
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TEXT-TO-GRAPH GENERATION WITH CONDITIONAL
DIFFUSION MODELS GUIDED BY GRAPH-ALIGNED
LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-to-graph generation, aiming for controlled graph generation based on nat-
ural language instructions, holds significant application potentials in real-world
scenarios such as drug discoveries. However, existing generative models fail to
achieve text-to-graph generation in the following two aspects: i) language model-
based generative models struggle with generating complex graph structures, and
ii) graph-based generative models mainly focus on unconditional graph generation
or conditional generation with simple conditions, falling short in understanding as
well as following human instructions. In this paper, we tackle the text-to-graph
generation problem by employing graph diffusion models with guidance from
large language models (LLMs) for the first time, to the best of our knowledge.
The problem is highly non-trivial with the following challenges: 1) How to align
LLMs for understanding the irregular graph structures and the graph properties
hidden in human instructions, 2) How to align graph diffusion models for follow-
ing natural language instructions in order to generate graphs with expected rela-
tional semantics from human. To address these challenges, we propose a novel
LLM-aligned Graph Diffusion Model (LLM-GDM), which is able to generate
graphs based on natural language instructions. In particular, we first propose the
self-supervised text-graph alignment to empower LLMs with the ability to accu-
rately understand graph structures and properties by finetuning LLMs with several
specially designed alignment tasks involving various graph components such as
nodes, edges, and subgraphs. Then, we propose a structure-aware cross-attention
mechanism guiding the diffusion model to follow human instructions through in-
herently capturing the relational semantics among texts and structures. Extensive
experiments on both synthetic and real-world molecular datasets demonstrate the
effectiveness of our proposed LLM-GDM model over existing baseline methods.

1 INTRODUCTION

Graph generation is widely adopted in many real-world applications, such as molecule design (Xu
et al., 2023; Gruver et al., 2023), social network analysis (Grover et al., 2019), code comple-
tion (Brockschmidt et al., 2019), neural architecture search (NAS) (Lee et al., 2021), etc., yet its
accessibility remains limited for users unfamiliar with graph concepts or coding skills since the
models require expert knowledge to interact. Text-to-graph generation, that is to generate graphs
following natural language instructions, holds significant application potentials in real-world sce-
narios. In molecular design, for instance, a researcher might specify a molecule as ”soluble in water,
stable at high temperatures, and effective against a specific enzyme.” A text-to-graph generation
model would interpret these instructions to create a graph, with nodes representing atoms and edges
symbolizing bonds, thereby constructing a molecule that potentially fulfills all specified conditions.
The development of such text-to-graph generation technologies can significantly accelerate the dis-
covery and optimization of new molecules (Bhowmik et al., 2024; Moret et al., 2023; Flam-Shepherd
et al., 2022; Hsu et al., 2022).

With the recent rise of large language models (LLMs), researchers (Edwards et al., 2022; Christofi-
dellis et al., 2023; Fang et al., 2024) have begun exploring their application to text-to-graph gen-
eration. As illustrated in Figure 1, these models generate graphs by describing nodes and edges in
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Language ModelA cycle with 6 nodes.
Node list:[0,1,2,3,4,5]

Edge list:[(0,1),(1,2),(2,3),(3,4),(4,5),(5,0)]

(a) Text-to-graph generation using language model

Text encoder

Text feature

Graph 

generation model
A cycle with 6 nodes.

(b) Text-to-graph generation using graph generation model

Figure 1: A comparison between text-to-graph generation method using language model and graph
generation model. Language models generate graphs by describing nodes and edges in textual form.
The graph generation model directly generate graphs under the guidance of the text features ex-
tracted by the text encoder.

textual form. However, while text is inherently sequential, graphs exhibit more complex topological
structures that capture diverse relationships between entities. This discrepancy makes it challenging
for text-only models to fully grasp and generate intricate graph structures. Consequently, we argue
that integrating graph-based models is crucial to advancing the task of text-to-graph generation.

Diffusion models are a class of generative models that have garnered considerable attention recently.
Notably, diffusion models have been increasingly utilized in graph generation (Vignac et al., 2023;
Jo et al., 2022; Kong et al., 2023) to comprehend graph structures and generate diverse graphs
through learning and sampling from a given data distribution. However, their current capabilities are
limited to unconditional graph generation or conditional generation with simple conditions, where
the generation distribution can not be controlled by complex conditions like human natural language
instructions, textual descriptions of the graph properties, etc., limiting their applications in real-
world scenarios.

In this paper, to bridge the gap, we study the problem of text-to-graph generation via guiding graph
diffusion with large language models (LLMs), which remains unexplored in the literature. The
problem is highly non-trivial with the following challenges:

• How to align large language models to understand the irregular graph structures and the implied
graph properties in human instructions, where the instructions over graphs could be ambiguous.

