

# 000 HYPER HAWKES PROCESSES: INTERPRETABLE 001 MODELS OF MARKED TEMPORAL POINT PROCESSES 002

003 **Anonymous authors**

004 Paper under double-blind review

## 005 ABSTRACT

006 Foundational marked temporal point process (MTPP) models, such as the Hawkes  
007 process, often use inexpressive model families in order to offer interpretable pa-  
008 rameterizations of event data. On the other hand, neural MTPPs models forego  
009 this interpretability in favor of absolute predictive performance. In this work, we  
010 present a new family MTPP models: the *hyper Hawkes process* (HHP), which aims  
011 to be as flexible and performant as neural MTPPs, while retaining interpretable  
012 aspects. To achieve this, the HHP extends the classical Hawkes process to increase  
013 its expressivity by first expanding the dimension of the process into a latent space,  
014 and then introducing a hypernetwork to allow time- and data-dependent dynamics.  
015 These extensions define a highly performant MTPP family, achieving state-of-the-  
016 art performance across a range of benchmark tasks and metrics. Furthermore, by  
017 retaining the linearity of the recurrence, albeit now piecewise and conditionally  
018 linear, the HHP also retains much of the structure of the original Hawkes process,  
019 which we exploit to create direct probes into *how* the model creates predictions.  
020 HHP models therefore offer both state-of-the-art predictions, while also providing  
021 an opportunity to “open the box” and inspect how predictions were generated.  
022

## 023 1 INTRODUCTION

024 In modern machine learning, the pursuit of predictive accuracy often comes at the expense of inter-  
025 pretability. This trade-off is especially pronounced in marked temporal point processes (MTPPs):  
026 classical models such as the Hawkes process (Hawkes, 1971) offer transparent parameters but underfit  
027 real-world data; while neural models such as the neural and transformer Hawkes processes (Mei  
028 and Eisner, 2017; Zuo et al., 2020) achieve state-of-the-art performance but lack clear mechanisms  
029 for attributing predictions to specific past events. General interpretability methods for neural net-  
030 works (Räuker et al., 2023; Chefer et al., 2021; Rai et al., 2024; Maheswaranathan and Sussillo, 2020)  
031 tend to be indirect or ambiguous, leaving no MTPP approach that combines strong predictive power  
032 with precise, event-level interpretability.

033 We introduce the *hyper Hawkes process* (HHP), a new family of intensity-based MTPP models  
034 designed to close this gap. Our HHP is illustrated in Figure 1. The HHP extends the classical  
035 Hawkes process by (i) lifting recurrent dynamics into a latent space, decoupling them from mark  
036 dimensionality, and (ii) using a history-dependent hypernetwork (Ha et al., 2017) to adapt dynamics  
037 over time conditioned on the event history. These extensions enhance expressivity while preserving  
038 the linear recurrence and branching structure of Hawkes processes. We then exploit this for efficient  
039 event-level attribution using influence measures inspired by linear regression diagnostics, such as  
040 DFBETA and DFFIT (Belsley et al., 2005). Through extensive empirical evaluation on real-world  
041 datasets, we find that HHP consistently outperforms both classical and state-of-the-art MTPP models.  
042

### 043 Our main contributions are:

- 044 • We propose the *hyper Hawkes process* (HHP), combining the interpretability of classical models  
045 with the expressivity of neural architectures.
- 046 • We demonstrate, through extensive experiments, that HHP achieves state-of-the-art or near state-of-  
047 the-art performance on real-world MTPP benchmarks.
- 048 • We then develop efficient, per-event attribution methods exploiting the structure of the HHP,  
049 enabling direct insight into model mechanics, and explore these on synthetic tasks.

054  
055  
056  
057  
058  
059  
Table 1: [Added] Summary of the emperical performance of the hyper Hawkes process (HHP) we  
introduce in this work. We show model rankings across six different metrics, each an average across  
seven different real-world datasets [Added] and five randomly initialized models, and an aggregated  
composite ranking, averaging the per-metric ranks. **Bold** entries correspond to best result, and  
underlined for second-best. Lower ranks indicate better performance. [Added] Full numerical results  
for all metrics and models are included in Table 2, Table 5 and Table 6.

| Model      |                        | Time Metrics |            |            | Mark Metrics |            |            | Composite  |
|------------|------------------------|--------------|------------|------------|--------------|------------|------------|------------|
|            |                        | Likelihood   | RMSE       | PCE        | Likelihood   | Accuracy   | ECE        | Rank       |
| RMTPP      | (Du et al., 2016)      | 7.0          | 5.1        | 5.6        | 6.9          | 6.6        | 6.0        | 6.2        |
| NHP        | (Mei and Eisner, 2017) | 4.3          | 3.1        | 5.6        | 3.3          | <u>2.3</u> | 5.0        | 3.9        |
| SAHP       | (Zhang et al., 2020)   | 5.9          | 4.9        | 5.4        | 7.4          | 7.1        | 7.1        | 6.3        |
| THP        | (Zuo et al., 2020)     | 7.6          | 4.6        | 5.3        | 6.0          | 6.1        | 5.1        | 5.8        |
| IFTPP      | (Shchur et al., 2020)  | 2.9          | 5.4        | <b>2.3</b> | 4.9          | 5.1        | <b>1.9</b> | 3.7        |
| AttNHP     | (Yang et al., 2022)    | 4.1          | 6.7        | 4.6        | 3.3          | 3.6        | 3.6        | 4.3        |
| S2P2       | (Chang et al., 2025)   | <b>1.7</b>   | <u>2.6</u> | <u>3.4</u> | <u>2.4</u>   | 2.4        | <u>3.4</u> | <b>2.7</b> |
| <b>HHP</b> | <b>(Ours)</b>          | <u>2.6</u>   | <b>2.3</b> | 3.9        | <b>1.9</b>   | <b>1.9</b> | 3.7        | <b>2.7</b> |



085  
086  
087  
088  
089  
090  
091  
092  
093  
094  
Figure 1: [Added] High-level schematic of the proposed *hyper Hawkes process* (HHP). The bottom  
row shows the sequence of marked events. These are input into a hypernetwork, with transition  
function  $f$ . We use a regular GRU throughout this work for the hypernetwork. The hypernetwork  
outputs the dynamics of a generalized linear Hawkes process, the flow fields for which are shown.  
These dynamics are then projected into intensity space. Crucially, these intensities can be decomposed  
into individual *particles* each attributed to a single event, shown as different colored lines in the flow  
field, which are summed over and transformed to create the intensities. At a given point in time,  
these particles are aggregated to produce the model’s predicted intensity. This allows us to create a  
highly expressive model (through the time-dependence of the hypernetwork and the high-dimensional  
diagonalized linear dynamics), but where event-level attribution is possible through the particle-level  
decomposition.

095  
096  
097  
098  
099  
100  
101  
102  
103  
104  
105  
106  
107  
**Paper Outline.** In Section 2 we introduce the background strictly necessary for defining and  
understanding our hyper Hawkes process as a “black-box” MTPP model. In Section 3 we introduce  
the HHP as a black-box MTPP model, and evaluate its predictive performance on real-world datasets  
in Section 5. In Section 6 we explore and demonstrate on synthetic data how the HHP design naturally  
provides interpretability. We conclude in Section 7 with a critical discussion and future directions.

## 2 TEMPORAL POINT PROCESSES BACKGROUND

### 2.1 MARKED TEMPORAL POINT PROCESSES

In this paper we consider a *marked temporal point process* as a discrete and finite sequence of time-mark pairs,  $\mathcal{H}_t := \{(t_i, k_i) \mid t_i \leq t \text{ for } i \in \mathbb{N}\}$ , where  $t_i \in \mathbb{R}$ ,  $t_{i-1} < t_i \forall i$ ,  $k_i \in \mathcal{M}$ ,

$\mathcal{M} := \{1, \dots, K\}$ , and  $\mathcal{H}_t$  is referred to as an *event history*. We also define  $\mathcal{H}_{t-}$  similarly to  $\mathcal{H}_t$ , except excluding events at *exactly* time  $t$ . Although we do not consider it here, note that  $\mathcal{M}$  can be a more general space, such as countable or continuous.

One method for parameterizing an MTPP is using a *marked intensity process*. The intensity  $\lambda_t := [\lambda_t^1, \dots, \lambda_t^K]^\top \in \mathbb{R}_{\geq 0}^K$  defines the rate of occurrence of events:

$$\lambda_t^k dt := \mathbb{E} [\text{event of type } k \text{ occurs in } [t, t + dt] \mid \mathcal{H}_{t-}]. \quad (1)$$

The *total intensity* is then the rate that *any* event occurs,  $\lambda_t := \sum_{k=1}^K \lambda_t^k$ . It can then be shown that the log-likelihood for a sequence  $\mathcal{H}_T$  is defined as (Daley and Vere-Jones, 2003, ch. 7.3):

$$\mathcal{L}(\mathcal{H}_T) := \sum_{i=1}^{N_T} \log \lambda_{t_i}^{k_i} - \int_0^T \lambda_s ds. \quad (2)$$

To train an MTPP, we can optimize  $\mathcal{L}(\mathcal{H}_T)$  over observed data (see, e.g., Mei and Eisner (2017)).

## 2.2 HAWKES PROCESSES

The *Hawkes process* (Hawkes, 1971) is a widely studied temporal point process that allows for the occurrence of events to encourage further occurrences soon thereafter, a property often referred to as *self-excitation*. This family of processes is characterized by an intensity that takes the form:

$$\lambda_t = \sigma \left( \int_0^{t-} \phi(t-s) dN_s \right) \equiv \sigma \left( \sum_{i=1}^{N_{t-}} \phi(t-t_i) \right), \quad (3)$$

where  $\sigma : \mathbb{R} \rightarrow \mathbb{R}_+$  ensures the intensity is non-negative, and the excitation function  $\phi : \mathbb{R}_+ \rightarrow \mathbb{R}$  encodes the influence prior events have on the rate of occurrence for future events.

The *linear Hawkes process* is a common and appealing variant, employing an exponential kernel for the excitation function yielding:  $\lambda_t = \mu + \sum_{i=1}^{N_{t-}} \alpha \exp(-\beta(t-t_i))$ , where  $\mu, \alpha, \beta \in \mathbb{R}_+$ . The exponential kernel in particular makes the process Markovian, allowing us to describe the intensity function in the differential form of  $\lambda_t = \mu + x_{t-}$  where  $dx_t = -\beta x_t + \alpha dN_t$ . This can easily be extended to accommodate  $K$  categorical marks by generalizing the impulse and rate parameters into positive matrices  $\alpha, \beta \in \mathbb{R}_+^{K \times K}$  leading to the following marked intensity process:

$$dx_t = -\beta x_{t-} dt + \alpha dN_t; \quad \lambda_t = \mu + x_{t-}, \quad (4)$$

where  $\mu \in \mathbb{R}_+^K$  is the vector of background intensities for different marks,  $dN_t \in \{0, 1\}^K$  is  $\mathbf{0}$  when no event occurs and a one-hot vector corresponding to the mark  $k$  that occurs at time  $t$ , and  $x_0 = \mathbf{0}$ . From this form, we can compute the left limit of the intensity at the next event, given a right limit  $x_{t_i}$  for time  $t_i$ , in closed form as:  $x_{t_{i+1}} = e^{-\beta(t_{i+1}-t_i)} x_{t_i}$ , where  $t_i < t_{i+1}$  and no event occurred between  $t_i$  and  $t_{i+1}$ . Hawkes processes such as this are widely used in statistical inference settings, due to  $\beta$  and  $\alpha$  being directly interpretable by describing marginal event-to-event effects.

## 3 HYPER HAWKES PROCESSES

We now introduce the core of our hyper Hawkes process (HHP). First, we start by identifying the key mechanism that allows classical Hawkes processes to identify the effect that a given event has on future intensities. We then extend the Hawkes process to be more flexible and performant while retaining the identifiable event-level effects. Lastly, we briefly discuss how the HHP is implemented in practice. Note that we defer discussion on exactly *how* to interpret the model to Section 6.

