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ABSTRACT

Foundational marked temporal point process (MTPP) models, such as the Hawkes
process, often use inexpressive model families in order to offer interpretable pa-
rameterizations of event data. On the other hand, neural MTPPs models forego
this interpretability in favor of absolute predictive performance. In this work, we
present a new family MTPP models: the hyper Hawkes process (HHP), which aims
to be as flexible and performant as neural MTPPs, while retaining interpretable
aspects. To achieve this, the HHP extends the classical Hawkes process to increase
its expressivity by first expanding the dimension of the process into a latent space,
and then introducing a hypernetwork to allow time- and data-dependent dynamics.
These extensions define a highly performant MTPP family, achieving state-of-the-
art performance across a range of benchmark tasks and metrics. Furthermore, by
retaining the linearity of the recurrence, albeit now piecewise and conditionally
linear, the HHP also retains much of the structure of the original Hawkes process,
which we exploit to create direct probes into how the model creates predictions.
HHP models therefore offer both state-of-the-art predictions, while also providing
an opportunity to “open the box” and inspect how predictions were generated.

1 INTRODUCTION

In modern machine learning, the pursuit of predictive accuracy often comes at the expense of inter-
pretability. This trade-off is especially pronounced in marked temporal point processes (MTPPs):
classical models such as the Hawkes process (Hawkes, 1971) offer transparent parameters but underfit
real-world data; while neural models such as the neural and transformer Hawkes processes (Mei
and Eisner, 2017; Zuo et al., 2020) achieve state-of-the-art performance but lack clear mechanisms
for attributing predictions to specific past events. General interpretability methods for neural net-
works (Räuker et al., 2023; Chefer et al., 2021; Rai et al., 2024; Maheswaranathan and Sussillo, 2020)
tend to be indirect or ambiguous, leaving no MTPP approach that combines strong predictive power
with precise, event-level interpretability.

We introduce the hyper Hawkes process (HHP), a new family of intensity-based MTPP models
designed to close this gap. Our HHP is illustrated in Figure 1. The HHP extends the classical
Hawkes process by (i) lifting recurrent dynamics into a latent space, decoupling them from mark
dimensionality, and (ii) using a history-dependent hypernetwork (Ha et al., 2017) to adapt dynamics
over time conditioned on the event history. These extensions enhance expressivity while preserving
the linear recurrence and branching structure of Hawkes processes. We then exploit this for efficient
event-level attribution using influence measures inspired by linear regression diagnostics, such as
DFBETA and DFFIT (Belsley et al., 2005). Through extensive empirical evaluation on real-world
datasets, we find that HHP consistently outperforms both classical and state-of-the-art MTPP models.

Our main contributions are:

• We propose the hyper Hawkes process (HHP), combining the interpretability of classical models
with the expressivity of neural architectures.

• We demonstrate, through extensive experiments, that HHP achieves state-of-the-art or near state-of-
the-art performance on real-world MTPP benchmarks.

• We then develop efficient, per-event attribution methods exploiting the structure of the HHP,
enabling direct insight into model mechanics, and explore these on synthetic tasks.
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Table 1: [Added] Summary of the emperical performance of the hyper Hawkes process (HHP) we
introduce in this work. We show model rankings across six different metrics, each an average across
seven different real-world datasets [Added] and five randomly initialized models, and an aggregated
composite ranking, averaging the per-metric ranks. Bold entries correspond to best result, and
underlined for second-best. Lower ranks indicate better performance. [Added] Full numerical results
for all metrics and models are included in Table 2, Table 5 and Table 6.

Time Metrics Mark Metrics Composite
Model Likelihood RMSE PCE Likelihood Accuracy ECE Rank
RMTPP (Du et al., 2016) 7.0 5.1 5.6 6.9 6.6 6.0 6.2
NHP (Mei and Eisner, 2017) 4.3 3.1 5.6 3.3 2.3 5.0 3.9
SAHP (Zhang et al., 2020) 5.9 4.9 5.4 7.4 7.1 7.1 6.3
THP (Zuo et al., 2020) 7.6 4.6 5.3 6.0 6.1 5.1 5.8
IFTPP (Shchur et al., 2020) 2.9 5.4 2.3 4.9 5.1 1.9 3.7
AttNHP (Yang et al., 2022) 4.1 6.7 4.6 3.3 3.6 3.6 4.3
S2P2 (Chang et al., 2025) 1.7 2.6 3.4 2.4 2.4 3.4 2.7
HHP (Ours) 2.6 2.3 3.9 1.9 1.9 3.7 2.7

Event
history

Hyper
network

High-
dimension

linear
dynamics

Intensity
projection

Figure 1: [Added] High-level schematic of the proposed hyper Hawkes process (HHP). The bottom
row shows the sequence of marked events. These are input into a hypernetwork, with transition
function f . We use a regular GRU throughout this work for the hypernetwork. The hypernetwork
outputs the dynamics of a generalized linear Hawkes process, the flow fields for which are shown.
These dynamics are then projected into intensity space. Crucially, these intensities can be decomposed
into individual particles each attributed to a single event, shown as different colored lines in the flow
field, which are summed over and transformed to create the intensities. At a given point in time,
these particles are aggregated to produce the model’s predicted intensity. This allows us to create a
highly expressive model (through the time-dependence of the hypernetwork and the high-dimensional
diagonalized linear dynamics), but where event-level attribution is possible through the particle-level
decomposition.

Paper Outline. In Section 2 we introduce the background strictly necessary for defining and
understanding our hyper Hawkes process as a “black-box” MTPP model. In Section 3 we introduce
the HHP as a black-box MTPP model, and evaluate its predictive performance on real-world datasets
in Section 5. In Section 6 we explore and demonstrate on synthetic data how the HHP design naturally
provides interpretability. We conclude in Section 7 with a critical discussion and future directions.

2 TEMPORAL POINT PROCESSES BACKGROUND

2.1 MARKED TEMPORAL POINT PROCESSES

In this paper we consider a marked temporal point process as a discrete and finite sequence of
time-mark pairs, Ht := {(ti, ki) | ti ≤ t for i ∈ N}, where ti ∈ R, ti−1 < ti∀i, ki ∈ M,

2
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M := {1, . . . ,K}, and Ht is referred to as an event history. We also define Ht− similarly to Ht,
except excluding events at exactly time t. Although we do not consider it here, note that M can be a
more general space, such as countable or continuous.

One method for parameterizing an MTPP is using a marked intensity process. The intensity λt :=
[λ1

t , . . . , λ
K
t ]⊤ ∈ RK

≥0 defines the rate of occurrence of events:

λk
t dt := E [event of type k occurs in [t, t+ dt] | Ht−] . (1)

The total intensity is then the rate that any event occurs, λt :=
∑K

k=1 λ
k
t . It can then be shown that

the log-likelihood for a sequence HT is defined as (Daley and Vere-Jones, 2003, ch. 7.3):

L(HT ) :=
∑NT

i=1
log λki

ti −
∫ T

0

λsds. (2)

To train an MTPP, we can optimize L(HT ) over observed data (see, e.g., Mei and Eisner (2017)).

2.2 HAWKES PROCESSES

The Hawkes process (Hawkes, 1971) is a widely studied temporal point process that allows for the
occurrence of events to encourage further occurrences soon thereafter, a property often referred to as
self-excitation. This family of processes is characterized by an intensity that takes the form:

λt = σ

(∫ t−

0

ϕ(t− s)dNs

)
≡ σ

(∑Nt−
i=1 ϕ(t− ti)

)
, (3)

where σ : R → R+ ensures the intensity is non-negative, and the excitation function ϕ : R+ → R
encodes the influence prior events have on the rate of occurrence for future events.

The linear Hawkes process is a common and appealing variant, employing an exponential kernel
for the excitation function yielding: λt = µ+

∑Nt−
i=1 α exp(−β(t− ti)). where µ, α, β ∈ R+. The

exponential kernel in particular makes the process Markovian, allowing us to describe the intensity
function in the differential form of λt = µ+ xt− where dxt = −βxt + αdNt. This can easily be
extended to accommodate K categorical marks by generalizing the impulse and rate parameters into
positive matrices α,β ∈ RK×K

+ leading to the following marked intensity process:

dxt = −βxt−dt+αdNt; λt = µ+ xt−, (4)

where µ ∈ RK
+ is the vector of background intensities for different marks, dNt ∈ {0, 1}K is 0 when

no event occurs and a one-hot vector corresponding to the mark k that occurs at time t, and x0 = 0.
From this form, we can compute the left limit of the intensity at the next event, given a right limit
xti for time ti, in closed form as: xti+1

= e−β(ti+1−ti)xti , where ti < ti+1 and no event occurred
between ti and ti+1. Hawkes processes such as this are widely used in statistical inference settings,
due to β and α being directly interpretable by describing marginal event-to-event effects.

