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Abstract001

When Large Vision Language Models002
(LVLMs) are applied to multimodal medical003
generative tasks, they suffer from significant004
model hallucination issues. This severely005
impairs the model’s generative accuracy,006
making it challenging for LVLMs to be007
implemented in real-world medical scenarios008
to assist doctors in diagnosis. Enhancing009
the training data for downstream medical010
generative tasks is an effective way to address011
model hallucination. Moreover, the limited012
availability of training data in the medical013
field and privacy concerns greatly hinder014
the model’s accuracy and generalization015
capabilities. In this paper, we introduce a016
method that mimics human cognitive processes017
to construct fine-grained instruction pairs and018
apply the concept of chain-of-thought (CoT)019
from inference scenarios to training scenarios,020
thereby proposing a method called MedThink.021
Our experiments on various LVLMs demon-022
strate that our novel data construction method023
tailored for the medical domain significantly024
improves the model’s performance in medical025
image report generation tasks and substantially026
mitigates the hallucinations. All resources of027
this work will be released soon.028

1 Introduction029

When Large Vision Language Models030

(LVLMs) [13, 7, 12] encounter complex and031

integrative medical problems, they require a032

nuanced understanding and reasoning capabil-033

ity akin to that of human doctors. The lack034

of robust reasoning capacities impedes these035

models from accurately diagnosing and assessing036

patient conditions. Consequently, when faced037

with complex integrative medical problems,038

LVLMs often produce seemingly accurate but039

fundamentally erroneous answers, known as040

hallucinations [2, 9], which hinder their practical041

application in real-world medical scenarios.042

One approach to mitigating hallucinations is by 043

increasing the quality as well as the diversity of the 044

training data [5, 15] to increase the robustness and 045

generalisation of the model, however, traditional 046

data augmentation methods such as image flipping, 047

rotation, scaling, and the introduction of synthetic 048

noise are not suitable for the multimodal medical 049

domain due to the high fidelity required in medical 050

image interpretation. Any alteration that distorts 051

the medical reality of the image or disrupts the fea- 052

ture alignment between images and text can lead to 053

misdiagnoses or the overlooking of critical patient- 054

specific details. Expanding data by rewriting text 055

directly using large language models (LLMs) has 056

received some favour [15, 8], but the increase in 057

data diversity from it is extremely limited. 058

To address these challenges, we propose a hierar- 059

chical text enhancement method called MedThink, 060

specifically designed for the medical domain. By 061

mimicking human cognitive processes in analyzing 062

a medical image, MedThink leverages the Large 063

Language Model (LLM) to construct fine-grained 064

instruction pairs and apply the concept of chain-of- 065

thought (CoT) from inference scenarios to training 066

scenarios. Through enhancing the hierarchy, depth, 067

and diversity of medical text, MedThink encour- 068

ages LVLMs to progressively observe and analyze 069

from superficial appearances to deep pathological 070

conditions and provide a reliable and comprehen- 071

sive diagnosis. Experiments demonstrate that this 072

approach significantly reduces models’ medical 073

hallucinations, overcoming the limitations of tra- 074

ditional hallucination-mitigating methods by data 075

augmentation. 076

In summary, our contributions are as follows: (i) 077

We introduce MedThink, a novel medical construc- 078

tion method that effectively mitigates hallucina- 079

tions in LVLMs within the medical domain. (ii) We 080

transform chaotic and unstructured medical reports 081

into chain-like data for reasoning, creating a high- 082

quality inferential IRG dataset. (iii) We demon- 083
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Modality
The image is a chest X-ray.

Organ
The organs in this image include heart, lung, spine 
and et.al.

Health condition
The chest-Xray is abnormal, The patient 
developed chronic lung disease as well as heart 
disease…….

Size
The size of the heart is normal but a tortuous 
aorta is notable .

