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SCOOT: SLO-Oriented Performance Tuning for LLM Inference
Engines

Anonymous Author(s)

Abstract
As large language models (LLMs) are gaining increasing popularity
across a wide range of web applications, it is of great importance to
optimize service-level objectives (SLOs) for LLM inference services
to enhance user satisfaction and improve the competitiveness of
cloud vendors. In this paper, we observe that adjusting the param-
eters of LLM inference engines can improve service performance,
and the optimal parameter configurations of different services are
different. Therefore, we propose SCOOT, an automatic performance
tuning system to optimize SLOs for each LLM inference service
by tuning the parameters of the inference engine. SCOOT jointly
exploits single-objective and multiple-objective Bayesian optimiza-
tion (BO) techniques to handle various optimization objectives via
exploration and exploitation. Moreover, SCOOT prunes the search
space with known constraints and adopts a random forest to learn
hidden constraints during the tuning process to mitigate invalid
exploration. To improve the tuning efficiency, SCOOT utilizes the
parallel suggestion to accelerate the tuning process. Extensive exper-
iments demonstrate that SCOOT considerably outperforms existing
tuning techniques in SLO optimization while greatly improving
the tuning efficiency. SCOOT is universally applicable to various
LLM inference engines and is easily expandable to new parameters.
Currently, SCOOT has already been implemented in the production
environment of a leading international technology company.

CCS Concepts
• Computing methodologies→ Parallel computing method-
ologies; Natural language generation; Machine learning.
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1 Introduction
With the impressive capabilities demonstrated by large language
models (LLMs) across various web applications [1], cloud vendors
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such as Alibaba Cloud and AWS have started offering services of
LLM deployment and inference [2, 3]. Customers (e.g., developers
and providers of web applications) can deploy specified LLMs on
their exclusive computing resources. Through the application pro-
gramming interface (API) provided by the cloud vendor, customers’
requests can be continuously served by the deployed LLMs.

These LLM inference services run LLM instances with advanced
inference engines such as vLLM [4] and TensorRT-LLM [5], which
are equipped with cutting-edge technologies, such as continuous
batching [6], paged attention [7], and chunked prefill [8]. These
techniques can accelerate inference and improve throughput, thus
delivering a high service performance to customers.

To ensure service performance, customers always agree on ser-
vice level objectives (SLOs) with cloud vendors. SLOs are defined as
a series of performance metric constraints, such as requiring that
the 95th percentile latency of requests be less than 1 second. If cloud
vendors violate these SLOs, they not only have to compensate cus-
tomers but also face reputational damage. Therefore, appropriately
setting SLOs is critical for cloud vendors. They should optimize
SLOs (e.g., guarantee a lower tail latency) to improve customer
satisfaction while ensuring that there won’t be SLO violations.

Typically, cloud vendors stress test services with high request
rates and set the performance metrics achieved under the stress
testing as SLOs. This ensures that SLOs won’t be violated even
under heavy workload scenarios. By improving the service perfor-
mance under stress testing, cloud vendors can deliver better SLOs to
customers. In this paper, we observe that adjusting the parameters
of LLM inference engines has great potential to improve service
performance and the optimal parameter configurations of various
LLM inference services are different. Therefore, we stand in the
shoes of cloud vendors and optimize SLOs for each LLM inference
service by tuning the parameters of LLM inference engines under
stress testing. The relevance of this paper to the systems and
infrastructure for web is elaborated in Appendix A.1.

Numerous performance tuning methods have been proposed and
applied across various fields [9], but they all fall short of efficiency
and optimality for tuning LLM inference engines. Methods like ran-
dom sampling and meta-heuristic algorithms, such as Monte Carlo
sampling [10] and genetic algorithms [11] lack efficiency as they
fail to fully utilize historical information. Besides, heuristic searches
rely on expert knowledge and elaborate pre-profiling to model rela-
tionships between parameters and performance. Nevertheless, with
the rapid evolution of technologies in LLM inference engines, the
parameters’ numbers and ranges are frequently updated, which
makes the modeled parameter-performance relationship outdated
and the designed heuristic search methods inapplicable. Addition-
ally, learning-based approaches such as reinforcement learning (RL)
[12] and Bayesian optimization (BO) [13] have also been widely
exploited in performance tuning. They can effectively leverage
historical information and tune parameters automatically without
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prior knowledge. However, RL requires a time-consuming training
process to obtain a well-behaved tuning agent, while existing BO
solutions fail to address the following three challenges.

Challenge 1: Various Optimization Objectives. Customers
seek to enhance different performance metrics depending on their
application requirements, such as improving request throughput
for the periodically invoked offline recommendation application,
reducing request tail latency for the online classification application,
and minimizing time-to-first-token (TTFT) and time-per-output-
token (TPOT) simultaneously for interactive applications such as
chatbot, requiring the tuner to have the capability of handling both
single-objective and multi-objective optimization problems.

Challenge 2: Complex Known and Hidden Constraints.
Some parameters of inference engines depend on the settings of
other parameters, thus causing constraints on the search space.
For example, for vLLM, max-num-batched-tokensmust be greater
than or equal to max-num-seqs. We refer to these as known con-
straints, which can be provided to the tuner ahead of time. Besides,
given a specific service, certain parameter combinations can lead
to inference engine crashes during the stress testing. In this paper,
these infeasible parameter combinations are referred to as hidden
constraints. Different inference services have different hidden con-
straints that are initially unknown and must be learned throughout
the tuning process. Specifically, for some certain services, vLLM
often crushes due to a timeout error during the stress testing when
scheduler-delay-factor is set to a large value.

Challenge 3: High Evaluation Overhead. Learning-based
tuners always learn the correlation between the service perfor-
mance and the engine’s parameter settings by evaluating various
parameter configurations. As stress testing an inference service
takes about 5 to 10 minutes, even with only 30 evaluations for
tuning, the total time spent tuning a single service can range from
2.5 to 5 hours. Since the increasing popularity of LLMs leads to
the deployment of a large number of LLM inference services, the
cumulative time required for tuning these services is prohibitive.