### 3.1 EVENT-LEVEL EFFECTS IN HAWKES PROCESSES

As shown in Equation (3), classical Hawkes processes are formally defined by their rectification function  $\sigma$  and their excitation function  $\phi$ . While  $\phi$  is often parameterized to isolate marginal direct effects of events of one type to another (e.g., through  $\beta$  and  $\alpha$  for linear Hawkes processes), they actually also provide event-level attribution. In particular,  $\phi(t-t_i)$  directly encodes how much the  $i^{\text{th}}$  event is exciting or inhibiting an event occurrence at time  $t$ .  $\phi(t-t_i)$  could even be generalized

162 to conditional  $\phi_i(t; \mathcal{H}_t)$  and this effect would still be identifiable so long as the final intensity is a  
 163 monotonic transform of a linear combination of these effects:  $\lambda_t = \sigma(\sum_{i=1}^{N_{t-}} \phi_i(t; \mathcal{H}_{t-}))$ . It should  
 164 be noted that the linear Hawkes process maintains this property through the linearity of the recurrence  
 165 relation, as for  $t \in (t_i, t_{i+1}]$  it holds that:  
 166

$$167 \quad \mathbf{x}_{t-} = e^{-\beta(t-t_i)} \mathbf{x}_{t_i} = e^{-\beta(t-t_i)} (\mathbf{x}_{t_i-} + \boldsymbol{\alpha}_{k_i}) = \dots = \sum_{j=1}^i e^{-\beta(t-t_j)} \boldsymbol{\alpha}_{k_j}. \\ 168 \\ 169$$

### 170 3.2 GENERALIZING HAWKES PROCESSES 171

172 While the linear Hawkes process (LHP) is widely used in statistical inference because of its inter-  
 173 pretability, the model itself is not very expressive: the parameterization only allows excitation, the  
 174 recurrence is directly coupled to the intensity, and the dynamics are time-invariant. We generalize the  
 175 LHP by tackling these weaknesses in-turn below; all while ensuring that interpretable event-level  
 176 effects are maintained by ensuring the recurrence relation remains linear.

177 **Increasing the Latent Dimension.** The LHP has limited expressivity because each recurrent  
 178 dimension ties one-to-one with an output intensity, i.e., changing dimension  $k$  in  $\mathbf{x}_t$  only affects  
 179  $\lambda_t^k$ . This is akin to using an RNN’s hidden state directly as output ( $\hat{\mathbf{y}}_i := \mathbf{h}_i$ ) rather than applying a  
 180 transformation ( $\hat{\mathbf{y}}_i := \sigma(\mathbf{W}\mathbf{h}_i + \mathbf{b})$ ). Additionally,  $\beta$  and  $\alpha$  are parameterized to be strictly positive,  
 181 thus only allowing for excitation and not inhibition. We address both of these issues this by lifting  
 182 the dynamics into a latent space:

$$183 \quad d\mathbf{x}_t = -\beta \mathbf{x}_{t-} dt + \alpha d\mathbf{N}_t; \quad \boldsymbol{\lambda}_t = \sigma(\boldsymbol{\mu} + \mathbf{W}\mathbf{x}_{t-}), \quad (5) \\ 184$$

185 where  $\beta, \alpha \in \mathbb{R}^{d \times d}$ ,  $\mathbf{W} \in \mathbb{R}^{d \times K}$ ,  $\boldsymbol{\mu} \in \mathbb{R}^K$ , and  $\sigma(z) = \log(1 + e^z)$  is the softplus. This  
 186 decouples the recurrent dimension  $d$  from the number of marks  $K$ , while  $\sigma$  ensures inhibitory  
 187 effects still result in a nonnegative intensity. This increases expressivity when  $d > K$ , or, prevents  
 188  $\mathcal{O}(K^2)$  parameter scaling when  $K$  is large by setting  $d < K$ . While  $\alpha$  and  $\beta$  become less directly  
 189 interpretable, event-specific effects remain identifiable through the projection of the latent particles  
 190  $\mathbf{W} \exp(-\beta(t - t_i)) \boldsymbol{\alpha}_{k_i}$ .

191 **Adding Time-Variation through Hypernetworks.** Even in this expanded space, the model is  
 192 limited in its expressivity because of the linearity of the recurrence relation and the time-invariant  
 193 dynamics. In general, RNNs (such as GRUs) do not suffer from this problem due to the nonlinearity  
 194 applied when propagating the hidden state. Unfortunately, this is undesirable as it removes identifiable  
 195 contributions, complicating the model interpretability (see the extensive literature on interpreting  
 196 non-linear RNNs in even simple tasks, e.g. Miconi (2017); Maheswaranathan and Sussillo (2020)).

197 An alternative, therefore, is to retain the linearity of the recurrence, but make the *dynamics* vary  
 198 across time, i.e.,  $\beta$  becomes  $\beta_t$ . We could trivially make the dynamics mark-specific, only depending  
 199 on the most recent event, but subsequent events will critically suppress the enduring influence that  
 200 each previous event can exert. Therefore we instead introduce a *hypernetwork* (Ha et al., 2017),  $f_\theta$ ,  
 201 that predicts the dynamics as a function of the history. The resulting recurrence relation is:

$$202 \quad d\mathbf{x}_t = -\beta_t \mathbf{x}_{t-} dt + \alpha d\mathbf{N}_t; \quad \beta_t = f_\theta(\mathcal{H}_t); \quad \boldsymbol{\lambda}_t = \sigma(\boldsymbol{\mu} + \mathbf{W}\mathbf{x}_{t-}). \quad (6)$$

203 We experimented with predicting history-dependent  $\alpha$ , however, we found it only had a marginal  
 204 impact on performance, and greatly detracts the interpretability arguments presented in Section 6.  
 205 We therefore do not create history-dependent impulses, and only utilize fixed impulses. Even with  
 206 static impulses, Equation (6) now defines highly expressive non-linear latent dynamics as a function  
 207 of individual event sequences. We use a standard multi-layer GRU as the hypernetwork throughout.  
 208 [Added] This is because the GRUs widely-available and highly optimized implementation, linear  
 209 work complexity, and good generalized performance. The “HHP” architecture is not fundamentally  
 210 tied to this choice, however, and exploration of alternative hypernetwork architectures is interesting  
 211 future work.

212 **Efficient and Expressive Parameterization.** The final component is selecting a parameterization  
 213 for how  $f_\theta$  generates  $\beta_t$  that is both efficient and expressive. For efficiency, we use closed-form  
 214 updates similar to the time-invariant setting by making  $\beta_t$  piecewise-constant between events. To  
 215 avoid an expensive matrix exponential, we use a diagonal parameterization of  $\beta$ . This leads to  
 $\beta_t := \mathbf{V}_i \mathbf{D}_i \mathbf{V}_i^{-1}$  for  $t \in (t_i, t_{i+1}]$ , where  $\mathbf{V}_i, \mathbf{D}_i \in \mathbb{C}^{d \times d}$  and  $\mathbf{D}_i$  is diagonal, representing the

216 eigenvectors and eigenvalues of  $\beta_t$  respectively. The parameters  $\mathbf{V}_i$  and  $\mathbf{D}_i$  are predicted by the  
 217 hypernetwork  $f_\theta(\mathcal{H}_{t_i})$ . For stability, we parameterize  $\Re(\mathbf{D}_i) < 0$  and  $\mathbf{V}_i$  to be unitary (Jing et al.,  
 218 2017), so that  $\mathbf{V}_i^{-1} \equiv \mathbf{V}_i^*$ . This leads to the final HHP update equation:  
 219

$$221 \quad \mathbf{x}_t = \mathbf{V}_i e^{\mathbf{D}_i(t-t_i)} \mathbf{V}_i^* \mathbf{x}_{t_i} + \alpha_{k_{i+1}} \mathbb{1}(t = t_{i+1}); \quad \mathbf{V}_i, \mathbf{D}_i = f_\theta(\mathcal{H}_t); \quad \lambda_t = \sigma(\mu + \mathbf{W} \mathbf{x}_{t-}), \quad (7)$$

222 for  $t \in (t_i, t_{i+1}]$ , and  $e^{\mathbf{D}_i(t-t_i)}$  is applied element-wise as  $\mathbf{D}_i$  is a diagonal matrix. Extensive details  
 223 on this and the implementation of the architecture can be found in Appendix A.

224 While keeping  $\mathbf{V}_i$  constant would be simpler and more computationally efficient, we instead update  
 225 the eigenvectors after each event to enhance expressiveness. Because the Hawkes process is a  
 226 state-space model (Chang et al., 2025), the results of Merrill et al. (2024a) apply: if the time-varying  
 227 dynamics  $\beta_i$  are not simultaneously diagonalizable (i.e.,  $\mathbf{V}_i \neq \mathbf{V}_j$ ), then despite the linearity of the  
 228 recurrence, the model exhibits state-tracking capabilities comparable to those of RNNs.  
 229

230 **Summary.** We briefly summarize the HHP model we have proposed. A (nonlinear) hypernet-  
 231 work consumes the event history, and outputs piecewise constant dynamics parameters for a high-  
 232 dimensional linear recurrence with learned impulses at events. We parameterize the dynamics in  
 233 a per-event eigenbasis also predicted by the hypernetwork. This allows for efficient closed-form  
 234 computation of updates to the latent state in continuous time to time points of interest. We then  
 235 decode the latent state by projecting it into the intensity space and applying a rectification function  
 236 to ensure intensities are non-negative. This allows us to define a highly flexible intensity-based  
 237 neural MTPP that we can efficiently evaluate at any time point, but that has a (conditionally) linear  
 238 recurrence which will serve as a “bottleneck” that we can inspect, as we explore in Section 6.  
 239

240

241

## 242 4 RELATED WORKS

243

244 **Neural MTPPs.** Marked temporal point processes (MTPPs) model both event timing and type in  
 245 continuous time, often via intensity functions (Daley and Vere-Jones, 2003). Early work relied on  
 246 parametric forms, such as self-exciting Hawkes processes (Hawkes, 1971; Liniger, 2009). Recent  
 247 advances leverage neural architectures for flexible conditional intensity modeling, including RNN-  
 248 based models (Du et al., 2016; Mei and Eisner, 2017), CNNs (Zhuzhel et al., 2023), transformer-based  
 249 approaches (Zhang et al., 2020; Zuo et al., 2020; Yang et al., 2022), and deep state space models (Gao  
 250 et al., 2024; Chang et al., 2025). Intensity-free alternatives have also emerged, using normalizing  
 251 flows (Shchur et al., 2020; Zagatti et al., 2024), neural processes (Bae et al., 2023), and diffusion-  
 252 based models (Zeng et al., 2023). Despite these developments, intensity-based methods remain  
 253 dominant due to their structural simplicity and fewer modeling assumptions.

254

255 **Interpretable MTPPs.** The original Hawkes process offered a transparent parameteriza-  
 256 tion (Hawkes, 1971), but many neural MTPPs (e.g., transformer Hawkes (Zuo et al., 2020), intensity-  
 257 free TPP (Shchur et al., 2020)) prioritize predictive accuracy over interpretability. Meng et al. (2024)  
 258 introduce a single-layer attention model, enabling easy inspection of pairwise contributions, while  
 259 Song et al. (2024) propose neural ODEs parameterized by event type which are aggregated post-  
 260 activation. These choices aid interpretability but restricts interactions to pairwise and excitatory  
 261 interactions. Our HHP addresses these limitations by supporting both excitatory and inhibitory effects,  
 262 while still capturing higher-order interactions among multiple events through the hypernetwork. Rule-  
 263 based approaches (Li et al., 2022; Yang et al., 2024; Li et al., 2020) provide interpretable boolean  
 264 rules, but require large rule sets or soft weighting, which can reduce clarity and expressivity.

265

266 **Deep State Space Models and State Tracking.** Chang et al. (2025) identified a connection between  
 267 conventional linear Hawkes processes and modern deep state space models (Gu et al., 2022; Smith  
 268 et al., 2022; Gu and Dao, 2023). Their S2P2 architecture uses deep stacks of linear-Hawkes-like  
 269 layers, with only the time-constants of the dynamics matrix being data-dependent. In contrast, we  
 use a single linear Hawkes layer with the both time constants  $\mathbf{D}$  and eigenvectors  $\mathbf{V}$  being data  
 dependent. This was inspired by a finding by Merrill et al. (2024b) that found that *non-simultaneously*  
*diagonalizable* dynamics (i.e., having variable eigenvectors) greatly increased SSM expressivity.

