
Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

Jeonghoon Kim 1 2 Byeongchan Lee 2 Cheonbok Park 1 2 Yeontaek Oh 1 Beomjun Kim 2 Taehwan Yoo 1

Seongjin Shin 1 Dongyoon Han 3 Jinwoo Shin
† 2 Kang Min Yoo

† 1

Abstract
Selecting a layer normalization (LN) strategy
that stabilizes training and speeds convergence in
Transformers remains difficult, even for today’s
large language models (LLM). We present a com-
prehensive analytical foundation for understand-
ing how different LN strategies influence train-
ing dynamics in large-scale Transformers. Until
recently, Pre-LN and Post-LN have long domi-
nated practices despite their limitations in large-
scale training. However, several open-source mod-
els have recently begun silently adopting a third
strategy without much explanation. This strategy
places normalization layer peripherally around
sublayers, a design we term Peri-LN. While Peri-
LN has demonstrated promising performance, its
precise mechanisms and benefits remain almost
unexplored. Our in-depth analysis delineates the
distinct behaviors of LN strategies, showing how
each placement shapes activation variance and
gradient propagation. To validate our theoret-
ical insight, we conduct extensive experiments
on Transformers up to 3.2B parameters, showing
that Peri-LN consistently achieves more balanced
variance growth, steadier gradient flow, and con-
vergence stability. Our results suggest that Peri-
LN warrants broader consideration for large-scale
Transformer architectures, providing renewed in-
sights into the optimal placement of LN.

1. Introduction
Building on a rapidly expanding lineage of Transformer-
based large language models, open-source models have

†Equal correspondence. 1NAVER Cloud 2Korea Advanced Insti-
tute of Science and Technology (KAIST) 3NAVER AI Lab. Corre-
spondence to: Jeonghoon Kim <jeonghoon.samuel@gmail.com>,
Jinwoo Shin <jinwoos@kaist.ac.kr>, Kang Min Yoo <kang-
min.yoo@navercorp.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

shown remarkable impact (Hoffmann et al., 2022; Guo et al.,
2025; Yoo et al., 2024). As the demand for larger and more
powerful models grows, various training stabilization tech-
niques have been introduced (Yang et al., 2022; Zhai et al.,
2023; Loshchilov et al., 2024). Among these, the choice
of where and how to apply layer normalization (LN: Lay-
erNorm or RMSNorm; Ba et al., 2016; Zhang & Sennrich,
2019) critically influences model convergence (Xiong et al.,
2020; Kedia et al., 2024; Wortsman et al., 2024). However,
their immense computational requirements have restricted
deeper exploration of the underlying Transformer structure.
Are we truly employing the optimal LN placement? In
practice, fully revealing the results of massive resource in-
vestments can be challenging (Rivière et al., 2024). Despite
its importance, there is still no consensus on a single best
LN placement strategy.

Two prominent LN placements have been widely explored.
Post-LN (Vaswani et al., 2017) normalizes the hidden state
after adding the sub-layer output to the residual stream (that
is, Norm(x + Module(x)) where x is input hidden state.
Norm is LN). This helps constrain the variance of hidden
states but may inadvertently weaken gradient signals, partic-
ularly in deeper models (Kedia et al., 2024). Pre-LN (Dubey
et al., 2024), by contrast, normalizes before passing the hid-
den state to the sub-layer (that is, x+Module(Norm(x))).
While this can enhance gradient propagation, it also admits
so-called “massive activations,” where hidden states grow
exponentially across layers (Sun et al., 2024).

Previous studies on deep convolutional neural networks
(CNNs) have analyzed the impact of batch normalization on
variance changes during the initialization stage of ResNet
architectures, demonstrating its relationship to model per-
formance (De & Smith, 2020). They noted that, in models
without normalization, hidden activation growth at initial-
ization can be exponential, leading to poor performance
and stability. In contrast, in pre-normalized CNNs, the vari-
ance of hidden activations was shown to increase linearly
as model depth grows. In the same vein, Kedia et al. (2024)
reported that, for Transformer architectures as well, the
variance in the forward propagation of Transformer-based
language models at initialization increases linearly with
depth. However, in the context of Transformer architectures,
we observed that this variance growth at initialization does

1

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

Figure 1. Illustration of hidden-state variance across different
model depths and training iterations. From initialization through
training on 6.3 billion tokens, we observe the growth in hidden-
state variance for both Pre-LN and Post-LN architectures. The
analysis is based on a 1.5B-parameter model. Detailed settings
and additional results are provided in Section 5.1.

not persist as training progresses as shown in Figure 1. Sec-
tions 3, 4, 5, and 6 provide a more detailed discussion of
these hidden-state growth patterns.

Beyond these two common strategies, Post-LN and Pre-LN,
a third LN placement has quietly emerged in large-scale
open-source models: applying LN around the sub-layer, i.e.,
on both its input and output. Although recent open-source
models (Team et al., 2025; Rivière et al., 2024; OLMo et al.,
2024) have quietly adopted such designs and demonstrated
promising performance on a large scale, these efforts often
appeared isolated, lacking a conceptual unifying framework
or a thorough investigation into their benefits. In this pa-
per, we coin the term Peri-LN1 to unify these scattered
approaches and highlight an underexplored avenue for sta-
bilizing large-scale Transformer training. By dissecting the
forward- and backward-pass dynamics of each LN strategy,
we clarify how, when, and why they differ, interpreting these
distinctions through the lens of training stability.

Accordingly, this paper revisits LN placement in Trans-
formers from both analytical and empirical perspectives. In
particular, we:

1. Present an in-depth analysis of Post-LN and Pre-LN in
large-scale Transformers, examining how variance and
gradient properties evolve beyond initialization.

2. Investigate Peri-LN to understand how normalizing
both the inputs and outputs of each module moderates
hidden-state behavior during forward and backward
propagation, providing a systematic perspective on this
underexplored alternative.

3. Provide quantitative evidence on how large activation
influences training stability, benchmark performance,
and model behaviors.

1Peri- (Prefix) means “around,” reflecting that LN encapsulates
the entire sub-layer. (e.g. peripherally)

2. Background and Motivation
The analysis of activation variance at model initialization
has long been central to understanding normalization layers
and enhancing stability in convolutional neural networks
(CNNs) (De & Smith, 2020; He et al., 2016; Brock et al.,
2021a). Specifically, De & Smith (2020) showed that batch
normalization in residual blocks can bias networks toward
the identity function, thereby stabilizing gradients and im-
proving overall training dynamics.

Similar investigations have emerged for Transformer ar-
chitectures, examining how variance propagates and how
gradients behave in both post-layer normalization (Post-LN)
and pre-layer normalization (Pre-LN) configurations (Xiong
et al., 2020; Kedia et al., 2024; Wortsman et al., 2024). Early
work comparing Post- and Pre-LN primarily focused only
on the initialization stage. Xiong et al. (2020) observed that
Pre-LN architectures tend to exhibit more stable gradients,
but can still encounter issues such as gradient spikes and
divergence, especially in deeper models or large-scale pre-
training scenarios (Zhai et al., 2023; Wortsman et al., 2024;
Fishman et al., 2024; Chung et al., 2024).

Among these challenges, the phenomenon of “massive acti-
vations” has attracted attention (Dettmers et al., 2022; Yu
et al., 2024; Fishman et al., 2024). Notably, Sun et al. (2024)
identified that in Pre-LN architectures, large spikes in acti-
vation magnitude can persist across layers due to residual
connections. These massive activations act as fixed biases,
potentially narrowing the model’s focus to certain tokens
and may influence generalization. However, the underlying
mechanisms behind these large values, and their exact im-
pact on the training process, remain not yet well understood.

Analytical work has provided theoretical frameworks to ex-
plain phenomena like gradient explosion and vanishing in
Transformers. For instance, Kedia et al. (2024) introduced
a signal propagation theory that details how activation vari-
ance and gradient instability can evolve with depth, identi-
fying critical factors that impair stability and performance.
Recent studies have discussed how Pre-LN architectures
can allow large values from Attention or MLP modules
to flow unimpeded through residual connections (Csordás
et al., 2024; Fishman et al., 2024; Zhai et al., 2023; Worts-
man et al., 2024), but the precise impact of this behavior on
large-scale training remains insufficiently explored.

These observations underscore the ongoing need to clar-
ify how activation dynamics and normalization strategies
interact, especially in large-scale training.

In response, this work aims to deepen our understanding of
how normalization strategies influence Transformer training,
with particular attention to the emergence of large activa-
tions and their implications for stability and performance.

2

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

3. Normalization Strategies
In this section, we discuss how different placements of layer
normalization (LN 2) in Transformer architecture affect both
training stability and the statistics of hidden states (activa-
tions 3).

3.1. Post- & Pre-Normalization in Transformers

Post-LN. The Post-Layer Normalization (Post-LN)
(Vaswani et al., 2017) scheme, normalization is applied
after summing the module’s output and residual input:

yl = Norm
(
xl +Module(xl)

)
, (1)

where xl is the input hidden state of l-th layer, yl is the
output hidden state of l-th layer, and Module denotes At-
tention or Multi-Layer Perceptron (MLP) module in the
Transformer sub-layer. Norm denotes normalization lay-
ers such as RMSNorm or LayerNorm. It is known that by
stabilizing the activation variance at a constant scale, Post-
LN prevents activations from growing. However, several
evidence (Xiong et al., 2020; Kedia et al., 2024) suggest
that Post-LN can degrade gradient flow in deeper networks,
leading to vanishing gradients and slower convergence.

Pre-LN. The Pre-Layer Normalization (Pre-LN) (Dubey
et al., 2024) scheme, normalization is applied to the mod-
ule’s input before processing:

yl = xl +Module
(
Norm(xl)

)
. (2)

As for Llama 3 architecture, a final LN is applied to the
network output. Pre-LN improves gradient flow during
backpropagation, stabilizing early training (Xiong et al.,
2020). Nonetheless, in large-scale Transformers, even Pre-
LN architectures are not immune to instability during train-
ing (Wortsman et al., 2024; Zhai et al., 2023). As shown
in Figure 2, unlike Post-LN—which places LN at position
C—Pre-LN, which places LN only at position A, can lead
to a “highway” structure that is continuously maintained
throughout the entire model if the module produces an out-
put with a large magnitude. This phenomenon might be
related to the “massive activations” observed in trained mod-
els (Sun et al., 2024; Fishman et al., 2024).

3.2. Variance Behavior from Initialization to Training

As discussed by Xiong et al. (2020) and Kedia et al. (2024),
Transformer models at initialization exhibit near-constant
hidden-state variance under Post-LN and linearly increasing
variance under Pre-LN. Most of the previous studies have
concentrated on this early-stage behavior. However, Recent

2Unless stated otherwise, LN refers to both LayerNorm (Ba
et al., 2016) and RMSNorm (Zhang & Sennrich, 2019).

3We use “hidden state” and “activation” interchangeably.

A B C

Post-LN × × ✓
Pre-LN ✓ × ×
Peri-LN ✓ ✓ ×

Figure 2. Placement of normalization in Transformer sub-layer.

studies have also reported large output magnitudes in both
the pre-trained Attention and MLP modules (Dehghani et al.,
2023; Wortsman et al., 2024; Fishman et al., 2024). To
bridge the gap from initialization to the fully trained stage,
we extend our empirical observations in Figure 1 beyond
initial conditions by tracking how these variance trends
evolve at intermediate points in training.

During training, we find that Post-LN maintains a roughly
constant variance, which helps avert exploding activations.
However, as models grow deeper and training progresses,
consistently normalizing xl +Module(xl) can weaken gra-
dient flow, occasionally causing partial vanishing gradients
and slower convergence. In contrast, Pre-LN normalizes xl

before the module but leaves the module output unnormal-
ized, allowing hidden-state variance to accumulate exponen-
tially once parameter updates amplify the input. Although
Pre-LN preserves gradients more effectively in earlier stages,
this exponential growth in variance can lead to “massive
activations” (Sun et al., 2024), risking numeric overflow and
destabilizing large-scale training.

Takeaways from Pre-LN & Post-LN. (1) Keeping the
Highway Clean: Post-LN’s Potential for Gradient Vanishing
and Slow Convergence. When layer normalization is placed
directly on the main path (Placement C in Figure 2), it can
cause gradient vanishing and introduce fluctuations in the
gradient scale, potentially leading to instability (Xiong et al.,
2020). (2) Maintaining a Stable Highway: Pre-LN May Not
Suffice for Training Stability. Pre-LN does not normalize
the main path of the hidden states, thereby avoiding the
issues that Post-LN encounters. Nevertheless, a structural
characteristic of Pre-LN is that any large values arising in
the Attention or MLP modules persist through the residual
identity path. In particular, as shown in Figure 1, the ex-
ponentially growing magnitude and variance of the hidden
states in the forward path may lead to numerical instability.