To tackle these challenges, we propose SCOOT, a ServiCe-level
Objective Oriented performance Tuning system, which automati-
cally tune parameters of LLM inference engines to optimize SLOs
for LLM inference services. We first propose a general formulation
of the inference engine tuning problem to accommodate various
optimization objectives and complex constraints, and SCOOT can
resolve the problem with BO, where single-objective BO (SOBO)
and multi-objective BO (MOBO) [14–16] are respectively employed
to search optimized parameter configurations for single-objective
and multi-objective optimization scenarios, thus addressing chal-
lenge 1. Since constraint violations result in invalid observations
caused by engine crashes, which greatly hurts the tuning efficiency,
SCOOT prunes the search space with known constraints and ex-
ploits a random forest to learn hidden constraints during the tuning
process, thus mitigating challenge 2. To resolve challenge 3, SCOOT
employs the parallel suggestion technique to recommend multiple
parameter configurations each time for simultaneous evaluation,
thus fully utilizing idle computing resources to speed up tuning.
SCOOT can support various inference engines and is easily expand-
able to new parameters. It’s currently in use at Company-X1.

1Company-X is the anonymous name of a technology company with billions of users.

Table 1: PARAMETERS TO TUNE.
Configuration Parameter Type Range

tensor-parallel Integer [1, #GPUs]
max-num-seqs Integer [64, 8192]

max-num-batched-tokens Integer [64, 8192]
block-size Enumeration {8, 16, 32}

scheduler-delay-factor Float [0, 2]
enable-chunked-prefill Boolean {True, False}
enable-prefix-caching Boolean {True, False}

disable-custom-all-reduce Boolean {True, False}
use-v2-block-manager Boolean {True, False}

We conduct extensive experiments with various LLMs and differ-
ent types and numbers of GPUs under request traces collected from
various LLM-based web applications at Company-X. The results
show that SCOOT can speed up the tuning process and significantly
optimize SLOs, improving the request throughput by up to 68.3%,
reducing the request tail latency by up to 40.6%, and reducing the
TTFT and TPOT by up to 99.8% and 61.0%, respectively, compared
to the default parameter configuration and existing tuning methods.
The main contribution of this paper is summarized as follows.

• To the best of our knowledge, this is the first study that in-
troduces performance tuning into the field of LLM serving,
and we uncover the significance of tuning LLM inference
engines with real-world request traces.

• We propose a general formulation of the inference engine
tuning problem that accommodates various optimization
objectives and constraints, and we design SCOOT to solve
the problem by intelligently searching optimized parameter
configurations with BO.

• Random forest regression is employed by SCOOT to learn
hidden constraints during the tuning process to avoid in-
valid explorations, while the parallel suggestion technique
is adopted to significantly improve the tuning efficiency
using additional computing resources.

• Extensive experiments are conducted to confirm the su-
periority of SCOOT in terms of both the optimality and
efficiency for tuning LLM inference engines under various
LLMs, computing resources, and request traces.

2 Background and Motivation
Background: parameters of the LLM inference engine. To
provide flexibility of use, inference engines expose many parame-
ters. For vLLM, these parameters include boolean variables such
as enable-chunked-prefill that can enable the chunked prefill
technique, integer and float variables such as max-num-seqs and
scheduler-delay-factor that can change the request scheduling
strategy, and enumeration variables such as block-size that can
change the memory allocation policy. In this paper, we focus on tun-
ing parameters that do not affect the accuracy of LLMs. Therefore,
we do not consider parameters related to model compression, such
as quantization. Besides, although speculative decoding has been
theoretically proven not to hurt LLM accuracy [17], it still affects
the LLMs’ generation results, making it inapplicable for certain
applications. Hence, we also do not tune parameters related to spec-
ulative decoding. In this paper, we choose vLLM as the inference
engine, and the parameters to be tuned are listed in Table 1, which
constructs a huge search space of billions of configuration points.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

SCOOT: SLO-Oriented Performance Tuning for LLM Inference Engines WWW ’25, April 28–2 May, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 2: VARIOUS SERVICE CHARACTERISTICS.
Service Application GPU Type GPU Number LLM

A SQL A100 2 LLAMA2-13B
B BOT A100 2 LLAMA2-13B
C BOT A10 2 LLAMA2-13B
D BOT A10 4 LLAMA2-13B
E BOT A10 4 LLAMA2-7B

Figure 1: Optimal TTFT and TPOT for various services. The
TTFT and TPOT shown are relative values compared to those
of the default parameter configuration. The lower, the better.

Motivation: parameter adjustment of the LLM inference en-
gine can enhance performance for LLM inference services.
We conduct experiments to find the optimal parameter configura-
tions of vLLM with grid searches for five services of various LLMs
deployed on different numbers and types of GPUs under request
traces of various applications. The service characteristics in the
experiments are shown in Table 2, where A10 and A100 separately
represent the NVIDIA A10 24G GPU and NVIDIA A100 80G GPU,
and SQL and BOT represent the request traces of text-to-SQL and
chatbot applications at Company-X. Other experimental settings
are the same as those in Section 5. Fig.1 presents the relative TTFT
and TPOT performed by optimal parameter configurations for these
services. We can observe that TTFT and TPOT can be reduced by
up to 98.9% and 49.9% compared to the default configuration, re-
spectively, which confirms the significance of performance tuning.
Motivation: different inference services’ optimal parameter
configurations are different.We conduct experiments to apply
the optimal parameter configuration of a service to other services.
Figure 2 presents the experimental results. We can observe that the
performance exhibited by the optimal parameter configuration for
a service may perform poorly or even violate hidden constraints
and cause errors for other services. Hence, there is no one “best
practice" configuration that works best in all scenarios, and it is
essential to conduct performance tuning for each inference service.

