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ABSTRACT

Self-supervised learning has brought about a revolutionary paradigm shift in var-
ious computing domains, including NLP, vision, and biology. Recent approaches
involve pre-training transformer models on vast amounts of unlabeled data, serv-
ing as a starting point for efficiently solving downstream tasks. In the realm of
reinforcement learning, researchers have recently adapted these approaches by
developing models pre-trained on expert trajectories, enabling them to address a
wide range of tasks, from robotics to recommendation systems. However, existing
methods mostly rely on intricate pre-training objectives tailored to specific down-
stream applications. This paper presents a comprehensive investigation of models
we refer to as pre-trained action-state transformer agents (PASTA). Our study
uses a unified methodology and covers an extensive set of general downstream
tasks including behavioral cloning, offline RL, sensor failure robustness, and dy-
namics change adaptation. Our goal is to systematically compare various design
choices and provide valuable insights to practitioners for building robust models.
Key highlights of our study include tokenization at the action and state component
level, using fundamental pre-training objectives like next token prediction, train-
ing models across diverse domains simultaneously, and using parameter efficient
fine-tuning (PEFT). The developed models in our study contain fewer than 10
million parameters and the application of PEFT enables fine-tuning of fewer than
10,000 parameters during downstream adaptation, allowing a broad community
to use these models and reproduce our experiments. We hope that this study will
encourage further research into the use of transformers with first-principles design
choices to represent RL trajectories and contribute to robust policy learning.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a robust framework for training highly efficient
agents to interact with complex environments and learn optimal decision-making policies. RL al-
gorithms seek effective strategies by maximizing the cumulative rewards obtained from interactions
with the environment, leading to remarkable achievements in diverse applications, ranging from
game-playing to robotics (Silver et al., 2014; Schulman et al., 2016; Lillicrap et al., 2016; Mnih
et al., 2016). These algorithms often comprise multiple components that are essential for train-
ing and adapting neural policies. For example, model-based RL involves learning a model of the
world (Racanière et al., 2017; Hafner et al., 2019; Janner et al., 2019; Schrittwieser et al., 2020)
while most model-free policy gradient methods train a value or Q-network to control the variance
of the gradient update (Mnih et al., 2013; Schulman et al., 2017; Haarnoja et al., 2018; Hessel et al.,
2018). Training these multiple networks is challenging due to their nested nature (Boyan & Moore,
1994; Anschel et al., 2017) and the need to extract meaningful state-action space features along
with relevant credit assignment in complex decision-making problems. Consequently, these factors
contribute to fragile learning procedures, high sensitivity to hyperparameters, and limitations on the
network’s parameter capacity (Islam et al., 2017; Henderson et al., 2018; Engstrom et al., 2020).

To address these challenges, various auxiliary tasks have been proposed, including pre-training
different networks to solve various tasks, such as forward or backward dynamics learning (Ha &
Schmidhuber, 2018; Schwarzer et al., 2021) as well as using online contrastive learning to disen-
tangle feature extraction from task-solving (Laskin et al., 2020; Nachum & Yang, 2021; Eysenbach
et al., 2022). Alternatively, pre-training agents from a static dataset via offline RL without requiring
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interaction with the environment also enables robust policies to be deployed for real applications.
Most of these approaches rely either on conservative policy optimization (Fujimoto & Gu, 2021;
Kumar et al., 2020) or supervised training on state-action-rewards trajectory inputs where the trans-
former architecture has proven to be particularly powerful (Chen et al., 2021; Janner et al., 2021).