• How to align graph diffusion models to follow natural language instructions to generate graphs
with expected relational semantics, where nodes are inter-dependent with edges on graphs.

To address these challenges, we propose a novel LLM-aligned Graph Diffusion Model (LLM-
GDM), which is able to generate graphs based on natural language instructions. Specifically, we
first propose self-supervised text-graph alignment to empower LLM with better understanding of
graph structures and properties by finetuning LLMs with several specially designed alignment tasks
from the levels of nodes, edges and subgraphs. The finetuned LLM can extract graph-aligned fea-
tures from text descriptions that capture implied graph structures in the text. Additionally, we pro-
pose a structure-aware cross-attention mechanism to guide the diffusion model to follow the human
instructions by inherently capturing the relational semantics among texts and structures. It allows
the model to generate diverse graphs that are consistent with the text input. Extensive experiments
on synthetic and molecular datasets demonstrate the effectiveness of our proposed method. The
contributions of this paper are summarized as follows:

• We study the problem of text-to-graph generation via guiding graph diffusion with large language
models (LLMs), for the first time, to the best of our knowledge.

• We propose a novel LLM-aligned Graph Diffusion Model to generate graphs based on natural
language instructions, which include two modules: i) self-supervised text-graph alignment to
empower LLM with better understanding of graph structures and properties; ii) structure-aware
cross-attention mechanism to capture the relational semantics among texts and structures.
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• Extensive experiments on synthetic and molecular datasets demonstrate the effectiveness of our
proposed method. The detailed ablation studies verify the effectiveness of each module.

2 PRELIMINARIES

2.1 GRAPH DIFFUSION MODEL

Diffusion models are a class of generative models that recently gained popularity for their excel-
lent performance in computer vision. Recently, several works have successfully applied diffusion
models to graph generation. In this paper, we focus on graph diffusion models based on stochastic
differential equations (SDEs), and provide a brief description of them below.

A graph diffusion model consists of a forward process and a reverse process, both of which are
defined as SDEs that operate on graph data. Consider a graph G = (X,E), where X represents the
node features and E represents the edge features. The forward process introduces Gaussian noise
into G as the time variable t increases from t = 0 to t = T :

dG = f(G, t)dt+ g(t)dw, (1)
where f(G, t) and g(t) are predetermined functions, and dw is a standard Wiener process. We
denote the value of G at time t as G(t). With appropriate choices of f and g, G(T ) becomes
indistinguishable from Gaussian-distributed values and contains nearly no information about the
original graph G.

The reverse process goes backwards in time and describes the reverse of the forward SDE. It takes
the following form as demonstrated in earlier works (Song et al., 2021).

dG = [f(G, t)dt− g(t)2∇G log pt(G)]dt+ g(t)dw, (2)
where pt(G) is the marginal distribution of G(t), and ∇Gpt(G) is called its score.

Since the score is intractable, diffusion models use neural networks to approximate it as sθ(G, t) ≈
∇Gpt(G), which can be trained using denoising score matching as follows:

Lscore = EtEG(0)EG(t)|G(0)

[
λ(t)∥sθ(G(t), t)−∇G(t) log p0t(G(t) | G(0))∥2

]
, (3)

where p0t(G(t) | G(0)) is the transition probability of the forward process, and λ(t) is a weighting
function. After training, new graphs can be generated with graph diffusion models by starting with
G(T ) sampled from Gaussian distributions and solving the reverse process using methods like Euler-
Maruyama or Predictor-Corrector methods (Song et al., 2021).

2.2 CLASSIFIER-FREE DIFFUSION GUIDANCE

Classifier-free guidance (Ho & Salimans, 2021) is a widely used technique for conditional genera-
tion using diffusion models. It augments the score prediction network in diffusion models with the
conditional information as an additional input. Let c be the condition, the conditional score network
sθ(G, t, c) is trained to approximate the conditional score ∇Gpt(G | c).
To improve the quality of conditional generation, classifier-free guidance introduces a scale factor
that controls the influence of the condition. Let k be the scale factor, classifier-free guidance modifies
the estimated score function in the reverse process by scaling the difference between the predicted
conditional and unconditional scores:

scfg(G, t, c) = sθ(G, t) + k(sθ(G, t, c)− sθ(G, t)). (4)

In practice, the scale factor is large than 1, so the influence of conditional data is amplified. Data
generated with higher scale factors tend to be more consistent with the provided condition, while
lower scale factors can result in increased generation diversity.