Human Cognitive Steps(a)

Location
Right upper lobe seems to be abnormal……

Symptom
1. Right upper lobe consolidation, 2.  Mild heart 
failure, 3. chronic lung disease……

(b) (c) (d)

Medical Report: AP and lateral views of the chest 

were provided in the X-ray. Lung volumes are low. 

There are findings consistent with chronic lung 

disease such as sarcoidosis. Prominence of the 

pulmonary interstitial markings is due to mild heart 

failure. There is no pleural effusion or 

pneumothorax. The size of the heart is normal. The 

cardiomediastinal silhouette is notable for a tortuous 

aorta. Bones are slightly osteopenic. The impression 

suggests that 1. Improving right upper lobe 

consolidation; 2. Mild heart failure; 3. Findings of 

chronic lung disease, most likely sarcoidosis.

Hierarchical Semantic Segmentation

Question-answer Pair Construction

Training Sample Reconstruction

LLM

Attribute QA Construction Hierarchical QA Integration

Q: What organs are in the image? 

A: The x-ray image depicts the heart and lungs.

Q: Describe the size of the organ in the image.

A: The size of the heart is normal. Lung 

volumes are low.

Q: Where are the abnormalities in the organs? 

A: Right upper lobe consolidation.

Q: What symptoms are shown in this image? 

A: Prominence of the pulmonary interstitial 

markings. ….

Q: Describe the patient's health condition 

according to this image.

A: The overall impression from the x-ray is…

Q: What modality is used to take this image?

A: The modality used for this image is an x-ray.

Q: The modality used for this image is an x-ray. 

So, What organs are in the image? 

Q: The x-ray image depicts the heart and lungs. 

Describe the size of the organ in the image.

Q: The size of the heart is normal. Lung 

volumes are low. Where are the abnormalities 

in the organs? 

Q: Image shows right upper lobe consolidation. 

So, what symptoms are shown in this image? 

Q: The image shows prominence of the 

pulmonary interstitial markings; …. Describe 

the patient's health condition according to this 

image.

Q: What modality is used to take this image?

Figure 1: Illustration of MedThink’s process for constructing hierarchical QA pairs based on real clinical image
reports. (a). The progressive cognitive process of doctors for a medical image. (b). End-to-end data reconstruction
of clinical reports. (c). Construction of Hierarchical QA pairs. (d). Chain-based QA Pair Refactoring