3 HYPER HAWKES PROCESSES

We now introduce the core of our hyper Hawkes process (HHP). First, we start by identifying the
key mechanism that allows classical Hawkes processes to identify the effect that a given event has
on future intensities. We then extend the Hawkes process to be more flexible and performant while
retaining the identifiable event-level effects. Lastly, we briefly discuss how the HHP is implemented
in practice. Note that we defer discussion on exactly how to interpret the model to Section 6.

3.1 EVENT-LEVEL EFFECTS IN HAWKES PROCESSES

As shown in Equation (3), classical Hawkes processes are formally defined by their rectification
function σ and their excitation function ϕ. While ϕ is often parameterized to isolate marginal direct
effects of events of one type to another (e.g., through β and α for linear Hawkes processes), they
actually also provide event-level attribution. In particular, ϕ(t− ti) directly encodes how much the
ith event is exciting or inhibiting an event occurrence at time t. ϕ(t− ti) could even be generalized

3
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to conditional ϕi(t;Ht) and this effect would still be identifiable so long as the final intensity is a
monotonic transform of a linear combination of these effects: λt = σ(

∑Nt−
i=1 ϕi(t;Ht−)). It should

be noted that the linear Hawkes process maintains this property through the linearity of the recurrence
relation, as for t ∈ (ti, ti+1] it holds that:

xt− = e−β(t−ti)xti = e−β(t−ti)(xti− +αki
) = · · · =

i∑

j=1

e−β(t−tj)αkj
.

3.2 GENERALIZING HAWKES PROCESSES

While the linear Hawkes process (LHP) is widely used in statistical inference because of its inter-
pretability, the model itself is not very expressive: the parameterization only allows excitation, the
recurrence is directly coupled to the intensity, and the dynamics are time-invariant. We generalize the
LHP by tackling these weaknesses in-turn below; all while ensuring that interpretable event-level
effects are maintained by ensuring the recurrence relation remains linear.

Increasing the Latent Dimension. The LHP has limited expressivity because each recurrent
dimension ties one-to-one with an output intensity, i.e., changing dimension k in xt only affects
λk
t . This is akin to using an RNN’s hidden state directly as output (ŷi := hi) rather than applying a

transformation (ŷi := σ(Whi + b)). Additionally, β and α are parameterized to be strictly positive,
thus only allowing for excitation and not inhibition. We address both of these issues this by lifting
the dynamics into a latent space:

dxt = −βxt−dt+αdNt; λt = σ(µ+Wxt−), (5)

where β,α ∈ Rd×d, W ∈ Rd×K , µ ∈ RK , and σ(z) = log(1 + ez) is the softplus. This
decouples the recurrent dimension d from the number of marks K, while σ ensures inhibitory
effects still result in a nonnegative intensity. This increases expressivity when d > K, or, prevents
O(K2) parameter scaling when K is large by setting d < K. While α and β become less directly
interpretable, event-specific effects remain identifiable through the projection of the latent particles
W exp(−β(t− ti))αki

.

Adding Time-Variation through Hypernetworks. Even in this expanded space, the model is
limited in its expressivity because of the linearity of the recurrence relation and the time-invariant
dynamics. In general, RNNs (such as GRUs) do not suffer from this problem due to the nonlinearity
applied when propagating the hidden state. Unfortunately, this is undesirable as it removes identifiable
contributions, complicating the model interpretability (see the extensive literature on interpreting
non-linear RNNs in even simple tasks, e.g. Miconi (2017); Maheswaranathan and Sussillo (2020)).

An alternative, therefore, is to retain the linearity of the recurrence, but make the dynamics vary
across time, i.e., β becomes βt. We could trivially make the dynamics mark-specific, only depending
on the most recent event, but subsequent events will critically suppress the enduring influence that
each previous event can exert. Therefore we instead introduce a hypernetwork (Ha et al., 2017), fθ,
that predicts the dynamics as a function of the history. The resulting recurrence relation is:

dxt = −βtxt−dt+αdNt; βt = fθ(Ht); λt = σ(µ+Wxt−). (6)

We experimented with predicting history-dependent α, however, we found it only had a marginal
impact on performance, and greatly detracts the interpretability arguments presented in Section 6.
We therefore do not create history-dependent impulses, and only utilize fixed impulses. Even with
static impulses, Equation (6) now defines highly expressive non-linear latent dynamics as a function
of individual event sequences. We use a standard multi-layer GRU as the hypernetwork throughout.
[Added] This is because the GRUs widely-available and highly optimized implementation, linear
work complexity, and good generalized performance. The “HHP” architecture is not fundamentally
tied to this choice, however, and exploration of alternative hypernetwork architectures is interesting
future work.

Efficient and Expressive Parameterization. The final component is selecting a parameterization
for how fθ generates βt that is both efficient and expressive. For efficiency, we use closed-form
updates similar to the time-invariant setting by making βt piecewise-constant between events. To
avoid an expensive matrix exponential, we use a diagonal parameterization of β. This leads to
βt := ViDiV

−1
i for t ∈ (ti, ti+1], where Vi,Di ∈ Cd×d and Di is diagonal, representing the

4
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eigenvectors and eigenvalues of βt respectively. The parameters Vi and Di are predicted by the
hypernetwork fθ(Hti). For stability, we parameterize ℜ(Di) < 0 and Vi to be unitary (Jing et al.,
2017), so that V−1

i ≡ V∗
i . This leads to the final HHP update equation:

xt = Vie
Di(t−ti)V∗

i xti +αki+1
1(t = ti+1); Vi,Di = fθ(Ht); λt = σ(µ+Wxt−), (7)

for t ∈ (ti, ti+1], and eDi(t−ti) is applied element-wise as Di is a diagonal matrix. Extensive details
on this and the implementation of the architecture can be found in Appendix A.

While keeping Vi constant would be simpler and more computationally efficient, we instead update
the eigenvectors after each event to enhance expressiveness. Because the Hawkes process is a
state-space model (Chang et al., 2025), the results of Merrill et al. (2024a) apply: if the time-varying
dynamics βi are not simultaneously diagonalizable (i.e., Vi ̸= Vj), then despite the linearity of the
recurrence, the model exhibits state-tracking capabilities comparable to those of RNNs.

Summary. We briefly summarize the HHP model we have proposed. A (nonlinear) hypernet-
work consumes the event history, and outputs piecewise constant dynamics parameters for a high-
dimensional linear recurrence with learned impulses at events. We parameterize the dynamics in
a per-event eigenbasis also predicted by the hypernetwork. This allows for efficient closed-form
computation of updates to the latent state in continuous time to time points of interest. We then
decode the latent state by projecting it into the intensity space and applying a rectification function
to ensure intensities are non-negative. This allows us to define a highly flexible intensity-based
neural MTPP that we can efficiently evaluate at any time point, but that has a (conditionally) linear
recurrence which will serve as a “bottleneck” that we can inspect, as we explore in Section 6.

4 RELATED WORKS

Neural MTPPs. Marked temporal point processes (MTPPs) model both event timing and type in
continuous time, often via intensity functions (Daley and Vere-Jones, 2003). Early work relied on
parametric forms, such as self-exciting Hawkes processes (Hawkes, 1971; Liniger, 2009). Recent
advances leverage neural architectures for flexible conditional intensity modeling, including RNN-
based models (Du et al., 2016; Mei and Eisner, 2017), CNNs (Zhuzhel et al., 2023), transformer-based
approaches (Zhang et al., 2020; Zuo et al., 2020; Yang et al., 2022), and deep state space models (Gao
et al., 2024; Chang et al., 2025). Intensity-free alternatives have also emerged, using normalizing
flows (Shchur et al., 2020; Zagatti et al., 2024), neural processes (Bae et al., 2023), and diffusion-
based models (Zeng et al., 2023). Despite these developments, intensity-based methods remain
dominant due to their structural simplicity and fewer modeling assumptions.

Interpretable MTPPs. The original Hawkes process offered a transparent parameteriza-
tion (Hawkes, 1971), but many neural MTPPs (e.g., transformer Hawkes (Zuo et al., 2020), intensity-
free TPP (Shchur et al., 2020)) prioritize predictive accuracy over interpretability. Meng et al. (2024)
introduce a single-layer attention model, enabling easy inspection of pairwise contributions, while
Song et al. (2024) propose neural ODEs parameterized by event type which are aggregated post-
activation. These choices aid interpretability but restricts interactions to pairwise and excitatory
interactions. Our HHP addresses these limitations by supporting both excitatory and inhibitory effects,
while still capturing higher-order interactions among multiple events through the hypernetwork. Rule-
based approaches (Li et al., 2022; Yang et al., 2024; Li et al., 2020) provide interpretable boolean
rules, but require large rule sets or soft weighting, which can reduce clarity and expressivity.