270 

## 5 EXPERIMENTS

271  
272 We evaluate the HHP on common TPP benchmarks, finding that our approach achieves state-of-the-art  
273 predictive performance, even before consideration of interpretability. Please see Appendix B for full  
274 hyperparameter selections and search configurations for all models and experiments.  
275276 **Datasets.** We evaluate our HHP and baseline models on seven widely used, real-world MTPP  
277 datasets. These datasets are: Amazon reviews (Ni et al., 2019), Retweet cascades (Zhao et al., 2015),  
278 Taxi pickups (Whong, 2014), Taobao purchases (Xue et al., 2022), StackOverflow posts (Leskovec and  
279 Krevl, 2014), Last.fm listening patterns (Celma Herrada et al., 2009), MIMIC-II medical events (Saeed  
280 et al., 2002). We provide more details on each dataset and their preparation in Appendix B.  
281282 **Evaluation Metrics.** We evaluate the per-event log-likelihood as our primary measure of performance.  
283 This is both what the models are trained to optimize and is a proper scoring metric (Heinrich-  
284 Mertsching et al., 2024). In Table 5 we separate the log-likelihood into the likelihoods for both times  
285 and marks to further interrogate the models performance. As more interpretable summary metrics,  
286 we also compute the RMSE of the next event time prediction and the average accuracy of the next  
287 mark type prediction. Finally, we also evaluate *calibration*, which provides a measure of how well the  
288 model quantifies the uncertainty in its predictions (Bosser and Taieb, 2023). We defer the calibration  
289 results to Appendix B. In Table 1, following (Chang et al., 2025), we also provide a “composite  
290 metric”, aggregating performance across all metrics on all datasets.  
291292 **Ablations.** As mentioned previously, the HHP generalizes the linear Hawkes process in various  
293 ways. To assess each extension, we also measure the performance of three different ablations: (i)  
294 HHP<sub>-Stateful</sub>, which disables the “statefulness” by setting the eigenvectors to a learned constant basis<sup>1</sup>,  
295  $\mathbf{V}_i = \mathbf{V}$ ; (ii) HHP<sub>-Hyper</sub>, which disables the hypernetwork entirely,  $\beta_i = \beta$ ; and (iii) HHP<sub>-Latent</sub>,  
296 which both disables the hypernetwork *and* removes the latent space, setting  $d = K$  and  $\mathbf{W} = \mathbf{I}$ .  
297298 **Results.** Results are presented in Table 2. Most importantly, we see that our HHP performs on par or  
299 better than almost all existing baseline models across all datasets, only being narrowly outperformed  
300 on average by S2P2 (Chang et al., 2025) in terms of log-likelihood. Notably, HHP achieves this  
301 level of performance while using, on average, 54% fewer parameters than S2P2 across datasets. For  
302 both next event time and mark prediction, HHP is the clear leading model with average ranks of 1.4  
303 and 1.7, respectively. [Added] We defer full calibration results to the appendix, but we find that all  
304 models are comparably calibrated, with no stand-out winner. Furthermore, a better calibrated model  
305 is not a guarantee of better predictions, and therefore should always be considered alongside purely  
306 predictive metrics.  
307308 Interestingly, we see that while the statefulness of the HHP does have a marked impact on performance,  
309 even without it, the model HHP<sub>-Stateful</sub> is still competitive. Perhaps even more surprising is that, even  
310 with static dynamics, HHP<sub>-Hyper</sub> outperforms several baselines. This suggests that a major bottleneck  
311 in the conventional Hawkes process was the tying of latent dimensions to the mark-space, as well as  
312 that the basic form of the Hawkes process provides a strong inductive bias for MTPPs.  
313314 

## 6 ON INTERPRETABILITY

315 As discussed in Sections 2 and 3, a key feature of both the linear Hawkes process and our proposed  
316 HHP is the linear recurrence structure. This structure enables us to view the model equivalently as a  
317 recurrence; or through a particle or branching process perspective where each event contributes a  
318 distinct, trackable influence on future predictions. By leveraging this property, we can attribute model  
319 outputs to specific past events, providing a key foundation for interpretability. In the following, we  
320 introduce practical tools that exploit this structure and demonstrate their utility on synthetic data.  
321322 

### 6.1 PRACTICAL INTERPRETABILITY TOOLS FOR HHP

323 Using the linear recurrence of HHP, we can directly probe how individual events influence the model’s  
324 predictions. In this subsection, we introduce a suite of practical tools that leverage this structure,  
325326 <sup>1</sup>[Added] Note: this is also equivalent to the case where  $\beta_t$  is constrained to be a diagonal matrix, as  $B$  and  
327  $C$  are unconstrained, effectively setting  $\mathbf{V}_i = \mathbb{I}$ .  
328

324 Table 2: Quantitative results for TPP models across datasets. **Bold** entries correspond to best result,  
 325 and underlined for second-best, amongst baselines and main proposed method\*. **[Added]** Shown are  
 326 the means and (standard deviations) across five randomly initialized models.

(a) Per event log-likelihood. Higher log-likelihood values indicate better performance.

| Model                         | Per Event Log-Likelihood, $\mathcal{L}_{\text{Total}}$ (nats) (↑) |                              |                      |                      |                       |                       |                      | Average    |
|-------------------------------|-------------------------------------------------------------------|------------------------------|----------------------|----------------------|-----------------------|-----------------------|----------------------|------------|
|                               | Amazon                                                            | Retweet                      | Taxi                 | Taobao               | StackOverflow         | Last.fm               | MIMIC-II             |            |
| RMTPP (Du et al., 2016)       | -2.136 (0.003)                                                    | <u>-7.098 (0.217)</u>        | 0.346 (0.002)        | 1.003 (0.004)        | -2.480 (0.019)        | -1.780 (0.005)        | -0.472 (0.026)       | 7.3        |
| NHP (Mei and Eisner, 2017)    | 0.129 (0.012)                                                     | <b><u>-6.348 (0.000)</u></b> | 0.514 (0.004)        | 1.157 (0.004)        | -2.241 (0.002)        | -0.574 (0.011)        | 0.060 (0.017)        | 4.0        |
| SAHP (Zhang et al., 2020)     | -2.074 (0.029)                                                    | <u>-6.708 (0.029)</u>        | 0.298 (0.057)        | 1.168 (0.028)        | -2.341 (0.058)        | -1.646 (0.083)        | -0.677 (0.072)       | 6.6        |
| THP (Zuo et al., 2020)        | -2.096 (0.002)                                                    | <u>-6.659 (0.007)</u>        | 0.372 (0.002)        | 0.790 (0.002)        | -2.338 (0.014)        | -1.712 (0.011)        | -0.577 (0.011)       | 6.6        |
| IFTPP (Shchur et al., 2020)   | 0.496 (0.002)                                                     | <u>-10.344 (0.016)</u>       | 0.453 (0.002)        | <b>1.318 (0.017)</b> | -2.233 (0.009)        | <b>-0.492 (0.017)</b> | 0.317 (0.052)        | 3.6        |
| AttNHP (Yang et al., 2022)    | 0.484 (0.077)                                                     | <u>-6.499 (0.028)</u>        | 0.493 (0.009)        | 1.259 (0.022)        | <u>-2.194 (0.016)</u> | -0.592 (0.051)        | -0.170 (0.077)       | 3.9        |
| S2P2 (Chang et al., 2025)     | <b>0.781 (0.011)</b>                                              | <u>-6.365 (0.003)</u>        | <b>0.522 (0.004)</b> | 1.304 (0.039)        | <b>-2.163 (0.009)</b> | -0.557 (0.046)        | 0.919 (0.069)        | <b>1.7</b> |
| <b>HHP (Ours)</b>             | <b>0.616 (0.016)</b>                                              | <u>-6.366 (0.007)</u>        | <b>0.520 (0.003)</b> | 1.232 (0.014)        | -2.209 (0.006)        | <u>-0.515 (0.006)</u> | <b>1.314 (0.048)</b> | <u>2.4</u> |
| HHP- <u>Stateful</u>          | 0.606 (0.006)                                                     | <u>-6.370 (—)</u>            | 0.508 (0.004)        | 1.249 (0.004)        | -2.195 (0.006)        | -0.572 (—)            | 1.114 (0.032)        | 2.7        |
| HHP- <u>Hyper</u> (Ablations) | 0.514 (0.012)                                                     | <u>-6.796 (—)</u>            | 0.469 (0.001)        | 1.224 (0.002)        | -2.246 (0.004)        | -1.028 (—)            | 0.305 (0.036)        | 4.1        |
| HHP- <u>Latent</u>            | -0.170 (0.061)                                                    | <u>-6.880 (—)</u>            | 0.237 (0.024)        | 1.150 (0.005)        | -2.374 (0.002)        | -1.390 (—)            | -0.533 (0.010)       | 6.1        |

(b) Prediction RMSE of the next event time prediction. Lower RMSE values indicate better performance.

| Model                         | RMSE, $\mathcal{L}_{\text{Total}}$ (↓) |                      |                      |                      |                      |                       |                      | Average    |
|-------------------------------|----------------------------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|------------|
|                               | Amazon                                 | Retweet              | Taxi                 | Taobao               | StackOverflow        | Last.fm               | MIMIC-II             |            |
| RMTPP (Du et al., 2016)       | 0.338 (0.000)                          | 16488 (07.5)         | 0.283 (0.001)        | 0.126 (0.000)        | 1.049 (0.003)        | 15.873 (0.000)        | 0.749 (0.010)        | 5.1        |
| NHP (Mei and Eisner, 2017)    | 0.339 (0.000)                          | <u>15911 (04.0)</u>  | 0.282 (0.001)        | 0.126 (0.000)        | 1.019 (0.001)        | <u>15.733 (0.008)</u> | 0.726 (0.001)        | 3.1        |
| SAHP (Zhang et al., 2020)     | 0.335 (0.001)                          | 16102 (062.4)        | 0.290 (0.008)        | 0.126 (0.000)        | 1.031 (0.011)        | 15.757 (0.007)        | 1.142 (0.198)        | 4.9        |
| THP (Zuo et al., 2020)        | 0.332 (0.000)                          | 16268 (018.7)        | 0.285 (0.001)        | <b>0.125 (0.000)</b> | 1.033 (0.005)        | 15.871 (0.000)        | 0.768 (0.005)        | 4.6        |
| IFTPP (Shchur et al., 2020)   | 0.327 (0.000)                          | 16625 (002.2)        | 0.362 (0.178)        | <b>0.125 (0.000)</b> | 1.340 (0.724)        | 16.508 (0.555)        | 0.767 (0.29)         | 5.4        |
| AttNHP (Yang et al., 2022)    | 2.656 (1.950)                          | 16171 (284.2)        | 1.739 (0.422)        | 0.130 (0.000)        | 1.256 (0.030)        | 15.865 (0.017)        | 0.860 (0.022)        | 6.7        |
| S2P2 (Chang et al., 2025)     | 0.327 (0.000)                          | 15987 (013.7)        | <b>0.281 (0.000)</b> | 0.126 (0.000)        | <b>1.014 (0.001)</b> | <b>15.720 (0.000)</b> | 0.894 (0.054)        | <b>2.6</b> |
| <b>HHP (Ours)</b>             | <b>0.324 (0.000)</b>                   | <b>15590 (011.3)</b> | <b>0.281 (0.001)</b> | 0.127 (0.001)        | <b>1.016 (0.001)</b> | 15.741 (0.033)        | <b>0.714 (0.013)</b> | <b>2.3</b> |
| HHP- <u>Stateful</u>          | 0.325 (0.000)                          | 15559 (—)            | 0.283 (0.000)        | 0.125 (0.000)        | 1.017 (0.002)        | 15.793 (—)            | 0.720 (0.014)        | 1.9        |
| HHP- <u>Hyper</u> (Ablations) | 0.328 (0.001)                          | 15516 (—)            | 0.283 (0.000)        | 0.125 (0.000)        | 1.025 (0.000)        | 15.831 (—)            | 0.772 (0.006)        | 2.9        |
| HHP- <u>Latent</u>            | 0.339 (0.002)                          | 15672 (—)            | 0.294 (0.002)        | 0.126 (0.000)        | 1.038 (0.001)        | 15.888 (—)            | 0.804 (0.010)        | 4.7        |

(c) Mark prediction accuracy for the next event. Higher accuracy values indicate better performance.