Recently, self-supervised learning has emerged as a powerful paradigm for pre-training neural net-
works in various domains including NLP (Chowdhery et al., 2022; Brown et al., 2020; Touvron et al.,
2023), computer vision (Dosovitskiy et al., 2020; Bao et al., 2021; He et al., 2022) or biology (Lin
et al., 2023; Dalla-Torre et al., 2023), especially when combined with the transformer architecture.
Inspired by impressive NLP results with the transformer architecture applied to sequential discrete
data, most self-supervised techniques use tokenization, representing input data as a sequence of
discrete elements called tokens. Once the data is transformed, first-principles objectives such as
mask modeling (Devlin et al., 2018) or next token prediction (Brown et al., 2020) can be used for
self-supervised training of the model. In RL, recent works have explored the use of self-supervised
learning to pre-train transformer networks with expert data. While these investigations have yielded
exciting outcomes, such as zero-shot capabilities and transfer learning between environments, meth-
ods such as MTM (Wu et al., 2023) and SMART (Sun et al., 2023) often rely on highly specific
masking techniques and masking schedules (Liu et al., 2022a), and explore transfer learning across
a limited number of tasks. Hence, further exploration of this class of methods is warranted. In this
paper, we provide a general study of the different self-supervised objectives and of the different to-
kenization techniques. In addition, we outline a standardized set of downstream tasks for evaluating
the transfer learning performance of pre-trained models, ranging from behavioral cloning to offline
RL, robustness to sensor failure, and adaptation to changing dynamics.

Our contributions. With this objective in mind, we introduce the PASTA study, which stands
for Pretrained Action-State Transformer Agents. This study provides comprehensive comparisons
involving four pre-training objectives and two types of tokenization techniques, with multiple pre-
training datasets and a collection of 23 downstream tasks, categorized into three groups and across
three continuous control environments. The PASTA downstream tasks encompass imitation learn-
ing and standard RL to demonstrate the versatility of the pre-trained models. Moreover, we explore
scenarios involving physical regime changes and observations alteration to assess the zero-shot per-
formance and stability of the pre-trained models. We summarize the key findings of our study below:

1. Tokenize trajectories at the component level. Tokenization at the component level signif-
icantly outperforms tokenization at the modality level. In other words, it is more effective
to tokenize trajectories based on the individual components of the state and action vectors,
rather than directly tokenizing states and actions as is commonly done in existing works.

2. Prefer first-principles objectives over convoluted ones. First principles training objec-
tives, such as random masking or next word prediction with standard hyperparameters
match or can even outperform more intricate and task-specific objectives carefully designed
for RL, such as those considered in MTM or SMART.

3. Pre-train the same model on datasets from multiple domains. Simultaneously pre-
training the model on datasets from the three environments leads to enhanced performance
across all three environments compared to training separate models for each environment.

4. Generalize with a small parameter count. All of the examined models have fewer than 10
million parameters. Hence, while these approaches are both affordable and practical even
on limited hardware resources, the above findings are corroborated by experimentation with
three transfer learning scenarios: a) probing (the pre-trained models generate embeddings
and only the policy heads are trained to address downstream tasks), b) parameter-efficient
fine-tuning (PEFT) (introducing a limited number of weights to the pre-trained model and
fine-tuning them for solving downstream tasks), and c) zero-shot transfer.

2 RELATED WORK

Self-supervised Learning for RL. Self-supervised learning, which trains models using unlabeled
data, has achieved notable success in various control domains (Liu & Abbeel, 2021; Yuan et al.,
2022; Laskin et al., 2022). One effective approach is contrastive self-prediction (Chopra et al., 2005;
Le-Khac et al., 2020; Yang & Nachum, 2021; Banino et al., 2021) which have proven effective
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Figure 1: Illustration of the PASTA study. Left: State-action trajectories are collected from multiple
environments and are tokenized at the component level. Middle: A transformer model is pre-
trained by processing fixed-size chunks of these sequences. It learns latent representations T (s)
of the environments’ states. In this study, we compare different tokenization schemes, masking
patterns, and pre-training objectives, e.g., random tokens prediction (BERT) or next token prediction
(GPT). Right: The representations of the pre-trained transformer models are evaluated on multiple
downstream tasks in which the learned representation T (s) serves as a surrogate state for the policy.

in efficient data augmentation strategies, enabling downstream task solving through fine-tuning,
particularly in RL tasks (Laskin et al., 2020; Nachum & Yang, 2021). Our study aligns with this
trend, focusing on domain-agnostic self-supervised mechanisms that leverage masked predictions to
pre-train general-purpose RL networks.