Deep State Space Models and State Tracking. Chang et al. (2025) identified a connection between
conventional linear Hawkes processes and modern deep state space models (Gu et al., 2022; Smith
et al., 2022; Gu and Dao, 2023). Their S2P2 architecture uses deep stacks of linear-Hawkes-like
layers, with only the time-constants of the dynamics matrix being data-dependent. In contrast, we
use a single linear Hawkes layer with the both time constants D and eigenvectors V being data
dependent. This was inspired by a finding by Merrill et al. (2024b) that found that non-simultaneously
diagonalizable dynamics (i.e., having variable eigenvectors) greatly increased SSM expressivity.

5
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5 EXPERIMENTS

We evaluate the HHP on common TPP benchmarks, finding that our approach achieves state-of-the-art
predictive performance, even before consideration of interpretability. Please see Appendix B for full
hyperparameter selections and search configurations for all models and experiments.

Datasets. We evaluate our HHP and baseline models on seven widely used, real-world MTPP
datasets. These datasets are: Amazon reviews (Ni et al., 2019), Retweet cascades (Zhao et al., 2015),
Taxi pickups (Whong, 2014), Taobao purchases (Xue et al., 2022), StackOverflow posts (Leskovec and
Krevl, 2014), Last.fm listening patterns (Celma Herrada et al., 2009), MIMIC-II medical events (Saeed
et al., 2002). We provide more details on each dataset and their preparation in Appendix B.

Evaluation Metrics. We evaluate the per-event log-likelihood as our primary measure of perfor-
mance. This is both what the models are trained to optimize and is a proper scoring metric (Heinrich-
Mertsching et al., 2024). In Table 5 we separate the log-likelihood into the likelihoods for both times
and marks to further interrogate the models performance. As more interpretable summary metrics,
we also compute the RMSE of the next event time prediction and the average accuracy of the next
mark type prediction. Finally, we also evaluate calibration, which provides a measure of how well the
model quantifies the uncertainty in its predictions (Bosser and Taieb, 2023). We defer the calibration
results to Appendix B. In Table 1, following (Chang et al., 2025), we also provide a “composite
metric”, aggregating performance across all metrics on all datasets.

Ablations. As mentioned previously, the HHP generalizes the linear Hawkes process in various
ways. To assess each extension, we also measure the performance of three different ablations: (i)
HHP¬Stateful, which disables the “statefulness” by setting the eigenvectors to a learned constant basis1,
Vi = V; (ii) HHP¬Hyper, which disables the hypernetwork entirely, βi = β; and (iii) HHP¬Latent,
which both disables the hypernetwork and removes the latent space, setting d = K and W = I.

Results. Results are presented in Table 2. Most importantly, we see that our HHP performs on par or
better than almost all existing baseline models across all datasets, only being narrowly outperformed
on average by S2P2 (Chang et al., 2025) in terms of log-likelihood. Notably, HHP achieves this
level of performance while using, on average, 54% fewer parameters than S2P2 across datasets. For
both next event time and mark prediction, HHP is the clear leading model with average ranks of 1.4
and 1.7, respectively. [Added] We defer full calibration results to the appendix, but we find that all
models are comparably calibrated, with no stand-out winner. Furthermore, a better calibrated model
is not a guarantee of better predictions, and therefore should always be considered alongside purely
predictive metrics.

Interestingly, we see that while the statefulness of the HHP does have a marked impact on performance,
even without it, the model HHP¬Stateful is still competitive. Perhaps even more surprising is that, even
with static dynamics, HHP¬Hyper outperforms several baselines. This suggests that a major bottleneck
in the conventional Hawkes process was the tying of latent dimensions to the mark-space, as well as
that the basic form of the Hawkes process provides a strong inductive bias for MTPPs.

6 ON INTERPRETABILITY

As discussed in Sections 2 and 3, a key feature of both the linear Hawkes process and our proposed
HHP is the linear recurrence structure. This structure enables us to view the model equivalently as a
recurrence; or through a particle or branching process perspective where each event contributes a
distinct, trackable influence on future predictions. By leveraging this property, we can attribute model
outputs to specific past events, providing a key foundation for interpretability. In the following, we
introduce practical tools that exploit this structure and demonstrate their utility on synthetic data.

6.1 PRACTICAL INTERPRETABILITY TOOLS FOR HHP

Using the linear recurrence of HHP, we can directly probe how individual events influence the model’s
predictions. In this subsection, we introduce a suite of practical tools that leverage this structure,

1[Added] Note: this is also equivalent to the case where βt is constrained to be a diagonal matrix, as B and
C are unconstrained, effectively setting Vi = I.

6
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Table 2: Quantitative results for TPP models across datasets. Bold entries correspond to best result,
and underlined for second-best, amongst baselines and main proposed method*. [Added] Shown are
the means and (standard deviations) across five randomly initialized models.

(a) Per event log-likelihood. Higher log-likelihood values indicate better performance.
Per Event Log-Likelihood, LTotal (nats) (↑) Average

Model Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II Rank* (↓)
RMTPP (Du et al., 2016) -2.136 (0.003) -7.098 (0.217) 0.346 (0.002) 1.003 (0.004) -2.480 (0.019) -1.780 (0.005) -0.472 (0.026) 7.3
NHP (Mei and Eisner, 2017) 0.129 (0.012) -6.348 (0.000) 0.514 (0.004) 1.157 (0.004) -2.241 (0.002) -0.574 (0.011) 0.060 (0.017) 4.0
SAHP (Zhang et al., 2020) -2.074 (0.029) -6.708 (0.029) 0.298 (0.057) 1.168 (0.028) -2.341 (0.058) -1.646 (0.083) -0.677 (0.072) 6.6
THP (Zuo et al., 2020) -2.096 (0.002) -6.659 (0.007) 0.372 (0.002) 0.790 (0.002) -2.338 (0.014) -1.712 (0.011) -0.577 (0.011) 6.6
IFTPP (Shchur et al., 2020) 0.496 (0.002) -10.344 (0.016) 0.453 (0.002) 1.318 (0.017) -2.233 (0.009) -0.492 (0.017) 0.317 (0.052) 3.6
AttNHP (Yang et al., 2022) 0.484 (0.077) -6.499 (0.028) 0.493 (0.009) 1.259 (0.022) -2.194 (0.016) -0.592 (0.051) -0.170 (0.077) 3.9
S2P2 (Chang et al., 2025) 0.781 (0.011) -6.365 (0.003) 0.522 (0.004) 1.304 (0.039) -2.163 (0.009) -0.557 (0.046) 0.919 (0.069) 1.7
HHP (Ours) 0.616 (0.016) -6.366 (0.007) 0.520 (0.003) 1.232 (0.014) -2.209 (0.006) -0.515 (0.006) 1.314 (0.048) 2.4

HHP¬Stateful 0.606 (0.006) -6.370 (—) 0.508 (0.004) 1.249 (0.004) -2.195 (0.006) -0.572 (—) 1.114 (0.032) 2.7
HHP¬Hyper (Ablations) 0.514 (0.012) -6.796 (—) 0.469 (0.001) 1.224 (0.002) -2.246 (0.004) -1.028 (—) 0.305 (0.036) 4.1
HHP¬Latent -0.170 (0.061) -6.880 (—) 0.237 (0.024) 1.150 (0.005) -2.374 (0.002) -1.390 (—) -0.533 (0.010) 6.1

(b) Prediction RMSE of the next event time prediction. Lower RMSE values indicate better performance.
RMSE, LTotal (↓) Average