strate that applying MedThink to a baseline model084

achieves state-of-the-art (SOTA) performance in085

reducing medical hallucinations.086

2 Methods087

2.1 Overview of the MedThink088

Medical texts authored by humans are often dis-089

organized, complicating the process of correlating090

visual features with unstructured free texts. There-091

fore, we propose a hierarchical text enhancement092

method called MedThink, rooted in a chain-like093

hierarchy of medical attribute importance. This094

hierarchical semantic segmentation of medical text095

is inspired by the cognitive steps that doctors take096

when assessing medical images and diagnosing, in-097

volving the sequential recognition and integration098

of information across various levels.099

Based on this cognitive process, we design100

prompts that enable powerful models like Gem-101

ini to generate structured question-answer pairs102

(QA pairs) end-to-end, focusing on different di-103

mensions of medical images with fine granularity.104

Subsequently, we emulate the Chain-of-Thought105

(CoT) [3] paradigm and transfer this paradigm from106

the inference process into the model’s fine-tuning107

process. This involves integrating lower-level in-108

formational cues into higher-level questions to gen-109

erate new QA pairs and perform supervised fine-110

tuning (SFT) of the model.111

2.2 Inspiration for the MedThink112

Exploring whether human cognitive processes for113

image recognition can be applied to the organiza-114

tion of data in multimodal models is a question115

worth considering. Research in cognitive neuro-116

science indicates that humans typically process117

graphical information from superficial to deep lev-118

els [6], seamlessly understanding hierarchical in- 119

formation. However, AI models lack this capability 120

and must analyze each image patch step by step 121

by reducing the receptive field. Broadly speaking, 122

the integration of textual information can assist AI 123

models in emulating human cognitive processes. 124

Figure 1(a) illustrates the cognitive process of 125

a doctor assessing a medical image. The process 126

typically begins with global information about the 127

image, such as the modality and the depicted hu- 128

man system, and progressively focuses on specific 129

organs, followed by fine-grained attributes such 130

as the shape or location of organs or abnormali- 131

ties. After thoroughly understanding this informa- 132

tion, the human brain synthesizes the symptoms 133

presented in the image, ultimately producing an 134

unstructured image report. 135

From the perspective of LVLMs, medical reports 136

are usually highly disorganized. Even for humans, 137

it is challenging to quickly correlate lengthy medi- 138

cal reports with every fine-grained semantic detail 139

in the images. QA pairs, which provide a more 140

granular depiction of dimensions, are often used 141

as high-quality training data to help models under- 142

stand images. However, constructing QA pairs is 143

extremely time-consuming, and imaging centers 144

typically produce image reports without explicitly 145

creating QA pairs. 146

2.3 Application Details of Medthink 147

Construction of Hierarchical QA pairs: To 148

transform disorganized image reports into high- 149

quality QA pairs that mimic human cognition, we 150

utilize powerful LLMs to semantically segment 151

the image reports. As depicted in Figure 1(b), the 152

image reports are processed by GPT-4 [1] for end- 153

to-end semantic segmentation, and they are broken 154

2



down into six dimensions: modality, organ, size,155

abnormal location, symptoms, and overall health156

condition. This segmentation results in six distinct157

questions, as shown in Figure 1(c), which inde-158

pendently query and answer the information from159

different dimensions of the image.160

Chain-based QA Pair Refactoring: To further161

emulate human cognitive processes, we propose162

a chain-based QA pair refactoring method, illus-163

trated in Figure 1(d). For each original question,164

the lower-level answer is used as a prelude to the165

higher-level question, thereby combining with the166

original question to reconstruct each QA pair in a167

chain-like manner.168

2.4 Data Construction169

Based on the aforementioned construction process170

in section 2.3, we obtained two sets of QA pairs:171

Hierarchical QA pairs and Chain-based QA pairs.172

The Chain-based QA pairs, combined with the orig-173

inal medical image reports, are used for the model’s174

supervised fine-tuning (SFT). The Hierarchical QA175

pairs are treated as traditional Visual Question An-176