Offline RL and Imitation Learning. Offline learning for control involves leveraging historical
data from a fixed behavior policy πb to learn a reward-maximizing policy in an unknown envi-
ronment. Offline RL methods are typically designed to restrict the learned policy from producing
out-of-distribution actions or constrain the learning process within the support of the dataset. Most
of these methods usually leverage importance sampling (Sutton et al., 2016; Nair et al., 2020; Liu
et al., 2022c) or incorporate explicit policy constraints (Kumar et al., 2019; Fujimoto & Gu, 2021;
Fakoor et al., 2021; Dong et al., 2023). In contrast, Imitation learning (IL) focuses on learning poli-
cies by imitating expert demonstrations. Behavior cloning (BC) involves training a policy to mimic
expert actions directly while Inverse RL (Ng et al., 2000) aims to infer the underlying reward func-
tion to train policies that generalize well to new situations. In contrast, the models investigated in
PASTA focus on learning general reward-free representations that can accelerate and facilitate the
training of any off-the-shelf offline RL or imitation learning algorithm.

Masked Predictions and Transformers in RL. Recently, self-supervised learning techniques
based on next token prediction (Brown et al., 2020) and random masked predictions (Devlin et al.,
2018) have gained popularity. These methods involve predicting missing content by masking por-
tions of the input sequence. These first-principles pre-training methods have achieved remarkable
success in various domains, including NLP (Radford et al., 2018; 2019), computer vision (Dosovit-
skiy et al., 2020; Bao et al., 2021; Van Den Oord et al., 2017), and robotics (Driess et al., 2023). We
explore the effectiveness of different variants of these approaches, with various masking patterns and
pre-training objectives, in modeling RL trajectories and learning representations of state-action vec-
tor components. Transformer networks have been particularly valuable for these purposes. The de-
cision transformer (Chen et al., 2021) and trajectory transformer (Janner et al., 2021) have emerged
as offline RL approaches using a causal transformer architecture to fit a reward-conditioned policy,
paving the way for subsequent work (Zheng et al., 2022; Yamagata et al., 2022; Liu et al., 2022a;
Lee et al., 2023). Notably, GATO (Reed et al., 2022) is a multi-modal behavioral cloning method
that directly learns policies, while PASTA focuses on pre-training self-supervised representations.
Additionally, MTM (Wu et al., 2023) and SMART (Sun et al., 2023) propose original masking
objectives for pre-training transformers in RL. MTM randomly masks tokens while ensuring some
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tokens are predicted without future context. It uses modality-level masking and is limited to single-
domain pre-training. Conversely, SMART uses a three-fold objective for pre-training a decision
transformer with forward dynamics prediction, inverse dynamics prediction, and "random masked
hindsight control" with a curriculum masking schedule. It focuses on processing real-valued vi-
sual observation sequences and investigates generalization across different domains. In PASTA, we
compare several first-principles pre-training objectives without a masking schedule to these state-
of-the-art approaches across multiple environments and diverse downstream tasks.

3 THE PASTA STUDY

3.1 PRELIMINARIES

Self-supervised Learning framework. In this paper, we study self-supervised learn-
ing (Balestriero et al., 2023) techniques to pre-train models on a large corpus of static (of-
fline) datasets from interactions with simulated environments, as done in Shah & Kumar (2021);
Schwarzer et al. (2023). By solving pre-training objectives, such as predicting future states or filling
in missing information, the models learn to extract meaningful features that capture the underlying
structure of the data. We focus our study on the use of the transformer architecture due to its ability
to model long-range dependencies and capture complex patterns in sequential data. In addition, the
attention mechanism is designed to consider the temporal and intra-modality (position in the state or
action vectors) dependencies. After pre-training the models, we evaluate their capabilities to solve
downstream tasks. This analysis is done through the lenses of three mechanisms: (i) probing, (ii)
parameter-efficient fine-tuning (PEFT) (Liu et al., 2022b; 2021; Hu et al., 2021), and (iii) zero-shot
transfer. The goal of the study is to investigate which pre-training process makes the model learn
the most generalizable representations to provide a strong foundation for adaptation and learning in
specified environments. An illustration of the approach adopted in PASTA is given in Figure 1.

