, pp. 8821–8831. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Dhruv Shah, Ajay Sridhar, Nitish Dashora, Kyle Stachowicz, Kevin Black, Noriaki Hirose, and
Sergey Levine. Vint: A foundation model for visual navigation, 2023.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and
physical simulation for autonomous vehicles. In Field and Service Robotics: Results of the 11th
International Conference, pp. 621–635. Springer, 2018.

Shuhan Tan, Boris Ivanovic, Xinshuo Weng, Marco Pavone, and Philipp Kraehenbuehl. Language
conditioned traffic generation. arXiv preprint arXiv:2307.07947, 2023.

R Tedrake et al. Drake: Model-based design and verification for robotics. 2019.

Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde. End-to-end model-free reinforcement
learning for urban driving using implicit affordances. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 7153–7162, 2020.

Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu,
and Lijuan Wang. Git: A generative image-to-text transformer for vision and language, 2022.

Tsun-Hsuan Wang, Alaa Maalouf, Wei Xiao, Yutong Ban, Alexander Amini, Guy Rosman, Sertac
Karaman, and Daniela Rus. Drive anywhere: Generalizable end-to-end autonomous driving with
multi-modal foundation models. arXiv preprint arXiv:2310.17642, 2023a.

Tsun-Hsuan Wang, Wei Xiao, Makram Chahine, Alexander Amini, Ramin Hasani, and Daniela Rus.
Learning stability attention in vision-based end-to-end driving policies. In Learning for Dynamics
and Control Conference, pp. 1099–1111. PMLR, 2023b.

Wei Xiao, Tsun-Hsuan Wang, Ramin Hasani, Makram Chahine, Alexander Amini, Xiao Li, and
Daniela Rus. Barriernet: Differentiable control barrier functions for learning of safe robot control.
IEEE Transactions on Robotics, 2023.

13

https://arxiv.org/abs/2406.15149
https://arxiv.org/abs/2406.15149

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Bin Xiao, Ce Liu, Lu Yuan, and Jianfeng Gao.
Unified contrastive learning in image-text-label space, 2022.

Lianhao Yin, Makram Chahine, Tsun-Hsuan Wang, Tim Seyde, Chao Liu, Mathias Lechner, Ramin
Hasani, and Daniela Rus. Towards cooperative flight control using visual-attention. In 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6334–6341,
2023. doi: 10.1109/IROS55552.2023.10342229.

Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold Li,
Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al. Regionclip: Region-based language-image pre-
training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 16793–16803, 2022.

Ziyuan Zhong, Davis Rempe, Yuxiao Chen, Boris Ivanovic, Yulong Cao, Danfei Xu, Marco Pavone,
and Baishakhi Ray. Language-guided traffic simulation via scene-level diffusion. arXiv preprint
arXiv:2306.06344, 2023.

Gengze Zhou, Yicong Hong, and Qi Wu. Navgpt: Explicit reasoning in vision-and-language
navigation with large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 7641–7649, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 EXAMPLE FOR EXTRACTING m×m RESOLUTION DESCRIPTORS

In this example, assume w′ = 4 (i.e., we have 16 patches in total), and the desired resolution is 2× 2
(m = 2). The original grid of patches is denoted by:p1,1 p1,2 p1,3 p1,4

p2,1 p2,2 p2,3 p2,4
p3,1 p3,2 p3,3 p3,4
p4,1 p4,2 p4,3 p4,4

 .
The Coarser grid (of sub-grids) is given by:

[
p1,1 p1,2
p2,1 p2,2

] [
p1,3 p1,4
p2,3 p2,4

]
[
p3,1 p3,2
p4,1 p4,2

] [
p3,3 p3,4
p4,3 p4,4

]
 .