Model Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II Rank* (↓)
RMTPP (Du et al., 2016) 0.338 (0.000) 16488 (070.5) 0.283 (0.001) 0.126 (0.000) 1.049 (0.003) 15.873 (0.000) 0.749 (0.010) 5.1
NHP (Mei and Eisner, 2017) 0.339 (0.000) 15911 (004.0) 0.282 (0.001) 0.126 (0.000) 1.019 (0.001) 15.733 (0.008) 0.726 (0.001) 3.1
SAHP (Zhang et al., 2020) 0.335 (0.001) 16102 (062.4) 0.290 (0.008) 0.126 (0.000) 1.031 (0.011) 15.757 (0.007) 1.142 (0.198) 4.9
THP (Zuo et al., 2020) 0.332 (0.000) 16268 (018.7) 0.285 (0.001) 0.125 (0.000) 1.033 (0.005) 15.871 (0.000) 0.768 (0.005) 4.6
IFTPP (Shchur et al., 2020) 0.327 (0.000) 16625 (000.2) 0.362 (0.178) 0.125 (0.000) 1.340 (0.724) 16.508 (0.555) 0.767 (0.029) 5.4
AttNHP (Yang et al., 2022) 2.656 (1.950) 16171 (284.2) 1.739 (0.422) 0.130 (0.000) 1.256 (0.030) 15.865 (0.017) 0.860 (0.022) 6.7
S2P2 (Chang et al., 2025) 0.327 (0.000) 15987 (013.7) 0.281 (0.000) 0.126 (0.000) 1.014 (0.001) 15.720 (0.000) 0.894 (0.054) 2.6
HHP (Ours) 0.324 (0.000) 15590 (011.3) 0.281 (0.001) 0.127 (0.001) 1.016 (0.001) 15.741 (0.033) 0.714 (0.013) 2.3
HHP¬Stateful 0.325 (0.000) 15559 (—) 0.283 (0.000) 0.125 (0.000) 1.017 (0.002) 15.793 (—) 0.720 (0.014) 1.9
HHP¬Hyper (Ablations) 0.328 (0.001) 15516 (—) 0.283 (0.000) 0.125 (0.000) 1.025 (0.000) 15.831 (—) 0.772 (0.006) 2.9
HHP¬Latent 0.339 (0.002) 15672 (—) 0.294 (0.002) 0.126 (0.000) 1.038 (0.001) 15.888 (—) 0.804 (0.010) 4.7

(c) Mark prediction accuracy for the next event. Higher accuracy values indicate better performance.
Accuracy, LTotal (↑) Average

Model Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II Rank* (↓)
RMTPP (Du et al., 2016) 30.8 (0.1) 53.4 (0.6) 91.4 (0.1) 60.9 (0.1) 45.6 (0.3) 52.5 (0.1) 92.3 (0.3) 6.6
NHP (Mei and Eisner, 2017) 39.4 (0.1) 61.4 (0.0) 92.9 (0.1) 61.5 (0.2) 47.1 (0.1) 56.5 (0.1) 94.3 (0.0) 2.3
SAHP (Zhang et al., 2020) 32.4 (1.0) 57.5 (2.2) 91.4 (0.7) 60.5 (0.2) 44.7 (2.0) 51.8 (0.7) 86.8 (0.9) 7.1
THP (Zuo et al., 2020) 34.6 (0.1) 60.2 (0.1) 91.4 (0.0) 60.0 (0.0) 46.6 (0.2) 53.3 (0.1) 90.9 (0.2) 6.1
IFTPP (Shchur et al., 2020) 35.9 (0.1) 50.4 (2.5) 91.8 (0.0) 61.0 (0.1) 45.6 (0.1) 56.4 (0.1) 93.4 (0.1) 5.1
AttNHP (Yang et al., 2022) 38.9 (0.9) 60.7 (0.2) 92.6 (0.1) 61.3 (0.2) 48.2 (0.2) 55.8 (0.6) 92.9 (0.6) 3.6
S2P2 (Chang et al., 2025) 40.7 (0.0) 61.3 (0.0) 93.1 (0.1) 61.1 (0.1) 47.5 (0.3) 55.8 (0.4) 96.0 (0.4) 2.4
HHP (Ours) 40.8 (0.1) 61.2 (0.0) 93.0 (0.0) 61.4 (0.1) 47.1 (0.1) 56.6 (0.0) 96.9 (0.2) 1.9
HHP¬Stateful 40.9 (0.1) 61.1 (—) 92.9 (0.1) 61.7 (0.0) 47.3 (0.0) 56.4 (—) 96.8 (0.5) 1.9
HHP¬Hyper (Ablations) 40.3 (0.1) 57.2 (—) 92.4 (0.0) 61.4 (0.0) 46.8 (0.1) 53.5 (—) 95.0 (0.2) 3.6
HHP¬Latent 34.0 (1.5) 57.6 (—) 91.2 (0.2) 60.6 (0.1) 46.6 (0.0) 54.3 (—) 90.5 (0.3) 5.9

* Ablations are not included in main rankings. Ranks for ablations compare solely that ablations performance relative to the baselines.

enabling us to quantify, visualize, and interpret the contributions of specific events or groups of events
to the predicted intensity. These tools provide actionable insight into the model’s internal mechanism,
going beyond basic aggregate parameter inspection to per-event-level attribution instead.

Particle View. A central feature of both the linear Hawkes process (LHP) and the HHP is that the
model’s latent state at any time can be decomposed into a sum of event-specific contributions, which
we refer to as particles. Each particle encodes how the influence of a single past event on the current
state and predicted intensity evolves over time.

In the LHP, the effect of the ith event at time t is e−β(t−ti)αki , which we will denote as x(i)
t , and the

overall intensity is λt = µ+
∑Nt−

i=1 x
(i)
t . Each dimension of a particle encodes the degree to which

that event excites or inhibits future occurrences of a specific mark.

Our HHP preserves this structure, but with more expressive, history-dependent dynamics:

x
(i)
t := W

(∏Nt

j=i
Vje

Dj(min{t,tj+1}−tj)V∗
j

)
αki ; λt ≡ σ(µ+

∑Nt−
i=1 x

(i)
t ) (8)

where the product is taken from right to left in chronological order from event i to event Nt. This
captures how each event’s initial impact evolves through subsequent adaptive transformations. All
D and V values can be computed for the sequence, and then all particle positions can be efficiently
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computed in parallel.2 This decomposition allows us to isolate the contribution of each event to the
model’s latent state and, consequently, to the predicted intensity—providing direct insight into how
the model encodes memory, excitation, and inhibition across the event sequence.

Reflection: A key aspect of HHP’s design is that, after each new event, the updated dynamics apply
uniformly to all existing particles. Because there is no skip connection from the hypernetwork to the
output, the model cannot bypass the aggregation of particles to directly predict intensities; instead, it
must learn meaningful, event-driven dynamics that govern excitation and inhibition. As a result, the
hypernetwork orchestrates the implicit evolution and decay of particles, which can be viewed a form
of working memory, maintaining relevant information and enabling flexible prediction.

Leave-one-out. While particles isolate the effects that an event has on predictions through the
model, the values they hold are inherently contextual since they never act upon the outputs in isolation.
Due to the nonlinear rectification σ, the influence of a particle dλt/dx(i)

t depends on the superposition
of all other particles. To account for this, taking inspiration from the diagnostic tools DFBETA and
DFFIT used in linear regression (Belsley et al., 2005), we introduce leave-one-out estimators of a
particle’s influence on the output intensity termed DFλ where:

DFλ(i)
t := λt − σ

(
µ+

∑Nt

j=1x
(j)
t 1(j ̸= i)

)
. (9)

Here, DFλ(i)
t represents how the model chose to utilize the ith event’s particle to change the output

intensity. Values of 0 indicate no instantaneous influence on the output, positive values indicate
excitement, and negative values indicate inhibition. Note that we use parentheses to represent event
indices, not to be confused with mark-specific values. We can also compute a “total intensity” version,∑M

m=1 DFλ(i),m
t , corresponding to the amount of influence any event has on the occurrence of an

event of any type in the future. We visualize this quantity in Figure 2

Cumulative Effects. While DFλ captures instantaneous influence, it is often useful to understand
the total effect an event has over time. By integrating the influence of a particle across the prediction
horizon, we can capture its cumulative impact on the expected number or timing of future events.
We denote this as DFΛ where DFΛ(i)

t :=
∫ t

0
DFλ(i)

s ds. It should be noted that Λt :=
∫ t

0
λsds is

equivalent to E[Nt], thus we can conclude that DFΛ exists on the same scale as number of events.
Furthermore, it can be thought of as how many events the particle encouraged or inhibited, in
expectation, when acted upon by the model. Likewise, integrating DF|λ(i)

t | can measure the total
cumulative influence of a given particle, regardless if it excites or inhibits.

Group Influences. Finally, the linear structure of HHP enables us to extend these analyses to
groups of events. By jointly removing or modifying sets of particles, we can attribute model
predictions to combinations of events—such as all events of a certain type or within a specific
time window—shedding light on higher-order interactions and collective effects. This is achieved
simply by removing multiple particles when calculating the above metrics, e.g., DFλ(A)

t := λt −
σ
(
µ+

∑Nt−
j=1x

(j)
t−1(j /∈ A)

)
for A ⊂ N.