Reinforcement Learning framework. In this paper, we place ourselves in the Markov De-
cision Processes (Puterman, 1994) framework. A Markov Decision Process (MDP) is a tuple
M = {S ,A ,P,R,γ}, where S is the state space, A is the action space, P is the transition kernel,
R is the bounded reward function and γ ∈ [0,1) is the discount factor. Let π denote a stochastic pol-
icy mapping states to distributions over actions. We place ourselves in the infinite-horizon setting,
i.e., we seek a policy that optimizes J(π) = Eπ [∑∞

t=0 γ t r (st ,at)]. The value of a state is the quantity
V π(s) =Eπ [∑∞

t=0 γ t r (st ,at) |s0 = s] and the value of a state-action pair Qπ(s,a) of performing action
a in state s and then following policy π is defined as: Qπ(s,a) = Eπ [∑∞

t=0 γ t r (st ,at) |s0 = s,a0 = a].

3.2 TOKENIZATION

Building Motivation. Tokenization is a fundamental technique in self-supervised learning as it is
an effective way to apply first-principles objectives for neural network pre-training. By representing
states and actions as vector components and learning from diverse environments within the same
physics engine, tokenization at this level enables representation models to reason effectively about
interactions among different parts of a robot. This approach is expected to enhance performance
across various morphologies and downstream tasks. For example, in a bipedal locomotion task,
breaking down leg movements into thigh and shin components can facilitate the learning of more
stable and efficient walking or running. We explore whether this granularity of tokenization offers a
promising approach to address continuous control problems solely from a sequential perspective.

Component-level Tokenization. A key focus of the PASTA study is the representation of trajec-
tories at the level of vector components for states and actions. Instead of considering each trajectory
as a sequence of state, action (and often return) tuples, as done in most previous work, includ-
ing SMART (Sun et al., 2023) and MTM (Wu et al., 2023), we break the sequences down into
individual state and action components. Additionally, we exclude the return to develop a general
method applicable to reward-free settings and learn representations that are not tied to task-specific
rewards (Stooke et al., 2021; Yarats et al., 2021). This level of tokenization allows capturing dynam-
ics and dependencies at different space scales, as well as the interplay between the agent’s morpho-
logical actions and resulting states across different robotic structures. As we observe in Section 4,
this results in more detailed representations that improve the performance of downstream tasks.
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a) b)

Figure 2: Performance aggregation of the PASTA pre-trained models (C-*) and modality-level
models (MTM and SMART) with different masking and training objectives, evaluated on a) the
representation learning tasks with fine-tuning and b) the zero-shot transfer tasks: Action Prediction
(AP), Forward Prediction (FP), and Inverse Prediction (IP). Results are aggregated over all envi-
ronments. We developed our own implementation of MTM and SMART using the same masking
patterns and training objectives. ↑ (resp. ↓) indicates that higher (resp. lower) is better.

3.3 PRE-TRAINING

Trajectory modeling. The PASTA study includes different types of self-supervised learning
strategies, each using different combinations of random token masking and/or next token prediction.
Next token prediction uses autoregressive masking, while random masked prediction aims to learn
from a sequence of trajectory tokens denoted as τ = (s0

0, ...,s
K
0 ,a

0
0, ...,a

L
0 , ...,s

0
T , ...,s

K
T ). The model’s

task is to reconstruct this sequence when presented with a masked version τ̂ = Tθ (Masked(τ)),
where K is the observation space size, L is the action space size and T is an arbitrary trajectory
size. Here, Tθ refers to a bi-directional transformer, and Masked(τ) represents a modified view
of τ where certain elements in the sequence are masked. For instance, a masked view could be
(s0

0, ...,s
K
0 ,a

0
0, ...,a

L
0 , ...,_, ...,_), where the underscore “_” symbol denotes a masked element. In this

scenario, representation models must predict and fill in the missing state or action components. We
directly mask tokens at the input and output levels and do not use masking in attention weights.

Pre-training objectives. Next, we introduce the masking patterns investigated in the experimen-
tal study. First, the C-GPT masking pattern mimics GPT’s masking mechanism and uses causal
(backward-looking) attention to predict the next unseen token in RL trajectories. Second, we have
the C-BERT masking pattern, derived from BERT’s masking mechanism which uses random masks
to facilitate diverse learning signals from each trajectory by enabling different combinations. Fig-
ure 1 provides a visual representation of the C-BERT and C-GPT masking mechanisms. Third,
the MTM masking scheme (Wu et al., 2023) combines random masking (similar to BERT) and
causal prediction of the last elements of the trajectory. This latter aims to prevent the model from
overly relying on future token information. While MTM operates at the modality level, we adapt it
to operate directly on components by masking random tokens within the trajectory and additionally
masking a certain proportion of the last tokens. We refer to this method as C-MTM, which stands for
component-level MTM. Finally, SMART’s training objective encompasses three different masking
patterns (Sun et al., 2023): forward-dynamics, inverse-dynamics and masked hindsight control. The
training involves adding up the three losses corresponding to the three masking patterns. Similarly,
we derive C-SMART, where instead of masking an entire modality at each stage, we mask a random
fraction of the tokens within that modality. See Appendix C for additional details.