3 Problem Formulation
Given an inference service, the goal of performance tuning for the
LLM inference engine is to find the optimal or near-optimal pa-
rameter configuration that maximizes the objective and satisfies
known and hidden constraints. As we mentioned before, different
customers want to optimize different performance metrics. There-
fore, we provide a generalized problem formulation that supports
various optimization objectives and complex constraints.

We define the configuration search space 𝚲 = Λ1 ×Λ2 × ... ×Λ𝑛 ,
where Λ𝑖 represent the range of the 𝑖th parameter to tune. Vector
𝒙 ∈ 𝚲 is utilized to denote a specific parameter configuration, where
the 𝑖th element 𝒙 [𝑖] ∈ Λ𝑖 corresponds to the value of the 𝑖th param-
eter. Moreover, we respectively use 𝑇 (𝒙), 𝐿(𝒙), Φ(𝒙), and Θ(𝒙) to

(a) Relative time-to-first-token (TTFT) compared to the default
configuration. The lower, the better.

(b) Relative time-per-output-token (TPOT) compared to the default
configuration. The lower, the better.
Figure 2: TTFT and TPOT for applying optimal parameter
configurations of different services to other services. Conf.
𝑋 represents the optimal parameter configuration for the
service 𝑋 ∈ {𝐴, 𝐵,𝐶, 𝐷, 𝐸}. The red lines (1.0×) in Sub-figures
(a) and (b) indicate the TTFT and TPOT under the default pa-
rameter configuration of the inference engine, respectively.

represent the functions of request throughput, tail latency, average
TTFT, and average TPOT for the inference service under config-
uration 𝒙 . We leverage C = {𝑐1, 𝑐2, ..., 𝑐𝑚} to symbolize the set of
known constraints, where 𝑐𝑖 is the 𝑖th known constraint which
restricts the relationship between elements of 𝒙 . For example, a
known constraint can be expressed as “𝒙 [1] < 𝒙 [3] if 𝒙 [4] is False".
Moreover, we utilize 𝑃𝑂𝐹 (𝒙) to represent 𝒙’s probability of feasi-
bility (POF) that 𝒙 won’t violate hidden constraints. Therefore, the
tuning problem can be formulated as

P : max
𝒙∈𝚲

𝜆𝑡 ·𝑇 (𝒙), 𝜆𝑙 · 𝐿(𝒙), 𝜆𝜙 · Φ(𝒙), 𝜆𝜃 · Θ(𝒙) (1)

s. t.
𝑐𝑖 ,∀𝑐𝑖 ∈ C, (2)
𝑃𝑂𝐹 (𝒙) ≥ Δ, (3)

where Eq. (2) and Eq. (3) respectively denotes the known and hid-
den constraints. Δ is the POF threshold used to avoid violations of
hidden constraints. 𝜆𝑡 ∈ {0, 1} and 𝜆𝑙 , 𝜆𝜙 , 𝜆𝜃 ∈ {0,−1} are utilized
to control the optimization objectives. If (𝜆𝑡 , 𝜆𝑙 , 𝜆𝜙 , 𝜆𝜃 ) = (1, 0, 0, 0),
the optimization objective is to only maximize the request through-
put, which is applicable to periodically invoked applications such
as offline recommendation. If (𝜆𝑡 , 𝜆𝑙 , 𝜆𝜙 , 𝜆𝜃 ) = (0,−1, 0, 0), the op-
timization objective is to only minimize the tail latency, which is
appropriate for non-interactive online applications such as classifi-
cation. If (𝜆𝑡 , 𝜆𝑙 , 𝜆𝜙 , 𝜆𝜃 ) = (0, 0,−1,−1), the optimization objective
is to simultaneously minimize the TTFT and TPOT, which is suit-
able for interactive applications.

4 SCOOT: Solution Description
We present SCOOT’s design, including its use of SOBO and MOBO
for solving P, its innovative features of parallel suggestion and ran-
dom forest-based POF learning, and the SLO robustness assurance.

3
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Figure 3: SCOOT workflow. SCOOT leverages BO to find optimized parameter configurations via exploration and exploitation.

4.1 SCOOTWorkflow
The workflow of SCOOT is depicted in Fig. 3, which consists of
nine key steps to find optimized parameter configurations. Cus-
tomers define their optimization objectives, and SCOOT ❶ gathers
their request traces that include both input text of requests and
output text generated by the LLM. Then, SCOOT leverages Sobol
sequence-based Quasi-Monte Carlo [18] to uniformly ❷ sample
configurations across the search space, where the number of sam-
ples matches the search space’s dimensionality. Then, SCOOT runs
the inference engine with each sampled configuration and stress
tests the inference service to obtain initial observations. These ob-
servations of configuration-performance pairs are leveraged to ❸

build a random forest and ❹ construct a surrogate model to learn
the 𝑃𝑂𝐹 (·) and predict the probability distribution of each optimiza-
tion objective, respectively. Subsequently, acquisition functions are
exploited to ❺ assess configurations according to the predicted
results. Based on the assessment, a solver ❻ suggests multiple con-
figurations in parallel while adhering to the known constraints and
❼ ensuring hidden constraints using 𝑃𝑂𝐹 (·) learned by the random
forest. Lastly, the inference engine ❽ is started with each suggested
parameter configuration, and the stress testing is conducted to ❾

obtain new observations to refine the random forest and the sur-
rogate model. Steps ❸∼❾ run iteratively, and the tuning process
stops until the number of observations reaches a given threshold.

In the workflow, the LLM, GPU number, and GPU type used for
tuning are the same as the inference service owned by the customer.

4.2 Bayesian Optimization-based Solution
BO is a theoretically grounded method for finding the optimum of
black-box functions. It can explore the complex multi-dimensional
search space efficiently and intelligently [13], which is suitable for
solving problems with expensive evaluation overhead. BO leverages
a surrogate model to approximate the objective function and use
acquisition functions to assess configuration points for suggesting.