3.3. Peri-Normalization in Transformers

Recent open-source Transformer architectures have placed
normalization layers in unconventional placements (Rivière
et al., 2024; Team et al., 2025; OLMo et al., 2024). In
particular, these models apply an additional normalization

3

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

layer at the module output (Output-LN), yet the benefits of
this design choice remain unclear. To assess the impact of
Output-LN, we analyze the Peri-LN architecture.

Peri-LN. The Peri-Layer Normalization (Peri-LN) applies
LN twice within each layer—before and after the module—
and further normalizes the input and final output embed-
dings. Formally, for the hidden state xl at layer l:

1. (Optional) Initial Embedding Normalization:

yo = Norm(xo),

2. Input- & Output-Normalization per Layer:

yl = xl +Norm
(
Module

(
Norm(xl)

))
, (3)

3. Final Embedding Normalization:

yL = Norm(xL),

where xo denotes the output of the embedding layer, the hid-
den input state. y0 represents the normalized input hidden
state. xL denotes the hidden state output by the final layer
L of the Transformer sub-layer. This design unifies pre- and
output-normalization to regulate variance from both ends.
For clarity, the locations of normalization layers in the Post-,
Pre-, and Peri-LN architectures are illustrated in Figure 2.

Both the latest Gemma (Team et al., 2025; Rivière et al.,
2024) and OLMo (OLMo et al., 2024) model families,
which apply output layer normalization, adopt the same
peri-normalization strategy. However, neither line of work
rigorously examines how this placement constrains variance
or mitigates large residual activations. Our study extends
these open-sourced large-scale models by providing both
theoretical and empirical insights into the Peri-LN scheme.

Controlling Variance & Preserving Gradients. By nor-
malizing both the input and output of each sub-layer, Peri-
LN constrains the residual spikes commonly observed in
Pre-LN, while maintaining a stronger gradient pathway
than Post-LN. Concretely, if Norm(Module(Norm(xl)))
exhibits near-constant variance β0, then

Var(xl+1) ≈ Var(xl) + β0, (4)

resulting in linear or sub-exponential growth of activations,
in contrast to the exponential growth patterns of Pre-LN.

Although Pre-LN and Peri-LN exhibit comparable, roughly
linear variance growth at initialization (De & Smith, 2020;
Xie et al., 2023), their trajectories diverge once training
begins. The additional normalization layer (Output-LN)

in Peri-LN preserves the conditions of Eq. 4, enabling the
model’s hidden states to remain better conditioned. By
contrast, the rapid surge in variance observed in Pre-LN
can trigger instability during the early stages of training, an
effect we quantify empirically in Sections 5 and 6.

3.4. Stability Analysis in Normalization Strategies

Xiong et al. (2020) showed that, at initialization, Pre-LN
exhibits smaller gradient scales at the final layer compared
to Post-LN, with respect to model depth. In this study, we
broaden our analysis beyond initialization to monitor hidden
state variance over the full course of training. Building on
the earlier observation that the deepest layer exhibits the
largest activations, we focus on this surge in the final layer
under the Peri-LN strategy to clarify its impact on training
stability. To this end, we analyze stability by examining
the gradient norm with respect to the final layer weights in
the presence of massive activation. Formal statements and
detailed proofs are presented in Appendix C.

Proposition 3.1 (Informal). Let L(·) be the loss function,
and let W (2) denote the weight of the last layer of MLP(·).
Let γ be the scaling parameter in Norm(·), and let D be the
dimension. Then, the gradient norm for each normalization
strategy behaves as follows.

(1) Pre-LN (exploding gradient). Consider the following
sequence of operations:

x̃ = Norm(x), a = MLP(x̃), o = x+ a, (5)

then ∥∥∥∥∥ ∂L(o)∂W
(2)
i,j

∥∥∥∥∥ ∝ ∥hi∥, (6)

where h := ReLU
(
x̃W (1) + b(1)

)
. In this case, when

a massive activation ∥h∥ occurs, an exploding gradient
∥∂L/∂W (2)∥ can arise, leading to training instability.

(2) Peri-LN (self-regularizing gradient). Consider the fol-
lowing sequence of operations:

x̃ = Norm(x), a = MLP(x̃), ã = Norm(a), o = x+ ã,
(7)

then ∥∥∥∥∥ ∂L(o)∂W
(2)
i,j

∥∥∥∥∥ ≤ 4 γ
√
D ∥h∥

∥a∥
, (8)

where h := ReLU
(
x̃W (1) + b(1)

)
. In this case, even when

a massive activation ∥h∥ occurs, Norm(·) introduces a
damping factor ∥a∥, which ensures that the gradient norm
∥∂L/∂W (2)∥ remains bounded.

The layer-wise amplification documented in §3.2, combined
with the bounds in Proposition 3.1, naturally explains the

4

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

(a) Learning rate exploration (b) Training loss (c) Gradient-norm
Figure 3. Performance comparison of Post-, Pre-, and Peri-LN Transformers during pre-training. Figure 3(a) llustrates the pre-training
loss across learning rates. Pre-training loss and gradient norm of best performing 400M size Transformers are in Figure 3(b) & 3(c).

(a) Divergence at seed 2 (b) Loss spike at seed 3 (c) Gradient spikes at seed 5 (d) Loss spikes at seed 5

Figure 4. Common case of early stage instability in pre-training. In most of our experiments across different random seeds, the Pre-LN
architecture exhibited early-stage instability. Although we initially suspected that a high learning rate might be the root cause, lowering it
did not substantially mitigate these issues. By contrast, under the same settings, Peri-LN displayed stable training curves.

gradient spikes, and occasional divergences that arise in
Pre-LN during large-scale pre-training. We revisit this phe-
nomenon in §4.3. By contrast, the additional normalization
in Peri-LN acts as a self-regularizing mechanism that damps
variance growth, making the architecture less sensitive to
large activations and therefore more stable in practice. The
formal analysis for Post-LN is deferred to Appendix B.

4. Experiments
In this section, we provide a comprehensive comparison
of Post-, Pre-, and Peri-Layer Normalization (LN) across
large-scale Transformer pre-training, instruction-tuning, and
subsequent evaluations on the language domain.

4.1. Experimental Setting

Excluding the embedding parameters, the model size is set
to the parameters 400M, 1.5B and 3.2B, respectively. Each
model is trained on 30 billion tokens. To ensure reliable
validation, we pre-train each model with five different train-
ing seeds in all experiments. We perform a exploration of
the learning rates, ranging from 1 × 10−4 to 5 × 10−3 to
identify the U-shaped pattern for each LN strategy. The
sequence length is set to 8192, and the weight decay co-
efficient is fixed at 0.033. We employ Megatron-LM4 to

4https://github.com/NVIDIA/Megatron-LM

pre-train the Transformers under each LN strategy. We use
the DCLM-baseline dataset (Li et al., 2024a), along with the
“cl100k base” version of the TikToken tokenizer5. Unless
otherwise noted, most training and model configurations
follow those of the DCLM experiments(Li et al., 2024a).
For normalization layer, we primarily employ RMSNorm.
Further details are in Appendix D.

4.2. Pre-Training Large Language Models

Figure 3(a) illustrates the pre-training loss across learning
rates for models ranging in size from 400M to 3.2B parame-
ters. Notably, the Peri-LN architecture consistently achieves
superior loss curves over this entire model size. Since Pre-
LN shows best performance at learning rate 2×10−3 across
all model size, we set this to the default learning rate for
Pre-LN and Peri-LN. Unlike Pre-LN, Post-LN’s appropriate
learning rate lies in a lower range, so we provide a separate
summary in Appendix E.1. In Figures 3(b) and 3(c), we
compare the pre-training loss and the gradient norm curve at
each LN strategy’s best-performing learning rate of 400M
size models. The same trend is observed across different
model sizes (§E). In particular, when we sweep over train-
ing seeds and learning rates, Pre-LN frequently exhibits
spikes in the gradient-norm curve, whereas Peri-LN shows
comparatively few, thereby supporting Proposition 3.1.

5https://github.com/openai/tiktoken

5

https://github.com/NVIDIA/Megatron-LM
https://github.com/openai/tiktoken

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

Table 1. Average benchmark scores (with standard deviations) across 5 different training seeds for Post-, Pre-, and Peri-Layer Normaliza-
tion language models. Each model size excludes the embedding parameters. Loss denotes the evaluation loss on random samples of the
C4 dataset. Arch. denotes architecture, and Avg. denotes the averaged benchmark score across tasks. SFT avg. denotes the averaged
benchmark score across tasks of instruction fine-tuned models. Diverged checkpoints are excluded from the evaluation score computation.

Size Arch. ARC-Easy HellaSwag PIQA SIQA Winogrande Avg. ↑ Loss ↓ SFT Avg. ↑
Post-LN 35.70 ±1.09 28.91 ±0.16 62.26 ±0.73 34.48 ±1.04 50.88 ±0.75 42.45 7.46 46.44

400M Pre-LN 54.87 ±1.63 34.17 ±1.66 68.79 ±1.34 39.73 ±0.59 50.88 ±2.35 49.69 3.43 49.96
Peri-LN 57.51 ±0.81 37.46 ±0.34 69.48 ±0.39 40.64 ±0.51 52.74 ±0.67 51.57 3.34 51.96

Post-LN 42.92 ±0.93 31.69 ±0.41 66.72 ±0.40 35.84 ±0.61 50.30 ±1.87 45.49 5.38 48.95
1.5B Pre-LN 61.51 ±1.22 39.88 ±1.53 71.41 ±0.88 41.23 ±0.97 54.51 ±2.07 53.71 3.29 53.89

Peri-LN 66.17 ±0.21 43.94 ±0.34 73.63 ±0.24 42.34 ±0.83 56.64 ±0.44 56.55 3.18 56.94

Post-LN 45.30 ±3.23 33.59 ±0.44 66.45 ±2.86 35.82 ±1.09 51.10 ±1.60 46.45 4.43 49.33
3.2B Pre-LN 65.24 ±2.32 44.23 ±2.32 73.86 ±1.19 42.68 ±0.07 57.42 ±2.51 56.69 3.20 57.08

Peri-LN 68.73 ±0.57 46.99 ±0.21 74.31 ±0.41 43.00 ±0.73 59.76 ±0.78 58.56 3.11 59.02

(a) Gradient-norm at seed 5 (b) Gradient-norm at seed 4

Figure 5. Final-layer gradient norms for seeds 4 and 5.

4.3. Early Stage Instability in Pre-Training

Early in pre-training, Pre-LN models consistently show gra-
dient spikes, loss surges, and occasional divergence across
seeds and scales (Fig. 4). These issues are far less pro-
nounced in Peri-LN. We posit that the instability of Pre-LN
arises from three factors: (1) the hidden state variance ex-
hibits a sudden surge from initialization through the early
stages of optimization, deviating from the linear trend pre-
dicted by Eq. 4 (see §3.3); (2) the exponential growth of
hidden state variance across both depth and training steps;
and (3) the instability caused by the massive activations
(Proposition 3.1). Among these, we highlight the vari-
ance growth along the main path as the principal driver
of the observed divergence. To corroborate this, Section 6
presents targeted experiments that manipulate weight decay
and weight initialization schemes, demonstrating how curb-
ing extreme variance mitigates the instability of each LN
strategy. The curves in 4(a), 4(b), and 4(c) are from a 400M
model, whereas 4(d) corresponds to a 1.5B model.

4.4. Gradient Norm of the Final-layer

Motivated by Proposition 3.1, we track the final-layer
gradient-norm in two representative runs selected from five
training seeds. Figure 5(a), now including the newly added
Peri-LN results, confirms the hierarchy reported by Xiong
et al. (2020): whenever training remains stable, the gradient
norms satisfy Post-LN > Pre-LN > Peri-LN. However, Fig-
ure 5(b) shows a run in which the Pre-LN model diverges
even though every hyperparameter matches the stable run

except for the random seed. In Section 5.1, we examine this
failure in greater depth and relate it to Proposition 3.1. The
curves in Figure 5 are obtained from 400M models.

4.5. Benchmark Evaluations & Instruction Tuning

To evaluate how well the pre-training loss aligns with its
benchmark performance, we conduct five separate bench-
mark evaluations. Furthermore, to investigate instruction-
following capabilities under different layer normalization
strategies, we conduct additional training using the LIMA
dataset (Ouyang et al., 2022; Zhou et al., 2023). Diverged
checkpoints are excluded from the evaluation score compu-
tation (mostly occurs in Pre-LN). Additional training hyper-
parameters for SFT are given in Appendix D.2. As shown
in Table 1, Peri-LN consistently demonstrates superior per-
formance across all model sizes. Additionally, we note that,
beyond the improved scores, the standard deviation of the
benchmark results across different training seeds is reduced
by more than half with Peri-LN. From this, we observe that
Peri-LN helps maintain consistency not only in gradient
stability and final loss but also in benchmark performance.
For the evaluation loss, we used 10K random samples from
the C4 dataset (Raffel et al., 2020). Detailed settings and
individual benchmark scores are provided in Appendix J.