3.4 DOWNSTREAM EVALUATION

In this study, we evaluate the effectiveness of PASTA models in transfer learning from two perspec-
tives. Firstly, we examine the ability of pre-trained models to generate high-quality representations.
This evaluation is carried out through probing and parameter-efficient fine-tuning. Secondly, we
investigate the capability of pre-trained models to solve new tasks in a zero-shot transfer setting. To
accomplish this, we introduce two sets of tasks: Representation learning tasks (17) and Zero-shot
transfer tasks (6), comprising a total of 23 evaluation downstream tasks. These task sets are further
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a) b)

Figure 3: a) Evaluation in all downstream training tasks with multi- and single-domain pre-training,
no-pretraining, probing, and training from raw observations. Remarkably, C-GPT outperforms all
other methods and significantly surpasses policies trained from raw observations, despite having an
equivalent number of parameters. ↑ indicates that higher is better. b) Performance profile of C-GPT
against RL policies trained from raw observations. Shaded areas show the interquartile range over 3
seeds. C-GPT demonstrates higher performance versus policies trained from raw observations.

divided into sub-categories. These categories are designed to provide a general-purpose assessment
for pre-trained agents, irrespective of the specific environment or domain. All tasks considered in
this study involve either classification or regression.

Representation learning. The representation learning tasks encompass four sub-categories: Im-
itation Learning, Offline RL, Sensor Failure, and Dynamics Change. We evaluate the quality of
raw representations learned by pre-trained agents using probing on these tasks. In this setting, the
weights of the pre-trained models are kept fixed, and the embeddings produced by the final attention
layer are fed into a single dense layer network. As the expressive power of such networks is limited,
achieving good performance is contingent upon the embeddings containing sufficient information.
Furthermore, we assess the quality of the produced representations through fine-tuning where the
weights of the pre-trained agents are further updated to solve the downstream tasks. For this purpose,
we use parameter-efficient fine-tuning, which focuses on updating only a small subset of (or newly
introduced) weights representing a small fraction of the total weight volume. Recent studies have
shown that these techniques can match or surpass the performance of standard fine-tuning methods
while being faster and more memory-efficient. In this study, we use (IA)3 (Liu et al., 2022b) for
fine-tuning, which only updates an average of 0.1% of the total pre-trained weight count.

Zero-shot transfer. The zero-shot tasks are organized into three categories: Action Prediction
(AP), Forward dynamics Prediction (FP), and Inverse dynamics Prediction (IP). These categories
evaluate the pre-trained models’ ability to directly predict states or actions based on trajectory infor-
mation. Specifically, the prediction problems can be expressed as follows; AP: (τt−1,st → at ), FP:
(τt−1,st ,at → st+1) and IP: (τt−1,st ,st+1 → at ), where the input to the model is shown on the left
side of the parentheses, and the prediction target is shown on the right side. For each category, we
examine both component prediction and modality (state or action) prediction.

4 EXPERIMENTAL ANALYSIS

In this section, we present the experimental study conducted to examine the impact of pre-training
objectives, tokenization, and dataset preparation choices on the generalization capabilities of pre-
trained PASTA models.
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Table 1: Comparison of models with different tokenization (modality-level, component-level), pre-
training datasets (single-domain, multi-domain), and MLP network (RL policy) in the 17 fine-tuned
downstream tasks. (max) indicates maximum performance between respectively SMART & MTM
and C-SMART & C-MTM. (↑) indicates higher is better and [11] indicates 11 tasks per category.