| Model                         | Accuracy, $\mathcal{L}_{\text{Total}}$ (↑) |                   |                   |                   |                   |                   |                   | Average    |
|-------------------------------|--------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|
|                               | Amazon                                     | Retweet           | Taxi              | Taobao            | StackOverflow     | Last.fm           | MIMIC-II          |            |
| RMTPP (Du et al., 2016)       | 30.8 (0.1)                                 | 53.4 (0.6)        | 91.4 (0.1)        | 60.9 (0.1)        | 45.6 (0.3)        | 52.5 (0.1)        | 92.3 (0.3)        | 6.6        |
| NHP (Mei and Eisner, 2017)    | 39.4 (0.1)                                 | <b>61.4 (0.0)</b> | 92.9 (0.1)        | <b>61.5 (0.2)</b> | 47.1 (0.1)        | <b>56.5 (0.1)</b> | 94.3 (0.0)        | <u>2.3</u> |
| SAHP (Zhang et al., 2020)     | 32.4 (1.0)                                 | 57.5 (2.2)        | 91.4 (0.7)        | 60.5 (0.2)        | 44.7 (2.0)        | 51.8 (0.7)        | 86.8 (0.9)        | 7.1        |
| THP (Zuo et al., 2020)        | 34.6 (0.1)                                 | 60.2 (0.1)        | 91.4 (0.0)        | 60.0 (0.0)        | 46.6 (0.2)        | 53.3 (0.1)        | 90.9 (0.2)        | 6.1        |
| IFTPP (Shchur et al., 2020)   | 35.9 (0.1)                                 | 50.4 (2.5)        | 91.8 (0.0)        | 61.0 (0.1)        | 45.6 (0.1)        | 56.4 (0.1)        | 93.4 (0.1)        | 5.1        |
| AttNHP (Yang et al., 2022)    | 38.9 (0.9)                                 | 60.7 (0.2)        | 92.6 (0.1)        | 61.3 (0.2)        | <b>48.2 (0.2)</b> | 55.8 (0.6)        | 92.9 (0.6)        | 3.6        |
| S2P2 (Chang et al., 2025)     | <b>40.7 (0.0)</b>                          | 61.3 (0.0)        | <b>93.1 (0.1)</b> | 61.1 (0.1)        | <b>47.5 (0.3)</b> | 55.8 (0.4)        | <b>96.0 (0.4)</b> | 2.4        |
| <b>HHP (Ours)</b>             | <b>40.8 (0.1)</b>                          | <b>61.2 (0.0)</b> | <b>93.0 (0.0)</b> | <b>61.4 (0.1)</b> | 47.1 (0.1)        | <b>56.6 (0.0)</b> | <b>96.9 (0.2)</b> | <b>1.9</b> |
| HHP- <u>Stateful</u>          | 40.9 (0.1)                                 | 61.1 (—)          | 92.9 (0.1)        | 61.7 (0.0)        | 47.3 (0.0)        | 56.4 (—)          | 96.8 (0.5)        | 1.9        |
| HHP- <u>Hyper</u> (Ablations) | 40.3 (0.1)                                 | 57.2 (—)          | 92.4 (0.0)        | 61.4 (0.0)        | 46.8 (0.1)        | 53.5 (—)          | 95.0 (0.2)        | 3.6        |
| HHP- <u>Latent</u>            | 34.0 (1.5)                                 | 57.6 (—)          | 91.2 (0.2)        | 60.6 (0.1)        | 46.6 (0.0)        | 54.3 (—)          | 90.5 (0.3)        | 5.9        |

\* Ablations are not included in main rankings. Ranks for ablations compare solely that ablations performance relative to the baselines.

enabling us to quantify, visualize, and interpret the contributions of specific events or groups of events to the predicted intensity. These tools provide actionable insight into the model’s internal mechanism, going beyond basic aggregate parameter inspection to per-event-level attribution instead.

**Particle View.** A central feature of both the linear Hawkes process (LHP) and the HHP is that the model’s latent state at any time can be decomposed into a sum of event-specific contributions, which we refer to as *particles*. Each particle encodes how the influence of a single past event on the current state and predicted intensity evolves over time.

In the LHP, the effect of the  $i^{\text{th}}$  event at time  $t$  is  $e^{-\beta(t-t_i)} \alpha_{k_i}$ , which we will denote as  $\mathbf{x}_t^{(i)}$ , and the overall intensity is  $\lambda_t = \mu + \sum_{i=1}^{N_t} \mathbf{x}_t^{(i)}$ . Each dimension of a particle encodes the degree to which that event excites or inhibits future occurrences of a specific mark.

Our HHP preserves this structure, but with more expressive, history-dependent dynamics:

$$\mathbf{x}_t^{(i)} := \mathbf{W} \left( \prod_{j=i}^{N_t} \mathbf{V}_j e^{\mathbf{D}_j(\min\{t, t_{j+1}\} - t_j)} \mathbf{V}_j^* \right) \alpha_{k_i}; \quad \lambda_t \equiv \sigma(\mu + \sum_{i=1}^{N_t} \mathbf{x}_t^{(i)}) \quad (8)$$

where the product is taken from right to left in chronological order from event  $i$  to event  $N_t$ . This captures how each event’s initial impact evolves through subsequent adaptive transformations. All  $\mathbf{D}$  and  $\mathbf{V}$  values can be computed for the sequence, and then all particle positions can be efficiently

378 computed in parallel.<sup>2</sup> This decomposition allows us to isolate the contribution of each event to the  
 379 model’s latent state and, consequently, to the predicted intensity—providing direct insight into how  
 380 the model encodes memory, excitation, and inhibition across the event sequence.

381 **Reflection:** A key aspect of HHP’s design is that, after each new event, the updated dynamics apply  
 382 uniformly to all existing particles. Because there is no skip connection from the hypernetwork to the  
 383 output, the model cannot bypass the aggregation of particles to directly predict intensities; instead, it  
 384 must learn meaningful, event-driven dynamics that govern excitation and inhibition. As a result, the  
 385 hypernetwork orchestrates the implicit evolution and decay of particles, which can be viewed a form  
 386 of working memory, maintaining relevant information and enabling flexible prediction.

387 **Leave-one-out.** While particles isolate the effects that an event has on predictions through the  
 388 model, the values they hold are inherently *contextual* since they never act upon the outputs in isolation.  
 389 Due to the nonlinear rectification  $\sigma$ , the influence of a particle  $d\lambda_t/dx_t^{(i)}$  depends on the superposition  
 390 of all other particles. To account for this, taking inspiration from the diagnostic tools DFBETA and  
 391 DFFIT used in linear regression (Belsley et al., 2005), we introduce leave-one-out estimators of a  
 392 particle’s influence on the output intensity termed  $DF\lambda$  where:

$$394 \quad 395 \quad DF\lambda_t^{(i)} := \lambda_t - \sigma \left( \mu + \sum_{j=1}^{N_t} \mathbf{x}_t^{(j)} \mathbf{1}(j \neq i) \right). \quad (9)$$

396 Here,  $DF\lambda_t^{(i)}$  represents how the model chose to utilize the  $i^{\text{th}}$  event’s particle to change the output  
 397 intensity. Values of 0 indicate no instantaneous influence on the output, positive values indicate  
 398 excitement, and negative values indicate inhibition. Note that we use parentheses to represent event  
 399 indices, not to be confused with mark-specific values. We can also compute a “total intensity” version,  
 400  $\sum_{m=1}^M DF\lambda_t^{(i),m}$ , corresponding to the amount of influence any event has on the occurrence of an  
 401 event of any type in the future. We visualize this quantity in Figure 2

402 **Cumulative Effects.** While  $DF\lambda$  captures instantaneous influence, it is often useful to understand  
 403 the total effect an event has over time. By integrating the influence of a particle across the prediction  
 404 horizon, we can capture its cumulative impact on the expected number or timing of future events.  
 405 We denote this as  $DF\Lambda$  where  $DF\Lambda_t^{(i)} := \int_0^t DF\lambda_s^{(i)} ds$ . It should be noted that  $\Lambda_t := \int_0^t \lambda_s ds$  is  
 406 equivalent to  $\mathbb{E}[N_t]$ , thus we can conclude that  $DF\Lambda$  exists on the same scale as number of events.  
 407 Furthermore, it can be thought of as how many events the particle encouraged or inhibited, in  
 408 expectation, when acted upon by the model. Likewise, integrating  $DF|\lambda_t^{(i)}|$  can measure the total  
 409 cumulative influence of a given particle, regardless if it excites or inhibits.

410 **Group Influences.** Finally, the linear structure of HHP enables us to extend these analyses to  
 411 groups of events. By jointly removing or modifying sets of particles, we can attribute model  
 412 predictions to combinations of events—such as all events of a certain type or within a specific  
 413 time window—shedding light on higher-order interactions and collective effects. This is achieved  
 414 simply by removing multiple particles when calculating the above metrics, e.g.,  $DF\lambda_t^{(A)} := \lambda_t -$   
 415  $\sigma \left( \mu + \sum_{j=1}^{N_t} \mathbf{x}_t^{(j)} \mathbf{1}(j \notin A) \right)$  for  $A \subset \mathbb{N}$ .

416 These tools collectively enable model-level event-attribution, providing understanding of how previous  
 417 events influence future predicted intensities in models with rich dynamics. Such analysis can  
 418 assist in describing various temporal patterns that the model relies on in its predictions, which is  
 419 useful for providing descriptions of *how* models generate predictions. This addresses the gap identified  
 420 earlier regarding interpretability and performance. **[Added]** Crucially, the number of particles  
 421 required is equal to the number of observations, and the leave-one-out (or leave-n-out) estimators are  
 422 linear combinations, and hence the analysis is very computationally cheap. The extensibility of this  
 423 analysis is a huge opportunity, because it allows the influence and interaction of multiple different  
 424 events to be efficiently analyzed, allowing, for instance, diagnosis comorbidities in healthcare. This  
 425 ameliorates the combinatorial cost of performing this analysis in conventional black-box neural  
 426 MTPP models.

427  
 428  
 429  
 430  
 431 <sup>2</sup>This particle decomposition is a conceptual and interpretive tool; during training and general inference, only  
 the total state  $\mathbf{x}_t$  is maintained, so there is no computational overhead from tracking individual particles.



Figure 2: Visualizations of interpretability results presented in Section 6.1. Bottom left shows a sequence of events where a blue or orange mark is repeated after a predictable time after a green mark occurs. The top left is the model’s predicted marked intensities. Middle left showcases the *total*  $\text{DF}\lambda$  values per event, with lines colored by the mark that spawned the particle. Right plots show mark-specific  $\text{DF}\lambda$  trajectories for four particles in the highlighted time range (30, 70).

## 6.2 EMPIRICAL EXPLORATION

We now explore these estimators using a synthetic memory task, shown in Figure 2. Marks are drawn sequentially from a homogeneous Poisson process, until a green “trigger” event is drawn, which causes the previous mark to be repeated a predictable time later. In Figure 2 (top left) we show the overall intensities learned by the model. We see that it successfully captures the homogeneous Poisson occurrence of events, the zero intensity after trigger event, and the sharp spike of intensity after the delay period, before returning to normal.

We then explore a learned HHP model using the leave-one-out estimators introduced above. In the middle left panel, we show the time-evolution of the instantaneous *total* intensity attributed to each source event. The occurrence of a green trigger event (specifically and identifiably) dramatically inhibits the other marks during the delay period (seen by the negative green line during the delay period), before causing the intensity to rise at the target event (seen by the green lines sharply spiking upward), before returning to a quiescent position. We see also the blue and orange marks do not actually contribute to any other intensity, indicating that the rise in the *correct* marks intensity is attributed to the green event and the hypernetwork. This reduction highlights those events and particles that are most responsible for future events and how.

In the right-hand figure we unpack the  $\text{DF}\lambda$  on a per-mark basis for examples of events that are identified as responsible and not-responsible (two trigger events, 7 and 11; two non-trigger events, 6 and 10). We see the non-trigger events have almost no influence on *any* event, and trigger events mediate the intensities of subsequent events as expected for (e.g.) the first response, driving exciting orange at the right time and inhibiting blue. However, interestingly, for the second trigger, we see that *both* trigger events are used to generate the swing in intensity for the response, highlighting that truly separating causal effects in a flexible model, without direct injection of domain knowledge or additional constraints, is not guaranteed. This is something we discuss below. Even with this, we believe these estimators offer a unique and direct way to begin to understand the mechanisms that the model uses to generate predictions, in a way that is not possible with other neural MTPPs. For more details on this exploration, as well as a full analysis of another task, please see Appendix C.

## 6.3 INTERPRETING INTERPRETABILITY

Our notion of interpretability aligns in part with mechanistic interpretability as defined by Bereska and Gavves (2024): we expose and interpret part of the actual computation used to produce outputs.