Finally, to extract a descriptor for each of these 4 subgrids, we use 4 calls to our methods with 4
different masks, each mask corresponding to a subgrid. The masks are given by the row stacking of
these matrices:1 1 0 0

1 1 0 0
0 0 0 0
0 0 0 0

 ,
0 0 1 1
0 0 1 1
0 0 0 0
0 0 0 0

 ,
0 0 0 0
0 0 0 0
1 1 0 0
1 1 0 0

 ,
0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

 .
A.2 DISCUSSION

Limitations and Future Work The framework presented in this manuscript is limited to instantaneous
decisions. Indeed, the policy can only act with information from the current image and has no access
to a history of representations or actions. We are keen to incorporate our potent multi-modal feature
encoding scheme into sequential decision-making processes. This would enable Flex to go beyond
generalization between environments and objects, and handle instructions over actions, sequences
of steps, and behavior modes. An additional limitation of this work is its computational overhead,
which renders it impractical for real-time execution on small mobile robotic platforms. This pertains
to the wider effort in edge AI research to enable the deployment of foundation models directly on
edge devices. The robotics community will reap great benefits from these advances that will enable
the widespread adoption of methods such as Flex.

A.3 TRAINING

Dataset description. A unique simulated dataset is used for training by all models discussed
throughout this paper. It consists of 300 goal approach flight sequences (22,844 frames in total, 76.15
frames per run on average), with a 90% training and 10% validation split. The same two objects, a
red and a blue sphere, are used in every sequence. All frames of a give sequence are labelled with the
same text, a natural language instruction sentence providing information on whether to fly to the red
or blue goal. We balance the number of runs headed for each of the two possible options.

Trajectory design. Both spheres are initially positioned in the drone’s field of view such that all
trajectories generated carry recovery information (with the farthermost target at the border of the
image). They are positioned at the same altitude and relative position, equidistant from the drone.
We randomize the initial distance to the targets, thus ensuring the size of the objects in the image is
varying. This ensures we expose the network to trajectories that recenter and approach the goal target
from a wide spectrum of angles and distances. The control signals are obtained with the ground truth
knowledge available to us from the simulator, where PID controllers generate the vertical velocity
commands vz to reduce the altitude gap, the forward velocity commands vx to reduce the distance
gap, and the yaw rate ψ̇ to pilot the drone towards the instructed goal (centered in the middle of the
frame).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Label design. Each approach sequence is associated with a unique text instruction. We introduce
text domain augmentation by generating 25 synonyms to the verb ”fly to” and noun ”target”. The
verb phrases include: migrate towards, glide to, whiz to, steer towards, manoeuvre to, zoom to,
elevate towards, approach, propel to, make way to, orient towards, venture towards, soar to, advance
to, progress towards, journey to, hover to, proceed to, drift towards, rush to, shift to, head towards,
ascend towards, scene towards, travel to. The object terms include: signpost, point, terminus, stage,
station, location, interest, goal, setting, checkpoint, cue, objective, coordinate, emblem, locus, target,
marker, beacon, spot, destination, signal, symbol, sight, position, aim. We uniformly sample from
these terms to form instructions in the format: VERB PHRASE the [COLOR] OBJECT

Training run sequence frames are depicted in Figure 10.

Training details. The loss used is the Mean Squared Error (MSE) between the network predicted
commands and the values with which a dataset frame is labeled, with equal weights between all scalar
outputs. We train the models for 20 epochs, using the Adam optimizer with a learning rate of 1 · 10−4.
Frames are uniformly sampled from the dataset to ensure shuffling. We take the checkpoint with
the best validation loss for each model. All training was performed on a single NVIDIA GeForce
RTX 3080 Ti GPU, with 12 GB memory and 10240 CUDA cores, with a single full training run
taking around 45 hours. The major compute bottleneck originates in repeated calls to the BLIP2
based multi-modal patch encoding, which can be alleviated by encoding and storing the entire dataset
features once instead of re-encoding at every epoch. Our setup is capable of handling 2.8 frames per
second on average during training.

A.4 REAL WORLD SETUP DETAILS

Hardware. Our platform is a DJI M300 RTK quadcopter. The M300 interfaces with the DJI
Manifold 2 companion computer, enabling programmatic control of the drone. The DJI Onboard
SDK (Software Development Kit) and its associated ROS wrapper provide an interface for feeding
the drone’s low-level flight controller with desired high-level translation velocities and yaw rate
commands. The flight controller onboard the DJI M300 is a black box system provided by the
manufacturer which controls the four-rotor speeds to track the velocities specified by the companion
TX2 computer. It is worth mentioning that the dynamics of the platform we use do not match those
of the nano-quadrotors simulated. Input images gathered by the gimbal-stabilized camera, which
follows the drone’s yaw to always point forward, are available to the companion computer via the
SDK. The onboard computer runs an NVIDIA Jetson TX2, which has GPU capability. However,
Flex inference on a single image takes over 10 seconds. Thus, establish a connection over Wifi
between the onboard TX2 computer and a standalone Lenovo 16” ThinkPad P16 Gen 2 with Intel
Core i9-13980HX (13th Gen) CPU and NVIDIA RTX 5000 GPU with 16 GB GDDR6 VRAM.
The TX2 sends the latest image to the machine which runs inference and replies with the control
command to execute. We reach a runtime frequency of just over 1 Hz with our setup.