Domain Task
RL policy
(raw obs)

Modality-level
(max)

Component-level
(max)

C-GPT
(single-domain)

C-GPT
(multi-domain)

HalfCheetah

IL (↑) [1] 0.719 ± 0.10 1.006 ± 0.05 1.033 ± 0.02 0.974 ± 0.07 1.031 ± 0.05
Off-RL (↑) [1] 0.903 ± 0.04 0.982 ± 0.08 1.100 ± 0.03 1.031 ± 0.07 1.092 ± 0.03
Sensor failure (↑) [11] 0.560 ± 0.09 0.831 ± 0.08 0.871 ± 0.10 0.868 ± 0.09 0.926 ± 0.07
Dynamics change (↑) [4] 0.124 ± 0.05 0.175 ± 0.03 0.223 ± 0.02 0.212 ± 0.02 0.248 ± 0.02

Hopper

IL (↑) [1] 0.571 ± 0.06 0.588 ± 0.09 1.093 ± 0.10 1.132 ± 0.04 1.119 ± 0.10
Off-RL (↑) [1] 0.412 ± 0.08 0.873 ± 0.10 1.074 ± 0.01 1.169 ± 0.08 1.209 ± 0.09
Sensor failure (↑) [11] 0.147 ± 0.01 0.173 ± 0.04 0.355 ± 0.06 0.100 ± 0.03 0.447 ± 0.03
Dynamics change (↑) [4] 0.076 ± 0.00 0.139 ± 0.00 0.246 ± 0.03 0.172 ± 0.03 0.258 ± 0.03

Walker2d

IL (↑) [1] 0.520 ± 0.04 0.520 ± 0.05 0.519 ± 0.05 0.354 ± 0.04 0.558 ± 0.03
Off-RL (↑) [1] 0.652 ± 0.11 0.337 ± 0.05 0.376 ± 0.02 0.399 ± 0.03 0.477 ± 0.05
Sensor failure (↑) [11] 0.281 ± 0.03 0.206 ± 0.03 0.103 ± 0.05 0.058 ± 0.02 0.322 ± 0.05
Dynamics change (↑) [4] 0.000 ± 0.00 0.004 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 0.004 ± 0.00

4.1 EXPERIMENTAL SETUP

Domains. To assess the effectiveness of our approach, we select tasks from the Brax library (Free-
man et al., 2021a), which provides environments designed to closely match (Freeman et al., 2021b)
the original versions found in MuJoCo’s environment suite (Todorov et al., 2012). Brax provides sig-
nificant advantages over MuJoCo, as it offers a highly flexible and scalable framework for simulating
robotic systems based on realistic physics. More information about the environments is given in Ap-
pendix D.2. The pre-training datasets consist of trajectories collected from three Brax environments:
HalfCheetah, Hopper, and Walker2d. Following the protocols used in previous work (Fu et al., 2020;
Sun et al., 2023) we trained 10 Soft Actor-Critic (SAC) (Haarnoja et al., 2018) agents initialized with
different seeds and collected single- and multi-domain datasets composed of 510 million tokens in
total. For details about the pre-training datasets, we refer the reader to Appendix D.3.

Consequently, the 23 downstream tasks presented in Section 3 are set up for each environment
resulting in a total of 69 tasks across environments. We introduce multiple environments for pre-
training and evaluation (i) to evaluate the reproducibility of our findings across domains and (ii) to
study the performance of models pre-trained on the three datasets simultaneously (multi-domains
model) compared to single domain models. The implementations of tasks related to sensor failure
and dynamics changes need to be adjusted to each domain to account for their specific dynamics.
For further details about the implementation of downstream tasks, please refer to Appendix D.4.

Implementation details. In this study, we focus on reasonably sized and efficient models, typi-
cally consisting of around 10 million parameters. To capture positional information effectively, we
incorporate a learned positional embedding layer at the component level. Additionally, we include
a rotary position encoding layer following the approach in Su et al. (2021) to account for rela-
tive positional information. More implementation details are provided in Appendix B. To convert
the collected data (state or action components) into tokens, we adopt a tokenization scheme similar
to Reed et al. (2022). Continuous values are mu-law encoded to the range [-1, 1] and discretized into
1024 uniform bins. The sequence ordering follows observation tokens followed by action tokens,
with transitions arranged in timestep order.