486 The linear recurrence actually acts as a convenient bottleneck, allowing these meaningful probes to  
 487 be defined (interestingly also exploiting to linearity and superposition as defined by Bereska and  
 488 Gavves (2024)). Our description is however an incomplete interpretation, as particularly the internal  
 489 mechanisms in the GRU remain opaque. Another perspective, following Shmueli (2010), is that  
 490 the HHP is a *predictive model*, not an *explanatory model*: it forecasts future events, but does not  
 491 replicate the true generative process. Our interpretability constructs therefore *describe* the model’s  
 492 solution strategy, and not causal relationships. In short, HHP is a predictive model that also offers a  
 493 mechanistic description of its internal computation, and should not be confused with extracting true  
 494 causal relationships. To achieve causal understanding would require not just an architectural change  
 495 but also a shift in the underlying learning procedure itself and the injection of domain knowledge.  
 496

## 497 7 CONCLUSION

498 In this paper, we introduced the Hyper Hawkes Process (HHP), an intensity-based MTPP model that  
 499 leverages a hypernetwork to predict the dynamics of a generalized Hawkes process. This design  
 500 achieves state-of-the-art predictive performance, enables efficient computation, and exposes key  
 501 internal variables that offer a window into its learned computational mechanism. This is unlike  
 502 most classical models, which trade performance for interpretability; and most neural MTPP models,  
 503 which sacrifice interpretability for performance. Our HHP aims to combine the best of both worlds:  
 504 flexibility, accuracy, and interpretable structure.  
 505

506 However, put simply: interpreting highly flexible neural models is challenging. Our results show that it  
 507 is possible to design a model that is both expressive and more interpretable than alternatives. However,  
 508 the interpretability we achieve is nuanced, and requires careful analysis to extract meaningful  
 509 information. Future work will focus on building systematic methods to leverage these exposed  
 510 variables for domain-specific analysis, integrating them into practical workflows, and exploring how  
 511 these mechanisms can guide model design. These steps will move HHP from a highly performant  
 512 model, toward a broadly useful tool for understanding complex event dynamics.  
 513  
 514  
 515  
 516  
 517  
 518  
 519  
 520  
 521  
 522  
 523  
 524  
 525  
 526  
 527  
 528  
 529  
 530  
 531  
 532  
 533  
 534  
 535  
 536  
 537  
 538  
 539

540 REFERENCES  
541

542 Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. *Biometrika*, 58  
543 (1):83–90, 1971.

544 Hongyuan Mei and Jason M Eisner. The neural Hawkes process: A neurally self-modulating  
545 multivariate point process. *Advances in Neural Information Processing Systems*, 30:6757–6767,  
546 2017.

547 Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer Hawkes  
548 process. In *International conference on machine learning*, pages 11692–11702. PMLR, 2020.

549

550 Tilman Räuker, Anson Ho, Stephen Casper, and Dylan Hadfield-Menell. Toward transparent ai: A  
551 survey on interpreting the inner structures of deep neural networks. In *2023 ieee conference on*  
552 *secure and trustworthy machine learning (satml)*, pages 464–483. IEEE, 2023.

553

554 Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization.  
555 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages  
556 782–791, 2021.

557

558 Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, and Ziyu Yao. A practical review of mechanistic  
559 interpretability for transformer-based language models. *arXiv preprint arXiv:2407.02646*, 2024.

560

561 Niru Maheswaranathan and David Sussillo. How recurrent networks implement contextual processing  
562 in sentiment analysis. In *International Conference on Machine Learning*, pages 6608–6619. PMLR,  
563 2020.

564

565 David Ha, Andrew M Dai, and Quoc V Le. Hypernetworks. In *International Conference on Learning  
566 Representations*, 2017.

567

568 David A Belsley, Edwin Kuh, and Roy E Welsch. *Regression diagnostics: Identifying influential data  
569 and sources of collinearity*. John Wiley & Sons, 2005.

570

571 Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.  
572 Recurrent marked temporal point processes: Embedding event history to vector. In *Proceedings of  
573 the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pages  
574 1555–1564, 2016.

575

576 Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive Hawkes process. In  
577 *International conference on machine learning*, pages 11183–11193. PMLR, 2020.

578

579 Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal point  
580 processes. In *International Conference on Learning Representations*, 2020.

581

582 Chenghao Yang, Hongyuan Mei, and Jason Eisner. Transformer embeddings of irregularly spaced  
583 events and their participants. In *Proceedings of the tenth international conference on learning  
representations (ICLR)*, 2022.

584

585 Yuxin Chang, Alex Boyd, Cao Xiao, Taha Kass-Hout, Parminder Bhatia, Padhraic Smyth, and  
586 Andrew Warrington. Deep continuous-time state-space models for marked event sequences. *arXiv  
587 preprint arXiv:2412.19634*, 2025.

588

589 Daryl J Daley and David Vere-Jones. *An Introduction to the Theory of Point Processes: Volume I:  
Elementary Theory and Methods*. Springer, 2003.

590

591 Thomas Miconi. Biologically plausible learning in recurrent neural networks reproduces neural  
592 dynamics observed during cognitive tasks. *Elife*, 6:e20899, 2017.

593

594 Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max Tegmark, and  
595 Marin Soljačić. Tunable efficient unitary neural networks (eunn) and their application to rnns. In  
596 *International Conference on Machine Learning*, pages 1733–1741. PMLR, 2017.

597

598 William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models. In  
599 *Forty-first International Conference on Machine Learning*, 2024a.

594 Thomas Josef Liniger. *Multivariate Hawkes processes*. PhD thesis, ETH Zurich, 2009.  
 595

596 Vladislav Zhuzhel, Vsevolod Grabar, Galina Boeva, Artem Zabolotnyi, Alexander Stepikin, Vladimir  
 597 Zholobov, Maria Ivanova, Mikhail Orlov, Ivan Kireev, Evgeny Burnaev, et al. Continuous-time  
 598 convolutions model of event sequences. *arXiv preprint arXiv:2302.06247*, 2023.

599 Anningzhe Gao, Shan Dai, and Yan Hu. Mamba Hawkes process. *arXiv preprint arXiv:2407.05302*,  
 600 2024.  
 601

602 Guilherme Augusto Zagatti, See Kiong Ng, and Stéphane Bressan. Learning multivariate temporal  
 603 point processes via the time-change theorem. In *International Conference on Artificial Intelligence  
 604 and Statistics*, pages 3241–3249. PMLR, 2024.

605 Wonho Bae, Mohamed Osama Ahmed, Frederick Tung, and Gabriel L Oliveira. Meta temporal point  
 606 processes. *arXiv preprint arXiv:2301.12023*, 2023.  
 607

608 Mai Zeng, Florence Regol, and Mark Coates. Interacting diffusion processes for event sequence  
 609 forecasting. *arXiv preprint arXiv:2310.17800*, 2023.

610 Zizhuo Meng, Ke Wan, Yadong Huang, Zhidong Li, Yang Wang, and Feng Zhou. Interpretable  
 611 transformer Hawkes processes: Unveiling complex interactions in social networks. In *Proceedings  
 612 of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 2200–  
 613 2211, 2024.  
 614

615 Yujee Song, LEE Donghyun, Rui Meng, and Won Hwa Kim. Decoupled marked temporal point  
 616 process using neural ordinary differential equations. In *The Twelfth International Conference on  
 617 Learning Representations*, 2024.

618 Shuang Li, Mingqun Feng, Lu Wang, Abdelmajid Essofi, Yufeng Cao, Junchi Yan, and Le Song. Ex-  
 619 plaining point processes by learning interpretable temporal logic rules. In *International Conference  
 620 on Learning Representations*, 2022.  
 621

622 Yang Yang, Chao Yang, Boyang Li, Yinghao Fu, and Shuang Li. Neuro-symbolic temporal point  
 623 processes. In *International Conference on Machine Learning*, pages 56665–56680. PMLR, 2024.

624 Shuang Li, Lu Wang, Ruizhi Zhang, Xiaofu Chang, Xuqin Liu, Yao Xie, Yuan Qi, and Le Song.  
 625 Temporal logic point processes. In *International Conference on Machine Learning*, pages 5990–  
 626 6000. PMLR, 2020.  
 627

628 Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured  
 629 state spaces. In *International Conference on Learning Representations*, 2022.

630 Jimmy TH Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for  
 631 sequence modeling. In *The Eleventh International Conference on Learning Representations*, 2022.  
 632

633 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv  
 634 preprint arXiv:2312.00752*, 2023.

635 William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.  
 636 *arXiv preprint arXiv:2404.08819*, 2024b.  
 637

638 Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled  
 639 reviews and fine-grained aspects. In *Proceedings of the 2019 conference on empirical methods  
 640 in natural language processing and the 9th international joint conference on natural language  
 641 processing (EMNLP-IJCNLP)*, pages 188–197, 2019.

642 Qingyuan Zhao, Murat A Erdogdu, Hera Y He, Anand Rajaraman, and Jure Leskovec. Seismic: A  
 643 self-exciting point process model for predicting tweet popularity. In *Proceedings of the 21th ACM  
 644 SIGKDD international conference on knowledge discovery and data mining*, pages 1513–1522,  
 645 2015.  
 646

647 Chris Whong. FOILing NYC’s taxi trip data. [https://chriswhong.com/open-data/foil\\_nyc\\_taxi/](https://chriswhong.com/open-data/foil_nyc_taxi/), 2014. [Online; accessed Oct 15, 2024].

648 Siqiao Xue, Xiaoming Shi, James Zhang, and Hongyuan Mei. HYPRO: A hybridi normalized  
 649 probabilistic model for long-horizon prediction of event sequences. *Advances in Neural Information*  
 650 *Processing Systems*, 35:34641–34650, 2022.

651

652 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. <http://snap.stanford.edu/data>, June 2014.

653

654 Òscar Celma Herrada et al. *Music recommendation and discovery in the long tail*. Universitat Pompeu  
 655 Fabra, 2009.

656

657 Mohammed Saeed, Christine Lieu, Greg Raber, and Roger G Mark. MIMIC II: a massive temporal icu  
 658 patient database to support research in intelligent patient monitoring. In *Computers in cardiology*,  
 659 pages 641–644. IEEE, 2002.

660 Claudio Heinrich-Mertsching, Thordis L Thorarinsdottir, Peter Guttorp, and Max Schneider. Valida-  
 661 tion of point process predictions with proper scoring rules. *Scandinavian Journal of Statistics*, 51  
 662 (4):1533–1566, 2024.

663

664 Tanguy Bosser and Souhaib Ben Taieb. On the predictive accuracy of neural temporal point process  
 665 models for continuous-time event data. *Transactions on Machine Learning Research*, 2023. ISSN  
 666 2835-8856. Survey Certification.

667

668 Leonard Bereska and Stratis Gavves. Mechanistic interpretability for AI safety - a review. *Trans-  
 669 actions on Machine Learning Research*, 2024. ISSN 2835-8856. Survey Certification, Expert  
 670 Certification.

671 Galit Shmueli. To explain or to predict? *Statistical science*, pages 289–310, 2010.

672

673 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz  
 674 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information*  
 675 *Processing Systems*, volume 30. Curran Associates, Inc., 2017.

676

677 Yi Heng Lim, Qi Zhu, Joshua Selfridge, and Muhammad Firmansyah Kasim. Parallelizing non-linear  
 678 sequential models over the sequence length. In *The Twelfth International Conference on Learning  
 679 Representations*, 2023.

680

681 Xavier Gonzalez, Andrew Warrington, Jimmy T.H. Smith, and Scott W. Linderman. Towards scalable  
 682 and stable parallelization of nonlinear rnns. In *Advances in Neural Information Processing Systems*,  
 683 volume 37, pages 5817–5849. Curran Associates, Inc., 2024.

684

685 Hongyuan Mei, Guanghui Qin, and Jason Eisner. Imputing missing events in continuous-time event  
 686 streams. In *International Conference on Machine Learning*, pages 4475–4485. PMLR, 2019.

687

688 Brian McFee, Thierry Bertin-Mahieux, Daniel PW Ellis, and Gert RG Lanckriet. The million song  
 689 dataset challenge. In *Proceedings of the 21st International Conference on World Wide Web*, pages  
 690 909–916, 2012.