SCOOT leverages SOBO to maximize throughput and minimize
tail latency for non-interactive offline and online applications, re-
spectively. For interactive applications, it exploits MOBO to mini-
mize TTFT and TPOT simultaneously by finding a set of parameter
configurations representing the Pareto frontier that denotes the
optimal trade-offs between TTFT and TPOT. We do not linearly
combine TTFT and TPOT as a single optimization objective and
solve it with SOBO because TTFT can be hundreds or even thou-
sands of times larger than TPOT. Hence, it is difficult to assign
weights to TTFT and TPOT to make a good trade-off. Besides,
TTFT and TPOT are always two conflicting optimization objectives
as illustrated in Appendix A.2.

4.3 Surrogate Model
The surrogate model of BO predicts the objective function 𝑓 (𝒙)
based on observations. It models 𝑓 (𝒙) for a given configuration 𝒙
as a random variable and predicts its probability distribution. In
the context of LLM inference engine tuning, 𝑓 (𝒙) can represent the
objective functions of request throughput𝑇 (𝒙), request tail latency
𝐿(𝒙), average TTFT Φ(𝒙), and average TPOT Θ(𝒙).

SCOOT uses the Gaussian process (GP) as the surrogate model.
Given a parameter configuration 𝒙 , GP assumes that the probability
distribution of 𝑓 (𝒙) follows a Gaussian distribution whose mean
𝜇 (𝑓 (𝒙)) and the variance 𝜎2 (𝑓 (𝒙)) are respectively computed by

𝜇 (𝑓 (𝒙)) = 𝑘 (𝒙, X) (𝑘 (X, X) + 𝜏2𝐼 )−1Y, (4)
𝜎2 (𝑓 (𝒙)) = 𝑘 (𝒙, 𝒙) − 𝑘 (𝒙, X) (𝑘 (X, X) + 𝜏2𝐼 )−1𝑘 (X, 𝒙), (5)

where X represents the previously evaluated configurations, Y
denotes the corresponding observed objective values, 𝜏2 is the
level of white noise, and 𝑘 (𝒙, 𝒙′) is the covariance function that
quantifies the similarity between input points 𝒙 and 𝒙′ for inferring
the relationships between their objective function values. SCOOT
employs the Matern kernel ( 32 ) with input wrapping [19] as the
covariance function due to its capability to balance the smoothness
and flexibility when modeling unknown functions. SCOOT utilizes
maximum likelihood estimation [20] to learn 𝜏2 during tuning.

For SOBO, a single-output GP is leveraged to predict the objective
function. For MOBO, SCOOT adopts a multi-output GP by consid-
ering each output to be independent. During the tuning process,
the prediction accuracy of the GP model is continuously improved
as more observations are collected.
4.4 Acquisition Function
The acquisition function of BO assesses parameter configurations
in the search space, which calculates a score for each configuration
point 𝒙 according to the surrogate model’s predicted mean 𝜇 (𝑓 (𝒙))
(indicating the expected performance) and variance 𝜎2 (𝑓 (𝒙)) (rep-
resenting uncertainty). Parameter configurations with high scores
are more likely to be suggested for evaluation. Different acquisition
functions balance exploration (visiting areas with high uncertainty)
and exploitation (intensively searching areas with good known
objective values) in different manners.
4.4.1 SOBO Acquisition Function. For SOBO, commonly used
acquisition functions include upper confidence bound (UCB), prob-
ability of improvement (PI), and expected improvement (EI). UCB
incorporates both mean and variance into the score and priori-
tizes the point with a high balance of exploration and exploitation
through a trade-off parameter 𝛽 , which is expressed by

𝑈𝐶𝐵(𝒙) = 𝜇 (𝑓 (𝒙)) + 𝛽 · 𝜎 (𝑓 (𝒙)), (6)
4
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(a) Hypervolume (HV). (b) HV improvement.
Figure 4: Illustration of two-dimensional HV. 𝑓1 and 𝑓2 are
two objective functions and 𝒓 is the reference point. (a) Blue
area represents the HV of the existing solution set. (b) Yellow
area depicts the HV improvement after adding 𝒚4.

where 𝜎 (𝑓 (𝒙)) =
√︁
𝜎2 (𝑓 (𝒙)) represents the standard deviation.

PI prioritizes the point that is likely to yield an improvement
over the current known best observation, which is expressed by

𝑃𝐼 (𝒙) = 𝑃 (𝑓 (𝒙) + 𝜉 > 𝑓 (𝒙+)), (7)

where 𝒙+ is the point that has the largest objective function value
known so far, and 𝜉 is leveraged to encourage exploration.

EI not only considers the probability of objective improvement
but also the magnitude of the expected improvement, which is
computed by

𝐸𝐼 (𝒙) = E(max(0, 𝑓 (𝒙) + 𝜉 − 𝑓 (𝒙+))), (8)

where 𝒙+ represents the best observed configuration point as well,
and 𝜉 is also a parameter used to encourage exploration.

4.4.2 MOBOAcquisition Function. ForMOBO, expected hyper-
volume improvement (EHVI) is widely adopted as the acquisition
function to identify promising parameter configurations that de-
note optimal trade-offs between multiple optimization objectives.
EHVI assesses a new configuration point based on the potential
improvement it might bring to the hypervolume of the existing
solution set, which is calculated by

𝐸𝐻𝑉 𝐼 (𝒙) = E(max(0, 𝐻𝑉 (Y ∪ {𝑓 (𝒙)}) − 𝐻𝑉 (Y))), (9)

where 𝐻𝑉 (·) is the hypervolume function and Y denotes the ob-
jective values of previously evaluated configurations.

The hypervolume function 𝐻𝑉 (·) is calculated by measuring
the volume of space enclosed between the Pareto frontier and a
reference point 𝒓 , where 𝒓 is typically a lower bound point for all ob-
jective functions. When there are only two optimization objectives,
𝐻𝑉 (·) is calculated by summing the areas of rectangles formed
between each point on the Pareto frontier and 𝒓 . Figure 4 presents
how the two-dimensional 𝐻𝑉 (·) is computed.