swering (VQA) task data and can be used to eval-177

uate the model’s hallucination level (the images178

used for evaluation are different from those used179

for training).180

Specifically, we collected 10,000 images with181

medical reports from the MIMIC dataset [10] and182

the OpenI [16] dataset. Using the MedThink183

method, we constructed 60,000 Hierarchical QA184

pairs and 60,000 Chain-based QA pairs. One-tenth185

of the medical image-text pairs from the OpenI186

dataset were used to test model performance, while187

the images from the MIMIC dataset were entirely188

used as test data to better evaluate the model’s gen-189

eralization capability.190

2.5 Traing of baseline models191

To demonstrate the superiority of our method, we192

conducted full-parameters SFT on several differ-193

ent types of baseline models, including LLaVA-194

Med(SOTA) [11], MiniGPT4 [18], XrayGPT [14],195

and mPLUG-Owl2 [17], and used the checkpoint196

provided in the original article.197

2.6 Evaluation Metrics198

We measured the Image Report Generation (IRG)199

capacities of the models with common metrics200

such as BERTScore, METEOR, ROUGE-1/2/L,201

and BLEU. Additionally, to verify the effectiveness202

of MedThink in mitigating model hallucinations203

by guiding Med-LVLMs to simulate human doc- 204

tors’ chain-like thoughts, we employed the novel 205

medical text hallucination metric, the MediHall 206

Score, which was proposed in recent advanced re- 207

search [4]. This metric defines five common types 208

of hallucinations specific to medical texts and ulti- 209

mately calculates a comprehensive MediHall Score. 210

The calculation formula for the MediHall score is 211

given as: 212

MediHall score =
1

N

N∑
i=1

Si 213

where N is the total number of sentences in the 214

report, and Si is the score of the i-th sentence based 215

on its hallucination type. 216

3 Experiment Results and Discussion 217

3.1 Is MedThink more effective than normal 218

LLM data augmentation methods? 219

Table 1 presents a comparison of the performance 220

of models fine-tuned using the MedThink method, 221

models fine-tuned using the original IRG task data, 222

and models fine-tuned using data simply expanded 223

by GPT. The performance is evaluated on the IRG 224

task test set. “R-1/2/L” means the ROUGE-1/2/L. 225

“BS”, “MT” stand for the BERTScore and ME- 226

TEOR, and MediHall means the MediHall Score. 227

As shown in Table 1, although the simple expan- 228

sion of data using GPT significantly increased the 229

volume of training data, it did not lead to perfor- 230

mance improvements. This is reflected in a slight 231

decrease in traditional metrics and a significant 232

drop in the hallucination score, with a reduction of 233

approximately 2% to 4% across the four models. 234

In contrast, models trained using the MedThink 235

method not only demonstrated improvements in 236

traditional metrics but also surpassed the models 237

trained with conventional data paradigms by ap- 238

proximately 2% to 5% in the hallucination score. 239

This indicates that the MedThink method effec- 240

tively enhances the model’s understanding of the 241

global information in images. 242

3.2 Are traditional data augmentation 243

methods better at mitigating the illusion? 244

To further validate the enhancement of MedThink 245

on the global understanding capability of models 246

for medical images, we compared the MedThink 247

method with traditional NLP data augmentation 248

methods such as insert, swap, and delete, as well as 249
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Table 1: Comparison results of the different augmenta-
tion methods on the OpenI dataset by various evaluation
metrics. “R-1/2/L” means the ROUGE-1/2/L. “BS”,
“MT” stand for the BERTScore and METEOR.

Model BS MT R-1 R-2 R-L BLEU MediHall
LLaVA-Med + Origin 57.87 18.18 22.81 4.01 21.29 1.60 39.31

LLaVA-Med + GPT Rewriting 57.6 18.34 22.88 3.94 21.37 1.58 37.89
LLaVA-Med + MedThink 65.67 28.44 32.5 8.73 29.99 5.82 41.36

MiniGPT4 + Origin 60.18 19.82 24.59 5.12 25.12 1.51 62.03
MiniGPT4 + GPT Rewriting 59.41 20.10 24.06 4.97 21.30 1.50 60.31

MiniGPT4+MedThink 61.32 21.37 25.14 5.97 26.10 1.61 65.62
XrayGPT + Origin 64.71 20.97 30.24 6.97 27.58 1.69 64.11

XrayGPT + GPT Rewriting 64.69 21.30 30.22 6.59 27.65 1.60 61.33
XrayGPT + MedThink 64.87 21.67 30.71 7.37 27.87 1.90 68.90
mPLUG-Owl2+origin 69.77 35.38 40.39 12.91 36.67 7.81 68.80

mPLUG-Owl2+GPT rewriting 61.72 35.86 40.10 12.31 36.60 7.74 65.41
mPLUG-Owl2 + MedThink 70.70 37.5 40.99 12.93 36.89 7.87 70.32

Table 2: Comparison results of MedThink and tradi-
tional Data Augmentation methods on Medihall Score.