These tools collectively enable model-level event-attribution, providing understanding of how previ-
ous events influence future predicted intensities in models with rich dynamics. Such analysis can
assist in describing various temporal patterns that the model relies on in its predictions, which is
useful for providing descriptions of how models generate predictions. This addresses the gap identi-
fied earlier regarding interpretability and performance. [Added] Crucially, the number of particles
required is equal to the number of observations, and the leave-one-out (or leave-n-out) estimators are
linear combinations, and hence the analysis is very computationally cheap. The extensibility of this
analysis is a huge opportunity, because it allows the influence and interaction of multiple different
events the be efficiently analyzed, allowing, for instance, diagnosis comorbidities in healthcare. This
ameliorates the combinatorial cost of performing this analysis in conventional black-box neural
MTPP models.

2This particle decomposition is a conceptual and interpretive tool; during training and general inference, only
the total state xt is maintained, so there is no computational overhead from tracking individual particles.
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Figure 2: Visualizations of interpretability results presented in Section 6.1. Bottom left shows a
sequence of events where a blue or orange mark is repeated after a predictable time after a green
mark occurs. The top left is the model’s predicted marked intensities. Middle left showcases the total
DFλ values per event, with lines colored by the mark that spawned the particle. Right plots show
mark-specific DFλ trajectories for four particles in the highlighted time range (30, 70).

6.2 EMPIRICAL EXPLORATION

We now explore these estimators using a synthetic memory task, shown in Figure 2. Marks are drawn
sequentially from a homogeneous Poisson process, until a green “trigger” event is drawn, which
causes the previous mark to be repeated a predictable time later. In Figure 2 (top left) we show
the overall intensities learned by the model. We see that it successfully captures the homogeneous
Poisson occurrence of events, the zero intensity after trigger event, and the sharp spike of intensity
after the delay period, before returning to normal.

We then explore a learned HHP model using the leave-one-out estimators introduced above. In the
middle left panel, we show the time-evolution of the instantaneous total intensity attributed to each
source event. The occurrence of a green trigger event (specifically and identifiably) dramatically
inhibits the other marks during the delay period (seen by the negative green line during the delay
period), before causing the intensity to rise at the target event (seen by the green lines sharply spiking
upward), before returning to a quiescent position. We see also the blue and orange marks do not
actually contribute to any other intensity, indicating that the rise in the correct marks intensity is
attributed to the green event and the hypernetwork. This reduction highlights those events and
particles that are most responsible for future events and how.

In the right-hand figure we unpack the DFλ on a per-mark basis for examples of events that are
identified as responsible and not-responsible (two trigger events, 7 and 11; two non-trigger events,
6 and 10). We see the non-trigger events have almost no influence on any event, and trigger events
mediate the intensities of subsequent events as expected for (e.g.) the first response, driving exciting
orange at the right time and inhibiting blue. However, interestingly, for the second trigger, we see
that both trigger events are used to generate the swing in intensity for the response, highlighting that
truly separating causal effects in a flexible model, without direct injection of domain knowledge or
additional constraints, is not guaranteed. This is something we discuss below. Even with this, we
believe these estimators offer a unique and direct way to begin to understand the mechanisms that the
model uses to generate predictions, in a way that is not possible with other neural MTPPs. For more
details on this exploration, as well as a full analysis of another task, please see Appendix C.

6.3 INTERPRETING INTERPRETABILITY

Our notion of interpretability aligns in part with mechanistic interpretability as defined by Bereska
and Gavves (2024): we expose and interpret part of the actual computation used to produce outputs.

9
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The linear recurrence actually acts as a convenient bottleneck, allowing these meaningful probes to
be defined (interestingly also exploiting to linearity and superposition as defined by Bereska and
Gavves (2024)). Our description is however an incomplete interpretation, as particularly the internal
mechanisms in the GRU remain opaque. Another perspective, following Shmueli (2010), is that
the HHP is a predictive model, not an explanatory model: it forecasts future events, but does not
replicate the true generative process. Our interpretability constructs therefore describe the model’s
solution strategy, and not causal relationships. In short, HHP is a predictive model that also offers a
mechanistic description of its internal computation, and should not be confused with extracting true
causal relationships. To achieve causal understanding would require not just an architectural change
but also a shift in the underlying learning procedure itself and the injection of domain knowledge.

7 CONCLUSION

In this paper, we introduced the Hyper Hawkes Process (HHP), an intensity-based MTPP model that
leverages a hypernetwork to predict the dynamics of a generalized Hawkes process. This design
achieves state-of-the-art predictive performance, enables efficient computation, and exposes key
internal variables that offer a window into its learned computational mechanism. This is unlike
most classical models, which trade performance for interpretability; and most neural MTPP models,
which sacrifice interpretability for performance. Our HHP aims to combine the best of both worlds:
flexibility, accuracy, and interpretable structure.

However, put simply: interpreting highly flexible neural models is challenging. Our results show that it
is possible to design a model that is both expressive and more interpretable than alternatives. However,
the interpretability we achieve is nuanced, and requires careful analysis to extract meaningful
information. Future work will focus on building systematic methods to leverage these exposed
variables for domain-specific analysis, integrating them into practical workflows, and exploring how
these mechanisms can guide model design. These steps will move HHP from a highly performant
model, toward a broadly useful tool for understanding complex event dynamics.

10
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A FULL MODEL & IMPLEMENTATION DETAILS

We now summarize the model referred to as the Hyper Hawkes Process (HHP) throughout this paper.
Its overall architecture is illustrated in Figure 3. The HHP is a recurrent neural marked temporal point
process (MTPP) model, composed of two key components: a non-linear Hawkes process, denoted by
f , and a hypernetwork, denoted by hϕ.

A.1 RECURRENT UPDATE MECHANISM

We begin by detailing how the HHP transitions from the i-th event to the (i+1)-th event. This step is
highlighted in red in Figure 3, where i = 1 and i+ 1 = 2. Subscripts indicate the temporal position
relative to the i-th event: variables with subscript i refer to the right limit (i.e., immediately after the
event), while xi− denotes the left limit (i.e., just before the event).

The update begins by decoding the hypernetwork state from the previous iteration, zi, which emits
the Hawkes parameters Vi and Di for the current step. Importantly, the (i+ 1)-th event is not yet
introduced to preserve causality.

Using these parameters, we update the latent Hawkes state using the first component of Equation (7):

xi+1 = Vie
Di(t−ti)V∗

i xti

applying it to the previous right-limit of the recurrent state xi to produce the left-limit of the next
state x(i+1)−. This update is a function of the hypernetwork-emitted dynamics and the time interval
between events ti+1 and ti. We use the right-limit of the state xi, which already includes the impulse
from the previous event. The update is computationally efficient due to the diagonal structure of Di.

The updated left-limit state is then projected into the output space via:

λi = σ(Wx(i+1)− + b),

where W ∈ RK×d and µ ∈ RK . We use the element-wise softplus function σ(a) = log(1 + ea) to
ensure non-negativity. The resulting intensity λi is used to compute the log-likelihood in Equation (2).

Next, we update the Hawkes state to its new right limit by adding the mark-specific impulse:

xi = xi− +αki
.

Finally, we roll forward the hypernetwork state using the current event:

zi = h(zi−1, ti+1 − ti, ki),

which will be used in the next iteration. We input the logarithm of the time difference and a one-hot
encoding of the mark into the hypernetwork.

· · ·

· · ·

· · ·

· · ·

t1 k1 t2 k2

x1− x1 x2− x2

λ(t1, k1; ∅) λ(t2, k2;H1)

z1 z2

V0,D0 V1,D1

z0

x0

f(x1, t2 − t1,V1,D1)

h(z1, t2 − t1, k2)

Observed data

Hypernetwork

Decoded dynamics

Latent Hawkes

Estimated intensity

Figure 3: The full hyper Hawkes process architecture. We highlight data that is conditioned on with
shaded boxes, and the variables that are updated/used in a single iteration, i.e., when the second
observation becomes available. The top row represents the history Ht, the second row represents the
hypernetwork recurrence, the third row represents the latent Hawkes process, and the bottom row are
the intensities. Note we suppress the arrow from t1 into x2− for visual clarity.
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To predict Di, we pass zi through a learned linear transforms to produce di ∈ Rd. From there,
we compute Di = −diag(softplus(di)⊙ u) where ⊙ is an element-wise product and u ∈ Cd with
logℜ(u) ∈ Rd. Similarly, to predict Vi, we pass zi through a separate linear transform to produce
vi ∈ R2dr where r is a hyperparameter. These values become angles through which to parameterize
a unitary matrix as described by Jing et al. (2017). Here, r determines the number of F-component
matrices as denoted in their work. Following their parameterization produces Vi, where matrix-vector
products reduce to a sequence of component-wise vector multiplications and vector permutations.

