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ABSTRACT

Continuous-time models such as Neural ODEs and Neural Flows have shown
promising results in analyzing irregularly sampled time series frequently encoun-
tered in electronic health records. Based on these models, time series are typically
processed with a hybrid of an initial value problem (IVP) solver and a recurrent
neural network within the variational autoencoder architecture. Sequentially solv-
ing IVPs makes such models computationally less efficient. In this paper, we
propose to model time series purely with continuous processes whose state evolu-
tion can be approximated directly by IVPs. This eliminates the need for recurrent
computation and enables multiple states to evolve in parallel. We further fuse the
encoder and decoder with one IVP-solver based on its invertibility, which leads to
fewer parameters and faster convergence. Experiments on two EHR datasets show
that the proposed approach achieves comparable classification performance while
gaining more than 10x speedup over other continuous-time counterparts.

1 INTRODUCTION

Irregularly sampled time series are ubiquitous in a variety of domains, including healthcare. Elec-
tronic Health Record (EHR) data contains time series of patient information, such as vital signs
and laboratory results, which can have missing values and unequal time intervals between succes-
sive measurements. The irregularity is caused mainly due to unstructured manual processes, event-
driven recordings, device failure, and also different sampling frequencies among multiple variables
(Weerakody et al., 2021)). These complexities make learning and modeling clinical time series data
particularly challenging for classical machine learning models (Shukla & Marlin, 2020).

Significant progress has been made towards developing models that can handle irregularly sampled
time series data (Shukla & Marlin, 2020). Recent models can be categorized as recurrent neural
network (RNN)-based (Kim & Chi, 2018; Cao et al., 2018; Li & Xu, 2019), convolutional neural
network (CNN)-based (Romero et al., 2022; Li & Marlin, 2020; Fey et al., 2018) or attention-based
(Shukla & Marlin, 2021; Zerveas et al., 2021; Tipirneni & Reddy, 2022). Even though some of these
models allow for incorporating continuous time information, they are essentially discrete. Neural
ODEs (Chen et al., 2018) are a continuous-time model based on ordinary differential equations
(ODE) that can naturally handle irregularly sampled data. To address the irregularity in time series,
Rubanova et al. (2019) develop Latent-ODE by integrating Neural ODEs and RNN into a variational
autoencoder (VAE) (Kingma & Welling, 2013). Biloš et al. (2021) propose an efficient alternative
by directly modeling the solution of ODEs with a neural network, obtaining a Flow-based variant
noted as Latent-Flow in this paper. However, when analyzing time series, these continuous-time
models require sequential processing of data which makes them inefficient and hard to train.

In this work, we propose a continuous-time generative model, IVP-VAE, for irregularly sampled
time series. Unlike Latent-ODE and Latent-Flow, our model takes variational approximation purely
as solving initial value problems (IVPs). States at different observation times are mapped to the
latent variable z0 by solving different IVPs in parallel, thereby achieving significant speedup over
existing continuous-time models. As IVP-solvers are inherently invertible, by solving IVPs in op-
posite time directions, we fuse the encoding and decoding module as the same solver, which results
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in smaller model size and faster convergence. We validate our model across two EHR time series
datasets for the task of mortality prediction, where IVP-VAE’s advantage is clearly demonstrated.

2 METHODOLOGY

2.1 PROBLEM FORMULATION

Given an irregular time series database X = {X1, . . . , XN} collected within a fixed time window
T , where N is the total number of samples. The n-th sample Xn consists of a sequence of observa-
tions Xn = {(xi, ti)}Li=1 where L is the sequence length, i.e. the number of observations, and each
xi represents the observation at time ti. Specifically, xi ∈ RD and D is the number of variables
recorded, thus we have Xn ∈ RL×D. L’s value varies among different samples because of the irreg-
ularity. Our goal is to first build a generative model for irregular time series, and then concatenate a
classifier to make predictions.

