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ABSTRACT

This study addresses the performance limitations of t-SVD-based tensor recovery
caused by non-smooth changes and imbalanced low-rankness in tensor data. We
introduce a novel bilevel tensor completion model, integrating the learning of a
data-dependent weighted tensor norm within the tensor completion framework
as an upper-level problem. We treat the optimization of the bilevel problem as a
black-box problem, employing Bayesian Optimization (BO) for efficient learning
of the proposed tensor norm. Numerical experiments demonstrated the superior
performance of our proposed method compared to state-of-the-art methods in
tensor completion. The code of our method is available at https://github.
com/jzheng20/TR-BO.git.

1 INTRODUCTION
Currently, the tensor recovery can classified into three main categories: CP decomposition-based
methods (Hitchcock, 1927; 1928), Tucker decomposition-based methods (Tucker, 1963; Liu et al.,
2013; Xie et al., 2017), and tensor product (t-product)-based methods (Lu et al., 2019b; 2018; Qin
et al., 2022; Zheng et al., 2022; Wang et al., 2023; Zhang et al., 2022; Zhou et al., 2017). Due to the
effectiveness of t-product-based methods in image and video processing, this work mainly focus on
the developing of the current t-product-based methods.

Different with the first two defining ways for tensor rank, the t-product-based methods are looking
for slice-wise tensor decomposition of the resulting tensor obtained by performing a fixed transform
along the certain dimension of given tensor data. For example, Kilmer & Martin (2011) given Discrete
Fourier Transform (DFT)-based t-product defined on the face product of the transformed tensors
by DFT. After determining the t-product, the tensor tubal rank (or tensor average rank) (Lu et al.,
2019a) for characterizing the internal correlation of tensor data can be naturally given by counting
the number of non-zero singular tubal (or values) obtained by tensor Singular Value Decomposition
(t-SVD). To study the low-rankness across different dimensions of higher order tensor data, Zheng
et al. (2020) have proposed a new tensor norm by using the Weighted Sum of Tensor Nuclear Norm of
all mode-k1k2 unfolding tensors (WSTNN). However,

(
h
2

)
different unfolding tensors are considered

in WSTNN for h-order tensor data and it leads to a difficult setting for the weight parameters, with the
increasing h, especially when tensor data has imbalanced low-rankness across its different dimensions.
Besides, since fixed transform are used in these methods, these tensor product-based methods suffer
from significant performance degradation when dealing with tensor data that exhibits fast-changing or
non-continuous variations as shown in the Fig. 1 of the appendix. The contribution of this work is to
give a new tensor recovery framework based on a novel weighted tensor norm from bayesian-driven
learning to solve the above issues, and thus can recover the low-rank component more effectively.

2 METHODOLOGY

In this section, we propose a novel weighted tensor norm formulized as

∥X∥w∗,U =
∑

1≤i<j≤h

wi,j∥X ×k1
Ûk1
· · · ×ks

Ûks
×ks+1

Ui,j,ks+1
· · ·Ui,j,kh

∥(i,j)∗ , (1)
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Table 1: Comparing the PSNR results by all methods on Berkeley Segmentation Dataset (BSD)
(Martin et al., 2001) at different sampling rates c. ‘Ours’ and ‘Ours-BO’ represents the proposed
norm with the equal weights and weights learned from BO, respectively.

Sampling Rate c TNN-DCT SNN KBR WSTNN HTNN-DCT Ours Ours-BO
0.3 23.25 21.86 25.45 25.75 25.21 27.87 28.33
0.5 27.25 25.50 31.57 31.07 30.72 33.35 33.82
0.7 32.04 29.84 38.81 37.11 38.22 40.47 40.81

which aims to study the low-rank characteristics of an h-order tensor
X ∈ RI1×I2···×Ih across its various dimensions. Here, ∥A∥(k1,k2)

∗ =∑
1≤ikn≤Ikn (n=3,4,··· ,h) ∥[A]i1,··· ,ik1−1,:,ik1+1,··· ,ik2−1,:,ik2+1,··· ,ikh

∥∗, and ×n is mode-n product.
We have proposed

[X ∗,U∗
i,j,kn

] = argmin
X ,UT

i,j,kn
Ui,j,kn=I

∥X∥w∗,U s.t. PΩ(X ) = PΩ(M) (2)

for a better tensor recovery and the following bilevel tensor completion model for the learning of the
proposed weighted norm:

[wbo,Ubo
i,j,kn

] = argmin
w,Ubo

i,j,kn
=U∗

i,j,kn

∥PΦ(Z∗)−PΦ(M)∥F

s.t. [Z∗,U∗
i,j,kn

] = argmin
Z,UT

i,j,kn
Ui,j,kn=I

∥Z∥w∗,U s.t. PΦc∩Ω(Z) = PΦc∩Ω(M),

(3)

where Ω denotes the set of locations of the observed elements in the tensor M, and Φ ⊂ Ω. Once we
get the learned weighted norm based on Ubo

i,j,kn
(n = s+ 1, · · · , h) and wbo, we can obtain a better

estimation X ∗ for M by minimizing the proposed weighted norm ∥X∥wbo

∗,U under the constraint of
PΩ(X ) = PΩ(M). 1 From convergence guarantee for the solving Z∗ by using APMM (Zheng
et al., 2023) that is given in the appendix, we can provides an approximate representation for Z∗ as
f
(N)
w ◦ · · · ◦ f (2)

w ◦ f (1)
w (PΦc∩Ω(M)), where f (t)

w (·) denotes the t-th iteration of the optimization for
solving Z(t) and it depend on the choice of w. Consequently, we turn to minimize the approximation
of the upper-level objective function, Fw = ∥PΦ(f

(N)
w ◦· · ·◦f (2)

w ◦f (1)
w (PΦc∩Ω(M)))−PΦ(M)∥F ,

using BO. We assume that Fw follows a Gaussian Process GP(m(w), k(w,w′)), and employ the
knowledge gradient (Garnett, 2023) as our acquisition function.

3 EXPERIMENTS

In this section, we compared the proposed methods with five state-of-the-art methods, including
TNN-DCT (Lu et al., 2019b), SNN (Liu et al., 2013), KBR (Xie et al., 2017), WSTNN (Zheng
et al., 2020), and HTNN-DCT (Qin et al., 2022), on image sequence inpainting to demonstrate
the effectiveness of the proposed methods in tensor completion. The Peak Signal-To-Noise Ratio
(PSNR) results for all methods are presented in the Table 12. From the table, we can see that our
methods (Ours and Ours-BO) have achieved the best performance for all cases. Particularly, the
results achieved by Ours-BO exhibit an improvement of approximately 0.5 dB compared to those
attained by Ours. Furthermore, when compared to other methods, our approaches demonstrate a
superiority of at least 2 dB across all cases.

4 CONCLUSION

In this work, we have proposed a new data-dependent weighted tensor norm learned by BO for
handling the case when tensor data is imbalanced low-rankness and non-continuous changing. The
experiments demonstrates the superior performance of the proposed method. It worth noting that,
beyond tensor completion, the proposed framework can be applied to other tensor recovery model,
offering numerous possibilities for future research directions.

1In practice, we sample the slices in PΦc∩Ω(M) to construct a smaller tensor for a more efficient learning
of w, and we have detailed the algorithm for that case in the appendix.

2Following Lu et al. (2019a), we randomly selected 50 color images.

2



Published as a Tiny Paper at ICLR 2024

ACKNOWLEDGEMENTS

Yankai Cao acknowledges funding from New Frontiers in Research Fund and the discovery program
of the Natural Science and Engineering Research Council of Canada. The authors also gratefully
acknowledge the computing resources and services provided by SciNet (www.scinethpc.ca), the
Digital Research Alliance of Canada (www.alliancecan.ca), and Advanced Research Computing at
the University of British Columbia.

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.

REFERENCES

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.

Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 6(1-4):164–189, 1927.

Frank L Hitchcock. Multiple invariants and generalized rank of a p-way matrix or tensor. Journal of
Mathematics and Physics, 7(1-4):39–79, 1928.

Misha E Kilmer and Carla D Martin. Factorization strategies for third-order tensors. Linear Algebra
and its Applications, 435(3):641–658, 2011.

Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. Tensor completion for estimating
missing values in visual data. IEEE Transactions on Pattern Analysis Machine Intelligence, 35(1):
208–220, 2013.

Canyi Lu, Jiashi Feng, Zhouchen Lin, and Shuicheng Yan. Exact low tubal rank tensor recovery from
gaussian measurements. arXiv preprint arXiv:1806.02511, 2018.

Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, and Shuicheng Yan. Tensor robust
principal component analysis with a new tensor nuclear norm. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 42(4):925–938, 2019a.

Canyi Lu, Xi Peng, and Yunchao Wei. Low-rank tensor completion with a new tensor nuclear norm
induced by invertible linear transforms. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5996–6004, 2019b.

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and measuring ecological
statistics. In Proceedings Eighth IEEE International Conference on Computer Vision., volume 2,
pp. 416–423, 2001.