4.2 RESULTS

Tokenization granularity. We first examine the impact of tokenization granularity on the gener-
alization performance of the models. We train models using the SMART and MTM training pro-
cedures with two granularities: modality-level (predicting at the level of observations and actions)
for SMART and MTM and component-level (predicting at the level of observation and action com-
ponents) for C-SMART and C-MTM. All four models share the same architecture and are trained
under identical conditions using the multi-domain dataset. After pre-training, the models undergo
fine-tuning for downstream tasks under identical conditions. Figure 2 (a) reports the performance
expressed as the mean return normalized by the expert return for each domain. We aggregate the
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Table 2: Breakdown of Expert-normalized returns in the sensor failure and dynamics change tasks.
(↑) indicates that higher is better.

Model Sensor Failure Dynamics Change

C-GPT (multi-domain) (↑) 0.56±0.04 0.17±0.02
C-GPT (single-domain) (↑) 0.34±0.05 0.13±0.02
RL policy (raw obs) (↑) 0.33±0.04 0.07±0.02
C-GPT (no-pretraining) (↑) 0.17±0.04 0.03±0.02

results across all domains and task categories: one Imitation Learning task, one Offline RL task, 11
Sensor Failure tasks, and 4 Dynamics Change tasks. Furthermore, Table 1 provides a breakdown
of performance for both tokenization techniques across different domains. Overall, we observe that
transitioning from modality-level to component-level improves performance for both methods. This
improvement is particularly significant for SMART, where the shift nearly doubles the performance
for Sensor Failure and Offline RL tasks.

Masking objectives. Then, we compare first principles tokenization techniques i.e., masked lan-
guage modeling (BERT) and next word prediction (GPT) with state-of-the-art transformer RL
methods MTM and SMART which incorporate more customized design choices. To adapt BERT
and GPT to our problem, we introduce C-BERT and C-GPT. These models are trained using
component-level tokenization on the multi-domain dataset under similar conditions as C-SMART
and C-MTM, which are the component-level counterparts of MTM and SMART. We systemati-
cally fine-tune all models for all downstream tasks and domains. Our findings reveal that C-BERT
performs competitively compared to C-SMART and C-MTM across all task categories, as depicted
in Figure 2 (a). Additionally, C-GPT exhibits slightly superior average performance for all down-
stream tasks compared to other masking techniques, as shown in Table 1. This demonstrates that
simple and first-principles objectives are sufficient to achieve robust generalization performance.

Multi-domain representation learning. Then, we investigate the benefits of pre-training multi-
domain representation models using component-level tokens. We synthesize our results using C-
GPT as it showed the best performance among the other models in the study. Figure 3 (a) provides
a summary of the results aggregated across all domains and downstream tasks, while Figure 3 (b)
presents a breakdown of the performance profiles for each downstream task group.

First, we confirm that policies trained using C-GPT outperform policies trained from raw observa-
tions with neural networks comprised of an equivalent number of parameters (cf. Appendix D.1).
This validates the capability of the model to produce useful representations. We also compare the
performance of C-GPT against a randomly initialized model (no-pre-training) with the same archi-
tecture and confirm the positive effect of pre-training on the observed performance.

Second, we compare the performance of C-GPT against specialized models trained independently
in each environment (C-GPT (single-domain)). To ensure a fair comparison, all models are trained
for an equal number of epochs and have the same representation capability (architecture and number
of learned parameters). Importantly, the results demonstrate that C-GPT outperforms specialized
models in terms of final performance, indicating that C-GPT (multi-domain) learns a more general-
izable representation than C-GPT (single-domain). For a detailed breakdown of the results for each
downstream task, please refer to panels provided in Appendix A.1.