This completes the iteration, with a new hypernetwork state and latent Hawkes state ready for the
next iteration.

Computational Complexity. Both the GRU-based hypernetwork update and the Hawkes recurrence
have constant time and memory complexity, O(1), making inference highly scalable with respect to
sequence length.

A.2 ARCHITECTURE HYPERPARAMETERS AND LEARNABLE PARAMETERS

The hypernetwork depends solely on the event history and emits the parameters Vi and Di for
the Hawkes recurrence. We use a GRU combined with deterministic orthonormal matrix construc-
tion (Jing et al., 2017). The GRU state zi takes as input the logarithm of the time since the last event
and a mark embedding. This embedding dimension is a hyperparameter, set to one less than the GRU
state dimension to maintain consistent input size. The GRU parameters ϕ ∈ Φ include its initial state.

The learnable parameters of the HHP are therefore:

• GRU hypernetwork parameters ϕ ∈ Φ,

• Mark-specific impulses α ∈ Rd×K ,

• Emission layer parameters: projection matrix W ∈ RK×d and background intensity µ ∈
RK .

The full parameter set is:
θ = {ϕ,α,W,µ} ∈ Θ.

Key architectural hyperparameters include:

• Latent dimension of the Hawkes process (d),

• Dimension of the hypernetwork recurrence (we use a GRU and do not explore alternatives
here).

A.3 COMPUTING THE LOG-LIKELIHOOD

The log-likelihood for intensity-based MTPPs is defined in Equation (2), with further background
in Daley and Vere-Jones (2003). At a high level:

1. For a given event sequence, we compute the left-limit intensities for each observed mark

type ki, denoted
{
λki
ti

}L

i=1
, using the procedure in Section A.1.

2. These intensities form the first term of the log-likelihood.

3. To approximate the normalizing integral, we sample a fixed number of points t′ ∈ (ti, ti+1)

uniformly and compute the total intensity λt′ =
∑K

k=1 λ
k
t′ at each sampled time.

Importantly, the GRU recurrence is computed only once per event, not per sample point, since it is
conditioned solely on events. This allows us to amortize its cost across all sampled points.

Computational Complexity. Due to the conditional linearity of the Hawkes recurrence, it can be
computed in logarithmic time O(logL) using parallel scans (Chang et al., 2025), assuming sufficient
computational resources. The evaluation of all sampled points for the normalizing constant can be
done in constant time O(1), as they are conditionally independent given the recurrence right limits.
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The main computational bottleneck is the sequential nature of the GRU hypernetwork. If training
throughput is critical, this could be mitigated by adopting parallelizable sequence models such as
self-attention (Vaswani et al., 2017), deep state space models (Gu and Dao, 2023), or parallelization
techniques for non-linear recurrent sequence models (Lim et al., 2023; Gonzalez et al., 2024).
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B ADDITIONAL RESULTS & EXPERIMENT DETAILS

This appendix provides additional experimental details and results for all models evaluated in this
work, including our proposed Hyper Hawkes Process (HHP). All experiments were conducted in a
unified environment, using identical data splits, pre-processing, and evaluation protocols for both
HHP and baseline models. No additional pre-processing or special training procedures were required
for HHP beyond what was used for prior models.

B.1 TRAINING DETAILS & HYPERPARAMETER CONFIGURATIONS

For all baseline models, we use the hyperparameters and architectures as reported in Chang et al.
(2025). For HHP, we performed a grid search over latent dimension d (values: {8, 16, 32, 64, 128,
256}), GRU hidden size h ({16, 32, 64, 128, 256}), GRU layers l ({1, 2}), and number of rotation
matrices used in Vi parameterization r ({2, 4, 8}). The chosen values for each dataset are reported in
Table 3.

Table 3: Chosen hyperparameters for HHP across all seven benchmark datasets.

Dataset d h l r # Parameters
Amazon 64 8 2 8 11240
Retweet 64 32 2 8 23940
Taxi 128 8 2 8 9656
Taobao 64 8 2 4 5104
StackOverflow 64 8 2 8 6936
Last.fm 64 32 2 8 42777
MIMIC-II 256 16 2 8 126336

B.2 DATASET STATISTICS

We report the statistics of all seven datasets used in this work in Table 4. We used the HuggingFace
version of the five EasyTPP datasets. For all datasets, we ensured that no more than two events
occur at the same time (i.e., inter-arrival time is strictly positive), and event times do not lie on grid
points that are effectively discrete-time events. Dataset descriptions and pre-processing details are
provided in Appendix B.3.

Table 4: Statistics of the seven datasets we experiment with.

Dataset K
Number of Events Sequence Length Number of Sequences

Train Valid Test Min Max Mean Train Valid Test

Amazon 16 288,377 40,995 84,048 14 94 44.8 6,454 922 1,851
Retweet 3 2,176,116 215,521 218,465 50 264 108.8 20,000 2,000 2,000
Taxi 10 51,584 7,404 14,820 36 38 37.0 1,400 200 400
Taobao 17 73,483 11,472 28,455 28 64 56.7 1,300 200 500
StackOverflow 22 90,497 25,762 26,518 41 101 64.8 1,401 401 401
Last.fm 120 1,534,738 344,542 336,676 6 501 207.2 7,488 1,604 1,604
MIMIC-II 75 9,619 1,253 1,223 2 33 3.7 2600 325 325

B.3 DATASET PRE-PROCESSING

We used the default train/validation/test splits for the EasyTPP benchmark datasets. For MIMIC-II,
we followed Du et al. (2016) and kept the 325 test sequences in the test split, further splitting the
2,935 training sequences into 2,600 for training and 325 for validation. For Last.fm, we randomly
partitioned the data into 70%, 15%, and 15% splits for training, validation, and test, respectively. For
all datasets, a small amount of jitter was added to event times if necessary to ensure no two events
occurred at the same time and to avoid discrete-time artifacts.

Amazon (Ni et al., 2019) contains user product reviews, with product categories as marks.
Retweet (Zhao et al., 2015) models retweet cascades, with event types based on user influence.
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Table 5: Full breakdown of log-likelihood metrics.

Model Per Event Log-Likelihood, LTotal (nats) (↑) Avg. Ranking (↓)
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II

RMTPP -2.136 (0.003) -7.098 (0.217) 0.346 (0.002) 1.003 (0.004) -2.480 (0.019) -1.780 (0.005) -0.472 (0.026) 7.3
NHP 0.129 (0.012) -6.348 (0.000) 0.514 (0.004) 1.157 (0.004) -2.241 (0.002) -0.574 (0.011) 0.060 (0.017) 4.0
SAHP -2.074 (0.029) -6.708 (0.029) 0.298 (0.057) 1.168 (0.029) -2.341 (0.058) -1.646 (0.083) -0.677 (0.072) 6.6
THP -2.096 (0.002) -6.659 (0.007) 0.372 (0.002) 0.790 (0.002) -2.338 (0.014) -1.712 (0.011) -0.577 (0.011) 6.6
IFTPP 0.496 (0.002) -10.344 (0.016) 0.453 (0.002) 1.318 (0.017) -2.233 (0.009) -0.492 (0.017) 0.317 (0.052) 3.6
AttNHP 0.484 (0.077) -6.499 (0.028) 0.493 (0.009) 1.259 (0.022) -2.194 (0.016) -0.592 (0.051) -0.170 (0.077) 3.9
S2P2 0.781 (0.011) -6.365 (0.003) 0.522 (0.004) 1.304 (0.039) -2.163 (0.009) -0.557 (0.046) 0.919 (0.069) 1.7
HHP (ours) 0.616 (0.016) -6.366 (0.007) 0.520 (0.003) 1.232 (0.014) -2.209 (0.006) -0.515 (0.006) 1.314 (0.048) 2.4

Model Per Event Next Event Time Log-Likelihood, LTime (nats) (↑) Avg. Ranking (↓)
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II