3 METHOD

In this section, we present our text-to-graph generation method. We first describe the overall frame-
work of the proposed method, and then introduce the self-supervised text-graph alignment task for
finetuning LLMs and the structure-aware cross-attention mechanism for incorporating text features
into graph diffusion models.
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LLM

The molecule is a steroid ester that is 

methyl (17E)-pregna-4,17-dien-21-oate 

substituted by oxo groups at positions 3 

and 11 ···

Text: Molecule caption Task: Structure prediction

Number of carbon atoms: [X1]

Number of single bonds: [Y1]

Number of benzene ring subgraphs: [Z1]

···

Stage 1: Finetune LLM using self-supervised text-graph alignment task

Score Predictor with Structure-aware Cross-attention

𝑠𝜃

𝐺(𝑡)

Graph-aligned feature

Text-node

cross attention

Text-edge

cross attention

… …

Conditional graph diffusion model

Graph-aligned features

LLM

The molecule is a steroid 

ester that is methyl (17E)-

pregna-4,17-dien-21-oate 

substituted by oxo groups at 

positions 3 and 11. It is a 3-

oxo-Delta(4) ···

Graph 

Transformer 

Layer

𝐺(𝑇)

𝐺(0)
𝑑𝐺 = 𝑓 𝐺, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝑤

𝑑𝐺 = 𝑓 𝐺, 𝑡 𝑑𝑡 − 𝑔 𝑡 2∇𝐺 log 𝑝𝑡 𝐺 𝑑𝑡 + 𝑔 𝑡 𝑑𝑤

Feature extractor with 

Graph-aligned LLM

Stage 2: Use graph-aligned features to train conditional graph diffusion model

Figure 2: An overview of our method. We use a condition graph diffusion model to perform text-to-
graph generation. In the first stage, as shown in the upper part of the figure, we use self-supervised
text-graph alignment task to finetune LLM to extract graph-aligned features from the text descrip-
tion. In the second stage, we use the graph-aligned LLM to extract graph-aligned features from the
text description, and apply them to the score predictor in the conditional graph diffusion model using
structure-aware cross-attention mechanism.

3.1 FRAMEWORK

We use a diffusion model for graph generation in our method. We represent a graph G by its node
types X = {xi} and adjacency matrix E = {eij}. Here, xi ∈ {1, 2, . . . , Cnode} is the type of
the i-th node in G, and eij ∈ {0, 12, . . . , Cedge} is the type of edge between nodes i and j, with
eij = 0 indicating no edge. Our method aims to generate corresponding graph data G for a given
text description T by learning the conditional distribution pθ(G|T ).
The framework of our method is illustrated in Figure 2. In the first stage of our method, we use the
self-supervised text-to-graph alignment task to finetune the Llama-3-8B model, obtaining a graph-
aligned LLM. In the second stage, we construct a conditional graph diffusion model to generate
graphs according to text description, and use a graph transformer (Yun et al., 2019) with structure-
aware cross-attention as its conditional score predictor.

For a given text description T , the conditional score predictor uses a feature extractor with a graph-
aligned LLM to extract text features from T , as introduced in Section 3.2. Then, the score predictor
uses structure-aware cross-attention to modify the prediction results based on the extracted text
features, as detailed in Section 3.3. During the generation process, we use classifier-free guidance
to generate graphs according to text description T .

3.2 SELF-SUPERVISED TEXT-GRAPH ALIGNMENT

To incorporate text descriptions into the generation process, we need to extract features from the
text. Pretrained language models are known to produce high-quality text features for downstream
tasks. With billions of parameters, LLMs demonstrate strong performance in various graph tasks (Li
et al., 2023), indicating their ability to understand the graph structure contained in text. This makes
it feasible to use LLMs to extract text features relevant for graph tasks.
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To ensure that the text features extracted by LLMs are more focused on the graph generation task,
we finetune LLMs to obtain text features that are more relevant to the graph structure. For this
purpose, we design a graph structure prediction task to finetune LLMs. Specifically, we aim for the
extracted text features to reflect the structure of the graphs corresponding to the text description,
including information about nodes, edge, and subgraphs. Therefore, the graph structure prediction
task includes the prediction of three categories of targets: the number of nodes, edges, and subgraphs
of various types in the graph, denoted by cnode,i, cedge,i and csub,i respectively. They are defined as
follows:

cnode,i = |{j | xj = i}|,
cedge,i = |{(j, k) | ejk = i}|,
csub,i = |{G′ | G′ is a subgraph of G and G′ is isomorphic to Gi}|.