A larger𝐻𝑉 (·) value indicates a Pareto front that covers a larger
objective space, offering a broader range of promising solutions. By
maximizing the EVHI, the search process can be guided towards
configurations that can improve the overall quality and diversity
of the Pareto frontier, thus optimizing multiple objectives simulta-
neously and providing more optional configurations for customers.

4.5 Configuration Suggestion
4.5.1 SOBO Suggestion. For SOBO, a common practice is to
select a specific acquisition function and suggest parameter config-
urations that maximize the acquisition function. However, when
it comes to real-world applications, the selected acquisition func-
tion might work sub-optimally for the tuning task, and the best
acquisition function is challenging to identify beforehand [21].

To mitigate this issue, SCOOT employs multi-objective acquisi-
tion function ensemble (MACE) [22]. MACE uses three acquisition
functions, UCB, PI, and EI, to assess configuration points and runs a
solver to find out the Pareto frontier that denotes the optimal trade-
offs of the three acquisition functions. Suggested configurations are
randomly selected in the Pareto frontier. With MACE, SCOOT can
avoid using sub-optimal acquisition functions all the time, thereby
improving the quality of suggested parameter configurations.

During the tuning process, for UCB, 𝛽 is dynamically adjusted,
and in the 𝑡 th tuning iteration, 𝛽 is calculated by 2𝑙𝑜𝑔( 𝑡2𝜋2

6𝛿 ), where
𝛿 = 1

𝑡2
[23]. For EI and PI, 𝜉 is set to a fixed value of 0.0001.

4.5.2 MOBOSuggestion. ForMOBO, SCOOT leverages the EHVI
as the acquisition function and runs a solver to suggest parameter
configurations by maximizing EHVI. The default configuration of
the inference engine is chosen as the reference point 𝒓 .

4.5.3 KnownConstraint Assurance. For both SOBO andMOBO,
in the process of solvers solving optimization problems, the solution
space is pruned by known constraints.

4.6 Parallel Configuration Suggestion
With the popularity of LLMs, an increasing number of LLM in-
ference services are being deployed, and tuning them incurs sub-
stantial time overhead. To mitigate this problem, SCOOT suggests
multiple parameter configurations at a time and utilizes multiple
sets of computing resources to conduct stress testing in parallel.

Given the parallelism degree 𝑘 , for SOBO, SCOOT randomly
selects 𝑘 points from the Pareto frontier of the three acquisition
functions for suggesting. For MOBO, the top-𝑘 points with the
largest EHVI are suggested. Thus, tuning can be accelerated by a
factor of 𝑘 when the total observation number is fixed.

Although the parallel suggestion requires additional computing
resources to evaluate configurations in parallel, many computing
resources in production clusters are often idle during off-peak hours
such as nights and weekends, which can be conveniently used for
tuning LLM inference engines.

4.7 Random Forest-based POF Learning
To handle hidden constraints, a common practice is to assign penalty
objective values to the infeasible parameter configurations that
cause engine crashes. However, it is challenging to set appropriate
penalty objective values. Besides, penalty objective values often
hurt the surrogate model [24]. Therefore, SCOOT leverages random
forest regression to learn the 𝑃𝑂𝐹 (·) and handle hidden constraints
by restricting the solver to adhere to Eq. (3) in the process of con-
figuration suggestion. In this way, SCOOT can substantially reduce
invalid observations without affecting the surrogate model.

For the hidden constraint expressed in Eq. (3), the feasibility
probability threshold Δ is critical. If Δ is fixed, setting it too high
may result in repeatedly suggesting configuration points near al-
ready observed feasible configurations, potentially missing out on
other superior configuration points. Conversely, setting Δ too low
may lead to suggestions of infeasible configurations. Hence, SCOOT
dynamically adjusts the threshold Δ during the tuning process.

The dynamic adjustment process of Δ can be found in Algorithm
1, where we can observe that when infeasible parameter config-
urations are suggested, Δ is increased to reduce the likelihood of
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Algorithm 1: SCOOT: BO-based Performance Tuning
Input: 𝑁 : total observation number; 𝑘 : parallelism degree;
// Initialize observations

1 O ← UNIFORM_SAMPLE_AND_EVALUATE()
2 𝑅𝐹 ← TRAIN(O) // Train random forest regression

3 Δ← 0.5; 𝑐 ← 0; 𝜐 ← 0.05
4 while |O| < 𝑁 do

// Suggest 𝑘 configurations

5 {𝒙1, ..., 𝒙𝒌 } ← SUGGEST(𝑘 , O, 𝑅𝐹 , Δ)
// Collect performance metrics

6 {𝒚1, ...,𝒚𝒌 } ← EVALUATE({𝒙1, ..., 𝒙𝒌 })
// Adjust feasibility threshold

7 if there are invalid 𝒚 in {𝒚1, ...,𝒚𝒌 } then
8 Δ← min(0.75,max(0.5,Δ + 𝜐))
9 𝑐 ← 0 // Clear feasible suggestion count

10 else
11 𝑐 ← 𝑐 + 𝑘
12 if 𝑐 ≥ 5 then
13 Δ← max(0.25,Δ − 𝜐)
14 𝑐 ← 𝑐 − 5

// Update observations

15 O ← UNION(O, {𝒙1, ..., 𝒙𝒌 }, {𝒚1, ...,𝒚𝒌 })
16 𝑅𝐹 ← TRAIN(O) // Refine Random Forest

further suggesting infeasible configurations. Besides, after continu-
ously suggesting feasible configurations five times, Δ is decreased to
allow the discovery of potential superior configurations. Addition-
ally, during the tuning process, the random forest is continuously
refined using the latest observations to enhance prediction accu-
racy, ensuring that hidden constraints are intelligently followed
without compromising the quality of performance tuning.