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

## TABLE OF CONTENTS

- Appendix A: Full Model & Implementation Details
- Appendix B: Additional Quantitative Results & Experiment Details
- Appendix C: Additional Interpretability Explorations

756 A FULL MODEL & IMPLEMENTATION DETAILS  
757

758 We now summarize the model referred to as *the* Hyper Hawkes Process (HHP) throughout this paper.  
759 Its overall architecture is illustrated in Figure 3. The HHP is a recurrent neural marked temporal point  
760 process (MTPP) model, composed of two key components: a non-linear Hawkes process, denoted by  
761  $f$ , and a hypernetwork, denoted by  $h_\phi$ .  
762

763 A.1 RECURRENT UPDATE MECHANISM  
764

765 We begin by detailing how the HHP transitions from the  $i$ -th event to the  $(i+1)$ -th event. This step is  
766 highlighted in red in Figure 3, where  $i = 1$  and  $i+1 = 2$ . Subscripts indicate the temporal position  
767 relative to the  $i$ -th event: variables with subscript  $i$  refer to the right limit (i.e., immediately *after* the  
768 event), while  $\mathbf{x}_{i-}$  denotes the left limit (i.e., just *before* the event).  
769

770 The update begins by decoding the hypernetwork state from the previous iteration,  $\mathbf{z}_i$ , which emits  
771 the Hawkes parameters  $\mathbf{V}_i$  and  $\mathbf{D}_i$  for the current step. Importantly, the  $(i+1)$ -th event is not yet  
772 introduced to preserve causality.  
773

774 Using these parameters, we update the latent Hawkes state using the first component of Equation (7):  
775

$$\mathbf{x}_{i+1} = \mathbf{V}_i e^{\mathbf{D}_i(t-t_i)} \mathbf{V}_i^* \mathbf{x}_i$$

776 applying it to the previous right-limit of the recurrent state  $\mathbf{x}_i$  to produce the left-limit of the next  
777 state  $\mathbf{x}_{(i+1)-}$ . This update is a function of the hypernetwork-emitted dynamics and the time interval  
778 between events  $t_{i+1}$  and  $t_i$ . We use the right-limit of the state  $\mathbf{x}_i$ , which already includes the impulse  
779 from the previous event. The update is computationally efficient due to the diagonal structure of  $\mathbf{D}_i$ .  
780

781 The updated left-limit state is then projected into the output space via:  
782

$$\lambda_i = \sigma(\mathbf{W}\mathbf{x}_{(i+1)-} + \mathbf{b}),$$

783 where  $\mathbf{W} \in \mathbb{R}^{K \times d}$  and  $\mathbf{b} \in \mathbb{R}^K$ . We use the element-wise softplus function  $\sigma(a) = \log(1 + e^a)$  to  
784 ensure non-negativity. The resulting intensity  $\lambda_i$  is used to compute the log-likelihood in Equation (2).  
785

786 Next, we update the Hawkes state to its new right limit by adding the mark-specific impulse:  
787

$$\mathbf{x}_i = \mathbf{x}_{i-} + \alpha_{k_i}.$$

788 Finally, we roll forward the hypernetwork state using the current event:  
789

$$\mathbf{z}_i = h(\mathbf{z}_{i-1}, t_{i+1} - t_i, k_i),$$

790 which will be used in the next iteration. We input the logarithm of the time difference and a one-hot  
791 encoding of the mark into the hypernetwork.  
792



806 Figure 3: The full hyper Hawkes process architecture. We highlight data that is conditioned on with  
807 shaded boxes, and the variables that are updated/used in a single iteration, i.e., when the second  
808 observation becomes available. The top row represents the history  $\mathcal{H}_t$ , the second row represents the  
809 hypernetwork recurrence, the third row represents the latent Hawkes process, and the bottom row are  
the intensities. Note we suppress the arrow from  $t_1$  into  $\mathbf{x}_{2-}$  for visual clarity.  
810

To predict  $\mathbf{D}_i$ , we pass  $\mathbf{z}_i$  through a learned linear transforms to produce  $\mathbf{d}_i \in \mathbb{R}^d$ . From there, we compute  $\mathbf{D}_i = -\text{diag}(\text{softplus}(\mathbf{d}_i) \odot \mathbf{u})$  where  $\odot$  is an element-wise product and  $\mathbf{u} \in \mathbb{C}^d$  with  $\log \Re(\mathbf{u}) \in \mathbb{R}^d$ . Similarly, to predict  $\mathbf{V}_i$ , we pass  $\mathbf{z}_i$  through a separate linear transform to produce  $\mathbf{v}_i \in \mathbb{R}^{2dr}$  where  $r$  is a hyperparameter. These values become angles through which to parameterize a unitary matrix as described by Jing et al. (2017). Here,  $r$  determines the number of  $\mathbf{F}$ -component matrices as denoted in their work. Following their parameterization produces  $\mathbf{V}_i$ , where matrix-vector products reduce to a sequence of component-wise vector multiplications and vector permutations.

This completes the iteration, with a new hypernetwork state and latent Hawkes state ready for the next iteration.

**Computational Complexity.** Both the GRU-based hypernetwork update and the Hawkes recurrence have constant time and memory complexity,  $\mathcal{O}(1)$ , making inference highly scalable with respect to sequence length.

## A.2 ARCHITECTURE HYPERPARAMETERS AND LEARNABLE PARAMETERS

The hypernetwork depends solely on the event history and emits the parameters  $\mathbf{V}_i$  and  $\mathbf{D}_i$  for the Hawkes recurrence. We use a GRU combined with deterministic orthonormal matrix construction (Jing et al., 2017). The GRU state  $\mathbf{z}_i$  takes as input the logarithm of the time since the last event and a mark embedding. This embedding dimension is a hyperparameter, set to one less than the GRU state dimension to maintain consistent input size. The GRU parameters  $\phi \in \Phi$  include its initial state.

The learnable parameters of the HHP are therefore:

- GRU hypernetwork parameters  $\phi \in \Phi$ ,
- Mark-specific impulses  $\alpha \in \mathbb{R}^{d \times K}$ ,
- Emission layer parameters: projection matrix  $\mathbf{W} \in \mathbb{R}^{K \times d}$  and background intensity  $\mu \in \mathbb{R}^K$ .

The full parameter set is:

$$\theta = \{\phi, \alpha, \mathbf{W}, \mu\} \in \Theta.$$

Key architectural hyperparameters include:

- Latent dimension of the Hawkes process ( $d$ ),
- Dimension of the hypernetwork recurrence (we use a GRU and do not explore alternatives here).

## A.3 COMPUTING THE LOG-LIKELIHOOD

The log-likelihood for intensity-based MTPPs is defined in Equation (2), with further background in Daley and Vere-Jones (2003). At a high level:

1. For a given event sequence, we compute the left-limit intensities for each observed mark type  $k_i$ , denoted  $\left\{ \lambda_{t_i}^{k_i} \right\}_{i=1}^L$ , using the procedure in Section A.1.
2. These intensities form the first term of the log-likelihood.
3. To approximate the normalizing integral, we sample a fixed number of points  $t' \in (t_i, t_{i+1})$  uniformly and compute the total intensity  $\lambda_{t'} = \sum_{k=1}^K \lambda_{t'}^k$  at each sampled time.

Importantly, the GRU recurrence is computed only once per event, not per sample point, since it is conditioned solely on events. This allows us to amortize its cost across all sampled points.

**Computational Complexity.** Due to the conditional linearity of the Hawkes recurrence, it can be computed in logarithmic time  $\mathcal{O}(\log L)$  using parallel scans (Chang et al., 2025), assuming sufficient computational resources. The evaluation of all sampled points for the normalizing constant can be done in constant time  $\mathcal{O}(1)$ , as they are conditionally independent given the recurrence right limits.

864 The main computational bottleneck is the sequential nature of the GRU hypernetwork. If training  
865 throughput is critical, this could be mitigated by adopting parallelizable sequence models such as  
866 self-attention (Vaswani et al., 2017), deep state space models (Gu and Dao, 2023), or parallelization  
867 techniques for non-linear recurrent sequence models (Lim et al., 2023; Gonzalez et al., 2024).  
868  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917

## 918 B ADDITIONAL RESULTS & EXPERIMENT DETAILS

920 This appendix provides additional experimental details and results for all models evaluated in this  
 921 work, including our proposed Hyper Hawkes Process (HHP). All experiments were conducted in a  
 922 unified environment, using identical data splits, pre-processing, and evaluation protocols for both  
 923 HHP and baseline models. No additional pre-processing or special training procedures were required  
 924 for HHP beyond what was used for prior models.

### 926 B.1 TRAINING DETAILS & HYPERPARAMETER CONFIGURATIONS

928 For all baseline models, we use the hyperparameters and architectures as reported in Chang et al.  
 929 (2025). For HHP, we performed a grid search over latent dimension  $d$  (values: {8, 16, 32, 64, 128,  
 930 256}), GRU hidden size  $h$  ({16, 32, 64, 128, 256}), GRU layers  $l$  ({1, 2}), and number of rotation  
 931 matrices used in  $\mathbf{V}_i$  parameterization  $r$  ({2, 4, 8}). The chosen values for each dataset are reported in  
 932 Table 3.

933 Table 3: Chosen hyperparameters for HHP across all seven benchmark datasets.

| 935 Dataset       | 936 $d$ | 937 $h$ | 938 $l$ | 939 $r$ | 940 # Parameters |
|-------------------|---------|---------|---------|---------|------------------|
| 937 Amazon        | 938 64  | 939 8   | 940 2   | 941 8   | 942 11240        |
| 938 Retweet       | 939 64  | 940 32  | 941 2   | 942 8   | 943 23940        |
| 939 Taxi          | 940 128 | 941 8   | 942 2   | 943 8   | 944 9656         |
| 940 Taobao        | 941 64  | 942 8   | 943 2   | 944 4   | 945 5104         |
| 941 StackOverflow | 942 64  | 943 8   | 944 2   | 945 8   | 946 6936         |
| 942 Last.fm       | 943 64  | 944 32  | 945 2   | 946 8   | 947 42777        |
| 943 MIMIC-II      | 944 256 | 945 16  | 946 2   | 947 8   | 948 126336       |

### 945 B.2 DATASET STATISTICS

947 We report the statistics of all seven datasets used in this work in Table 4. We used the HuggingFace  
 948 version of the five EasyTPP datasets. For all datasets, we ensured that no more than two events  
 949 occur at the same time (i.e., inter-arrival time is strictly positive), and event times do not lie on grid  
 950 points that are effectively discrete-time events. Dataset descriptions and pre-processing details are  
 951 provided in Appendix B.3.

952 Table 4: Statistics of the seven datasets we experiment with.

| 954 Dataset       | $K$     | 955 Number of Events |             |             | 956 Sequence Length |         |           | 957 Number of Sequences |           |           |
|-------------------|---------|----------------------|-------------|-------------|---------------------|---------|-----------|-------------------------|-----------|-----------|
|                   |         | 958 Train            | 959 Valid   | 960 Test    | 961 Min             | 962 Max | 963 Mean  | 964 Train               | 965 Valid | 966 Test  |
| 957 Amazon        | 958 16  | 959 288,377          | 960 40,995  | 961 84,048  | 962 14              | 963 94  | 964 44.8  | 965 6,454               | 966 922   | 967 1,851 |
| 958 Retweet       | 959 3   | 960 2,176,116        | 961 215,521 | 962 218,465 | 963 50              | 964 264 | 965 108.8 | 966 20,000              | 967 2,000 | 968 2,000 |
| 959 Taxi          | 960 10  | 961 51,584           | 962 7,404   | 963 14,820  | 964 36              | 965 38  | 966 37.0  | 967 1,400               | 968 200   | 969 400   |
| 960 Taobao        | 961 17  | 962 73,483           | 963 11,472  | 964 28,455  | 965 28              | 966 64  | 967 56.7  | 968 1,300               | 969 200   | 970 500   |
| 961 StackOverflow | 962 22  | 963 90,497           | 964 25,762  | 965 26,518  | 966 41              | 967 101 | 968 64.8  | 969 1,401               | 970 401   | 971 401   |
| 962 Last.fm       | 963 120 | 964 1,534,738        | 965 344,542 | 966 336,676 | 967 6               | 968 501 | 969 207.2 | 970 7,488               | 971 1,604 | 972 1,604 |
| 963 MIMIC-II      | 964 75  | 965 9,619            | 966 1,253   | 967 1,223   | 968 2               | 969 33  | 970 3.7   | 971 2600                | 972 325   | 973 325   |

### 963 B.3 DATASET PRE-PROCESSING

965 We used the default train/validation/test splits for the EasyTPP benchmark datasets. For MIMIC-II,  
 966 we followed Du et al. (2016) and kept the 325 test sequences in the test split, further splitting the  
 967 2,935 training sequences into 2,600 for training and 325 for validation. For Last.fm, we randomly  
 968 partitioned the data into 70%, 15%, and 15% splits for training, validation, and test, respectively. For  
 969 all datasets, a small amount of jitter was added to event times if necessary to ensure no two events  
 970 occurred at the same time and to avoid discrete-time artifacts.

971 **Amazon** (Ni et al., 2019) contains user product reviews, with product categories as marks.  
 972 **Retweet** (Zhao et al., 2015) models retweet cascades, with event types based on user influence.