Wenjin Qin, Hailin Wang, Feng Zhang, Jianjun Wang, Xin Luo, and Tingwen Huang. Low-rank high-
order tensor completion with applications in visual data. IEEE Transactions on Image Processing,
31:2433–2448, 2022. doi: 10.1109/TIP.2022.3155949.

Ledyard R Tucker. Implications of factor analysis of three-way matrices for measurement of change.
Problems in measuring change, 15(122-137):3, 1963.

Hailin Wang, Jiangjun Peng, Wenjin Qin, Jianjun Wang, and Deyu Meng. Guaranteed tensor recovery
fused low-rankness and smoothness, 2023.

Qi Xie, Qian Zhao, Deyu Meng, and Zongben Xu. Kronecker-basis-representation based tensor
sparsity and its applications to tensor recovery. IEEE transactions on pattern analysis and machine
intelligence, 40(8):1888–1902, 2017.

Xiaoqin Zhang, Jingjing Zheng, Li Zhao, Zhengyuan Zhou, and Zhouchen Lin. Tensor recovery
with weighted tensor average rank. IEEE Transactions on Neural Networks and Learning Systems,
2022.

3



Published as a Tiny Paper at ICLR 2024

Figure 1: Imbalanced low-rankness and fast-changing in tensor data

Algorithm 1: BO for the learning of weighted tensor norm

Input: PΩ(M), Φ ⊂ Ω, initial dataset D, Ûkn
for 1 ≤ n ≤ s.

Output: wbo, {U∗
i,j,kn0

}hn0=s+1 for 1 ≤ i < j ≤ h, and X ∗.
1. Sampling the slices in PΦ(M) to obtain PΦ(Msmall)
2.Repeat
3. w ← POLICY(D)
4. [Z∗

small,U
∗
i,j,kn

] = argminZsmall,UT
i,j,kn

Ui,j,kn=I ∥Zsamll∥w∗,U , s.t. PΦc∩Ω(Msmall) =

PΦc∩Ω(Zsamll)
5. Fw ← MSE(PΦ(Z∗

small),PΦ(Msmall)), D← D ∪ {(w, Fmse)}
7.Until termination reached
8. Obtain X ∗ and {U∗

i,j,kn0
}hn0=s+1 for 1 ≤ i < j ≤ h by solving

argminX ,Ui,j,kn
∥X∥wob

∗,U s.t. PΩ(M) = PΩ(X ), UT
i,j,kn

Ui,j,kn
= I(n =

s+ 1, · · · , h, 1 ≤ i < j ≤ h).
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A APPENDIX

A.1 THE ALGORITHM FOR LEARNING THE WEIGHTED TENSOR NORM BY BO (SEE
ALGORITHM 1 )

A.2 PARAMETERS ANALYSIS

To explore the influence of the choice of Φ, we study the relation between m = |Φc ∩Ω|/|Ω| and the
recovery performance of the proposed method (Ours-BO). As shown in the Fig. A.2, the performance
of Ours-BO have achieved the best when m = 0.5.

A.3 SOME PROPERTIES OF THE PROPOSED NORM

For the convenience of discussion, we define ∥A∥(i,j)∗,Ui,j
= ∥Ui,j(A)∥(i,j)∗ = ∥A ×k1

Ûk1
· · · ×ks

Ûks
×ks+1

Ui,j,ks+1
· · · ×kh

Ui,j,kh
∥(i,j)∗ , and we can get the following results by the convexity of

∥ · ∥(i,j)∗,Ui,j
and the linearity of the subgradient.
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Property 1. The proposed norm defined as ∥A∥w∗,U =
∑

1≤i<j≤h wi,j∥A∥(i,j)∗,Ui,j
for tensor A ∈

RI1×I2×···×Ih is convex if wi,j ≥ 0 for any 1 ≤ i < j ≤ h.

Definition 1. (tensor product under mode (k1, k2) for given U) For an h-order ten-
sor A ∈ RI1×I2×···Ik2−1×L×Ik2+1×···×Ih and B ∈ RI1×I2···×Ik1−1×L×Ik1+1···×Ih ,
the tensor product of A and B under mode (k1, k2) is defined as A ∗k1,k2

B =
U−1(U(A) ⊙slicek1,k2

U(B)), where [Ā ⊙slicek1,k2
B̄]i1,··· ,ik1−1,:,ik1+1,··· ,ik2−1,:,ik2+1,··· ,ikh

=

[Ā]i1,··· ,ik1−1,:,ik1+1,··· ,ik2−1,:,ik2+1,··· ,ikh
[B̄]i1,··· ,ik1−1,:,ik1+1,··· ,ik2−1,:,ik2+1,··· ,ikh

.