RMTPP 0.011 (0.001) -6.191 (0.083) 0.622 (0.002) 2.428 (0.004) -0.797 (0.005) 0.256 (0.007) -0.188 (0.016) 7.0
NHP 2.116 (0.009) -5.584 (0.001) 0.727 (0.003) 2.578 (0.006) -0.699 (0.002) 1.198 (0.006) 0.225 (0.016) 4.3
SAHP 0.115 (0.049) -5.872 (0.062) 0.645 (0.044) 2.604 (0.008) -0.703 (0.031) 0.489 (0.078) -0.244 (0.040) 5.9
THP -0.068 (0.002) -5.874 (0.007) 0.621 (0.002) 2.242 (0.002) -0.772 (0.006) 0.220 (0.010) -0.271 (0.004) 7.6
IFTPP 2.483 (0.001) -9.500 (0.011) 0.735 (0.002) 2.708 (0.018) -0.662 (0.007) 1.277 (0.016) 0.555 (0.050) 2.9
AttNHP 2.416 (0.092) -5.726 (0.027) 0.714 (0.010) 2.654 (0.007) -0.684 (0.005) 1.203 (0.015) 0.031 (0.055) 4.1
S2P2 2.652 (0.009) -5.598 (0.002) 0.733 (0.003) 2.719 (0.038) -0.641 (0.003) 1.257 (0.022) 1.050 (0.065) 1.7
HHP (ours) 2.492 (0.015) -5.597 (0.005) 0.732 (0.002) 2.620 (0.013) -0.670 (0.002) 1.252 (0.004) 1.394 (0.043) 2.6

Model Per Event Next Mark Log-Likelihood, LMark (nats) (↑) Avg. Ranking (↓)
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II

RMTPP -2.147 (0.003) -0.908 (0.141) -0.276 (0.000) -1.425 (0.002) -1.683 (0.015) -2.035 (0.004) -0.284 (0.014) 6.9
NHP -1.987 (0.003) -0.764 (0.000) -0.213 (0.002) -1.421 (0.004) -1.542 (0.001) -1.772 (0.006) -0.165 (0.002) 3.3
SAHP -2.189 (0.030) -0.836 (0.036) -0.346 (0.024) -1.436 (0.027) -1.638 (0.032) -2.136 (0.070) -0.433 (0.031) 7.4
THP -2.028 (0.002) -0.785 (0.001) -0.249 (0.001) -1.451 (0.000) -1.566 (0.008) -1.932 (0.006) -0.306 (0.009) 6.0
IFTPP -1.988 (0.001) -0.844 (0.007) -0.282 (0.001) -1.391 (0.005) -1.571 (0.003) -1.769 (0.004) -0.239 (0.002) 4.9
AttNHP -1.933 (0.024) -0.773 (0.003) -0.221 (0.002) -1.395 (0.016) -1.510 (0.013) -1.795 (0.037) -0.201 (0.025) 3.3
S2P2 -1.871 (0.002) -0.767 (0.000) -0.211 (0.002) -1.415 (0.005) -1.521 (0.008) -1.814 (0.025) -0.131 (0.014) 2.4
HHP (ours) -1.877 (0.002) -0.769 (0.002) -0.212 (0.001) -1.388 (0.003) -1.539 (0.004) -1.767 (0.003) -0.079 (0.009) 1.9

Taxi (Whong, 2014; Mei et al., 2019) uses New York taxi pickup/dropoff data, with marks defined
by location-action pairs. Taobao (Xue et al., 2022) consists of e-commerce viewing patterns, with
item categories as marks. StackOverflow contains badges awarded to users on a Q&A website, with
badge type as the mark. MIMIC-II (Saeed et al., 2002) records disease events during hospital visits,
with disease type as the mark. For MIMIC-II and StackOverflow, we used the pre-processing from
Du et al. (2016). Last.fm (Celma Herrada et al., 2009; McFee et al., 2012) records music listening
habits, with genres as marks. Each event is a play of a particular genre, and if a song had multiple
genres, one was selected at random.

B.4 FULL RESULTS ON BENCHMARK DATASETS

We provide the full log-likelihood results in Table 5, decomposing likelihood into time and mark
components. Our HHP model achieves strong performance across all metrics, with improvements
primarily driven by better modeling of event times. HHP also achieves best- or second-best accuracy
for next mark prediction on most datasets. Likewise, time and mark calibration results, as measured
by PCE and ECE, respectively, can be found in Table 6. We implement these metrics as defined by
Bosser and Taieb (2023). In this aspect, we see that our model performs similarly to the baseline
methods, with most being reasonably well-calibrated.
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Table 6: Calibration results for the models and datasets tests.

(a) Probabilistic calibration error (PCE) for time calibration in percentage.

Model Probabilistic Calibration Error (PCE) (↓) Average [Added] Average
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II Ranking (↓) PCE (↓)

RMTPP 13.67 (0.03) 7.93 (0.62) 3.50 (0.03) 0.22 (0.16) 1.94 (0.10) 1.56 (0.01) 3.63 (0.37) 5.6 4.64
NHP 8.45 (0.28) 0.20 (0.19) 0.87 (0.50) 7.40 (0.68) 1.51 (0.11) 4.70 (0.13) 5.92 (0.14) 5.6 4.15
SAHP 12.04 (1.02) 8.51 (1.86) 2.52 (0.99) 3.18 (0.21) 1.50 (0.57) 2.53 (1.86) 2.28 (0.44) 5.4 4.65
THP 12.38 (0.05) 5.68 (0.08) 3.34 (0.02) 6.36 (0.04) 2.06 (0.11) 1.02 (0.08) 1.10 (0.06) 5.3 4.56
IFTPP 1.59 (0.09) 23.85 (0.26) 0.40 (0.10) 1.61 (0.74) 0.84 (0.34) 0.46 (0.44) 1.75 (0.33) 2.3 4.36
AttNHP 6.36 (0.63) 2.09 (0.85) 0.84 (0.27) 3.08 (0.16) 1.65 (0.24) 1.43 (0.14) 4.70 (0.33) 4.6 2.88
S2P2 5.88 (0.17) 0.44 (0.27) 0.55 (0.33) 2.07 (0.32) 1.03 (0.15) 1.38 (0.52) 11.70 (0.68) 3.4 3.29
HHP (ours) 6.74 (0.54) 0.59 (0.47) 0.43 (0.18) 2.97 (0.62) 1.01 (0.24) 2.91 (0.38) 4.25 (1.45) 3.9 2.69

(b) Expected calibration error (ECE) for mark calibration in percentage.

Model Expected Calibration Error (ECE) (↓) Average [Added] Average
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II Ranking (↓) ECE (↓)

RMTPP 6.58 (0.15) 3.99 (4.28) 2.42 (0.16) 1.89 (0.24) 2.10 (0.27) 2.47 (0.45) 2.79 (0.43) 6.0 3.18
NHP 8.30 (0.21) 0.35 (0.06) 0.79 (0.10) 5.59 (0.69) 1.31 (0.16) 3.41 (0.41) 2.24 (0.32) 5.0 3.14
SAHP 8.17 (2.00) 6.27 (2.23) 6.77 (0.21) 2.68 (0.35) 1.71 (0.77) 6.26 (4.30) 5.41 (0.26) 7.1 5.32
THP 2.06 (0.17) 1.26 (0.11) 1.76 (0.07) 6.51 (0.03) 0.81 (0.14) 3.42 (0.70) 2.16 (0.39) 5.1 2.57
IFTPP 0.46 (0.10) 0.95 (1.12) 0.55 (0.19) 1.20 (0.20) 1.28 (0.54) 0.66 (0.05) 1.39 (0.23) 1.9 0.93
AttNHP 3.13 (0.61) 0.52 (0.16) 0.56 (0.10) 2.47 (0.12) 1.37 (0.42) 0.61 (0.16) 2.23 (0.50) 3.6 1.56
S2P2 0.88 (0.34) 0.52 (0.13) 0.58 (0.12) 1.96 (0.67) 1.98 (0.19) 1.01 (0.63) 1.62 (0.24) 3.4 1.22
HHP (ours) 1.53 (0.22) 0.38 (0.38) 0.83 (0.09) 1.91 (0.29) 2.00 (0.64) 1.44 (0.53) 1.54 (0.33) 3.7 1.38
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C INTERPRETABILITY EXPLORATION

In this appendix, we provide more concrete details on the interpretability scenario explored in the
main paper, as well as introduce another scenario—along with an accompanying analysis using the
proposed interpretability tools.

C.1 SCENARIO FROM SECTION 6.1

Data Generating Process. Sequences were sampled one event at a time, being drawn from a Poisson
process with rate λ = 1/3. Marks are then randomly assigned to these events with probability 40%
for blue, 40% for orange, and 20% for green. Should a green event be drawn at time t, we denote
that as a “trigger” event. The immediate next event that is drawn will have the exact same mark as
the event that came before the trigger, and the time of the event will be drawn from t+N (10, 0.01).
After this follow-up event is drawn, we return to drawing from the Poisson process as before. A
sequence is done sampling once we reach T = 100. See Appendix C.1 for example sequences
generated under this process.

An HHP model was trained on 2,000 generated sequences, with a latent dimension of d = 32, a
hidden dimension of h = 8 for a single-layered GRU, and only r = 2 predicted component blocks
for the eigenvectors. The resulting model possesses 1328 parameters. The rest of the training details,
e.g., epochs, batch-size, etc., are identical to the main set of experiments.