5. Analysis
Despite emerging evidence that Peri-LN outperforms Post-
and Pre-LN, key uncertainties remain: How do different
LN placements shape hidden-state statistics and gradient
flow (§5.1, §5.2)? What role does the Output-LN scale
parameter γ play (§5.3)? And why does Peri-LN produce
more distinctive representations than its counterparts (§5.4)?
The subsections below tackle these questions in turn.

5.1. Growth of Hidden State

To examine in greater depth how Peri-LN affects forward
propagation, we analyze the absolute magnitude and vari-
ance of the hidden states using 1, 000 samples from the

6

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

(a) Absolute magnitude growth (b) Variance growth
Figure 6. Forward hidden state growth patterns for each LN strategy in a 1.5B-parameter Transformer.

(a) Grad-norm at init. (b) Grad-norm at final (c) Grad-variance at init. (d) Grad-variance at final
Figure 7. Backward gradient norm and variance of 1.5B Post-, Pre-, and Peri-LN Transformers at initialization (init.) and final training.

Wikitext dataset (Merity et al., 2016). Figure 6 shows how
different normalization strategies influence forward-path
hidden states over the course of training and across model
depth. We observe the same pattern across all models trained
with five different random seeds (§F).

Across layers, Post-LN maintains stable hidden state magni-
tudes and variances because the main path includes a nor-
malization layer. In contrast, Pre-LN omits normalization
after each attention and MLP sub-layer, so the magnitude
and variance of the hidden states grow exponentially after
the residual addition. For Peri-LN, which adds an Output-
LN, these statistics remain comparatively well controlled.
Across training iterations, Post-LN’s block-level normaliza-
tion continues to suppress large shifts, preventing substantial
drift in magnitude or variance. Pre-LN starts with an approx-
imately linear variance profile at initialization but escalates
exponentially to extremely large values as optimization pro-
ceeds. Peri-LN again exhibits only moderate fluctuations,
owing to Output-LN’s consistent regulation of hidden-state
statistics. Further discussion appears in Section 6.

5.2. Layer-wise Gradient Norm & Variance

Ensuring a uniform gradient flow in large-scale model train-
ing is crucial for balanced learning across the entire network
(Yang & Hu, 2021; Yang et al., 2024). As shown in Figure 7,
in Post-LN, gradients decrease as they propagate backward
through the layers in the final stage of training, which can
lead to vanishing gradients in lower-index layers. In Pre-LN,
gradients increase as they propagate backward through the

layers at initialization, potentially causing explosive gradi-
ents in the early phase of training. Both strategies display
non-uniform gradient distributions—either vanishing or ex-
ploding—at different stages of training. On the other hand,
Peri-LN demonstrates a consistent, layer-wise gradient dis-
tribution at both initialization and the end of training. By
maintaining comparatively uniform gradients with lower
variance across layers, Peri-LN avoids the extremes of van-
ishing or exploding behaviors. This stability is particularly
beneficial in deeper architectures, where balanced gradient
flow is essential for effective backpropagation.

5.3. Learnable Parameter γ of RMSNorm

To investigate the impact of module output normalization on
training stability, as proposed in the Proposition 3.1, we fix
the learnable parameter γ of RMSNorm to 1, isolating the
effect of normalization. As illustrated in Figure 8, adding
output normalization to each sub-layer suppresses gradi-
ent spikes and lowers the loss relative to Transformers that
employ only pre-normalization. Nonetheless, we also con-
firm that allowing γ to be learnable yields slightly better
performance. The trend persists consistently across model
scales and random seeds. In this experiment, we omit Peri-
LN’s embedding layer normalization in order to isolate and
evaluate the precise role and benefits of output-LN.

5.4. Hidden State Representation

To assess hidden state redundancy after training, we employ
angular distance (Li et al., 2024b), which quantifies how sim-

7

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

(a) Training loss (b) Loss in the final 5B token interval (c) Gradient-norm
Figure 8. Freezing learnable parameter γ of output normalization layer in Peri-LN. we set γ to its initial value of 1 and keep it fixed.

(a) After 30B tokens training (b) Learnable scale γ in Output-LN
Figure 9. Angular distance between hidden states after training. Fig. 9(b) monitor γ of every Output-LN in Peri-LN during training.

ilar or distinct the layer representations are. As Figure 9(a)
illustrates, Pre-LN produces markedly more redundant hid-
den states than the other variants by the end of training.
We attribute this effect to the exponential growth of the
main residual path in Pre-LN, which diminishes the relative
contribution of individual sub-layers. In contrast, Peri-LN
retains an identity path whose learnable scale begins near 1
and gradually adjusts with depth (Figure 9(b)), thereby mod-
erating redundancy. These observations highlight the role
of module-output normalization in controlling hidden state
similarity. All statistics are computed on 256 random sam-
ples from RedPajama-Data-1T (Computer, 2023). Appendix
L includes additional figures and initialization comparisons.

6. Ablation Study
To probe massive activations across conditions, we sweep
weight decay coefficient and initialization variance for both
Pre- and Peri-LN models, holding other settings fixed. Per-
run results and detailed settings are in Appendix G.8.

6.1. Weight Decay

In Figure 10(a), stronger L2 regularization markedly lowers
the variance curve, confirming that heavier weight decay
directly curbs forward-path explosions in Pre-LN. In con-
trast, the same increase in weight decay reduces Peri-LN’s
variance growth only marginally. We take the stable run
initialized with seed 3 (Table 11) and sweep the weight de-
cay coefficient. Table 7 in the Appendix further shows that,

irrespective of the presence of massive activations, Peri-LN
achieves better performance than Pre-LN.

To further probe stability under varying degrees of massive
activation, we replicate the previously divergent run (seed
4) and repeat the same weight decay sweep. As Figure
10(b) demonstrates, raising the weight decay coefficient
from the baseline 0.033 to 0.33 (a tenfold rise) prevents
divergence, providing empirical support for Proposition 3.1.
Nevertheless, strong weight decay can stabilize Pre-LN, it
still fails to close the performance gap relative to Peri-LN.

6.2. Weight Initialization

As the initialization variance increases, the severity of mas-
sive activations rises correspondingly for Pre-LN (Figure
10(c)); at the largest variance, the model diverges outright
(Appendix G.8.3). Pre-LN therefore displays marked sensi-
tivity to its initial conditions. In contrast, across the same
range of ablations, Peri-LN’s loss curves and activation vari-
ances shift only marginally. This hyperparameter-insensitive
robustness is corroborated by the low downstream standard
deviations reported in Table 1.

6.3. Additional Results

For brevity, we defer an extensive set of supplementary ex-
periments to the appendix. Appendix G reports the core
robustness checks: replacing RMSNorm with LayerNorm,
varying sequence lengths, reducing pre-training budgets,
and ablating embedding-level normalization. OLMo2-style

8

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

(a) Variance growth by weight decay (b) Training loss by weight decay (c) Variance growth by weight init.
Figure 10. Effects of weight decay and initialization (init.) on massive activations. 10(a) Strong weight decay relieves the variance
explosion in Pre-LN. 10(b) Strong weight decay (0.33, which is 10× the baseline.) suppresses Pre-LN divergence. 10(c) Smaller-scale
initialization slightly curbs Pre-LN variance, while Peri-LN remains bounded regardless. d denotes the model’s hidden dimensionality.

Peri-LN pre-training runs appear in Appendix H. Stochastic
gradient descent (SGD) baselines are summarized in Ap-
pendix I. Alternative LN placements, extending Figure 2,
are provided in Appendix G.6. Across all settings, the re-
sults are consistent with the trends presented in the main
Section 4 and 5, further substantiating our conclusions.

7. Implications
This section integrates our findings into practical guidance
on variance-driven stability and precision constraints in
large-scale Transformers.

7.1. Mitigating Variance-Driven Instability via Peri-LN

Pre-LN, the prevailing normalization strategy, is inherently
prone to unchecked growth in activation variance (§5),
which in turn induces numerical instability during train-
ing. Our extensive empirical analysis shows that Peri-LN—
which normalizes the outputs of the Attention and MLP
sub-layers—markedly curbs this variance and often pre-
vents divergence (§4 & §6). Proposition 3.1 formalizes how
excessive variance amplifies gradient norms, clarifying its
causal role in destabilizing large-scale pre-training. In Pre-
LN, instability is further exacerbated when the statistical
conditions assumed at initialization depart markedly from
those observed later in training (§3.3). By contrast, Peri-
LN alleviates this discrepancy, thereby improving training
stability, and delivering additional performance gains.

7.2. Precision Constraints Imposed by Pre-LN

Both Pre-LN and Peri-LN architectures leave the main hid-
den state path unnormalized, so once large values arise in
earlier layers, they persist through to later layers. Conse-
quently, Pre-LN’s additive residual path might generates ac-
tivations near or beyond the FP16 limit. To gauge how often
these values exceed FP16 yet remain within BF16, we track
the top-100 absolute hidden state values for 3.2B-parameter
Pre-LN and Peri-LN models. In Figure 11, the blue band

Figure 11. Evolution of extreme hidden state absolute magnitudes
during training. Colored bands trace the range of the global top-
100 absolute activations. Pre-LN (blue) quickly surpasses the FP16
representable maximum, while Peri-LN (red) stays below it.

for Pre-LN surpasses the FP16 maximum bound as early
as 0.5B training tokens whereas Peri-LN (red band) consis-
tently remains below this threshold. This pattern, echoing
Sun et al. (2024), highlights that choosing FP16 or BF16 is
not just a hardware preference but is closely linked to how
hidden state magnitudes evolve within the model. Earlier
work on OPT (Zhang et al., 2022), which was pre-trained
using FP16 precision, suggests that the training instabili-
ties they observed were likely exacerbated by numerical
overflows and gradient pathologies (Proposition 3.1) arising
when activations exceeded the representable range of FP16.

8. Conclusion
We explore the placement of layer normalization within
the Transformer architecture to better understand its role
during training. By systematically comparing Post-LN, Pre-
LN, and newly termed Peri-LN, we highlight their distinct
impacts on stability, final performance, and optimization
dynamics. Our findings suggest that placing LN on module
outputs in addition to the Pre-LN can help manage large ac-
tivations while preserving beneficial gradient flow, thereby
offering a promising balance for stable optimization. By
unifying these approaches under the term Peri-LN, we seek
to consolidate existing variants and encourage deeper inves-
tigation into this underexplored alternative.

9

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

Acknowledgements
We thank our colleague Jeongin Bae for inspiring the un-
derlying motivation for this research. We are also grateful
to Jung Hyun Lee, Seonghyeon Kim, and Seunghyun Seo
for their valuable assistance during the early stages discus-
sions. Finally, we extend our gratitude to Gichang Lee,
Lead of the Backbone Mission at NAVER Cloud, for his
unwavering support. This work was partly supported by
Institute for Information & communications Technology
Technology Planning & Evaluation(IITP) grant funded by
the Korea government(MSIT)(RS-2019-II190075, Artificial
Intelligence Graduate School Support Program(KAIST),
No.RS-2021-II212068, Artificial Intelligence Innovation
Hub, No. RS-2024-00509279, Global AI Frontier Lab)

Impact Statement
The rapid advancement of Transformer-based large lan-
guage models (LLMs) has enabled remarkable break-
throughs in natural language understanding and generation.
However, these models also pose significant challenges, in-
cluding concerns around safety, bias, and the computational
cost associated with large-scale training. As LLMs become
increasingly integral to various AI applications, ensuring
their stability, efficiency, and accessibility remains a critical
research focus.

Our work addresses these challenges by proposing a more
stable and cost-effective large-scale training methodology.
By improving training efficiency and reducing the associ-
ated computational overhead, we lower the barrier to entry
for organizations seeking to develop or fine-tune foundation
models. This democratization of LLM technology fosters
broader participation in AI research and development, accel-
erating innovation while mitigating concerns over resource
concentration in a few major players. Given the growing
industry focus on optimizing LLM deployment costs, our
contributions are particularly relevant in the current AI re-
search landscape.

Improving the cost-effectiveness of large-scale training si-
multaneously lowers AI’s environmental footprint by reduc-
ing the vast energy consumption and carbon emissions inher-
ent in state-of-the-art LLM development. This efficiency not
only aligns with global sustainability goals but also enables
smaller research labs and academic groups to pursue cutting-
edge AI without prohibitive resource demands, fostering a
more inclusive and responsible ecosystem.