2.2 CONTINUOUS-TIME MODELS

A continuous-time model (Chen et al., 2018) assumes that the data xt at time t is generated by a con-
tinuous process F and models it following an ordinary differential equation dF (t)

dt = f(t, zt), where
zt is the hidden state of xt. Given an initial condition (t0, z0), the value of z at ti could be com-
puted by numerical methods, including Neural ODEs (Chen et al., 2018) and Neural Flows (Biloš
et al., 2021). Neural ODEs parameterize f with uniformly Lipschitz continuous neural networks.
Here f specifies the derivative at every t ∈ [t0, T ]. States of the continuous process are calculated
by numerical integrators. Neural Flows propose to directly model the solution curve F with in-
vertible neural networks. As they all propagate hidden states by solving initial value problems, we
collectively refer to them as neural IVP-solvers in this paper.

As for modeling irregular time series, Latent-ODE (Rubanova et al., 2019) is built within the VAE
architecture with an ODE-RNN hybrid as the encoder and an ODE-version IVP-solver as decoder.
Given a hidden state zi−1, to obtain the next hidden state, they evolve z continuously until the
next observation xi at time ti and then update the state with an RNN cell, as expressed by z−

i =
IVPSolve((zi−1, ti−1), ti) and zi = RNN(xt, z

−
i ). Latent-Flow can be obtained by replacing the

ODE module with Flows (Biloš et al., 2021). Both Latent-ODE and Latent-Flow were proven to be
effective in modeling irregular time series. However, sequentially solving IVPs makes these models
computationally less efficient.

2.3 PROPOSED MODEL IVP-VAE

Our proposed model IVP-VAE is based on two design principles - (i) we can circumvent the sequen-
tial operation bottleneck by processing all time steps independently as one ODE’s different IVPs
which can be solved in parallel. (ii) IVP-solvers are inherently invertible, which enables us to use
the same solver for both encoding and decoding. The model is trained as a VAE whose encoder
includes an embedding module and the IVP-solver evolving latent state zi backward in time, while
the decoder includes the same IVP-solver evolving the state forward in time, and a reconstruction
module generating estimated data x̂i based on state zi. The model is illustrated in Figure 1.

Figure 1: Modeling irregular time series with IVP-VAE. (Left) In the encoder, an embedding module
maps data xi into latent state zi. The state is evolved backward in time: take (zi, ti) as initial
condition and calculate state z0 at t0 using an IVP solver. (Right) In the decoder, the latent state is
evolved forward in time: take (z0, t0) as initial condition and go opposite along timeline to obtain
state zi using the same IVP solver. A reconstruction module then maps zi back to data x̂i.
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Embedding and reconstruction: Given a time series X = {(xi, ti)}Li=0, we first generate cor-
responding masks {mi}Li=0 indicating which variables are observed and which are not at time ti.
Next, we obtain vi = (xi|mi) for all observations at ti by concatenating xi with mi. A neural
network ϵ is then deployed on vi to produce zi which represents the state of continuous process at
ti. On the decoder side, we design a similar module for reconstruction that maps zi to xi. The aim
of adding embedding and reconstruction modules is to create a latent space in which state z evolves.

Evolving backward in time: The overall goal here is to approximate the posterior, i.e., learn an
approximate distribution to sample z0. For xi, the initial condition is defined as (zi, ti) in the
encoder. The task of the Neural IVP-solver is to start from ti, move towards t0 continuously and
calculate z0:

zi
0 = IVPSolve(zi,∆ti), (1)

where ∆ti = t0 − ti. (zi, ti) and (zi
0, t0) are on the same integral curve and satisfy the same

ODE. Similarly, we obtain {zi
0}Li=0 for all {xi,∆ti}Li=0. Then an average integration is applied on

{zi
0}Li=0 to produce z0. Finally, we construct a distribution over the latent variable using a diagonal

Gaussian distribution with mean and variance given by the output of fully connected layers g.

qϕ(z0 | X) = N (µz0 ,σz0), where µz0 = g(z0),σz0 = Softplus(g(z0)), (2)

where we define qϕ(z0 | X) to be the distribution over latent variable z0 induced by time series X .