Real world scene. We conduct our flight tests on an outdoor lawn in an urban university campus.
In addition to having to bridge the sim-to-real transfer gap, agents are also exposed to a completely
new visual scene, with various buildings, reflective structures, and trees. Lighting conditions from
various starting positions now expose the agents to sunlight from various angles, making for a very
challenging sim-to-real generalization scenario.

Goal objects. We use cardboard cutouts that we position on tripods at a safe flight altitude as targets.
The list of props contains a red disk, blue disk, white disk, yellow square, yellow star, and human
figure printed cutout on top of which a wig is placed.

A.5 MODEL DETAILS AND PARAMETERS

Policy models We train four different policy head architectures: A Vision Transformer (ViT)
architecture consists of three Transformer blocks with a patch size of 1x1, a dimensionality of 128,
and four attention heads. The multilayer perceptrons (MLPs) in this model have a dimensionality of
256. A fully-connected layer maps to a 4-dimensional output. The convolutional network (Conv)
architecture includes three 1x1 convolutional layers. The first layer has an input dimension of 64, and
all layers have a hidden dimension of 128. Each layer is followed by ReLU activation and dropout,
and the output is flattened to (128 * 16 * 16) and a fully-connected layer maps to a 4-dimensional

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

output. Finally, the Multilayer Perceptron (MLP) architecture begins by average pooling the [B, 64,
16, 16] patches into [B, 64, 1, 20]. It then applies a fully-connected layer with dimension 1280, using
ReLU activation and a dropout rate of 0.3. A fully-connected layer maps to a 4-dimensional output.

Table 1: Vision Transformer Policy Parameters
Parameter Value
Image Size 32x1
Patch Size 1x1

Number of Classes 4
Dimension 128

Depth 3
Heads 4

MLP Dimension 256
Channels 64

Dimension per Head 32

Table 2: Convolutional Network (Conv) Policy Parameters
Parameter Value

Number of Layers 3
Hidden Dimension 128
Activation Function ReLU

Dropout 0.3

Table 3: Multilayer Perceptron (MLP) Policy Parameters
Parameter Value

Pooling Average Pooling
Pooled Dimension [B, 64, 1, 20]

FC Layer 1 Dimension 1280
Activation Function ReLU

Dropout Rate 0.3
FC Layer 2 (Output) Dimension 4

A.6 ROBUSTNESS TO SYNTAX FORMULATIONS

Testing alternative commands . We generate a set of five text command variations for each object
amongst the sphere, cube and pyramid and colors blue, red, green, purple and yellow, in order to test
the robustness of models to syntax and language formulations. The skeleton of each command (left)
and an example for the green sphere (right) are given below:

• Fly to the [OBJECT]
• Navigate to the [OBJECT]
• Reach the [OBJECT]
• Vole vers [OBJECT IN FRENCH]
• Vola verso [OBJECT IN ITALIAN]

• Fly to the green ball
• Navigate to the green ball
• Reach the green ball
• Vole vers la balle verte
• Vola verso la palla verde

A.7 FEATURE CLUSTERING AND ANALYSIS

We provide the algorithms used to perform feature clustering and visualization (Algorithm 1) and
compute the cluster score (Algorithm 2).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 1: Feature Clustering Analysis Algorithm
Model : End-to-end network ϕ
Input: Text instruction T , Frame F , Goal patch indices I
Result: Goal cluster score for each layer

1 X ← {F, T} // Initialize state with input
2 n← Num-Layers(ϕ) // Get the number of network layers
3 n← n− 1 // Ignore ultimate decision layer
4 DBI← zeros(n) // Initialize layer scores
5 for i ∈ [0, . . . , n− 1] do