Model MedThink Insert Swap Delete Blur Flip Clip
LLaVA-med 41.36 40.17 39.98 40.21 37.95 38.88 39.56
MiniGPT4 65.62 64.48 62.14 63.15 60.10 59.65 61.47
XrayGPT 68.90 66.55 62.81 55.27 55.97 598.6 62.01

mPLUG-Owl2 70.32 69.36 68.19 68.67 68.16 68.40 68.07

image augmentation methods like Gaussian noise,250

flip, and clip. The experimental results are shown251

in Table 2.252

As observed from Table 2, while traditional data253

augmentation methods effectively expand the data254

volume and enhance the model’s robustness, they255

do not result in a significant improvement in the256

MediHall score. This further demonstrates that257

emulating human cognitive processes can directly258

reduce the hallucinations in LVLMs for medical259

applications, surpassing the noise-based traditional260

augmentation methods.261

3.3 Do MedThink improve model262

generalisability?263

To verify whether MedThink can enhance the264

model’s generalization capability, we evaluated the265

out-of-distribution (OOD) performance of models266

fine-tuned using chain-based QA pairs on images267

from the MIMIC dataset. The experimental results268

are presented in Table 3.269

In Table 3, we compare the MedThink method270

with models fine-tuned using the original IRG task271

Table 3: Out of Distribution (OOD) capacities of differ-
ent models with different augmentation methods.

Model BS MT R-1 R-2 R-L BLEU MediHall
LLaVA-Med 50.94 10.92 17.73 2.16 13.72 0.52 29.19

LLaVA-Med+origin 51.40 11.04 13.91 2.20 13.91 0.63 27.53
LLaVA-Med+MedThink 58.11 16.39 21.84 3.89 16.88 1.27 32.58

MiniGPT4 46.43 10.27 15.36 1.75 12.63 0.53 32.92
MiniGPT4+origin 60.54 23.09 25.55 4.84 19.94 1.84 41.11

MiniGPT4+MedThink 60.12 21.90 24.78 4.32 19.20 2.18 43.56
mPLUG-Owl2 55.01 09.91 18.21 2.14 13.01 0.12 35.03

mPLUG-Owl2+origin 55.16 09.60 18.10 2.15 13.23 0.14 36.63
mPLUG-Owl2+MedThink 55.48 10.01 18.42 2.19 13.49 0.15 38.58

Table 4: MediHall Score of LLaVA-Med and mPLUG-
Owl2 on the VQA tasks.

Origin MedThink Rewriting Insert Swap Delete blur Flip Clip
LLaVA-Med 61.29 66.40 60.33 62.15 60.58 60.93 61.45 60.46 60.95
mPLUG-Owl2 68.21 73.98 69.10 70.32 69.94 70.01 69.16 67.32 68.20

data and those fine-tuned using data simply ex- 272

panded by GPT. XrayGPT, having been trained 273

on the MIMIC dataset, is not applicable for the 274

relevant performance evaluation. As shown in Ta- 275

ble 3, models trained with the MedThink method 276

significantly outperformed other methods in OOD 277

performance. There were notable improvements in 278

traditional metrics, and the hallucination score also 279

improved by approximately 3% to 5%. 280

3.4 Can MedThink methods reduce 281

hallucinations across the board? 282

To further substantiate the effectiveness of the Med- 283

Think method in mitigating model hallucinations 284

and enhancing image understanding capabilities, 285

we selected two models suitable for VQA tasks: 286

LLaVA-Med and mPLUG-Owl2. We evaluated 287

their performance using the Hierarchical QA pairs 288

mentioned earlier. The experimental results are 289

presented in Table 4. 290

Table 4 compares the hallucination scores of the 291

untrained baseline models, models fine-tuned us- 292

ing the MedThink method, and models fine-tuned 293

using traditional data augmentation methods. As 294

shown in Table 4, traditional data augmentation 295

methods did not alleviate the hallucination problem 296

in the fine-grained VQA scenarios, with LLaVA- 297

Med and mPLUG-Owl2 maintaining hallucination 298

scores of 61.29% and 68.21%, respectively. In con- 299

trast, models trained with the MedThink method 300

achieved a significant reduction in hallucination 301

scores, demonstrating that MedThink effectively 302

alleviates model hallucinations. 303

4 Conclusions 304

In this paper, we introduced MedThink, a hierar- 305

chical text enhancement method designed to ad- 306

dress the hallucination issues faced by LVLMs in 307

complex medical scenarios. MedThink leverages 308

the cognitive processes of human doctors by seg- 309

menting medical text into different attribute layers 310

and constructing chain-based QA pairs. Our ex- 311

periments demonstrate that MedThink significantly 312

enhances the performance of LVLMs in medical im- 313

age report generation tasks, both in terms of tradi- 314

tional evaluation metrics and hallucination scores. 315
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5 Limitations316