Since known and hidden constraints pure the solution space,
solvers may be unable to give a sufficient number of solutions
during the configuration suggestion. In such scenarios, SCOOT
randomly samples configuration points with Sobol sequence-based
Quasi-Monte Carlo to make up for the shortfall.

4.8 Ensuring SLO Robustness
Through extensive experiments, we find that when the performance
tuning is conducted under different request arrival orders, the best
parameter configurations are almost the same, but the correspond-
ing optimized SLOs vary. Thus, after performance tuning, we con-
duct stress testing multiple times again using the best configuration,
varying request arrival orders, and select the worst-case objectives
as the SLOs to ensure SLO Robustness. Finally, we summarize the
overall tuning procedure of SCOOT in Algorithm 1.

5 Experimental Evaluation
5.1 Experiment Setup
We implement SCOOT on top of HEBO [21], where the random
forest regression is implemented using the sklearn [25] library.
Request traces are collected from four LLM inference services at
Company-X, including applications of text-to-SQL (SQL), chatbot
(BOT), classification (CLS), and recommendation (REC). Since the
computational load of an LLM inference request depends on its

(a) BOT. (b) SQL.

(c) CLS. (d) REC.
Figure 5: Probability density function (PDF) of the request
input and output lengths for four application request traces.
input and output lengths, to enhance the robustness of optimized
SLOs, SCOOT uses themost loaded 50% of requests for stress testing,
where the input and output lengths are presented in Fig. 5. For
SQL and BOT, TTFT and TPOT are optimization objectives at the
same time. For CLS and REC, 95th percentile latency and request
throughput are utilized as optimization objectives, respectively.

Multiple sets of computing resources are utilized in experiments,
including 2A10, 4A10, 2A100, and 4A100, where A10 represents
the NVIDIA A10 24GB GPU, A100 denotes the NVIDIA A100 80GB
GPU, and the integer before the GPU type indicate the number
of GPUs. For each set of computing resources, 256GB CPU mem-
ory and one 2.90GHz 32-core Intel(R) Xeon(R) CPU are equipped.
Besides, A100 GPUs are connected over NVLink, and A10 GPUs
are connected over PCIE. We use LLAMA2-7B and LLAMA2-13B
[26] in experiments because the model architecture of LLAMA is
representative and fine-tuned 7B and 13B LLMs can fulfill the re-
quirements for most applications in practice. We adopt vLLM as the
inference engine to tune due to its high usability and popularity.

In each configuration evaluation, when the inference engine is
started with the suggested configuration, we send requests from
the request trace for 100 seconds and the request arrival times are
generated using Poisson distribution with various request rates.
For A10, the request rates for SQL, BOT, CLS, and REC are 5,5, 10,
and 15, respectively. For A100, the request rates of these request
traces are twice that of A10. The request rate is set according to
the actual workload of the applications as well as considering the
computing capability and GPU memory capacity of GPUs.

We compare SCOOT with three baselines, including random
sampling (RD), genetic algorithm (GA), and Vanilla BO (VBO).
Detailed baseline description is provided in Appendix A.3.

5.2 SLO Optimization
In the experiments of SLO optimization, we limit the total observa-
tion number to 30 and set the suggestion parallelism degree (PD) of
SCOOT to one. The experimental results are presented in Figures 6,
7, 8, 9, 10, and 11, where we not only present the SLO improvement
under each set of computing resources but also the average SLO im-
provement across various computing resources. The bar represents
the SLO improvement compared to the default parameter configura-
tion, and the higher the bars, the better. In addition, × represents
that no better configuration than the default configuration is found.

For BOT and SQL applications, TTFT and TPOT are optimized
simultaneously, and a Pareto frontier is resolved. We choose SLOs

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

SCOOT: SLO-Oriented Performance Tuning for LLM Inference Engines WWW ’25, April 28–2 May, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

(a) TTFT reduction. (b) TPOT reduction.
Figure 6: SLO optimization for BOT under LLAMA2-7B.

(a) TTFT reduction. (b) TPOT reduction.
Figure 7: SLO optimization for BOT under LLAMA2-13B.

(a) TTFT reduction. (b) TPOT reduction.
Figure 8: SLO optimization for SQL under LLAMA2-7B.

(a) TTFT reduction. (b) TPOT reduction.
Figure 9: SLO optimization for SQL under LLAMA2-13B.

of the configuration with maximal HV from the Pareto frontier
as the tuning result to report since it represents the best trade-off
between TTFT and TPOT. HV of a single configuration point 𝒙 is
calculated by

𝐻𝑉 (𝒙) = max(0, 𝑦𝜙𝒙 − 𝑦
𝜙
𝒓 ) ·max(0, 𝑦𝜃𝒙 − 𝑦𝜃𝒓 ), (10)

where 𝑦𝜙𝒙 , 𝑦𝜃𝒙 , 𝑦
𝜙
𝒓 , and 𝑦𝜃𝒓 denote the observed TTFT and TPOT of

𝒙 and the reference point 𝒓 , respectively.
Figures 6, 7, 8, and 9 show that compared to the default con-

figuration and baselines, SCOOT decreases the TTFT and TPOT
by up to 98.9% and 10.5% for the BOT application, respectively,
and reduces the TTFT and TPOT by up to 99.8% and 61.0% for the
SQL application, separately. In addition, SCOOT surpasses all the
baselines in terms of average TTFT and TPOT reduction across
various computing resources for BOT and SQL applications, which
confirms SCOOT’s superiority in multi-objective optimization.

Figures 10 and 11 present that compared to the default config-
uration and baselines, SCOOT reduces request tail latency by up
to 40.6% for the CLS application and increases request throughput
by up to 68.3% for the REC application. Besides, SCOOT outper-
forms all the baselines in terms of average tail latency reduction
and request throughput improvement across various computing re-
sources for CLS and REC applications, respectively, which confirms
SCOOT’s superiority in single-objective optimization.

(a) LLAMA2-7B. (b) LLAMA2-13B.
Figure 10: Tail latency reduction for CLS.