Lemma 1. For tensor A ∈ RI1×I2×···×Ih , if its skinny t-SVD under mode (i, j) is A =

U i,j ∗i,j Si,j ∗i,j VT
i,j , then the subgradient of ∥A∥w∗,U =

∑
1≤i<j≤h wi,j∥A∥(i,j)∗,Ui,j

can be

given as ∂∥A∥w∗,U = {
∑

1≤i<j≤h wi,j(U i,j ∗i,j VT
i,j + Wi,j)|UT

i,j ∗i,j Wi,j = 0,Wi,j ∗i,j
Vi,j = 0,max1≤i<j≤h ∥Wi,j∥(i,j)2,Ui,j

≤ 1}, where ∥Wi,j∥(i,j)2,Ui,j
is defined as ∥Wi,j∥(k1,k2)

2,Ui,j
=

maxi1,i2,··· ,ik1−1,ik1+1,··· ,ik2−1,ik2+1,··· ,ih ∥[Ui,j(Wi,j)]i1,··· ,ik1−1,:,ik1+1,··· ,ik2−1,:,ik2+1,··· ,ikh
∥2.

A.4 OPTIMIZATION FOR EQUATION 4 AND THE CORRESPONDING CONVERGENCE ANALYSIS

In this subsection, we are going to solve equation 4 by using APMM Zheng et al. (2023).

argmin
X ,Ui,j,kn

∥X∥w∗,U s.t. PΩ(M) = PΩ(X ),

UT
i,j,kn

Ui,j,kn
= I(n = s+ 1, · · · , h, 1 ≤ i < j ≤ h). (4)

For easily solving of equation 4, we introduce auxiliary variables E ∈ E = {E|PΩ(E) = 0} and
Zi,j = X ×ks+1 Ui,j,ks+1 · · ·×kh

Ui,j,kh
for 1 ≤ i < j ≤ h, and thus obtain the following problem:

argmin
X ,UT

i,j,kn
Ui,j,kn=I,E∈E

∑
1≤i<j≤h

wi,j∥Zi,j∥(i,j)∗

s.t. PΩ(M) = X + E
X = Zi,j ×k1

ÛT
k1
· · · ×ks

ÛT
ks
×ks+1

UT
i,j,ks+1

· · · ×kh
UT

i,j,kh

(n = s+ 1, · · · , h, 1 ≤ i < j ≤ h), (5)

where the Lagrangian function of equation 5 is given as follows

L(X ,E,Ui,j,k,Zi,j ,Λi,j ,Λ, µ, µij) =
∑

1≤i≤j≤h

wi,j∥Zi,j∥(i,j)∗ +
µ

2
∥PΩ(M)−X − E∥2F

⟨PΩ(M)−X − E,Λ⟩+
∑

1≤i<j≤h

(µij

2
∥Zi,j ×k1 Û

T
k1
· · · ×ks Û

T
ks
×ks+1

UT
i,j,ks+1

· · · ×kh
UT

i,j,kh
−X∥2F

+ ⟨Zi,j ×k1
ÛT

k1
· · · ×ks

ÛT
ks
×ks+1

UT
i,j,ks+1

· · · ×kh
UT

i,j,kh
−X ,Λij⟩

)
. (6)

According to the framework of APMM, the above optimization problem equation 5 can be iteratively
solved by minimizing the Lagrangian function as presented in the Algorithm 2. The convergence of
the algorithm is guaranteed by the Theorem 1.
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Algorithm 2: APMM-based Iterative Solver to equation 5

Input: PΩ(M), {U (0)
i,j,kn

}hn=s+1, {Ûkn}sn=1, E(0), Y(0), t = 0, ρµ, ρµij , ρξ > 1, µ̄, ξ̄, µ(0),
and ξ(0).

Output: E(t+1) and X (t+1)

1. While not converge do
2. Calculate Z(t+1)

i,j (1 ≤ i < j ≤ h) by

Z(t+1)
i,j = argminZi,j

L(X (t),E(t),U
(t)
i,j,k,Zi,j ,Λ

(t)
i,j ,Λ

(t), µ(t), µ
(t)
ij ) +

ξ(t)

2 ∥Z
(t)
i,j −Zi,j∥2F ;

3. Update X (t+1) by
X (t+1) = argminX L(X ,E(t),U

(t)
i,j,k,Z

(t+1)
i,j ,Λ

(t)
i,j ,Λ

(t), µ(t), µ
(t)
ij ) +

ξ(t)

2 ∥X
(t) −X∥2F ;

4. Calculate E(t+1) by
E(t+1) = argminE∈E L(X (t+1),E,U (t)

i,j,k,Z
(t+1)
i,j ,Λ

(t)
i,j ,Λ

(t), µ(t), µ
(t)
ij ) +

ξ(t)