Note that the encoder does not require any recurrent operation, as all the latent states evolve directly
to z0 which resolves the sequential computation bottleneck of the existing continuous-time models.

Evolving forward in time: In this part, we first draw an instance from the posterior distribution
qϕ(z0 | X) to obtain z0, which could further be used as a representation of the time series sample.
Afterward, we start from z0 and propagate latent state z forward along the timeline, with ∆ti =
ti − t0. So that z1, z2, ...,zL for all the L timestamps can be calculated by another call of the
IVP-solver:

{zi}Li=0 = IVPSolve
(
{z0,∆ti}Li=1

)
(3)

X can then be generated from z0 using the data reconstruction module explained earlier in this
section. The entire operation is mathematically represented as pθ(X | z0).
Within IVP-VAE, there is only one IVP-solver working for both encoder and decoder with opposite
∆t. This can be achieved due to the invertibility of neural IVP-solvers. For Neural ODEs, state z at
different timestamps can be computed following zi = zi−1+

∫ ti
ti−1

f(t, zt)dt where f is determined
within its domain, while ∆t can be negative or positive. If positive, the state evolves forward in time.
If negative, it evolves backward in time. Similarly, a flow ξ is mathematically defined as a group
action on a set Z, ξ : Z×R → Z, where for all z ∈ Z and real number t, ξ(ξ(z, ti), tj) = ξ(z, tj+ti)
(Bhatia & Szegö, 1970). This characteristic naturally guarantees its invertibility. If tj = −ti, then
ξ(ξ(z, ti), tj) = ξ(z) can describe the process of encoder and decoder.

Training: Given the model is trained on a classification task, we augment IVP-VAE with a super-
vised learning component with the form pλ (y | z0) (essentially a neural network that maps z0 to
the class y) and train on the joint objective -

LClass(ϕ, θ, λ) = LVAE(ϕ, θ) + α · CE(p(y)∥pλ (y | z0)) (4)

where α is a hyperparameter, CE represents cross entropy loss and LVAE(ϕ, θ) is the evidence lower
bound (ELBO) represented as -

LVAE(ϕ, θ) =

N∑
n=1

(Ez0∼qϕ(z0|X) [log pθ (X | z0)]−DKL(qϕ(z0 | X)∥p(z0))). (5)

3 EXPERIMENTS

Datasets and Baselines: We evaluate our model on two public EHR datasets from the PhysioNet
platform (Goldberger et al., 2000): MIMIC-IV (Johnson et al., 2023) and PhysioNet 2012 (Silva
et al., 2012) with the task of mortality prediction. Datasets are processed following (De Brouwer
et al., 2019)’s pipeline. For MIMIC-IV, 22,000 admissions are randomly selected and split into
16,000 for training, 4,000 for validation, and 2,000 for testing. PhysioNet 2012 includes vital signs,
laboratory results, as well as demographics. We use the provided 4,000 admissions from training set
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A and 41 features over the first 48 hours after patient admission. This dataset is randomly split into
80% training, 10% validation and 10% test sets.

We compare our model against several baselines for the classification of multivariate irregular time-
series. GRU-∆t (Shukla & Marlin, 2021) concatenates feature values with masking variable and
time interval ∆t as input. GRU-D (Che et al., 2018) combined GRU with a temporal decay mecha-
nism to incorporate missing patterns. Latent-ODE (Rubanova et al., 2019) and Latent-Flow (Biloš
et al., 2021) use VAE architectures with different IVP-solvers (see section 2.2). Correspondingly, we
evaluate IVP-VAE with two type of solvers, i.e. one with ODE called IVP-VAE-ODE and another
with Flow called IVP-VAE-Flow. All experiments were run on NVIDIA Tesla V100 GPUs.