(a) LLAMA2-7B. (b) LLAMA2-13B.
Figure 11: Request TP improvement for REC.

While in rare situations, SCOOT failed to outperform certain
baselines in SLO optimization, SCOOT’s tuning performance is
more consistent. As shown in Fig. 9, in the case of 2A100, VBO
slightly outperforms SCOOT in both TTFT and TPOT reduction.
However, in the case of 4A10, VBO fails to find a configuration
that is better than the default configuration, while SCOOT greatly
reduces TTFT and TPOT. Such a consistently superior performance
makes SCOOT outperform all the baselines in the average perfor-
mance of SLO optimization for various LLMs and applications.

GA optimizes around the initially sampled configurations. With
a limited number of observations, both the population size and the
number of iterations of GA are restricted to a small value. Thus,
GA not only lacks diversity in solutions but also cannot fully utilize
historical information to guide the search process, and GA can
hardly tackle constraints, hence often performing poorly.

RD is unable to utilize historical information to guide the sam-
pling process and can not handle constraints. However, due to the
uniform sampling, RD can explore a large range in the search space
and hence has a higher diversity in sampled configurations than
GA. Hence, RD often performs better than GA.

By leveraging BO to intelligently utilize historical observations
to guide the tuning process, VBO often outperforms RD and GA
in SLO optimization. However, by assigning a penalty objective
value to unfeasible configurations, the surrogate model will confuse
points near infeasible configurations with points that are feasible
but perform poorly. This can lead to a lack of subsequent exploration
in the adjacent area of infeasible configurations, thus missing out
on some potentially superior solutions.

SCOOT’s outstanding performance primarily comes from the
employment of BO, which efficiently resolves black-box optimiza-
tion problems, and the random forest-based POF learning, which

(a) Tail latency reduction for CLS
under LLAMA2-7B & 13B.

(b) TTFT & TPOT reduction for
BOT under LLAMA2-7B.

Figure 12: Effectiveness of random forest-based POF learning.
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(a) Tail latency reduc-
tion for CLS under
LLAMA2-7B & 13B.

(b) TTFT & TPOT re-
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der LLAMA2-7B.

(c) Performance tun-
ing time for CLS and
BOT.

Figure 13: Tuning efficiency of the parallel suggestion.

intelligently handles hidden constraints without affecting the GP-
based surrogate model. Besides, by dynamically adjusting the POF
threshold Δ, SCOOT can explore the region near the infeasible con-
figurations after continuous exploration of feasible configurations
so as to fully explore the solution space.

5.3 Ablation Studies
We conduct experiments to confirm the effectiveness of the random
forest (RF)-based learning of hidden constraints under 2A100 and
4A100. The average SLO optimization results across various comput-
ing resources are presented in Fig. 12. Since requests from the CLS
application seldom cause engine crashes, not applying RF-based
POF learning has little impact on SCOOT’s performance. However,
since BOT application requests cause many hidden constraints,
RF-based POF learning can greatly enhance SLO optimization.

5.4 Tuning Efficiency
We conduct experiments to tune the CSL and BOT applications
under 2A100 with different parallelism degrees (PDs). In the exper-
iments, the number of observations is also limited to 30 when PD
is set to 2. Figures 13a and 13b show the SCOOT’s performance in
SLO optimization under various PDs, while Fig. 13c presents the
total tuning time under various PDs.

Figures 13a and 13b show that when PD is set to 2, using the
parallel suggestion achieves the same performance in SLO optimiza-
tion as not using it. Besides, as presented in Fig. 13c, when PD is
set to 2, the parallel suggestion technique significantly reduces the
total tuning time, nearly cutting it in half, which demonstrates that
the parallel suggestion can effectively accelerate the tuning process
by PD times. Furthermore, Figure 13c shows that compared with
the time of configuration evaluation (i.e., stress testing), the time
required for configuration suggestion is negligible, which validates
the efficiency of applying BO to tune LLM inference engines.

We also increase PD and conduct experiments. However, we
find that when PD is set to a large value, such as greater than 4,
SCOOT’s performance of SLO optimization is compromised, and
increasing the total observation number can mitigate this issue. In
the future, we will explore the best number of observations under
different PDs to find the most cost-effective acceleration solution.

5.5 Solution Quality
For multi-objective optimization, we evaluate the quality of so-
lutions from two perspectives. First, the optimality of solutions,
that is, whether the optimized parameter configurations lie on the
Pareto frontier of TTFT and TPOT. Second, we focus on the diver-
sity of solutions, that is, whether the range of optimized parameter
configurations on the Pareto frontier is sufficiently broad to of-
fer customers promising optional configurations to select based

on their TTFT and TPOT requirements. We illustrate the resolved
Pareto frontier of SCOOT and other baselines in Appendix A.4,
which confirms the superiority of SCOOT in both the optimality
and diversity of SLO optimization in multi-objective situations.

6 Related Works
6.1 Advanced LLM Inference Techniques
Existing inference engines such as vLLM and TensorRT-LLM sup-
port a variety of advanced inference techniques to improve the
speed and throughput of LLM inference, including a series of kernel-
level optimizations such as continuous batching [6], paged attention
[7], flash attention [27, 28], and chunked prefill [8]. Besides, prefix
caching [29] is employed by inference engines to reuse computed
key and value tensors of requests’ common prefix texts to reduce
redundant memory allocation and computation for newly arrived
requests, which can significantly improve the serving efficiency
when requests share a long common prefix. Moreover, speculative
decoding [17, 30–33] is also adopted by inference engines to accel-
erate LLM inference, where an efficient draft model is leveraged to
generate tokens, and the LLM occasionally refines the draft.

Some of these technologies are effective in specific scenarios and
have been implemented as configurable parameters of inference
engines. However, how to combine these technologies to fully ex-
ploit the capabilities of inference engines has not been adequately
studied, a gap that this study aims to fill.