Robust representations. In this section, we focus on resilience to sensor failure and adaptability
to dynamics change. These factors play a crucial role in real-world robotics scenarios, where sensor
malfunctions and environmental variations can pose risks and impact decision-making processes.
We used BC as the training algorithm and during evaluation, we systematically disabled each of
the 11 sensors individually by assigning a value of 0 to the corresponding coordinate in the state
vector. In Table 2, C-GPT (multi-domain) exhibits higher performance compared to the baselines,
demonstrating its enhanced robustness in handling sensor failures. Furthermore, we introduced four
gravity changes during the inference phase, and the results reaffirm the resilience of C-GPT (multi-
domain) in adapting to dynamics change, thus validating our previous findings.
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Zero-shot predictions. In this section, we investigate the zero-shot performance of pre-trained
models, complementing our previous findings with fine-tuning. We consider an additional set of
tasks outlined in Section 3.4, originally introduced in MTM. Notably, Figure 2 (b) shows that C-
GPT’s errors are comparable to those of specialized models like C-SMART. This suggests a sig-
nificant alignment between C-GPT’s pre-training approach and the inference tasks, even though
C-GPT was not explicitly trained to minimize these specific tasks like C-SMART. These results
further support the validity of the PASTA methodology, which incorporates first-principles masking
patterns, a straightforward objective function, and component-level tokenization. Additionally, we
note that C-GPT performs similarly to both C-BERT and C-SMART, except for the inverse dy-
namics prediction task. This difference is expected since C-GPT is an autoregressive model. Never-
theless, overall performance in Figure 2 (a) suggests that the inclusion of the inverse-dynamics task
is not necessary for achieving improved performance across the analyzed downstream tasks.

Raw representations. Finally, we examine the representational power of raw pre-trained model
embeddings through probing. Probing involves freezing all parameters of the pre-trained neural
network during downstream task training. From Figure 3 (a), we observe that, on average, fine-
tuning C-GPT outperforms probing by a significant margin. Importantly, the employed parameter-
efficient fine-tuning method only introduces a minor average increase of 3.7% in learned parameters,
resulting in negligible additional training time.

5 DISCUSSION

This paper presents the PASTA study, which focuses on Pretrained Action-State Transformer
Agents. The study aims to comprehensively explore self-supervised learning models for RL with
downstream training and zero-shot performance evaluation. This study contributes pre-training
datasets, a diverse set of 23 downstream tasks, and a comparison of four pre-training objectives
and two tokenization techniques. The study was conducted across three continuous control envi-
ronments to demonstrate the versatility and effectiveness of pre-trained models in various transfer
learning scenarios, including probing, parameter-efficient fine-tuning, and zero-shot transfer.

One key finding of this study is the superiority of first-principles objectives over convoluted ones.
The results indicate that standard self-supervised objectives, such as random masking or next to-
ken prediction, with standard hyperparameters, can match or even outperform more intricate and
task-specific objectives designed specifically for RL. This suggests that simpler objectives can serve
as a strong foundation for representation learning in RL tasks, simplifying the pre-training pro-
cess. Additionally, it was observed that tokenizing trajectories based on individual components
of the state and action vectors (component-level) rather than directly tokenizing states and actions
(modality-level) leads to improved performance in representation models. This observation empha-
sizes the significance of carefully selecting tokenization strategies to enhance the expressiveness of
the learned representations. Furthermore, the study revealed the benefits of pre-training a single
model on datasets from multiple domains. Simultaneous pre-training on datasets from different en-
vironments resulted in improved performance across all three environments compared to training
separate models for each domain. This finding indicates the potential for knowledge transfer and
generalization when using diverse pre-training data. For example, the learned representations sig-
nificantly enhanced the sample efficiency and performance of traditional offline RL algorithms, with
an average increase of 23% in final returns compared to the same algorithms using raw inputs. Ad-
ditionally, the investigation in Section 4.2 highlighted the importance of developing algorithms like
C-GPT that can effectively adapt and make decisions in the presence of sensor failures or dynamic
changes, ensuring safety and mitigating risks in robotics applications.

Overall, the findings from this study provide valuable guidance to researchers interested in lever-
aging self-supervised learning to improve RL in complex decision-making tasks. The models pre-
sented in this study are lightweight, and the fine-tuning approach involves training fewer than 10,000
parameters, facilitated by PEFT. This feature enables the replication of both pre-training and fine-
tuning experiments on readily available hardware, making them accessible to any practitioner. In
future work, it is anticipated that further exploration of other self-supervised objectives and tokeniza-
tion strategies will be conducted. Additionally, expanding the range of downstream tasks will allow
for a more comprehensive evaluation of model adaptation and robustness under varying conditions,
further enhancing the practical applicability of pre-trained agents in real-world scenarios.
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