References
Ba, L. J., Kiros, J. R., and Hinton, G. E. Layer normalization.

CoRR, abs/1607.06450, 2016. URL http://arxiv.
org/abs/1607.06450.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reasoning
about physical commonsense in natural language. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Brock, A., De, S., Smith, S. L., and Simonyan, K. High-
performance large-scale image recognition without nor-
malization. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learn-
ing Research, pp. 1059–1071. PMLR, 2021a. URL
http://proceedings.mlr.press/v139/b
rock21a.html.

Brock, A., De, S., Smith, S. L., and Simonyan, K. High-
performance large-scale image recognition without nor-
malization. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learn-
ing Research, pp. 1059–1071. PMLR, 2021b. URL
http://proceedings.mlr.press/v139/b
rock21a.html.

Chung, W., Hong, J., An, N. M., Thorne, J., and Yun, S. Sta-
ble language model pre-training by reducing embedding
variability. In Al-Onaizan, Y., Bansal, M., and Chen, Y.
(eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2024,
Miami, FL, USA, November 12-16, 2024, pp. 10852–
10863. Association for Computational Linguistics, 2024.
URL https://aclanthology.org/2024.em
nlp-main.606.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.0
5457.

Computer, T. Redpajama: An open source recipe to re-
produce llama training dataset, 2023. URL https:
//github.com/togethercomputer/RedPaj
ama-Data.

Csordás, R., Irie, K., Schmidhuber, J., Potts, C., and
Manning, C. D. Moeut: Mixture-of-experts univer-
sal transformers. CoRR, abs/2405.16039, 2024. doi:
10.48550/ARXIV.2405.16039. URL https://doi.
org/10.48550/arXiv.2405.16039.

10

http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://proceedings.mlr.press/v139/brock21a.html
http://proceedings.mlr.press/v139/brock21a.html
http://proceedings.mlr.press/v139/brock21a.html
http://proceedings.mlr.press/v139/brock21a.html
https://aclanthology.org/2024.emnlp-main.606
https://aclanthology.org/2024.emnlp-main.606
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://doi.org/10.48550/arXiv.2405.16039
https://doi.org/10.48550/arXiv.2405.16039

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

De, S. and Smith, S. L. Batch normalization biases resid-
ual blocks towards the identity function in deep net-
works. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H. (eds.), Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL
https://proceedings.neurips.cc/paper
/2020/hash/e6b738eca0e6792ba8a9cbcba
6c1881d-Abstract.html.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P.,
Heek, J., Gilmer, J., Steiner, A. P., Caron, M., Geirhos,
R., Alabdulmohsin, I., Jenatton, R., Beyer, L., Tschan-
nen, M., Arnab, A., Wang, X., Ruiz, C. R., Minderer, M.,
Puigcerver, J., Evci, U., Kumar, M., van Steenkiste, S.,
Elsayed, G. F., Mahendran, A., Yu, F., Oliver, A., Huot,
F., Bastings, J., Collier, M., Gritsenko, A. A., Birodkar,
V., Vasconcelos, C. N., Tay, Y., Mensink, T., Kolesnikov,
A., Pavetic, F., Tran, D., Kipf, T., Lucic, M., Zhai, X.,
Keysers, D., Harmsen, J. J., and Houlsby, N. Scaling
vision transformers to 22 billion parameters. In Krause,
A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S.,
and Scarlett, J. (eds.), International Conference on Ma-
chine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pp. 7480–7512. PMLR, 2023. URL
https://proceedings.mlr.press/v202/d
ehghani23a.html.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer,
L. Gpt3.int8(): 8-bit matrix multiplication for trans-
formers at scale. In Koyejo, S., Mohamed, S., Agar-
wal, A., Belgrave, D., Cho, K., and Oh, A. (eds.), Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022, 2022. URL http:
//papers.nips.cc/paper_files/paper/2
022/hash/c3ba4962c05c49636d4c6206a97
e9c8a-Abstract-Conference.html.

Ding, M., Yang, Z., Hong, W., Zheng, W., Zhou, C., Yin,
D., Lin, J., Zou, X., Shao, Z., Yang, H., et al. Cogview:
Mastering text-to-image generation via transformers. Ad-
vances in neural information processing systems, 34:
19822–19835, 2021.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Fishman, M., Chmiel, B., Banner, R., and Soudry, D.
Scaling FP8 training to trillion-token llms. CoRR,
abs/2409.12517, 2024. doi: 10.48550/ARXIV.2409.

12517. URL https://doi.org/10.48550/arX
iv.2409.12517.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li, H.,
McDonell, K., Muennighoff, N., Ociepa, C., Phang, J.,
Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika, L.,
Tang, E., Thite, A., Wang, B., Wang, K., and Zou, A. A
framework for few-shot language model evaluation, 07
2024. URL https://zenodo.org/records/1
2608602.

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In Teh, Y. W.
and Titterington, D. M. (eds.), Proceedings of the Thir-
teenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2010, Chia Laguna Resort, Sar-
dinia, Italy, May 13-15, 2010, volume 9 of JMLR Proceed-
ings, pp. 249–256. JMLR.org, 2010. URL http://pr
oceedings.mlr.press/v9/glorot10a.html.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In 2015 IEEE International Con-
ference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015, pp. 1026–1034. IEEE Computer
Society, 2015. doi: 10.1109/ICCV.2015.123. URL
https://doi.org/10.1109/ICCV.2015.123.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings in
deep residual networks. In Leibe, B., Matas, J., Sebe, N.,
and Welling, M. (eds.), Computer Vision - ECCV 2016 -
14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part IV, volume 9908
of Lecture Notes in Computer Science, pp. 630–645.
Springer, 2016. doi: 10.1007/978-3-319-46493-0\ 38.
URL https://doi.org/10.1007/978-3-319
-46493-0_38.

Heo, J. H., Kim, J., Kwon, B., Kim, B., Kwon, S. J., and
Lee, D. Rethinking channel dimensions to isolate outliers
for low-bit weight quantization of large language models.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net, 2024. URL https://openre
view.net/forum?id=JzG7kSpjJk.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy,
A., Osindero, S., Simonyan, K., Elsen, E., Rae, J. W.,

11

https://proceedings.neurips.cc/paper/2020/hash/e6b738eca0e6792ba8a9cbcba6c1881d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e6b738eca0e6792ba8a9cbcba6c1881d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e6b738eca0e6792ba8a9cbcba6c1881d-Abstract.html
https://proceedings.mlr.press/v202/dehghani23a.html
https://proceedings.mlr.press/v202/dehghani23a.html
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2409.12517
https://doi.org/10.48550/arXiv.2409.12517
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1007/978-3-319-46493-0_38
https://openreview.net/forum?id=JzG7kSpjJk
https://openreview.net/forum?id=JzG7kSpjJk

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

Vinyals, O., and Sifre, L. Training compute-optimal
large language models. CoRR, abs/2203.15556, 2022.
doi: 10.48550/ARXIV.2203.15556. URL https:
//doi.org/10.48550/arXiv.2203.15556.

Kedia, A., Zaidi, M. A., Khyalia, S., Jung, J., Goka, H., and
Lee, H. Transformers get stable: An end-to-end signal
propagation theory for language models. In Forty-first
International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum
?id=30waYPIZUA.

Kim, J., Lee, J. H., Kim, S., Park, J., Yoo, K. M., Kwon,
S. J., and Lee, D. Memory-efficient fine-tuning of com-
pressed large language models via sub-4-bit integer quan-
tization. In Oh, A., Naumann, T., Globerson, A., Saenko,
K., Hardt, M., and Levine, S. (eds.), Advances in Neu-
ral Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/p
aper_files/paper/2023/hash/7183f4fc8
7598f6c6e947b96714acbd6-Abstract-Con
ference.html.

Lee, J. H., Kim, J., Kwon, S. J., and Lee, D. Flexround:
Learnable rounding based on element-wise division for
post-training quantization. In Krause, A., Brunskill, E.,
Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J. (eds.),
International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp.
18913–18939. PMLR, 2023. URL https://procee
dings.mlr.press/v202/lee23h.html.

Lee, J. H., Kim, J., Yang, J. Y., Kwon, S. J., Yang, E., Yoo,
K. M., and Lee, D. LRQ: optimizing post-training quan-
tization for large language models by learning low-rank
weight-scaling matrices. In Chiruzzo, L., Ritter, A., and
Wang, L. (eds.), Proceedings of the 2025 Conference
of the Nations of the Americas Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, NAACL 2025 - Volume 1: Long Papers, Al-
buquerque, New Mexico, USA, April 29 - May 4, 2025, pp.
7708–7743. Association for Computational Linguistics,
2025. URL https://aclanthology.org/2025.
naacl-long.393/.

Li, J., Fang, A., Smyrnis, G., Ivgi, M., Jordan, M., Gadre,
S. Y., Bansal, H., Guha, E. K., Keh, S., Arora, K., Garg,
S., Xin, R., Muennighoff, N., Heckel, R., Mercat, J.,
Chen, M., Gururangan, S., Wortsman, M., Albalak, A.,
Bitton, Y., Nezhurina, M., Abbas, A., Hsieh, C., Ghosh,
D., Gardner, J., Kilian, M., Zhang, H., Shao, R., Pratt,
S. M., Sanyal, S., Ilharco, G., Daras, G., Marathe, K.,

Gokaslan, A., Zhang, J., Chandu, K. R., Nguyen, T.,
Vasiljevic, I., Kakade, S. M., Song, S., Sanghavi, S.,
Faghri, F., Oh, S., Zettlemoyer, L., Lo, K., El-Nouby, A.,
Pouransari, H., Toshev, A., Wang, S., Groeneveld, D.,
Soldaini, L., Koh, P. W., Jitsev, J., Kollar, T., Dimakis,
A. G., Carmon, Y., Dave, A., Schmidt, L., and Shankar, V.
Datacomp-lm: In search of the next generation of training
sets for language models. CoRR, abs/2406.11794, 2024a.
doi: 10.48550/ARXIV.2406.11794. URL https:
//doi.org/10.48550/arXiv.2406.11794.

Li, P., Yin, L., and Liu, S. Mix-ln: Unleashing the power
of deeper layers by combining pre-ln and post-ln. arXiv
preprint arXiv:2412.13795, 2024b.

Loshchilov, I., Hsieh, C., Sun, S., and Ginsburg, B. ngpt:
Normalized transformer with representation learning on
the hypersphere. CoRR, abs/2410.01131, 2024. doi:
10.48550/ARXIV.2410.01131. URL https://doi.
org/10.48550/arXiv.2410.01131.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models, 2016.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? a new dataset for open
book question answering. In EMNLP, 2018.

OLMo, T., Walsh, P., Soldaini, L., Groeneveld, D., Lo, K.,
Arora, S., Bhagia, A., Gu, Y., Huang, S., Jordan, M.,
et al. 2 olmo 2 furious. arXiv preprint arXiv:2501.00656,
2024.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P. F.,
Leike, J., and Lowe, R. Training language models to
follow instructions with human feedback. In Koyejo, S.,
Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and
Oh, A. (eds.), Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022, 2022. URL
http://papers.nips.cc/paper_files/pap
er/2022/hash/b1efde53be364a73914f588
05a001731-Abstract-Conference.html.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

Rivière, M., Pathak, S., Sessa, P. G., Hardin, C., Bhupati-
raju, S., Hussenot, L., Mesnard, T., Shahriari, B., Ramé,
A., Ferret, J., Liu, P., Tafti, P., Friesen, A., Casbon, M.,

12

https://doi.org/10.48550/arXiv.2203.15556
https://doi.org/10.48550/arXiv.2203.15556
https://openreview.net/forum?id=30waYPIZUA
https://openreview.net/forum?id=30waYPIZUA
http://papers.nips.cc/paper_files/paper/2023/hash/7183f4fc87598f6c6e947b96714acbd6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/7183f4fc87598f6c6e947b96714acbd6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/7183f4fc87598f6c6e947b96714acbd6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/7183f4fc87598f6c6e947b96714acbd6-Abstract-Conference.html
https://proceedings.mlr.press/v202/lee23h.html
https://proceedings.mlr.press/v202/lee23h.html
https://aclanthology.org/2025.naacl-long.393/
https://aclanthology.org/2025.naacl-long.393/
https://doi.org/10.48550/arXiv.2406.11794
https://doi.org/10.48550/arXiv.2406.11794
https://doi.org/10.48550/arXiv.2410.01131
https://doi.org/10.48550/arXiv.2410.01131
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

Ramos, S., Kumar, R., Lan, C. L., Jerome, S., Tsitsulin,
A., Vieillard, N., Stanczyk, P., Girgin, S., Momchev,
N., Hoffman, M., Thakoor, S., Grill, J., Neyshabur, B.,
Bachem, O., Walton, A., Severyn, A., Parrish, A., Ahmad,
A., Hutchison, A., Abdagic, A., Carl, A., Shen, A., Brock,
A., Coenen, A., Laforge, A., Paterson, A., Bastian, B.,
Piot, B., Wu, B., Royal, B., Chen, C., Kumar, C., Perry,
C., Welty, C., Choquette-Choo, C. A., Sinopalnikov, D.,
Weinberger, D., Vijaykumar, D., Rogozinska, D., Her-
bison, D., Bandy, E., Wang, E., Noland, E., Moreira,
E., Senter, E., Eltyshev, E., Visin, F., Rasskin, G., Wei,
G., Cameron, G., Martins, G., Hashemi, H., Klimczak-
Plucinska, H., Batra, H., Dhand, H., Nardini, I., Mein,
J., Zhou, J., Svensson, J., Stanway, J., Chan, J., Zhou,
J. P., Carrasqueira, J., Iljazi, J., Becker, J., Fernandez, J.,
van Amersfoort, J., Gordon, J., Lipschultz, J., Newlan,
J., Ji, J., Mohamed, K., Badola, K., Black, K., Millican,
K., McDonell, K., Nguyen, K., Sodhia, K., Greene, K.,
Sjösund, L. L., Usui, L., Sifre, L., Heuermann, L., Lago,
L., and McNealus, L. Gemma 2: Improving open lan-
guage models at a practical size. CoRR, abs/2408.00118,
2024. doi: 10.48550/ARXIV.2408.00118. URL https:
//doi.org/10.48550/arXiv.2408.00118.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: an adversarial winograd schema challenge
at scale. Commun. ACM, 64(9):99–106, August 2021.
ISSN 0001-0782. doi: 10.1145/3474381. URL https:
//doi.org/10.1145/3474381.