Table 5: Full breakdown of log-likelihood metrics.

| Model      | Per Event Log-Likelihood, $\mathcal{L}_{\text{Total}}$ (nats) ( $\uparrow$ ) |                       |                      |                      |                       |                       |                      | Avg. Ranking ( $\downarrow$ ) |
|------------|------------------------------------------------------------------------------|-----------------------|----------------------|----------------------|-----------------------|-----------------------|----------------------|-------------------------------|
|            | Amazon                                                                       | Retweet               | Taxi                 | Taobao               | StackOverflow         | Last.fm               | MIMIC-II             |                               |
| RMTPP      | -2.136 (0.003)                                                               | -7.098 (0.217)        | 0.346 (0.002)        | 1.003 (0.004)        | -2.480 (0.019)        | -1.780 (0.005)        | -0.472 (0.026)       | 7.3                           |
| NHP        | 0.129 (0.012)                                                                | <b>-6.348</b> (0.000) | 0.514 (0.004)        | 1.157 (0.004)        | -2.241 (0.002)        | -0.574 (0.011)        | 0.060 (0.017)        | 4.0                           |
| SAHP       | -2.074 (0.029)                                                               | -6.708 (0.029)        | 0.298 (0.057)        | 1.168 (0.029)        | -2.341 (0.058)        | -1.646 (0.083)        | -0.677 (0.072)       | 6.6                           |
| THP        | -2.096 (0.002)                                                               | -6.659 (0.007)        | 0.372 (0.002)        | 0.790 (0.002)        | -2.338 (0.014)        | -1.712 (0.011)        | -0.577 (0.011)       | 6.6                           |
| IFTPP      | 0.496 (0.002)                                                                | -10.344 (0.016)       | 0.453 (0.002)        | <b>1.318</b> (0.017) | -2.233 (0.009)        | <b>-0.492</b> (0.017) | 0.317 (0.052)        | 3.6                           |
| AttNHP     | 0.484 (0.077)                                                                | -6.499 (0.028)        | 0.493 (0.009)        | 1.259 (0.022)        | <b>-2.194</b> (0.016) | -0.592 (0.051)        | -0.170 (0.077)       | 3.9                           |
| S2P2       | <b>0.781</b> (0.011)                                                         | <b>-6.365</b> (0.003) | <b>0.522</b> (0.004) | <b>1.304</b> (0.039) | <b>-2.163</b> (0.009) | -0.557 (0.046)        | <b>0.919</b> (0.069) | <b>1.7</b>                    |
| HHP (ours) | <u>0.616</u> (0.016)                                                         | -6.366 (0.007)        | <u>0.520</u> (0.003) | 1.232 (0.014)        | -2.209 (0.006)        | <u>-0.515</u> (0.006) | <b>1.314</b> (0.048) | <u>2.4</u>                    |

  

| Model      | Per Event Next Event Time Log-Likelihood, $\mathcal{L}_{\text{Time}}$ (nats) ( $\uparrow$ ) |                       |                      |                      |                       |                      |                      | Avg. Ranking ( $\downarrow$ ) |
|------------|---------------------------------------------------------------------------------------------|-----------------------|----------------------|----------------------|-----------------------|----------------------|----------------------|-------------------------------|
|            | Amazon                                                                                      | Retweet               | Taxi                 | Taobao               | StackOverflow         | Last.fm              | MIMIC-II             |                               |
| RMTPP      | 0.011 (0.001)                                                                               | -6.191 (0.083)        | 0.622 (0.002)        | 2.428 (0.004)        | -0.797 (0.005)        | 0.256 (0.007)        | -0.188 (0.016)       | 7.0                           |
| NHP        | 2.116 (0.009)                                                                               | <b>-5.584</b> (0.001) | 0.727 (0.003)        | 2.578 (0.006)        | -0.699 (0.002)        | 1.198 (0.006)        | 0.225 (0.016)        | 4.3                           |
| SAHP       | 0.115 (0.049)                                                                               | -5.872 (0.062)        | 0.645 (0.044)        | 2.604 (0.008)        | -0.703 (0.031)        | 0.489 (0.078)        | -0.244 (0.040)       | 5.9                           |
| THP        | -0.068 (0.002)                                                                              | -5.874 (0.007)        | 0.621 (0.002)        | 2.242 (0.002)        | -0.772 (0.006)        | 0.220 (0.010)        | -0.271 (0.004)       | 7.6                           |
| IFTPP      | 2.483 (0.001)                                                                               | -9.500 (0.011)        | <b>0.735</b> (0.002) | 2.708 (0.018)        | <b>-0.662</b> (0.007) | <b>1.277</b> (0.016) | 0.555 (0.050)        | 2.9                           |
| AttNHP     | 2.416 (0.092)                                                                               | -5.726 (0.027)        | 0.714 (0.010)        | 2.654 (0.007)        | -0.684 (0.005)        | 1.203 (0.015)        | 0.031 (0.055)        | 4.1                           |
| S2P2       | <b>2.652</b> (0.009)                                                                        | -5.598 (0.002)        | <b>0.733</b> (0.003) | <b>2.719</b> (0.038) | <b>-0.641</b> (0.003) | <b>1.257</b> (0.022) | <b>1.050</b> (0.065) | <b>1.7</b>                    |
| HHP (ours) | <u>2.492</u> (0.015)                                                                        | -5.597 (0.005)        | 0.732 (0.002)        | 2.620 (0.013)        | -0.670 (0.002)        | 1.252 (0.004)        | <b>1.394</b> (0.043) | <u>2.6</u>                    |

  

| Model      | Per Event Next Mark Log-Likelihood, $\mathcal{L}_{\text{Mark}}$ (nats) ( $\uparrow$ ) |                       |                       |                       |                       |                       |                       | Avg. Ranking ( $\downarrow$ ) |
|------------|---------------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------|
|            | Amazon                                                                                | Retweet               | Taxi                  | Taobao                | StackOverflow         | Last.fm               | MIMIC-II              |                               |
| RMTPP      | -2.147 (0.003)                                                                        | -0.908 (0.141)        | -0.276 (0.000)        | -1.425 (0.002)        | -1.683 (0.015)        | -2.035 (0.004)        | -0.284 (0.014)        | 6.9                           |
| NHP        | -1.987 (0.003)                                                                        | <b>-0.764</b> (0.000) | -0.213 (0.002)        | -1.421 (0.004)        | -1.542 (0.001)        | -1.772 (0.006)        | -0.165 (0.002)        | 3.3                           |
| SAHP       | -2.189 (0.030)                                                                        | -0.836 (0.036)        | -0.346 (0.024)        | -1.436 (0.027)        | -1.638 (0.032)        | -2.136 (0.070)        | -0.433 (0.031)        | 7.4                           |
| THP        | -2.028 (0.002)                                                                        | -0.785 (0.001)        | -0.249 (0.001)        | -1.451 (0.000)        | -1.566 (0.008)        | -1.932 (0.006)        | -0.306 (0.009)        | 6.0                           |
| IFTPP      | -1.988 (0.001)                                                                        | -0.844 (0.007)        | -0.282 (0.001)        | <u>-1.391</u> (0.005) | -1.571 (0.003)        | <u>-1.769</u> (0.004) | -0.239 (0.002)        | 4.9                           |
| AttNHP     | -1.933 (0.024)                                                                        | -0.773 (0.003)        | -0.221 (0.002)        | -1.395 (0.016)        | <b>-1.510</b> (0.013) | -1.795 (0.037)        | -0.201 (0.025)        | 3.3                           |
| S2P2       | <b>-1.871</b> (0.002)                                                                 | <u>-0.767</u> (0.000) | <b>-0.211</b> (0.002) | -1.415 (0.005)        | <u>-1.521</u> (0.008) | -1.814 (0.025)        | <u>-0.131</u> (0.014) | <u>2.4</u>                    |
| HHP (ours) | <u>-1.877</u> (0.002)                                                                 | -0.769 (0.002)        | <u>-0.212</u> (0.001) | <b>-1.388</b> (0.003) | -1.539 (0.004)        | <b>-1.767</b> (0.003) | <b>-0.079</b> (0.009) | <b>1.9</b>                    |

**Taxi** (Whong, 2014; Mei et al., 2019) uses New York taxi pickup/dropoff data, with marks defined by location-action pairs. **Taobao** (Xue et al., 2022) consists of e-commerce viewing patterns, with item categories as marks. **StackOverflow** contains badges awarded to users on a Q&A website, with badge type as the mark. **MIMIC-II** (Saeed et al., 2002) records disease events during hospital visits, with disease type as the mark. For MIMIC-II and StackOverflow, we used the pre-processing from Du et al. (2016). **Last.fm** (Celma Herrada et al., 2009; McFee et al., 2012) records music listening habits, with genres as marks. Each event is a play of a particular genre, and if a song had multiple genres, one was selected at random.

#### B.4 FULL RESULTS ON BENCHMARK DATASETS

We provide the full log-likelihood results in Table 5, decomposing likelihood into time and mark components. Our HHP model achieves strong performance across all metrics, with improvements primarily driven by better modeling of event times. HHP also achieves best- or second-best accuracy for next mark prediction on most datasets. Likewise, time and mark calibration results, as measured by PCE and ECE, respectively, can be found in Table 6. We implement these metrics as defined by Bosscher and Taieb (2023). In this aspect, we see that our model performs similarly to the baseline methods, with most being reasonably well-calibrated.

Table 6: Calibration results for the models and datasets tests.

(a) Probabilistic calibration error (PCE) for time calibration in percentage.

| Model      | Probabilistic Calibration Error (PCE) (↓) |                    |                    |                    |                    |                    |                    | Average     | [Added]     | Average |
|------------|-------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------|-------------|---------|
|            | Amazon                                    | Retweet            | Taxi               | Taobao             | StackOverflow      | Last.fm            | MIMIC-II           | Ranking (↓) | PCE (↓)     |         |
| RMTPP      | 13.67 (0.03)                              | 7.93 (0.62)        | 3.50 (0.03)        | <b>0.22 (0.16)</b> | 1.94 (0.10)        | 1.56 (0.01)        | 3.63 (0.37)        | 5.6         | 4.64        |         |
| NHP        | 8.45 (0.28)                               | <b>0.20 (0.19)</b> | 0.87 (0.50)        | 7.40 (0.68)        | 1.51 (0.11)        | 4.70 (0.13)        | 5.92 (0.14)        | 5.6         | 4.15        |         |
| SAHP       | 12.04 (1.02)                              | 8.51 (1.86)        | 2.52 (0.99)        | 3.18 (0.21)        | 1.50 (0.57)        | 2.53 (1.86)        | 2.28 (0.44)        | 5.4         | 4.65        |         |
| THP        | 12.38 (0.05)                              | 5.68 (0.08)        | 3.34 (0.02)        | 6.36 (0.04)        | 2.06 (0.11)        | <u>1.02 (0.08)</u> | <b>1.10 (0.06)</b> | 5.3         | 4.56        |         |
| IFTPP      | <b>1.59 (0.09)</b>                        | 23.85 (0.26)       | <b>0.40 (0.10)</b> | <b>1.61 (0.74)</b> | <b>0.84 (0.34)</b> | <b>0.46 (0.44)</b> | 1.75 (0.33)        | <b>2.3</b>  | 4.36        |         |
| AttNHP     | 6.36 (0.63)                               | 2.09 (0.85)        | 0.84 (0.27)        | 3.08 (0.16)        | 1.65 (0.24)        | 1.43 (0.14)        | 4.70 (0.33)        | 4.6         | <u>2.88</u> |         |
| S2P2       | <u>5.88 (0.17)</u>                        | <u>0.44 (0.27)</u> | 0.55 (0.33)        | 2.07 (0.32)        | 1.03 (0.15)        | 1.38 (0.52)        | 11.70 (0.68)       | <u>3.4</u>  | 3.29        |         |
| HHP (ours) | 6.74 (0.54)                               | 0.59 (0.47)        | <u>0.43 (0.18)</u> | 2.97 (0.62)        | <u>1.01 (0.24)</u> | 2.91 (0.38)        | 4.25 (1.45)        | 3.9         | <b>2.69</b> |         |

(b) Expected calibration error (ECE) for mark calibration in percentage.