Despite the promising results, there are several lim-317

itations to our study:318

Evaluation Metrics: While the hallucination319

score and traditional metrics provide insights into320

model performance, developing more comprehen-321

sive evaluation metrics that capture the nuanced un-322

derstanding required in medical diagnostics would323

be beneficial.324

Model Complexity: The improvements brought325

by MedThink need to be assessed in the context326

of model complexity and inference time, as more327

sophisticated models may require more computa-328

tional power and longer training times.329
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A Appendix421

A.1 Prompts for MedThink and Visualization422

In the MedThink method, we use instruction as423

shown in Figure 2 to conduct semantic segmen-424

tation of the original medical reports, extract in-425

formation at different levels, and then construct426

question-answer pairs respectively. We used Chat-427

GPT to process the original medical report, which428

is divided into six question-answer pairs containing429

key information of different attributes, as shown430

in Figure 2. Then, as described in the Method sec-431

tion 2, the six pairs are sequentially combined into432

a chain structure containing progressive relation-433

ships.434

In Figure 3, we show a comparison of the output435

results of mPLUG-Owl2 that performs best on the436

IRG task.437

A.2 Experiments Compute Resources438

In this paper, SFT for all baseline models was per-439

formed on 8 Nivida A800 GPUs, and Inference440

for all baseline models was performed on a single441

A800 GPU.442

6



Here is a medical report based on an image. Imagine you are an experienced doctor. Based on the report, please extract structured 

information of six attributes: image modality, organ, size, symptom, location, condition. Then, please construct six instructions based on 

the information of the six attributes. Here is an example you can refer to:

<medical report>: The x-ray image shows low lung volumes with bronchovascular crowding and no definite acute findings of focal 

alveolar consolidation or pleural effusion. However, a dense nodule in the right base suggests a previous granulomatous process. The 

heart size appears normal, and there are no typical findings of pulmonary edema. Overall, the x-ray impression is of low lung volumes 

with no acute abnormalities, but prior granulomatous disease is noted.

<six instructions>

1. <instruction>: What modality is used to take this image? <answer>: This is an x-ray.

2. <instruction>:What organs are in the image? <answer>: The lungs and heart are the main organs depicted in the x-ray image.

3. <instruction>: Please describe the size of the organ shown in the image. <answer>: The x-ray image shows low lung volumes, and the 

heart size appears normal.

4. <instruction>: What symptoms are shown in this image? <answer>: The x-ray image shows low lung volumes with bronchovascular

crowding, and a dense nodule in the right base suggests a previous granulomatous process.

5. <instruction>: Where are the abnormalities (if any) in the organs? <answer>: The abnormality, a dense nodule, is located in the right 

base of the lungs.

6. <instruction>: Please describe the patient's health condition according to this image. <answer>: While there are no acute abnormalities, 

the presence of the granulomatous nodule indicates a prior pathological process affecting lung health.

Now, please provide six new instructions based on the following medical report:

<medical report>: {medical report}

Medical Report Semantic Segmentation Instruction

[Original Report]

The findings from the X-ray image are normal, with no signs of active disease. The heart and lungs appear healthy, with no abnormalities detected. 

There are no signs of pleural effusion or pneumothorax, indicating that the patient's respiratory system is functioning properly. The PICC line is in 

place and the tip is located in the upper right atrium of the heart. Overall, the image suggests that the patient is in good health, with no immediate 

concerns

<instruction>: What modality is used to take this image? 

<answer>: The modality used is X-ray imaging.

<instruction>: What organs are in the image?

<answer>: The heart and lungs are the main organs depicted in the X-ray image.