Sap, M., Rashkin, H., Chen, D., Bras, R. L., and Choi, Y.
Social iqa: Commonsense reasoning about social interac-
tions. In Inui, K., Jiang, J., Ng, V., and Wan, X. (eds.),
Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November
3-7, 2019, pp. 4462–4472. Association for Computational
Linguistics, 2019. doi: 10.18653/V1/D19-1454. URL
https://doi.org/10.18653/v1/D19-1454.

Sun, M., Chen, X., Kolter, J. Z., and Liu, Z. Massive activa-
tions in large language models. CoRR, abs/2402.17762,
2024. doi: 10.48550/ARXIV.2402.17762. URL https:
//doi.org/10.48550/arXiv.2402.17762.

Takase, S., Kiyono, S., Kobayashi, S., and Suzuki, J. Spike
no more: Stabilizing the pre-training of large language
models. CoRR, abs/2312.16903, 2023. doi: 10.48550/A
RXIV.2312.16903. URL https://doi.org/10.4
8550/arXiv.2312.16903.

Talmor, A., Herzig, J., Lourie, N., and Berant, J. Common-
senseQA: A question answering challenge targeting com-
monsense knowledge. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for

Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4149–4158,
Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1421.
URL https://aclanthology.org/N19-1421.

Team, G., Kamath, A., Ferret, J., Pathak, S., Vieillard,
N., Merhej, R., Perrin, S., Matejovicova, T., Ramé, A.,
Rivière, M., et al. Gemma 3 technical report. arXiv
preprint arXiv:2503.19786, 2025.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In Guyon, I., von Luxburg, U., Bengio,
S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pp. 5998–6008, 2017. URL
https://proceedings.neurips.cc/paper
/2017/hash/3f5ee243547dee91fbd053c1c
4a845aa-Abstract.html.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bow-
man, S. GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP, pp. 353–
355, Brussels, Belgium, November 2018. Association for
Computational Linguistics. doi: 10.18653/v1/W18-5446.
URL https://aclanthology.org/W18-5446.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. M. Transformers: State-of-
the-art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–
45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/a
nthology/2020.emnlp-demos.6.

Wortsman, M., Liu, P. J., Xiao, L., Everett, K. E., Alemi,
A. A., Adlam, B., Co-Reyes, J. D., Gur, I., Kumar, A.,
Novak, R., Pennington, J., Sohl-Dickstein, J., Xu, K.,
Lee, J., Gilmer, J., and Kornblith, S. Small-scale proxies
for large-scale transformer training instabilities. In The
Twelfth International Conference on Learning Represen-
tations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024. URL https://openreview
.net/forum?id=d8w0pmvXbZ.

Xie, S., Zhang, H., Guo, J., Tan, X., Bian, J., Awadalla,
H. H., Menezes, A., Qin, T., and Yan, R. Residual:

13

https://doi.org/10.48550/arXiv.2408.00118
https://doi.org/10.48550/arXiv.2408.00118
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.48550/arXiv.2402.17762
https://doi.org/10.48550/arXiv.2402.17762
https://doi.org/10.48550/arXiv.2312.16903
https://doi.org/10.48550/arXiv.2312.16903
https://aclanthology.org/N19-1421
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/W18-5446
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://openreview.net/forum?id=d8w0pmvXbZ
https://openreview.net/forum?id=d8w0pmvXbZ

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

Transformer with dual residual connections. CoRR,
abs/2304.14802, 2023. doi: 10.48550/ARXIV.2304.
14802. URL https://doi.org/10.48550/arX
iv.2304.14802.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C.,
Zhang, H., Lan, Y., Wang, L., and Liu, T. On layer nor-
malization in the transformer architecture. In Proceedings
of the 37th International Conference on Machine Learn-
ing, ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research, pp.
10524–10533. PMLR, 2020. URL http://procee
dings.mlr.press/v119/xiong20b.html.

Yang, G. and Hu, E. J. Tensor programs IV: feature learn-
ing in infinite-width neural networks. In Meila, M. and
Zhang, T. (eds.), Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pp. 11727–11737. PMLR,
2021. URL http://proceedings.mlr.press/
v139/yang21c.html.

Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X., Farhi,
D., Ryder, N., Pachocki, J., Chen, W., and Gao, J. Tensor
programs V: tuning large neural networks via zero-shot
hyperparameter transfer. CoRR, abs/2203.03466, 2022.
doi: 10.48550/ARXIV.2203.03466. URL https:
//doi.org/10.48550/arXiv.2203.03466.

Yang, G., Yu, D., Zhu, C., and Hayou, S. Tensor programs
VI: feature learning in infinite depth neural networks.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net, 2024. URL https://openre
view.net/forum?id=17pVDnpwwl.

Yoo, K. M., Han, J., In, S., Jeon, H., Jeong, J., Kang, J.,
Kim, H., Kim, K., Kim, M., Kim, S., Kwak, D., Kwak,
H., Kwon, S. J., Lee, B., Lee, D., Lee, G., Lee, J., Park,
B., Shin, S., Yu, J., Baek, S., Byeon, S., Cho, E., Choe,
D., Han, J., Jin, Y., Jun, H., Jung, J., Kim, C., Kim,
J., Kim, J., Lee, D., Park, D. W., Sohn, J. M., Han, S.,
Heo, J., Hong, S., Jeon, M., Jung, H., Jung, J., Jung, W.,
Kim, C., Kim, H., Kim, J., Kim, M. Y., Lee, S., Park,
J., Shin, J., Yang, S., Yoon, J., Lee, H., Bae, S., Cha, J.,
Gylleus, K., Ham, D., Hong, M., Hong, Y., Hong, Y.,
Jang, D., Jeon, H., Jeon, Y., Jeong, Y., Ji, M., Jin, Y., Jo,
C., Joo, S., Jung, S., Kim, A. J., Kim, B. H., Kim, H.,
Kim, J., Kim, M., Kim, M., Kim, S., Kim, Y., Kim, Y.,
Kim, Y., Ko, D., Lee, D., Lee, H., Lee, J., Lee, J., Lee,
J., Lee, J., Lee, M. Y., Lee, Y., Min, T., Min, Y., Moon,
K., Oh, H., Park, J., Park, K., Park, Y., Seo, H., Seo, S.,
Sim, M., Son, G., Yeo, M., Yeom, K. H., and Yoo, W.
Hyperclova X technical report. CoRR, abs/2404.01954,

2024. doi: 10.48550/ARXIV.2404.01954. URL https:
//doi.org/10.48550/arXiv.2404.01954.

Yu, M., Wang, D., Shan, Q., and Wan, A. The su-
per weight in large language models. arXiv preprint
arXiv:2411.07191, 2024.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. HellaSwag: Can a machine really finish your sen-
tence? In Korhonen, A., Traum, D., and Màrquez,
L. (eds.), Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pp. 4791–
4800, Florence, Italy, July 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P19-1472. URL
https://aclanthology.org/P19-1472/.

Zhai, S., Likhomanenko, T., Littwin, E., Busbridge, D.,
Ramapuram, J., Zhang, Y., Gu, J., and Susskind, J. M.
Stabilizing transformer training by preventing attention
entropy collapse. In Krause, A., Brunskill, E., Cho, K.,
Engelhardt, B., Sabato, S., and Scarlett, J. (eds.), Inter-
national Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pp. 40770–
40803. PMLR, 2023. URL https://proceedings.
mlr.press/v202/zhai23a.html.

Zhang, B. and Sennrich, R. Root mean square layer nor-
malization. In Wallach, H. M., Larochelle, H., Beygelz-
imer, A., d’Alché-Buc, F., Fox, E. B., and Garnett, R.
(eds.), Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 12360–12371, 2019.
URL https://proceedings.neurips.cc/p
aper/2019/hash/1e8a19426224ca89e83ce
f47f1e7f53b-Abstract.html.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M. T., Li, X., Lin, X. V.,
Mihaylov, T., Ott, M., Shleifer, S., Shuster, K., Simig,
D., Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer,
L. OPT: open pre-trained transformer language models.
CoRR, abs/2205.01068, 2022. doi: 10.48550/ARXIV.2
205.01068. URL https://doi.org/10.48550
/arXiv.2205.01068.

Zhang, Y., Chen, C., Ding, T., Li, Z., Sun, R., and Luo,
Z. Why transformers need adam: A hessian perspec-
tive. In Globersons, A., Mackey, L., Belgrave, D.,
Fan, A., Paquet, U., Tomczak, J. M., and Zhang, C.
(eds.), Advances in Neural Information Processing Sys-
tems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024, 2024. URL
http://papers.nips.cc/paper_files/p

14

https://doi.org/10.48550/arXiv.2304.14802
https://doi.org/10.48550/arXiv.2304.14802
http://proceedings.mlr.press/v119/xiong20b.html
http://proceedings.mlr.press/v119/xiong20b.html
http://proceedings.mlr.press/v139/yang21c.html
http://proceedings.mlr.press/v139/yang21c.html
https://doi.org/10.48550/arXiv.2203.03466
https://doi.org/10.48550/arXiv.2203.03466
https://openreview.net/forum?id=17pVDnpwwl
https://openreview.net/forum?id=17pVDnpwwl
https://doi.org/10.48550/arXiv.2404.01954
https://doi.org/10.48550/arXiv.2404.01954
https://aclanthology.org/P19-1472/
https://proceedings.mlr.press/v202/zhai23a.html
https://proceedings.mlr.press/v202/zhai23a.html
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068
http://papers.nips.cc/paper_files/paper/2024/hash/ee0e45ff4de76cbfdf07015a7839f339-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/ee0e45ff4de76cbfdf07015a7839f339-Abstract-Conference.html

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

aper/2024/hash/ee0e45ff4de76cbfdf070
15a7839f339-Abstract-Conference.html.

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P., Yu, L., Zhang, S., Ghosh, G., Lewis,
M., Zettlemoyer, L., and Levy, O. LIMA: less is more
for alignment. In Oh, A., Naumann, T., Globerson, A.,
Saenko, K., Hardt, M., and Levine, S. (eds.), Advances
in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nip
s.cc/paper_files/paper/2023/hash/ac6
62d74829e4407ce1d126477f4a03a-Abstrac
t-Conference.html.

15

http://papers.nips.cc/paper_files/paper/2024/hash/ee0e45ff4de76cbfdf07015a7839f339-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/ee0e45ff4de76cbfdf07015a7839f339-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

A. Related Work
Activation Dynamics in Large Language Models. Studies on the distribution and magnitude of activations in deep
neural networks have revealed that certain outlier features can significantly affect model behavior and efficiency. Dettmers
et al. (2022) examined Transformer architectures, highlighting how specific feature dimensions may exhibit unusually large
values (outliers) that disrupt quantization and overall system performance. Extending this line of work, Sun et al. (2024)
identified the occurrence of “massive activations”—extremely large activation values that persist across multiple layers.
Unlike standard outliers, these massive activations remain relatively invariant to different inputs, effectively functioning as
implicit bias terms in large language models (LLMs). Notably, such extreme values can skew the self-attention mechanism,
causing the model to attend disproportionately to certain tokens. These observations demonstrate that even with standard
normalization layers in place, hidden biases may linger in internal representations, underscoring the importance of deeper
analyses of activation behavior in LLMs.