Results and Analyses: We evaluate models’ performance with AUROC and AUPRC, as well as av-
erage time per epoch (T-epoch) and average time per forward run (T-forward) in the same computing
environment. T-epoch and T-forward were counted in seconds. As we can see in Table 1, IVP-VAE
based models produce comparable results while significantly improved efficiency. For instance, on
PhysioNet 2012, IVP-VAE-Flow is 40 times faster than Latent-Flow in terms of T-forward. T-epoch
includes T-forward, as well as time for data loading, loss calculation, and backpropagation, which
take up a large part of the time. Therefore, the improvement in T-epoch is not as significant as in
T-forward, but IVP-VAE-Flow is still more than 4 times faster than Latent-Flow. Also, IVP-VAE-
ODE is much more efficient than its counterpart Latent-ODE. This speed advantage is achieved by
eliminating recurrent operations and solving IVPs in parallel.

Table 1: Test AUROC and AUPRC (higher is better) for mortality prediction on datasets MIMIC-IV
and PhysioNet 2012. We additionally report time per epoch (T-epoch) and average time per forward
run (T-forward). IVP-VAE-based models obtain comparable results and are multiple times faster
than other baselines, especially their Latent-based counterparts.

MIMIC-IV PhysioNet 2012

AUROC AUPRC T-epoch T-forward AUROC AUPRC T-epoch T-forward

GRU-∆t 0.808±0.012 0.382±0.035 1324.3 0.073 0.775±0.021 0.453±0.046 111.3 0.039
GRU-D 0.807±0.010 0.366±0.030 1553.8 0.356 0.770±0.022 0.435±0.052 130.6 0.185
Latent-ODE 0.801±0.005 0.365±0.034 4090.2 3.538 0.794±0.023 0.435±0.023 486.3 2.222
Latent-Flow 0.797±0.004 0.383±0.032 2399.7 0.834 0.794±0.020 0.447±0.055 246.2 0.495

IVP-VAE-ODE 0.807±0.006 0.363±0.028 902.8 0.047 0.791±0.025 0.437±0.049 67.5 0.059
IVP-VAE-Flow 0.802±0.007 0.376±0.026 878.4 0.010 0.797±0.036 0.448±0.048 53.2 0.013

Next, Table 2 further compares IVP-VAE with its counterparts on model size and convergence rate.
It shows that IVP-VAE models are lighter and converge faster, which is achieved mainly by fusing
encoder and decoder with one IVP-solver. If multiplying T-epoch from Table 1 with number of
epochs from Table 2, we will see that IVP-VAE based models are more than 10 times faster than
Latent based models with regard to training time.
Table 2: Number of parameters, average number of epochs that a model needs to reach its best
performance, and computation complexity of VAE-based models. L denotes the length of series, S
denotes the steps that Neural ODEs need to solve an IVP. O(1) is obtained because observations at
all times are computed in parallel and no sequential dependence is involved.

# Epochs Complexity

# Parameters MIMIC-IV PhysioNet 2012 Encoder Decoder

Latent-ODE 207K 48.8 32.4 O(SL) O(S)
Latent-Flow 472K 45.6 31.8 O(L) O(1)

IVP-VAE-ODE 170K 22.4 13.0 O(S) O(S)
IVP-VAE-Flow 286K 22.2 13.6 O(1) O(1)

4 CONCLUSION AND DISCUSSION

In this paper, we have presented a faster and lighter continuous-time generative model IVP-VAE,
which is able to model and learn representation of irregular time series by purely solving IVPs in
parallel under the VAE architecture. Our results show that the proposed models perform as well as
other baselines on classification tasks, while offering training times that are one order of magnitude
faster than previous continuous-time methods. Based on this, more work can be done on demon-
strating IVP-VAE’s capability of modeling irregular sample time series with diverse datasets, and
different tasks such as value forecasting, time series regression, etc.
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