0 20 40 60 80 100
Time t

2

4

6

8

10

Se
qu
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Example Generated Sequences

Figure 4: Visualization of ten example sequences drawn from the data generating process that was
analyzed in Section 6.1. Trigger events are overlaid with dots for better readability.
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C.2 SECOND SCENARIO

Data Generating Process. For this new scenario, we will simulate two processes separately and
then treat the superposition of them as a single sequence to model. The first process is simple, green
events are drawn from a Poisson process at rate λ = 1/2. For the second process, we will simulate a
sequence of pairs of call and response events. We will label a “call” event as blue and draw it from
an exponential distribution with rate λ = 1/15. After drawn, the “response” event, which we will
denote as orange, has its time equal to the call event plus a random offset drawn from N (10, 0.01).
Afterwards, another call event is drawn offset from the previous response with the same exponential
distribution as before, and so on. The superposition of the two produces a sequence with three
possible marks, spanning t ∈ [0, 100]. See Appendix C.2 for example sequences generated under this
process.

We trained an HHP model on 2,000 generated sequences from this process. The rest of the training
setup is identical to the previous synthetic scenario.

Aggregate Statistics.

While the interpretability of HHP is uniquely suited towards event-level attribution, marginal effects
are still possible. These can be achieved by aggregating the leave-one-out estimators across multiple
events and sequences. For instance, we can get a broad sense of how the model chooses to leverage
particles of various types by understanding the general distribution of the total influence these particles
have on the output. This can be measured on a per-event basis via

∑K
m=1 DF|Λm

T | where T is the
length of the time window. This value describes the total influence that a given particle has had over
its entire lifetime and is measured on the scale of number of events.

Appendix C.2 shows the distribution of these lifetime influences grouped by the events’ marks.
We can see that in general, green events are quickly discarded by the model as they do not have
much lasting influence over future events. This makes sense given that these were generated by
a background process and have no influence over other events. Conversely, the call (blue) events
are shown to have a stronger influence over their lifetime, averaging a total influence of roughly 2
events. Since we know that the true data generating process will alternate call and response events in
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Figure 5: Visualization of ten example sequences drawn from the data generating process in the
second synthetic scenario. Call (blue) and response (orange) events are overlaid with dots for better
readability. Note that a response event can only occur after a call event has happened, and vice versa,
regardless of how many or few green events occur in the interim.
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Figure 6: Displayed is the density of lifetime total influence
∑K

m=1 DF|Λm
T | that individual particles

have on the model’s predictions, aggregated over every event from all sequences in the generated
data. Each density plotted corresponds to the particle’s mark.

a ratio of 1:1, it appears that the model leverages these particles past the subsequent response event
prediction. This is mirrored by the response events having more influence than the green events but
still less than 1 event on average. To better understand this, we will dive deeper and analyze how the
model responds to events from a single sequence.

Output Intensities.

We have chosen a held-out sequence chosen at random from the data generating process. Appendix C.2
shows the resulting predicted intensities that the HHP model produces when conditioned on the
sequence. We can see that when a call (blue) event occurs, the intensity for both call and response
(orange) events drop to near zero (but never exactly zero due to σ(z) ∈ (0,∞)). These values remain
there until about 10 units of time later when the response intensity spikes. Then after a response event
occurs, the intensities reset back to normal. All the while the green intensity is roughly stable and
unresponsive to any ongoing events, which mirrors the true generation process. For the remainder of
this section, this sequence will be used for subsequent analysis.

Individual Effects.

Now that we have selected a sequence and observed the overall output intensity from the model, we
can dive deeper and understand how each event’s particle is being used by the model to influence
the output. In Appendix C.2, we plot for each particle in the sequence the entire trace of DFλ1:K

t
for t ∈ [0, T ]. This showcases the first-order effects that the particle has over time on each output
marked intensity for the model.

There are a number of interesting effects and patterns that give us a glimpse into how the model
is choosing to arrive at its predictions. First, we can see that most of the events leading up to the
first response (orange) event all appear to be leveraged by the model to spike and excite a response
event to occur. Strangely, there are a couple of events that are also used to inhibit the response event
just before it occurs as well. This indicates that in latent space there is likely a complex push-pull
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Figure 7: On top are the model’s predicted intensities, each line corresponding to a mark matching in
color. On bottom is the corresponding sequence the model is conditioning on to produce the above
intensities. Note that when a blue event occurs, the orange and blue intensities drop to near zero, only
to have an orange intensity spike around 10 units of time later.

between particles in an attempt to arrive a what we know to be a correctly timed, large excitation for
the response event, as indicated in Appendix C.2.

After this first response event occurs, we can see the particles are effectively killed thereafter as
they have little to no influence moving forward. In a way, it is as if the model has reset at this
point. Resetting after a response event does not always seem to be the case though for the rest of the
sequence. We can see some particles contribute to spiking for both of the last two response events in
the sequence. When debugging a model, insights like this can help give inspiration for attempting
new mechanisms to help guide these various behaviors, like resetting.

Joint Effects.

While this is a large amount of information available to mine, it is important to note that these signals
pertain to per-event effects. They are just analyzing how the model outputs would differ if that single
particle were not present; however, we know that many particles can interact in latent space and
produce greater effects than just the sum of their individual effects. To this end, we can also measure
higher-order effects, as mentioned in the main paper.

In Appendix C.2, we showcase a heatmap of the interaction effects of pairs of particles in an attempt
to visualize how “coupled” a pair is. This is measured as the absolute difference in total joint
lifetime influence of a pair of events, DF|Λ(i,j)

T |, and the naive first-order estimation of this effect,
DF|Λ(i)

T |+DF|Λ(j)
T |. This can be thought of as the DFBETA for a linear regression model’s interaction

term, i.e., measuring effect of β12 by comparing ŷ = β1x1 + β2x2 to ŷ = β1x1 + β2x2 + β12x1x2.
While the resulting scale is on the order of number of events, it should be noted that this does not
measure how strong the influence a pair of events is, but rather just how much do the two particles
interact with one another.

In the figure we can see interesting patterns emerge. Namely, we see strong interaction effects
between the call (B) / response (O) events and all other events, as indicated by the highlighted
columns and rows. From this, we know that the model is not choosing dynamics that move these
individual particles in isolation, but rather are positioning them contextually amongst all other
particles and relying on them to constructively or destructively interfere with one another w.r.t. the
output intensities. Additionally, we can see a large bright spot in the middle of the heatmap near
where two pairs of call and response events occurred right after one another. This correlates with the
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Figure 8: Please view as a PDF to zoom in to details. For the same sequence showcased in
Appendix C.2, the individual DFλ(i)

t values over time for a particle are displayed with the top-most
plot showing the first event, i = 1, and second-to-last showing the last event, i = NT . The color of
the dashed line in each subplot indicates the mark of the particle being displayed. The colors of the
solid lines indicate the instantaneous influence that particle has over future events of that color.
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Figure 9: A heatmap measuring how “coupled” pairs of events are for the sequence showcased in
Appendix C.2. Events are ordered as first to last from top to bottom and from left to right. Call (blue)
and response (orange) events are labeled with ‘B’ and ‘O’, respectively, with green events having no
label. Higher values indicate tighter coupling and values close to zero indicate no coupling.

individual effects we saw earlier in that there were particles that were leveraged for multiple response
excitations.

Retrospective Attribution.

Lastly, it is worth demonstrating that the proposed tools can also be used to pinpoint specific
information. To that end, we will showcase one view into what events contribute towards the
occurrence of a specific event. Put differently, given that an event occurred, how much did each prior
event either excite or inhibit that occurrence?

To measure this, say that the specific event in question is the ith event that occurred at time ti with
mark ki. The influence, positive or negative, that the jth event for j < i has is measured by DFλki(j)

ti .
We have shown this breakdown for the three response (orange) events and the influence that all events
prior to them had. From this view, it becomes apparent the strong influence that the call (blue) events
have on the response, and specifically the most recent call events. These values in this perspective can
be roughly treated as attention scores; however, the scale of them is on the same order of intensities
so the magnitude is meaningful. Additionally, unlike attention in multi-layer transformers, these
statistics were derived from the linear recurrence bottleneck for HHP, which makes these values
clearly tied to the events they represent.
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Figure 10: Retrospective attributions for the three response (orange) events from the sequence
showcased in Appendix C.2, with the top corresponding to the first response event and the bottom to
the last. Bars indicate the instantaneous contributions that a prior event had towards the response
event. More exactly, the ith bar displays DFλkj(i)

tj where j is the index of the response event. Bars
are colored by the corresponding event’s mark ki.
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