Variance Control and Normalization in Convolutional Networks. The interplay between activation variance and
training stability has also been extensively explored in convolutional neural networks (CNNs). De & Smith (2020) showed
that Batch Normalization (BN) stabilizes the training of residual networks by effectively downscaling activation variance in
the residual branches, thereby improving gradient behavior. However, BN imposes certain constraints, such as dependence on
batch size and additional computational overhead for estimating batch statistics. Consequently, several normalization-free or
alternative normalization approaches have been investigated. For instance, Brock et al. (2021b) introduced “Normalizer-Free
ResNets,” which manage activation variance through learnable scaling parameters. This approach achieved competitive
performance without relying on BN, highlighting the critical role of effective variance control in fostering stable optimization
and strong generalization in CNNs.

Layer Normalization in Transformers. Training stability in Transformer architectures is closely tied to the choice and
placement of layer normalization (LN). Xiong et al. (2020) reported that Transformers employing a Post-LN structure
often suffer from gradient instabilities at initialization, requiring a careful learning-rate warm-up phase to mitigate these
issues. In contrast, Pre-LN helps maintain more stable gradients during the early stages of training. However, Kedia
et al. (2024) showed that while Post-LN can lead to vanishing or exploding gradients in deep Transformers, Pre-LN may
induce hyperbolic gradient growth. These findings illustrate the nuanced trade-offs of normalization placement and draw
parallels to earlier CNN studies, where careful management of activation variance proved essential for stable deep learning.
Ding et al. (2021) introduced Sandwich-LN in the vision domain for the first time, yet they paid little attention to the
structural characteristics and differences that distinguish one LN placement from another. In language domain, several
major open-source language models (e.g., Olmo2 (OLMo et al., 2024), Gemma2 (Rivière et al., 2024), and Gemma3
(Team et al., 2025)) already employ a Peri-LN-like structure (see Section 3). Nevertheless, previous technical reports have
not explained why this design might be advantageous compared with the more widely studied Pre-LN and Post-LN. By
investigating Peri-LN in detail, we aim to highlight the structural benefits that appear to underlie its empirical success in
these implementations.

Gradient Propagation and Depth Scaling Ensuring consistent gradient propagation across many layers is pivotal for
stable training in very deep models. Yang & Hu (2021) (Tensor Programs IV) introduced the concept of Maximal Update
Parametrization (µP) in the infinite-width regime to preserve feature learning, preventing gradients from collapsing into
kernel-like dynamics. Building on this, Yang et al. (2024) (Tensor Programs VI) proposed Depth-µP, which scales residual
branches and learning rates according to network depth. Their theoretical analysis indicates that improper depth-dependent
scaling leads to vanishing or exploding gradients, ultimately diminishing the diversity of learned representations. These
insights highlight the necessity for principled scaling strategies and careful initialization to maintain robust gradient flow in
deep architectures.

Summary. Taken together, these studies underscore the importance of managing activation variance and hidden biases to
achieve stable training and expressive internal representations in modern deep networks. In Transformer-based models,
normalization choice and placement—such as Post-LN, Pre-LN, or other variants—play a significant role in controlling
gradient dynamics and overall performance. While Post-LN and Pre-LN have received significant attention, we focus on a
comparative analysis that includes Peri-LN, an alternative normalization placement that has thus far been underexplored but
holds potential for enhancing training stability and model performance.

16

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

B. Proposition 3.1 of Post-LN

Proposition B.1. Post-LN (vanishing gradient). Consider the following sequence of operations:

a = MLP(x), o = x+ a, õ = Norm(o), (9)

then ∥∥∥∥∥ ∂L(õ)∂W
(2)
i,j

∥∥∥∥∥ ≤ 4 γ
√
D ∥h∥

∥x+ a∥
, (10)

where h := ReLU
(
xW (1) + b(1)

)
. Since Post-LN normalizes the hidden state after each residual addition along the main

path, the activation norm |h| tends to remain relatively moderate. As a result, in Post-LN, the gradient scale is less sensitive
to the magnitude of activations and more significantly influenced by model depth, as previously analyzed by Xiong et al.
(2020) and Kedia et al. (2024), leading to vanishing gradients as depth increases.

C. Proof of Theoretical Insight
To support the claim that Peri-LN enhances the stability of training in such cases, we analyze the gradient norm in the final
layer. For simplicity, we use RMSNorm and ReLU here. Here, we assume that γ, the scaling parameter used in RMSNorm,
is positive, and we empirically verified that it remains strictly positive across models of all sizes during training.

Proposition C.1. Consider the following sequence of operations:

x̃ = RMSNorm(x),

a = ReLU(x̃W (1) + b(1))W (2) + b(2),

o = x+ a.

Then,
∂L(o)
∂W

(2)
i,j

= hi(p̂j − yj), (11)

where h := ReLU
(
xW (1) + b(1)

)
, p̂ := softmax(o), and y is the label (one-hot vector).

Proof. By the chain rule,
∂L(o)
∂W

(2)
i,j

=
∂L(o)
∂o︸ ︷︷ ︸

(a):1×D

× ∂o

∂a︸︷︷︸
(b):D×D

× ∂a

∂W
(2)
i,j︸ ︷︷ ︸

(c):D×1

. (12)

(a) It is known that
∂L(o)
∂ok

= p̂k − yk. (13)

So,
∂L(o)
∂o

=
[
p̂1 − y1 p̂2 − y2 · · · p̂D − yD

]
. (14)

(b) Since o = x+ a,
∂o

∂a
= I. (15)

(c) Recall that
a := ReLU(x̃W (1) + b(1))W (2) + b(2). (16)

For convenience, let
h := ReLU(x̃W (1) + b(1)). (17)

17

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

Then, we have

∂ak

∂W
(2)
i,j

=
∂

∂W
(2)
i,j

(
H∑

p=1

hpW
(2)
p,k + b

(2)
k

)
= hi δk,j . (18)

In vector representation,
∂a

∂W
(2)
i,j

=
[
0 · · · hi · · · 0

]⊤
, (19)

where the only nonzero entry is in the j-th component.

Thus, by putting these all together,
∂L(o)
∂W

(2)
i,j

= hi(p̂j − yj). (20)

Proposition C.2. Consider the following sequence of operations:

x̃ = RMSNorm(x),

a = ReLU(x̃W (1) + b(1))W (2) + b(2),

ã = RMSNorm(a),

o = x+ ã.

Then, ∥∥∥∥∥ ∂L(o)∂W
(2)
i,j

∥∥∥∥∥ ≤ 4γ
√
D∥h∥

∥a∥
, (21)

where γ is the scaling parameter used in RMSNorm(·), D is the dimensionality, and h := ReLU
(
xW (1) + b(1)

)
.

Proof. By the chain rule,
∂L(o)
∂W

(2)
i,j

=
∂L(o)
∂o︸ ︷︷ ︸

(a):1×D

× ∂o

∂ã︸︷︷︸
(b):D×D

× ∂ã

∂a︸︷︷︸
(c):D×D

× ∂a

∂W
(2)
i,j︸ ︷︷ ︸

(d):D×1

. (22)

(a) We have ∥∥∥∥∂L(o)∂o

∥∥∥∥ = ∥p̂− y∥ ≤ ∥p̂∥+ ∥y∥ = 2. (23)

(b) We also have ∥∥∥∥∂o∂ã
∥∥∥∥ = ∥I∥ = 1. (24)

(c) Recall that

ã := RMSNorm(a) = γ · a√
1
D

∑D
k=1 a

2
k + ϵ

. (25)

Then, ∂ã
∂a is the Jacobian matrix J of RMSNorm(·). For brevity, let

α :=
1

D

D∑
k=1

(ak)
2.v (26)

18

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

Then,

Jp,q =
∂ãp
∂aq

= γ · ∂

∂aq

(
ap√
α+ ϵ

)
(27)

= γ · 1√
α+ ϵ

∂ap
∂aq

+ γ · ap
∂

∂aq

(
1√
α+ ϵ

)
(28)

= γ · 1√
α+ ϵ

δp,q − γ · apaq
D(α+ ϵ)3/2

. (29)

In matrix representation,
J =

γ√
α+ ε

I︸ ︷︷ ︸
A

− γ

D(α+ ε)3/2
(a)

⊤
(a)︸ ︷︷ ︸

B

. (30)

Then, we have

∥A∥ =

∥∥∥∥ γ√
α+ ε

I

∥∥∥∥ =
γ√
α+ ε

∥I∥ =
γ√
α+ ε

, (31)

and

∥B∥ =

∥∥∥∥ γ

D(α+ ε)3/2
(a)

⊤
(a)

∥∥∥∥ =
γ

D(α+ ε)3/2
×Dα =

γα

(α+ ε)3/2
. (32)

So, we have

∥J∥ = ∥A−B∥ ≤ ∥A∥+ ∥B∥ ≤ 2γ√
α

=
2γ

√
D

∥a∥
. (33)

(d) Since
∂a

∂W
(2)
i,j

=
[
0 · · · hi · · · 0

]⊤
, (34)

we have ∥∥∥∥∥ ∂a

∂W
(2)
i,j

∥∥∥∥∥ ≤ ∥h∥. (35)

Thus, ∥∥∥∥∥ ∂L(o)∂W
(2)
i,j

∥∥∥∥∥ ≤ 2× 1× 2γ
√
D

∥a∥
× ∥h∥ =

4γ
√
D∥h∥

∥a∥
. (36)

Proposition C.3. Consider the following sequence of operations:

a = ReLU(xW (1) + b(1))W (2) + b(2),

o = x+ a,

õ = RMSNorm(o).

Then, ∥∥∥∥∥ ∂L(õ)∂W
(2)
i,j

∥∥∥∥∥ ≤ 4γ
√
D∥h∥

∥x+ a∥
, (37)

where γ is the scaling parameter used in RMSNorm(·), D is the dimensionality, and h := ReLU
(
xW (1) + b(1)

)
.

Proof. The proof is analogous to the proof of the previous proposition.

19

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

D. Detailed Experimental Setting
In this section, we provide detailed configurations of both the pretraining and supervised fine-tuning to reproduce our results.

D.1. Configurations on Pre-Training

The common training settings are provided in Table 2. Embedding settings for the language models are listed in Table 3.
For the model architecture, we primarily follow the Llama 3 architecture (Dubey et al., 2024). In the MLP module, we use
SwiGLU activations. Additional details regarding the model configurations are shown in Table 4. Note that embedding
parameters are excluded from the model size. Unless otherwise noted, most training and model settings follow those of the
DCLM experiments (Li et al., 2024a). During the pretraining stage, each model was trained under a controlled random seed.

Table 2. Common configurations. LR Schedule denotes learning rate schedule.

Global Batch Size Weight Decay Iterations Optimizer LR Schedule Warmup Weight Initialization

256 0.033 14400 Adam Cosine 10% 0.02

Table 3. Embedding configurations.

Max Position Embeddings Position Embedding Type Untie-embeddings-and-output-weights

8192 Rope True

Table 4. Model configurations.

Size nlayers nheads dmodel dhead

400M 24 8 1024 128
1.5B 24 16 2048 128
3.2B 32 16 2560 160

D.2. Configurations on Supervised Fine-Tuning

To examine downstream task performance after instruction tuning, we employed a high-quality LIMA alignment training
set consisting of 1, 000 samples (Zhou et al., 2023). Our supervised fine-tuning configuration was slightly modified from
the original setup of LIMA: we fine-tuned the model for 15 epochs with a batch size of 128. The optimizer was Adam
with an initial learning rate of 1e-5 and a cosine learning rate schedule. We selected the best checkpoints for each model
by evaluating on OpenBookQA (Mihaylov et al., 2018), CommonSenseQA (Talmor et al., 2019), and the NLI dataset in
GLUE (Wang et al., 2018).

20

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

E. Additional Results on Pre-Training Study
E.1. Post-Layer Normalization Architecture & Learning Rate Exploration

In order to identify the optimal performance configuration for Post-LN within the experimental setup, we conducted a
learning rate exploration as shown in Figure 12. Because the appropriate learning rate for Post-LN fell into a much lower
range than those for Pre-LN and Peri-LN, we treated it separately. For each Post-LN setting, the best learning rate was
determined as the one yielding the lowest final training loss, with the random seed held constant during this selection
process.

Figure 12. Learning rate explorations for Post-LN architectures.