2 ∥E
(t) − E∥2F ;

5. Calculate U
(t+1)
i,j,kn0

(s+ 1 ≤ n ≤ h, 1 ≤ i < j ≤ h) by

U
(t+1)
i,j,kn0

= argminUT
i,j,kn0

Ui,j,kn0
=I L(X (t+1),E(t+1), {Ui,j,kn

}n0
n=s=1,Ui,j,kn0

, {Ui,j,kn
}hn=n0+1,Z

(t+1)
i,j ,Λ

(t)
i,j ,Λ

(t), µ(t), µ
(t)
ij ) +

ξ(t)

2 ∥U
(t)
kn0
−Ukn0

∥2F
6. Calculate Λ

(t+1)
i,j (1 ≤ i < j ≤ h) by

Λ
(t+1)
i,j = Λ

(t)
i,j + µ

(t)
ij (Zi,j ×k1 Û

T
k1
· · · ×ks Û

T
ks
×ks+1 U

(t+1)T
i,j,ks+1

· · · ×kh
U

(t+1)T
i,j,kh

−X (t+1))

7. Calculate Λ(t+1) by Λ(t+1) = Λ(t) + µ(t)(PΩ(M)−X (t+1) − E(t+1))

8. Update µ(t+1), µ(t+1)
ij and ξ(t+1) by µ(t+1) = min(ρµµ

(t), µ̄),

µ
(t+1)
k1k2

= min(ρk1k2µ
(t)
k1k2

, µ̄) and ξ(t+1) = min(ρξξ
(t), ξ̄), respectively;

9. Check the convergence condition: ∥Z(t+1) −Z(t)∥∞ < ε, ∥X (t+1) −X (t)∥∞ < ε,
∥U (t+1)

i,j,kn
−U

(t)
i,j,kn

∥∞ < ε for n = s+ 1, s+ 2, · · · , h and 1 ≤ i < j ≤ h;
10. t = t+ 1.
11. end while

Theorem 1. For the sequence {[X (t),Z(t)
i,j , {U

(t)
i,j,kn

}hn=s+1,E
(t),Λ(t),Λ

(t)
i,j , µ

(t), µ
(t)
ij , ξ

(t)]} gener-

ated by the proposed algorithm 2, we have the following properties if {Λ(t)
i,j} and {Λ(t)} are bounded,∑∞

t=1(µ
(t))−2µ(t+1) < +∞,

∑∞
t=1(µ

(t)
ij )

−2µ
(t+1)
ij < +∞ and lim

n−→∞
µ(n)

∞∑
t=n

(ξ(t))−1/2 =

lim
n−→∞

µ
(n)
ij

∞∑
t=n

(ξ(t))−1/2 = 0.

(i) lim
t−→∞

PΩ(M) − X (t) − E(t) = 0 and lim
t−→∞

Z(t)
i,j − X (t) ×k1

Ûk1
· · · ×ks

Ûks
×ks+1

U
(t)
i,j,ks+1

· · · ×kh
U

(t)
i,j,kh

= 0

(ii) {[X (t),Z(t)
i,j , {U

(t)
i,j,kn

}hn=s+1},E
(t)]} is bounded.

(iii)
∑∞

t=1 ξ
(t)∥[X (t),Z(t)

i,j , {U
(t)
i,j,kn

}hn=s+1},E
(t)]−[X (t+1),Z(t+1)

i,j , {U (t+1)
i,j,kn

}hn=s+1},E
(t+1)]∥2F

is convergent. Thus, we have ∥[X (t),Z(t)
i,j , {U

(t)
i,j,kn

}hn=s+1},E
(t)] −

[X (t+1),Z(t+1)
i,j , {U (t+1)

i,j,kn
}hn=s+1},E

(t+1)]∥2F ≤ O(
1

ξ(t)
).

(iv) lim
t−→∞

∥Λ(t+1)
i,j −Λ

(t)
i,j∥F = 0 and lim

t−→∞
∥Λ(t+1) −Λ(t)∥F = 0.

(v) Let [X ∗,Z∗
i,j , {U∗

i,j,kn
}hn=s+1,E

∗,Λ∗,Λ∗
i,j ] be any limit

point of {[X (t),Z(t)
i,j , {U

(t)
i,j,kn

}hn=s+1,E
(t),Λ(t),Λ

(t)
i,j ]}. Then,

[X ∗,Z∗
i,j , {U∗

i,j,kn
}hn=s+1,E

∗,Λ∗,Λ∗
i,j ] is a KKT point to equation 5.
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