| Model      | Expected Calibration Error (ECE) (↓) |                    |                    |                    |                    |                    |                    | Average     | [Added]     | Average |
|------------|--------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------|-------------|---------|
|            | Amazon                               | Retweet            | Taxi               | Taobao             | StackOverflow      | Last.fm            | MIMIC-II           | Ranking (↓) | ECE (↓)     |         |
| RMTPP      | 6.58 (0.15)                          | 3.99 (4.28)        | 2.42 (0.16)        | 1.89 (0.24)        | 2.10 (0.27)        | 2.47 (0.45)        | 2.79 (0.43)        | 6.0         | 3.18        |         |
| NHP        | 8.30 (0.21)                          | <b>0.35 (0.06)</b> | 0.79 (0.10)        | 5.59 (0.69)        | 1.31 (0.16)        | 3.41 (0.41)        | 2.24 (0.32)        | 5.0         | 3.14        |         |
| SAHP       | 8.17 (2.00)                          | 6.27 (2.23)        | 6.77 (0.21)        | 2.68 (0.35)        | 1.71 (0.77)        | 6.26 (4.30)        | 5.41 (0.26)        | 7.1         | 5.32        |         |
| THP        | 2.06 (0.17)                          | 1.26 (0.11)        | 1.76 (0.07)        | 6.51 (0.03)        | <b>0.81 (0.14)</b> | 3.42 (0.70)        | 2.16 (0.39)        | 5.1         | <u>2.57</u> |         |
| IFTPP      | <b>0.46 (0.10)</b>                   | 0.95 (1.12)        | <b>0.55 (0.19)</b> | <b>1.20 (0.20)</b> | <u>1.28 (0.54)</u> | <u>0.66 (0.05)</u> | <b>1.39 (0.23)</b> | <b>1.9</b>  | <b>0.93</b> |         |
| AttNHP     | 3.13 (0.61)                          | 0.52 (0.16)        | <u>0.56 (0.10)</u> | 2.47 (0.12)        | 1.37 (0.42)        | <b>0.61 (0.16)</b> | 2.23 (0.50)        | 3.6         | 1.56        |         |
| S2P2       | <u>0.88 (0.34)</u>                   | 0.52 (0.13)        | 0.58 (0.12)        | 1.96 (0.67)        | 1.98 (0.19)        | 1.01 (0.63)        | 1.62 (0.24)        | <u>3.4</u>  | <u>1.22</u> |         |
| HHP (ours) | 1.53 (0.22)                          | <u>0.38 (0.38)</u> | 0.83 (0.09)        | 1.91 (0.29)        | 2.00 (0.64)        | 1.44 (0.53)        | <u>1.54 (0.33)</u> | 3.7         | 1.38        |         |

1080 C INTERPRETABILITY EXPLORATION  
10811082 In this appendix, we provide more concrete details on the interpretability scenario explored in the  
1083 main paper, as well as introduce another scenario—along with an accompanying analysis using the  
1084 proposed interpretability tools.  
10851086 C.1 SCENARIO FROM SECTION 6.1  
10871088 **Data Generating Process.** Sequences were sampled one event at a time, being drawn from a Poisson  
1089 process with rate  $\lambda = 1/3$ . Marks are then randomly assigned to these events with probability 40%  
1090 for blue, 40% for orange, and 20% for green. Should a green event be drawn at time  $t$ , we denote  
1091 that as a “trigger” event. The immediate next event that is drawn will have the exact same mark as  
1092 the event that came before the trigger, and the time of the event will be drawn from  $t + \mathcal{N}(10, 0.01)$ .  
1093 After this follow-up event is drawn, we return to drawing from the Poisson process as before. A  
1094 sequence is done sampling once we reach  $T = 100$ . See Appendix C.1 for example sequences  
1095 generated under this process.  
10961096 An HHP model was trained on 2,000 generated sequences, with a latent dimension of  $d = 32$ , a  
1097 hidden dimension of  $h = 8$  for a single-layered GRU, and only  $r = 2$  predicted component blocks  
1098 for the eigenvectors. The resulting model possesses 1328 parameters. The rest of the training details,  
1099 e.g., epochs, batch-size, etc., are identical to the main set of experiments.  
11001121 Figure 4: Visualization of ten example sequences drawn from the data generating process that was  
1122 analyzed in Section 6.1. Trigger events are overlaid with dots for better readability.  
11231124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
1132  
1133

1134 C.2 SECOND SCENARIO  
1135

1136 **Data Generating Process.** For this new scenario, we will simulate two processes separately and  
1137 then treat the superposition of them as a single sequence to model. The first process is simple, green  
1138 events are drawn from a Poisson process at rate  $\lambda = 1/2$ . For the second process, we will simulate a  
1139 sequence of pairs of call and response events. We will label a “call” event as blue and draw it from  
1140 an exponential distribution with rate  $\lambda = 1/15$ . After drawn, the “response” event, which we will  
1141 denote as orange, has its time equal to the call event plus a random offset drawn from  $\mathcal{N}(10, 0.01)$ .  
1142 Afterwards, another call event is drawn offset from the previous response with the same exponential  
1143 distribution as before, and so on. The superposition of the two produces a sequence with three  
1144 possible marks, spanning  $t \in [0, 100]$ . See Appendix C.2 for example sequences generated under this  
1145 process.

1146 We trained an HHP model on 2,000 generated sequences from this process. The rest of the training  
1147 setup is identical to the previous synthetic scenario.

1148 **Aggregate Statistics.**

1149 While the interpretability of HHP is uniquely suited towards event-level attribution, marginal effects  
1150 are still possible. These can be achieved by aggregating the leave-one-out estimators across multiple  
1151 events and sequences. For instance, we can get a broad sense of how the model chooses to leverage  
1152 particles of various types by understanding the general distribution of the total influence these particles  
1153 have on the output. This can be measured on a per-event basis via  $\sum_{m=1}^K \text{DF}[\Lambda_T^m]$  where  $T$  is the  
1154 length of the time window. This value describes the total influence that a given particle has had over  
1155 its entire lifetime and is measured on the scale of number of events.

1156 Appendix C.2 shows the distribution of these lifetime influences grouped by the events’ marks.  
1157 We can see that in general, green events are quickly discarded by the model as they do not have  
1158 much lasting influence over future events. This makes sense given that these were generated by  
1159 a background process and have no influence over other events. Conversely, the call (blue) events  
1160 are shown to have a stronger influence over their lifetime, averaging a total influence of roughly 2  
1161 events. Since we know that the true data generating process will alternate call and response events in  
1162



Figure 5: Visualization of ten example sequences drawn from the data generating process in the  
second synthetic scenario. Call (blue) and response (orange) events are overlaid with dots for better  
readability. Note that a response event can only occur after a call event has happened, and vice versa,  
regardless of how many or few green events occur in the interim.



Figure 6: Displayed is the density of lifetime total influence  $\sum_{m=1}^K \text{DF}|\Lambda_T^m|$  that individual particles have on the model’s predictions, aggregated over every event from all sequences in the generated data. Each density plotted corresponds to the particle’s mark.

a ratio of 1:1, it appears that the model leverages these particles past the subsequent response event prediction. This is mirrored by the response events having more influence than the green events but still less than 1 event on average. To better understand this, we will dive deeper and analyze how the model responds to events from a single sequence.

#### Output Intensities.

We have chosen a held-out sequence chosen at random from the data generating process. Appendix C.2 shows the resulting predicted intensities that the HHP model produces when conditioned on the sequence. We can see that when a call (blue) event occurs, the intensity for both call and response (orange) events drop to near zero (but never exactly zero due to  $\sigma(z) \in (0, \infty)$ ). These values remain there until about 10 units of time later when the response intensity spikes. Then after a response event occurs, the intensities reset back to normal. All the while the green intensity is roughly stable and unresponsive to any ongoing events, which mirrors the true generation process. For the remainder of this section, this sequence will be used for subsequent analysis.

#### Individual Effects.

Now that we have selected a sequence and observed the overall output intensity from the model, we can dive deeper and understand how each event’s particle is being used by the model to influence the output. In Appendix C.2, we plot for each particle in the sequence the entire trace of  $\text{DF}\lambda_t^{1:K}$  for  $t \in [0, T]$ . This showcases the first-order effects that the particle has over time on each output marked intensity for the model.

There are a number of interesting effects and patterns that give us a glimpse into how the model is choosing to arrive at its predictions. First, we can see that most of the events leading up to the first response (orange) event all appear to be leveraged by the model to spike and excite a response event to occur. Strangely, there are a couple of events that are also used to inhibit the response event just before it occurs as well. This indicates that in latent space there is likely a complex push-pull



Figure 7: On top are the model’s predicted intensities, each line corresponding to a mark matching in color. On bottom is the corresponding sequence the model is conditioning on to produce the above intensities. Note that when a blue event occurs, the orange and blue intensities drop to near zero, only to have an orange intensity spike around 10 units of time later.

between particles in an attempt to arrive at what we know to be a correctly timed, large excitation for the response event, as indicated in Appendix C.2.

After this first response event occurs, we can see the particles are effectively killed thereafter as they have little to no influence moving forward. In a way, it is as if the model has reset at this point. Resetting after a response event does not always seem to be the case though for the rest of the sequence. We can see some particles contribute to spiking for both of the last two response events in the sequence. When debugging a model, insights like this can help give inspiration for attempting new mechanisms to help guide these various behaviors, like resetting.

### Joint Effects.

While this is a large amount of information available to mine, it is important to note that these signals pertain to *per-event* effects. They are just analyzing how the model outputs would differ if that single particle were not present; however, we know that many particles can interact in latent space and produce greater effects than just the sum of their individual effects. To this end, we can also measure higher-order effects, as mentioned in the main paper.

In Appendix C.2, we showcase a heatmap of the interaction effects of pairs of particles in an attempt to visualize how “coupled” a pair is. This is measured as the absolute difference in total joint lifetime influence of a pair of events,  $DF|\Lambda_T^{(i,j)}|$ , and the naive first-order estimation of this effect,  $DF|\Lambda_T^{(i)}| + DF|\Lambda_T^{(j)}|$ . This can be thought of as the DFBETA for a linear regression model’s interaction term, i.e., measuring effect of  $\beta_{12}$  by comparing  $\hat{y} = \beta_1 x_1 + \beta_2 x_2$  to  $\hat{y} = \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$ . While the resulting scale is on the order of number of events, it should be noted that this does not measure how strong the influence a pair of events is, but rather just how much do the two particles interact with one another.

In the figure we can see interesting patterns emerge. Namely, we see strong interaction effects between the call (B) / response (O) events and all other events, as indicated by the highlighted columns and rows. From this, we know that the model is not choosing dynamics that move these individual particles in isolation, but rather are positioning them contextually amongst all other particles and relying on them to constructively or destructively interfere with one another w.r.t. the output intensities. Additionally, we can see a large bright spot in the middle of the heatmap near where two pairs of call and response events occurred right after one another. This correlates with the

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344



Figure 8: **Please view as a PDF to zoom in to details.** For the same sequence showcased in Appendix C.2, the individual  $DF\lambda_t^{(i)}$  values over time for a particle are displayed with the top-most plot showing the first event,  $i = 1$ , and second-to-last showing the last event,  $i = N_T$ . The color of the dashed line in each subplot indicates the mark of the particle being displayed. The colors of the solid lines indicate the instantaneous influence that particle has over future events of that color.



Figure 9: A heatmap measuring how “coupled” pairs of events are for the sequence showcased in Appendix C.2. Events are ordered as first to last from top to bottom and from left to right. Call (blue) and response (orange) events are labeled with ‘B’ and ‘O’, respectively, with green events having no label. Higher values indicate tighter coupling and values close to zero indicate no coupling.

individual effects we saw earlier in that there were particles that were leveraged for multiple response excitations.

#### Retrospective Attribution.

Lastly, it is worth demonstrating that the proposed tools can also be used to pinpoint specific information. To that end, we will showcase one view into what events contribute towards the occurrence of a specific event. Put differently, given that an event occurred, how much did each prior event either excite or inhibit that occurrence?

To measure this, say that the specific event in question is the  $i^{\text{th}}$  event that occurred at time  $t_i$  with mark  $k_i$ . The influence, positive or negative, that the  $j^{\text{th}}$  event for  $j < i$  has is measured by  $\text{DF}\lambda_{t_i}^{k_i(j)}$ . We have shown this breakdown for the three response (orange) events and the influence that all events prior to them had. From this view, it becomes apparent the strong influence that the call (blue) events have on the response, and specifically the most recent call events. These values in this perspective can be roughly treated as attention scores; however, the scale of them is on the same order of intensities so the magnitude is meaningful. Additionally, unlike attention in multi-layer transformers, these statistics were derived from the linear recurrence bottleneck for HHP, which makes these values clearly tied to the events they represent.



Figure 10: Retrospective attributions for the three response (orange) events from the sequence showcased in Appendix C.2, with the top corresponding to the first response event and the bottom to the last. Bars indicate the instantaneous contributions that a prior event had towards the response event. More exactly, the  $i^{\text{th}}$  bar displays  $\text{DF} \lambda_{t_j}^{k_j(i)}$  where  $j$  is the index of the response event. Bars are colored by the corresponding event's mark  $k_i$ .