E.2. Best Performing Checkpoints Comparisons of Other Model Sizes

As an extension of Section 4.2, we present below the results for additional model sizes that were omitted previously due
to space constraints. In Figures 13, we compare the pre-training loss and the gradient norm curve at each LN strategy’s
best-performing learning rate of 3.2B and 1.5B size models.

(a) Training loss for 3.2B (b) Gradient-norm for 3.2B

(c) Training loss for 1.5B (d) Gradient-norm for 1.5B

Figure 13. Performance comparison of Post-LN, Pre-LN, and Peri-LN Transformers during pre-training for other two.

21

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

F. Additional Results on Growth of Hidden State
In this section, we examine the 400M- and 3.2B-parameter models, which were omitted in Section 5.1 due to space
constraints. As illustrated in Figures 14 and 15, these models exhibit the same overall trend.

(a) Absolute magnitude growth (b) Variance growth

Figure 14. The forward growth patterns of hidden state for different architectures highlight the structural impact of normalization
placement. 3.2B size model.

(a) Absolute magnitude growth (b) Variance growth

Figure 15. The forward growth patterns of hidden state for different architectures highlight the structural impact of normalization
placement. 400M size model.

22

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

G. Additional Experimental Results on Ablation Study
G.1. Amount of Training Tokens

In order to investigate whether the learning behavior of each LN strategy varies with the number of training tokens, we
conducted an additional round of learning-rate exploration for both the Pre-LN and Peri-LN architectures. As shown in
Figure 16, even as the number of training tokens increases, there is no observable shift in the optimal learning-rate range.
Based on these findings, we conclude that our overall results remain consistent, even when the training token count is further
increased. Furthermore, although a learning rate of 5× 10−3 leads to divergence in the smaller-scale experiments with 8B
or 16B training tokens, it does not do so in the 30B-token setting. We attribute this discrepancy to the 10% warmup rate,
suggesting that the warmup phase may be insufficient for the smaller-scale experiments.

Figure 16. Learning rate explorations of Pre-& Peri-LN architecture with sequence length 2048 configuration.

G.2. Sequence Length

In language models, the number of iterations per token is influenced by the sequence length, which in turn, along with the
batch size, affects training statistics. We conducted an experiment to determine whether the performance trend changes
when the sequence length is reduced from 8192, as set in the main text, to 2048. As shown in Figure 17, Peri-LN still
surpasses Pre-LN in the learning rate exploration.

Figure 17. Learning rate explorations of Pre-& Peri-LN architecture with sequence length 2048 configuration.

23

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

G.3. Warm-up

Warmup is widely recognized to influence training stability. To investigate whether a 10% warmup rate might unfairly
disadvantage Pre-LN, we conducted an additional learning-rate exploration using a 30% warmup rate. As illustrated in
Figure 18, the overall trend remained unchanged, and Peri-LN continued to exhibit better performance than Pre-LN in
terms of loss. Furthermore, we observed that increasing the warmup rate from 10% to 30% did not reduce the frequency of
gradient norm spikes in Pre-LN.

Figure 18. Learning rate explorations of Pre-& Peri-LN architecture with warmup 30% configuration.

G.4. RMSNorm & LayerNorm

As illustrated in Figure 19, we conducted experiments in which RMSNorm and LayerNorm were interchanged. Consistent
with the findings reported in (OLMo et al., 2024), we did not observe any notable performance differences in our RMSNorm
and LayerNorm replacement experiments. Learning rate was set to 2e-3 (best performance learning rate).

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 19. LayerNorm vs. RMSNorm on Peri-LN architecture. 400M size model.

24

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

G.5. Embedding Layer Normalization of Peri-Layer Normalization Transformers

Motivated by Takase et al. (2023), we empirically explore the addition of embedding layer normalization to improve training
stability and overall model performance in Transformer architectures. As illustrated in Figures 20, 21, and 22, incorporating
Embedding LN in the Peri-LN architecture yields a slight improvement in pre-training loss. Furthermore, our empirical
observations suggest that this effect becomes more pronounced in smaller models.

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 20. Loss and Gradient-norm curves comparing the presence and absence of Embedding LN in the Peri-LN architecture. 400M size
model.

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 21. Loss and Gradient-norm curves comparing the presence and absence of Embedding LN in the Peri-LN architecture. 1.5B size
model.

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 22. Loss and Gradient-norm curves comparing the presence and absence of Embedding LN in the Peri-LN architecture. 3.2B size
model.

25

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

G.6. Ablation Study on Additional Normalization Layer Placement

We additionally conduct further experiments on LN placements to compare different combinations (referred to as A, B, and
C positions in Figure 2). We add configurations where LN is placed at both A + C (akin to combining Pre- and Post-LN), as
well as only at B, to compare them with Peri-LN at final training loss under the controlled same training seed. We pre-train
the 400M-parameter Transformers on 30B tokens each, using the same training configurations described in Section 4. As
aligned with Xiong et al. (2020), our new results confirm that placing LN exclusively at C leads to training instability or
suboptimal performance. In particular, the A + C configuration inherits characteristics of Post-LN (large gradient norm
shifts), forcing the use of smaller learning rates and still resulting in lower overall performance than Peri-LN architecture.

Table 5. Final training loss and additional normalization layer placement.

400M A + C Post-LN B Peri-LN

Final Training Loss 3.01 3.05 Diverged 2.91

G.7. Peri-LN with QK-Norm

While Peri-LN alone provides robust training dynamics, QK-Norm can still enhance performance. We conducted additional
experiments that confirm combining Peri-LN with QK-Norm yields slight improvements in training loss. We pre-train the
1.5B-parameter Transformers on 30B tokens each, using the same training configurations described in Section 4. As shown
in Table 6, adding QK-norm to Peri-LN indeed yielded better performance, consistent with Wortsman et al. (2024). In this
experiment, the Peri-LN variant equipped with QK-norm used LayerNorm instead of RMSNorm.

Table 6. Peri-LN with QK-Norm.

1.5B Peri-LN +QK-Norm (Wortsman et al., 2024)

Final Training Loss 2.722 2.711

26

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

G.8. Weight Decay and Weight Initialization

G.8.1. COMMON SETTINGS

We pre-train the 400M-parameter Transformers on 30B tokens each under the controlled same training seed. We measure
the training loss and averaged benchmark score for these experiments under the same evaluation settings used in Table 1 of
the paper. Other configurations follow those outlined in Section 4. For the variance growth experiments in Figure 10, we
adopt the same settings as in Section 5.1, except that we use 100 samples for the forward-pass statistics.

G.8.2. WEIGHT DECAY

We conduct additional studies for various weight decay condition for both Pre-LN and Peri-LN architectures. As shown in
the Table 7, Peri-LN continues to offer better performance than Pre-LN under the same settings. We provide per-run results
as below:

Table 7. Effect of weight decay on 400M-parameter Pre-LN and Peri-LN Transformers: Final training loss and averaged benchmark score.

400M Weight Decay Coefficient 0 0.0033 0.033 0.33

Final Training Loss Pre-LN 3.03 3.03 3.03 3
Peri-LN 2.94 2.94 2.93 2.90

Averaged Benchmark Score Pre-LN 49.26 49.18 49.01 49.51
Peri-LN 51.41 51.14 50.68 52.13

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 23. Comparison of pre-training loss and gradient norms for Pre-LN and Peri-LN architectures with the weight decay coefficient
fixed at 0, while all other hyperparameters are held constant.

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 24. Comparison of pre-training loss and gradient norms for Pre-LN and Peri-LN architectures with the weight decay coefficient
fixed at 0.0033, while all other hyperparameters are held constant.

G.8.3. WEIGHT INITIALIZATION

We run an additional ablation on weight-initialization schemes. For both Pre-LN and Peri-LN models, we first adopt Xavier
initialization (Glorot & Bengio, 2010) and then compare it with He initialization (2/d) (He et al., 2015), LeCun initialization

27

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 25. Comparison of pre-training loss and gradient norms for Pre-LN and Peri-LN architectures with the weight decay coefficient
fixed at 0.033, while all other hyperparameters are held constant.

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 26. Comparison of pre-training loss and gradient norms for Pre-LN and Peri-LN architectures with the weight decay coefficient
fixed at 0.33, while all other hyperparameters are held constant.

(1/d), and two scaled variants, 10/d and 1/(10d).

As Table 8 shows, Xavier initialization yields the strongest overall performance, improving on the configurations used
in our earlier experiments. Crucially, our central finding remains intact: hidden-state variance sharply grows in Pre-LN
Transformers but stays bounded in Peri-LN Transformers. Table 9 confirms the same pattern across all initialization scales,
and detailed per-run results appear below.

Table 8. Xavier initialization (Glorot & Bengio, 2010) yields better performance compared to our previous weight initialization configura-
tions.

400M Architecture Baseline(0.02) Xavier Initialization

Loss Pre-LN 3.03 2.95
Peri-LN 2.93 2.91

Avg. Pre-LN 49.01 51.25
Peri-LN 50.68 52.04

Table 9. Effect of weight-initialization variance on final pre-training loss for 400M-parameter Pre-LN and Peri-LN Transformers.

400M Initialization Variance 10/d He (2/d) LeCun (1/d) 1/(10d) Baseline (0.02)

Loss Pre-LN 4.526 2.965 3.005 3.012 3.035
Peri-LN 3.027 2.929 2.915 2.902 2.916

28

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 27. Comparison of pre-training loss and gradient norms for Pre-LN and Peri-LN architectures with the weight initialization variance
set to 10/d, while all other hyperparameters are held constant.

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 28. Comparison of pre-training loss and gradient norms for Pre-LN and Peri-LN architectures with the weight initialization variance
set to 2/d (He init (He et al., 2015)), while all other hyperparameter are held constant.

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 29. Comparison of pre-training loss and gradient norms for Pre-LN and Peri-LN architectures with the weight initialization variance
set to 1/d (LeCun init), while all other hyperparameter are held constant.

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 30. Comparison of pre-training loss and gradient norms for Pre-LN and Peri-LN architectures with the weight initialization variance
set to 1/(10d), while all other hyperparameter are held constant.

29

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

H. Output-Layer Normalization with QK-Norm Architecture
Query and Key layer-normalization (QK-Norm) has been widely studied in modern Transformer architectures (Wortsman
et al., 2024; Zhai et al., 2023; OLMo et al., 2024). In particular, OLMo et al. (2024) reported that QK-Norm combined
with module output layer-normalization (output-LN, B in Figure 31 referred to as “reordered norm” in the OLMo2 paper)
improves both training loss and stability. As shown in Figure 31, QK-Norm is applied after the Query and Key projections,
similar to output-LN. From another perspective, QK-Norm is also applied immediately before the attention calculation, akin
to a Pre-LN approach. In our view, QK-Norm and Pre-LN (placed at A2 and A respectively in Figure 31) serve the same
role but differ in certain details. As shown in Figures 32, 33, and 34, the two architectures exhibit comparable performance
overall in terms of both training loss and stability.. However, Peri-LN provides a slight performance advantage over the
OLMo2-style Peri-LN in the 400M- and 1B-parameter models.

Figure 31. QK-layer normalization in the Attention module.

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 32. Comparison of pre-training loss and gradient norm between OLMo2-Style Peri-LN and the Peri-LN architecture. To ensure an
accurate comparison, we present the pre-training loss over the final 5B tokens. 400M size model.

30

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 33. Comparison of pre-training loss and gradient norm between OLMo2-Style Peri-LN and the Peri-LN architecture. To ensure an
accurate comparison, we present the pre-training loss over the final 5B tokens. 1.5B size model.

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 34. Comparison of pre-training loss and gradient norm between OLMo2-Style Peri-LN and the Peri-LN architecture. To ensure an
accurate comparison, we present the pre-training loss over the final 5B tokens. 3.2B size model.

I. Training the Transformer using Stochastic Gradient Descent
Using Stochastic Gradient Descent (SGD) for training Transformers is not a common practice. As Zhang et al. (2024) point
out, Transformer-based models tend to perform worse with SGD than with Adam by a considerable margin. One reason is
that SGD struggles to handle the heterogeneity across different blocks. Although these aspects are certainly intriguing and
warrant further investigation, they lie beyond the scope of our current work, as Zhang et al. (2024) also note.

Nonetheless, for someone who might wonder to know, we conduct additional experiments using SGD. We are searching
for U-shaped patterns during the learning rate exploration for both Pre-LN & Peri-LN as shown in the Figure 35. We
observe that: (1) SGD performs worse than Adam, consistent with findings reported in (Zhang et al., 2024); and (2) Peri-LN
demonstrates better performance than Pre-LN. In these results, we use 400 M-parameter Transformers and apply the same
configurations as in the main experiments (Section 4.1). We provide detailed training curves in Figures 36, 37, 38.

Figure 35. Learning Rate Exploration of Pre-& Peri-LN architecture trained with SGD optimizer. The individual training-loss and
gradient-norm curves appear in Figures 36, 37, and 38.