<instruction>: Please describe the size of the organ shown in the image. 

<answer>: The report states that the heart and lungs appear healthy and normal, without specific size details provided.

<instruction>: What symptoms are shown in this image? 

<answer>: The X-ray image indicates normal findings with no signs of active disease, pleural effusion, or pneumothorax, suggesting the absence of 

symptoms.

<instruction>: Where are the abnormalities (if any) in the organs? 

<answer>: No abnormalities were detected in the heart or lungs. The PICC line is in place, with the tip located in the upper right atrium of the heart.

<instruction>: Please describe the patient's health condition according to this image. 

<answer>: The image suggests that the patient is in good health, with no immediate concerns, and the respiratory system is functioning properly.

Examples after Segmentation

Figure 2: Medical Report Semantic Segmentation Instruction and the Example of Result
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Question: Take a look at this chest x-ray 

and describe the findings and impression.

Ground-truth: The X-ray image shows no acute cardiopulmonary abnormality.  The heart and lungs appear 

normal with no focal airspace disease, pneumothorax or pleural effusion.  The cardiomedistinal silhouette 

and pulmonary vascularity are stable.  The image indicates probable COPD and old granulomatous disease 

with mild biapical scarring.  The lungs have low volumes but are clear bilaterally.  CT scan may be 

warranted.  No active disease is observed in the interval.

mPLUG-Owl2

& MedThink

The x-ray shows that the cardiomediastinal silhouette is normal in size. The lungs are clear 

without any signs of pneumothorax or pleural effusion. The bony structures are normal. 

Overall, there are no acute bony abnormalities.

mPLUG-Owl2

& GPT Rewriting

The chest x-ray shows normal lungs with no focal consolidation, pleural effusion, or 

pneumothorax. The heart is of normal size and the mediastinum is unremarkable. The 

cardia is mildly enlarged, but there are no acute cardiopulmonary abnormalities. The 

impression shows no acute cardiopulmonary abnormalities.

mPLUG-Owl2

& Delete

The x-ray shows clear lungs and a normal heart and mediastinal silhouette. The lungs 

are inflated with clear air spaces with no signs of any acute cardiopulmonary 

abnormality. The impression is that there is no acute cardiopulmonary abnormality 

present.

mPLUG-Owl2

& Swap

The x-ray shows left midlung opacity with airspace consolidation and pneumothorax. The 

heart and mediastinal contours appear normal. There is no acute bony abnormality. This 

suggests that there are no active cardiopulmonary findings.

mPLUG-Owl2

& Gauss

The x-ray shows clear lungs with a normal heart size. Although the heart and mediastinum 

are normal in size, there are findings of atelectasis and effusions. The impression suggests 

that there are some pleural effusions and pneumothoraces present. Further investigation is 

recommended.

mPLUG-Owl2

& Flip

mPLUG-Owl2

& Insert

The chest x-ray shows no signs of acute cardiopulmonary abnormality.   Lungs have 

low volumes.  The heart size and mediastinal contour are normal.   There is no evidence 

of pneumothorax, pleural effusion or focal consolidation.   The lungs are clear with no 

acute infiltrate or abnormalities.   The impression is that there is no acute 

cardiopulmonary abnormality, but there may be granulomatous disease.

According to the x-ray image, the heart size, cardiomediastinal silhouette, and 

pulmonary vasculature all appear to be within normal limits. Additionally, there are 

no infiltrates, effusions, or pneumothorax observed. Based on these findings, there is 

no evidence of an acute cardiopulmonary process present in the individual.

mPLUG-Owl2

& Clip

Based on the X-ray image, the heart size and vascularity are normal, and the mediastinal 

contour is normal. The lungs are also clear, with no pleural effusions or pneumothoraces

observed. Overall, the X-ray indicates a normal chest with no acute cardiopulmonary 

findings

Figure 3: Comparison of mPLUG-Owl2 outputs with different data enhancement methods
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