6.2 Automatic Performance Tuning Approaches
Performance tuning techniques have been widely applied across
a wide variety of fields, including database tuning [34–36], Spark
configuration tuning [37–40], compiler optimization [24], and tun-
ing of web-relevant applications [41, 42]. The vast majority of these
performance tuning studies adopt BO to find optimized parameter
configurations since BO is theoretically grounded and can efficiently
learn the relationship between performance and parameters from
evaluations, thus intelligently tuning parameters for performance
improvement. Because of these advantages, BO is also employed in
resource allocation studies [43–45].

To the best of our knowledge, previous studies have not focused
on tuning LLM inference engines and can not address all the three
unique challenges faced in inference engine tuning.

7 Conclusion and Future Works
In this paper, we propose SCOOT, a BO-based automatic inference
engine tuning system, to optimize SLOs for LLM inference services.
SCOOT leverages both SOBO and MOBO to handle various opti-
mization objectives and utilizes random forest regression to learn
hidden constraints during the tuning process. Additionally, SCOOT
exploits the parallel suggestion to accelerate tuning with additional
computing resources. Experimental results show that SCOOT can
effectively speed up tuning and significantly optimize SLOs, im-
proving the request throughput by up to 68.3%, reducing the request
tail latency by up to 40.6%, and reducing the TTFT and TPOT by
up to 99.8% and 61.0%, respectively. In the future, we will attempt
to utilize meta-learning approaches to further accelerate the tun-
ing process for new LLM inference services using the knowledge
previously learned from tuning other inference services.
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(a) TTFT-only optimization. (b) TPOT-only optimization.
Figure 14: Conflicting TTFT and TOPT. Decreased TTFT of-
ten leads to increased TPOT, and vice versa. The red line
indicates the objective value under the default parameter
configuration.

A Appendix
A.1 Relevance to the Systems and

Infrastructure for Web
Due to the powerful natural language understanding and genera-
tion capabilities of LLMs, they have been widely employed in web
applications, including recommendation systems [46, 47], classi-
fication tools[48], and information retrieval [49] applications, as
well as intelligent web chatbots such as ChatGPT2 and Claude3.

Many of these LLM-based web applications leverage LLM in-
ference services provided by cloud vendors to deploy their LLMs
and process requests through APIs. Consequently, LLM inference
services have emerged as a critical component of the web’s infras-
tructure. By tuning the parameters of LLM inference engines to
optimize SLOs for LLM inference services, cloud vendors can boost
the performance of LLM-based web applications during periods of
heavy workload. This not only enhances customer satisfaction to
strengthen the competitive edge of cloud vendors in the market but
also sustains the advancement of the intelligent web.

Therefore, we believe that this study closely aligns with the sys-
tems and infrastructure for web, particularly in relation to machine
learning (ML) and artificial intelligence (AI) systems for web.

A.2 Conflicting TTFT and TPOT
We separately take TTFT and TPOT as the only optimization objec-
tives and conduct grid searches for inference services of LLAMA2-
13B deployed on various computing resources under the BOT re-
quest trace. Experimental results are shown in Fig. 14, which con-
firms that for TTFT and TPOT, optimizing for one always com-
promised the other. The reason is that, to decrease TPOT, it is
significant to decrease the batch size controlled by the parameter
max-num-seqs to reduce the per-token latency, which causes a long
queuing time for requests, thus leading to a large TTFT. Conversely,
to reduce TTFT, a large batch size is always set to allow newly
arrived requests to be processed promptly without queuing for a
long time. However, a large batch size often slows down inference,
leading to increased TPOT.

A.3 Baseline Description
• Random Sampling (RD): Sobol sequence-based Quasi-

Monte Carlo [18] is utilized to uniformly sample configura-
tion points from the search space.

2https://openai.com/chatgpt
3https://claude.ai

(a) Optimized TTFT & TPOT un-
der LLAMA2-7B.

(b) Optimized TTFT & TPOT un-
der LLAMA2-13B.

Figure 15: Solution quality for BOT.

(a) Optimized TTFT & TPOT un-
der LLAMA2-7B.

(b) Optimized TTFT & TPOT un-
der LLAMA2-13B.

Figure 16: Solution quality for SQL.
• Genetic Algorithm (GA): Mixed variable GA [50] is used

to resolve single-objective optimization problems while
NSGA2 [51] is utilized to handle multi-objective situations.
For GA, we assign a penalty objective value when con-
straints are violated and set the population size to 10.

• Vanilla BO (VBO): VBO is implemented using HEBO [21].
It uses UCB and EHVI as acquisition functions to handle
single-objective andmulti-objective optimization situations,
respectively. For VBO, we assign a penalty objective value
when constraints are violated and use a random forest-
based surrogate model to learn objective functions and
constraints at the same time.

A.4 Solution Quality
Figures 15 and 16 plot the Pareto sets of configuration points sam-
pled in the process of tuning the BOT and SQL applications under
4A10 for SCOOT and baselines. The plotted points represent the
“locally optimal solutions" identified by each tuning method. Addi-
tionally, we mark the global Pareto set from these locally optimal
configuration points with ★. From Fig. 15, we can observe that
for BOT, the majority of globally optimal configuration points are
contributed by SCOOT. Besides, SCOOT yields a wider range of its
globally optimal points compared with baselines. From Fig. 16, we
can find that for SQL, all the globally optimal configuration points
are contributed by SCOOT. These experimental results confirm the
superiority of SCOOT in both the optimality and diversity of SLO
optimization in multi-objective situations.

SCOOT achieves a broader range of solutions because it uses
EHVI as the acquisition function for multi-objective problems to
optimize the Pareto front of TTFT and TPOT. Besides, since the
default configuration is chosen as the reference point, EHVI ensures
that the TTFT and TPOT of the configuration with maximal HV
are both better than the default, achieving the goal of optimizing
both objectives simultaneously. Since VBO also employs EHVI, its
solution range is broad. However, because it cannot effectively
handle constraints, the optimality of the solutions is compromised.
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