31

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 36. Using SGD with learning rate 5e− 3.

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 37. Using SGD with learning rate 3e− 3.

(a) Pre-training loss curve (b) Gradient-norm curve

Figure 38. Using SGD with learning rate 1e− 3.

32

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

J. Additional Details on Evaluation
J.1. Detailed Configurations

We utilized the Language Model Evaluation Harness6with the HuggingFace Transformers library (Gao et al., 2024; Wolf
et al., 2020) to assess overall performance. We employ five different evaluation benchmarks: ARC (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), Winogrande (Sakaguchi et al., 2021).
During the pretraining stage, each model was trained under a controlled random seed. We used the training loss at iteration
14, 000—corresponding to the completion of 30B tokens—as our main reference point. When calculating the evaluation
score, diverged checkpoints were excluded.

J.2. Detailed Results on Benchmark Evaluations

In this section, we present the evaluation results for each model trained with five different training seeds. We exclude any
diverged scores and average the remaining values, which are then reported in Table 1 in the main text.

J.2.1. PRE-TRAINING

Table 10. Detailed results on pre-training the Peri-LN architecture. These results are averaged to produce the values reported in Table 1.
SEED denotes pre-training seed.

Peri-LN SEED ARC-Easy HellaSwag PIQA SIQA Winogrande

1 0.5758 0.3803 0.6980 0.4115 0.5225
2 0.5728 0.3739 0.6915 0.4017 0.5367

400M 3 0.5842 0.3745 0.6986 0.4125 0.5249
4 0.5800 0.3722 0.6959 0.4038 0.5209
5 0.5627 0.3719 0.6899 0.4028 0.5320

1 0.6599 0.4437 0.7339 0.4304 0.5714
2 0.6591 0.4394 0.7399 0.4145 0.5699

1.5B 3 0.6625 0.4357 0.7372 0.4166 0.5627
4 0.6633 0.4367 0.7345 0.4222 0.5667
5 0.6637 0.4416 0.7361 0.4335 0.5612

1 0.6953 0.4734 0.7443 0.4417 0.5872
2 0.6839 0.4684 0.7427 0.4324 0.6054

3.2B 3 0.6902 0.4680 0.7486 0.4243 0.5967
4 0.6864 0.4700 0.7427 0.4273 0.5935
5 0.6806 0.4698 0.7372 0.4243 0.6054

Table 11. Detailed results on pre-training the Pre-LN architecture. These results are averaged to produce the values reported in Table 1.
SEED denotes pre-training seed.

Pre-LN SEED ARC-Easy HellaSwag PIQA SIQA Winogrande

1 0.5669 0.3609 0.7008 0.4002 0.5359
2 Diverged

400M 3 0.5354 0.3328 0.6741 0.3905 0.4957
4 Diverged
5 0.5438 0.3314 0.6888 0.4012 0.4949

1 0.6326 0.4259 0.7242 0.4263 0.5691
2 0.6019 0.3924 0.7111 0.3992 0.5627

1.5B 3 0.6077 0.3932 0.7008 0.4125 0.5272
4 0.6111 0.3886 0.7187 0.4135 0.5225
5 0.6221 0.3941 0.7160 0.4099 0.5438

1 0.6688 0.4588 0.7470 0.4273 0.5919
2 Diverged

3.2B 3 Diverged
4 0.6359 0.4259 0.7301 0.4263 0.5564
5 Diverged

6https://github.com/EleutherAI/lm-evaluation-harness

33

https://github.com/EleutherAI/lm-evaluation-harness

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

Table 12. Detailed results on pre-training the Post-LN architecture. These results are averaged to produce the values reported in Table 1.
SEED denotes pre-training seed.

Post-LN SEED ARC-Easy HellaSwag PIQA SIQA Winogrande

1 0.3413 0.2881 0.6311 0.3378 0.5067
2 0.3691 0.2886 0.6132 0.3337 0.5099

400M 3 0.3632 0.2889 0.6257 0.3603 0.5051
4 0.3603 0.2920 0.6262 0.3490 0.5012
5 0.3510 0.2880 0.6170 0.3434 0.5209

1 0.4268 0.3121 0.6659 0.3628 0.5185
2 0.4196 0.3150 0.6654 0.3639 0.5004

1.5B 3 Diverged
4 0.4285 0.3212 0.6730 0.3511 0.4775
5 0.4419 0.3193 0.6643 0.3557 0.5154

1 0.4731 0.3427 0.6774 0.3664 0.5343
2 0.4638 0.3326 0.6779 0.3577 0.4917

3.2B 3 0.3956 0.3321 0.6143 0.3408 0.5067
4 0.4663 0.3380 0.6692 0.3685 0.5178
5 0.4663 0.3340 0.6839 0.3577 0.5043

J.2.2. SUPERVISED FINE-TUNING

Table 13. Detailed results on SFT with Peri-LN architecture. These results are averaged to produce the values reported in Table 1. SEED
denotes pre-training seed.

Peri-LN SEED ARC-Easy HellaSwag PIQA SIQA Winogrande

1 0.5800 0.3819 0.6991 0.4145 0.5328
2 0.5783 0.3783 0.6921 0.4038 0.5391

400M 3 0.5888 0.3806 0.6980 0.4222 0.5288
4 0.5892 0.3738 0.6948 0.4089 0.5099
5 0.5783 0.3757 0.6991 0.4099 0.5312

1 0.6633 0.4502 0.7356 0.4304 0.5746
2 0.6641 0.4437 0.7405 0.4207 0.5706

1.5B 3 0.6671 0.4454 0.7454 0.4207 0.5620
4 0.6700 0.4455 0.7378 0.4284 0.5659
5 0.6688 0.4478 0.7421 0.4324 0.5620

1 0.7058 0.4810 0.7486 0.4422 0.5880
2 0.6898 0.4774 0.7437 0.4391 0.6054

3.2B 3 0.6995 0.4770 0.7481 0.4278 0.5912
4 0.6911 0.4777 0.7432 0.4350 0.5943
5 0.6894 0.4781 0.7448 0.4319 0.6046

34

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

Table 14. Detailed results on SFT with Pre-LN architecture. These results are averaged to produce the values reported in Table 1. SEED
denotes pre-training seed.

Pre-LN SEED ARC-Easy HellaSwag PIQA SIQA Winogrande

1 0.5762 0.3625 0.7078 0.4058 0.5343
2 N/A

400M 3 0.5370 0.3339 0.6757 0.3905 0.4972
4 N/A
5 0.5509 0.3372 0.6893 0.4074 0.4886

1 0.6385 0.4310 0.7247 0.4227 0.5620
2 0.6035 0.3934 0.7095 0.4038 0.5572

1.5B 3 0.6098 0.3944 0.7035 0.4150 0.5257
4 0.6208 0.3929 0.7182 0.4161 0.5272
5 0.6258 0.4017 0.7171 0.4181 0.5391

1 0.6785 0.4681 0.7568 0.4345 0.5825
2 N/A

3.2B 3 N/A
4 0.6427 0.4293 0.7274 0.4299 0.5580
5 N/A

Table 15. Detailed results on SFT with Post-LN architecture. These results are averaged to produce the values reported in Table 1. SEED
denotes pre-training seed.

Post-LN SEED ARC-Easy HellaSwag PIQA SIQA Winogrande

1 0.4428 0.3307 0.6583 0.3797 0.5099
2 0.4280 0.3208 0.6404 0.3746 0.5178

400M 3 0.4693 0.3241 0.6578 0.3905 0.5122
4 0.4680 0.3247 0.6610 0.3726 0.4830
5 0.4520 0.3283 0.6572 0.3849 0.5225

1 0.5316 0.3774 0.6980 0.3889 0.5359
2 0.4731 0.3316 0.6719 0.3813 0.5028

1.5B 3 N/A
4 0.5387 0.3546 0.6779 0.3864 0.4909
5 0.5261 0.3510 0.6752 0.3767 0.5209

1 0.5623 0.4029 0.7008 0.3920 0.5051
2 0.5417 0.3644 0.6823 0.3833 0.5264

3.2B 3 0.4444 0.3604 0.6333 0.3618 0.5043
4 0.5400 0.3645 0.6844 0.3823 0.5020
5 0.5341 0.3677 0.6942 0.3976 0.5012

35

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

K. Additional Discussions of Precision Constraints Imposed by Pre-LN
This section provide additional discussions of Section 7.2. Given that both Pre-LN and Peri-LN exhibit a structural property
whereby large values do not readily disappear once they arise, it is important to monitor the occurrence of these extreme
activations. Pre-LN’s additive residual path often produces activations that approach, and occasionally exceed, the FP16
(float16) representable maximum7. To quantify how often these values would overflow FP16 yet remain within the BF16
(bfloat16) range8, we measure the 100 largest absolute hidden-state values (the global top-100 tokens) for each Pre-LN and
Peri-LN 3.2B-parameter Transformer. The shaded region indicates the range of these global top-100 tokens. The blue curve
(with shaded band) represents a Pre-LN model, the red curve a Peri-LN model, and the dashed orange line denotes the FP16
representable maximum.

As shown in Figure 11, consistent with the observations of Sun et al. (2024), activations in the Pre-LN model routinely
exceed the FP16 bound from the very first 0.5B training tokens, with the overshoot becoming more pronounced in deeper
layers—an indication of growing numerical instability. By contrast, Peri-LN consistently maintains a comfortable margin
below the FP16 limit throughout training. This finding underscores that the choice between FP16 and BF16 is not merely a
hardware preference; it is tightly coupled to how hidden-state magnitudes evolve within the network.

Since NVIDIA V100 GPUs do not support BF16, these results imply that training and inference with Pre-LN models on
such hardware are inherently disadvantaged. Moreover, from the standpoint of large-language-model quantization (Dettmers
et al., 2022; Lee et al., 2023; Kim et al., 2023; Heo et al., 2024; Lee et al., 2025), the prevalence of massive activations in
Pre-LN can severely disrupt outlier-aware compression algorithms. When aggressive low-precision compression is the goal,
the Pre-LN architecture’s tendency to generate extreme hidden state values therefore constitutes a particularly challenging
obstacle.

Meta AI’s publicly released OPT training logbooks and chronicles document repeated episodes of gradient divergence
and loss spikes encountered while pre-training entirely in FP16 precision 9. Since FP16 saturates at an absolute value of
65, 504, any hidden state activation that exceeds this threshold silently overflows, corrupting the forward pass and, through
back-propagation, inducing erratic gradients. Earlier analyses of OPT (Zhang et al., 2022) therefore ascribe much of the
observed instability to numerical overflow, a view formalized in our Proposition 3.1, which shows how such out-of-range
activations propagate into severe gradient pathologies. These external reports provide further corroboration that architectures
prone to generating large-magnitude activations—as Pre-LN does—require either a wider numerical format (e.g., BF16) or
explicit magnitude-regularization to ensure stable large-scale training.

7https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
8https://en.wikipedia.org/wiki/Half-precision_floating-point_format
9https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/10_perce

nt_update.md

36

https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/10_percent_update.md
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/10_percent_update.md

Peri-LN: Revisiting Normalization Layer in the Transformer Architecture

L. Additional Discussions of Hidden State Representations
As shown in Figure 39(a), Post-LN exhibits smaller angular distances due to the LN being located on the main path, whereas
Pre-LN and Peri-LN begin with very similar states. As shown in Figure 39(c), at the end of training, Pre-LN tends to
produce more redundant hidden state representations compared to the others. This phenomenon may stem from Pre-LN’s
repeated residual additions, which amplify certain representations over others. We use 30B tokens trained 400M size model
in this experiments. For dataset, we utilize 256 random samples of RedPajama-Data-1T (Computer, 2023) for this results.

To investigate further, we focus on module-output normalization, the primary factor distinguishing Pre-LN from Peri-LN.
As shown in Figure 39(b), the learnable scale starts around 1 in the early stages of training and gradually changes with
increasing depth. Because Peri-LN preserves the identity path, it appears to adjust the scale of the module output accordingly.
This suggests that the exponential growth of the main path’s magnitude in Pre-LN diminishes the relative contribution of
individual modules, resulting in more redundant hidden representations. Figure 39(d) shows that fixing the learnable scale
of Peri-LN’s module output LN at 1 causes the main path contribution to decrease in deeper layers. This finding confirms
the role of module output normalization in controlling hidden state redundancy.

(a) At initialization (b) Learnable scale γ in Output-LN

(c) After 30B tokens training (d) Frozen γ in Output-LN
Figure 39. Angular distance of hidden state is presented in Figure 39(a), 39(c), and 39(d). In Figure 39(b), we monitor γ of every
Output-LN in Peri-LN during training. We use 30B tokens trained 400M size model in this experiments.

37