// Clustering
6 X ← ϕi(X) // Forward pass through ith layer
7 X̄ ← L2-Normalize(X) // L2 Normalize features
8 k ← Elbow(X̄) // Optimize number of clusters
9 C ← k-means(X̄, k) // Obtain k-means clustering

10 c← Argmax-Members(C, I) // Identify cluster with most goal
patches

11 DBI[i]← Compute-DBI(X̄, C, c) // Compute DBI for goal cluster

// Dimensionality reduction
12 D ← Squared-Pairwise-Dists(X̄) // Compute the squared

distances
13 X̄3D ← t-SNE(D) // Reduce to 3D via t-SNE
14 Vis(X̄3D, C) // Visualize with original clustering

15 return DBI

Algorithm 2: Compute-DBI
Input: Normalized features X̄ , k-means clustering C, Cluster index c
Output: Separability score for cluster c

1 G← Get-Centroids(X̄, C) ; // Get the cluster centroids
2 Dinter ← Pairwise-Dists(G) ; // Compute inter-cluster distances
3 dmax ← Max(Dinter) ; // Maximum inter-cluster distance
4 Dintra ← Intra-Clust-Dists(X̄, C) ; // Compute intra-cluster distances
5 Dinter, Dintra ← Dinter/dmax, Dintra/dmax ; // Normalize distances
6 n← Get-Num-Clust(C) ; // Get the number of clusters
7 c-sim← zeros(n) ; // Initialize similarity scores
8 for i ∈ [0, . . . , n] \ {c} do
9 c-sim[i]← (Dintra[c] +Dintra[i])/Dinter[c, i] ; // Compute i to c similarity

10 return Max(c-sim) ; // Return maximum score

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 4: Model Parameters Breakdown
ViT Conv MLP

Total Model 1,173,055k 1,172,822k 1,172,654k
VLM Encoder 1,172,600k 1,172,600k 1,172,600k

Last Layer Projection 49k 49k 49k
Trainable Params 454k 222k 54k
Policy network 405k 172k 5k

fly
 to

 th
e

re
d

ba
ll

fly
 to

 th
e

bl
ue

 b
al

l
fly

 to
 th

e
w

hi
te

 b
al

l
fly

 to
 th

e
ye

llo
w

 sq
ua

re
fly

 to
 th

e
st

ar
fly

 to
 th

e
ye

llo
w

 st
ar

fly
 to

 th
e

m
an

 w
ith

 w
ig

Figure 9: Flex in the wild: screenshots of test runs with the ViT policy network (one per row, time
increases from left to right) performed on a lawn on the urban campus with various goal objects,
backgrounds and lighting conditions. The text instruction used in each case is by the first image.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Zo
om

 to
 th

e
bl

ue
sp

ot
.

R
us

h
to

 th
e

re
d

de
st

in
at

io
n.

G
lid

e
to

 th
e

re
d

lo
ca

tio
n.

So
ar

 to
 th

e
bl

ue
be

ac
on

.
Sh

ift
 to

 th
e

re
d

si
gn

al
.

A
dv

an
ce

 to
 th

e
bl

ue
si

gn
po

st
.

A
dv

an
ce

 to
 th

e
re

d
si

gn
po

st
.

Figure 10: 2M training examples

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

fly
 to

 th
e

re
d

ba
ll

fly
 to

 th
e

bl
ue

 b
al

l
fly

 to
 th

e
pu

rp
le

ba
ll

fly
 to

 th
e

py
ra

m
id

fly
 to

 th
e

pa
lm

 tr
ee

fly
 to

 th
e

w
at

er
m

el
on

fly
 to

 th
e

ro
ck

et

Figure 11: 256-patch ViT closed-loop inference in simulation

21

	Introduction
	Preliminaries
	Methods
	Training data
	Patch-wise Text-vision Spatial Features
	Policy network

	Experiments
	Fly-to-any-target Task
	Experimental Setup
	Simulation
	Real-World transfer

	Summary of Generalization tests

	Results
	Dataset Design
	Feature Extraction Resolution
	Policy Networks
	Robust ViT Decisions
	Real-World Deployment

	Related Work
	Conclusion
	Appendix
	Example for extracting mm resolution descriptors
	Discussion
	Training
	Real world setup details
	Model Details and Parameters
	Robustness to syntax formulations
	Feature clustering and analysis