(5)

The objective function for finetuning is:

Lalign =
∑
i

(c∗node,i − cnode,i)
2 +

∑
i

(c∗edge,i − cedge,i)
2 +

∑
i

(c∗sub,i − csub,i)
2
, (6)

where c∗node,i, c
∗
edge,i,c

∗
sub,i are the value predicted by LLM for the number of nodes, edges, subgraphs

of various types in the graph, respectively.

It is worth mentioning that in the actual generation process, for each piece of text description, we
input it into the finetuned LLM and use the output of the last hidden layer as the extracted features.
The result will have features for each token in the input text.

3.3 STRUCTURE-AWARE CROSS-ATTENTION MECHANISM

To allow text-to-graph generation using diffusion models, it is necessary to incorporating text fea-
tures into the conditional score predictor. While there are methods like affine conditioning or cross-
attention for constructing the score predictors of conditional diffusion models, these approaches do
not account for the complex nature of graph data. Directly applying them to nodes and edges in
graph diffusion models can lead to suboptimal results. Since the edges in graphs represent the re-
lationship between nodes, an effective conditioning method for graphs should respect this property
and ensure the edge conditioning accounts for the nodes. Additionally, the size of the adjacency ma-
trix is quadratic in the number of nodes. For more computationally expensive conditioning methods
like cross-attention, calculating edge conditioning for each edge independently is costly.

In this section, we propose a structure-aware cross-attention method for graph diffusion models,
which integrates a sequence of conditional text features into the score predictor network by comput-
ing attention between the graph data and the text features.

Specifically, we use the structure-aware cross-attention mechanism in the score predictor module
of the graph diffusion model, where the results of node attention and edge attention are added into
the network using residual connections. Let X and E be the node and edge features in some layer
of the score predictor, and C be the sequence of text features. Structure-aware cross-attention first
computes the cross-attention between node features and text features as follows, and use the attention
results for node conditioning:

Q = XWQ, K = CWK , V = CWV , (7)

A = softmax(
QKT

√
d

), (8)

Xcond = AV, (9)

where Q, K, and V are weight matrices for queries, keys, and values, d is the dimensionality of
keys, A is the attention score for nodes, and Xcond is the node conditioning result.

Then, structure-aware cross-attention computes the attention scores for edges based on the node
attention results. For each edge (u, v), its attention score should be related to the attention scores of
node u and v. We compute two scalar values G1,uv using a gating mechanism for each edge based
on its features Euv , which represents the influence of two endpoints u and v in the edge:

G1,uv = σ(ET
uvWG1), G2,uv = 1−G1,uv, (10)

5
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where WG1 is trainable weights, and σ is the logistic sigmoid function. The attention score of edge
(u, v) is computed as a weighted mixture of the attention scores for node u and v:

Aedge,uv = G1,uvAu +G2,uvAv, (11)

where Aedge,uv is the attention score for edge (u, v), and Au and Av are attention scores for node u
and v respectively.

Finally, the edge conditioning result is determined by mixing the attention values according to the
edge attention scores:

Econd,uv = Aedge,uvV. (12)

By deriving the edge conditioning from the node conditioning, structure-aware cross-attention can
utilize the text features in the conditional score predictor with relatively low computational costs, and
captures the relational semantics among texts and structures more efficiently. In our experiments,
we apply structure-aware cross-attention in each layer of the score predictor.

4 EXPERIMENT

To demonstrate the effectiveness of our method, we constructed three parts of experiments. In the
first part, we compare language model-based and graph-based methods on a synthetic graph dataset,
which includes graphs with multiple types of structures. In the second part, we compare various
methods on the task of text-conditional molecular graph generation using a real-world molecular
dataset. In the third part, we conduct extensive ablation experiments to explore the roles of the two
modules we proposed and the impact of hyper-parameter settings on the performance of text-to-
graph generation.

4.1 GRAPH GENERATION ON SYNTHETIC DATASET

We conducted experiments on synthetic dataset, using the model to generate corresponding graphs
according to the rules described in the text. We explored the ability of LLMs to understand graph
structures through rules of different difficulty levels, as well as the ability of our method to under-
stand graph structures described in the text.

Datasets We construct a synthetic dataset with 7 kinds of graphs, Tree, Cycle, Wheel, Bipartite,
K-regular, Component, and Mix. The details of these kinds of graphs are available in the appendix.
Each graph is accompanied by its corresponding text description, which specifies its kind and impor-
tant properties, like “A tree with 8 nodes” or “A graph with 10 nodes and 2 connected components”.
There are 10000 graphs in the training set and 1000 graphs in the test set. During testing, we ask the
model to generate a new graph that matches the text description.

Baselines We compare our method with several LLMs, including Qwen2.5-7B, Qwen2.5-72B,
Gemma-2-9B, Gemma-2-27B, Llama-3.1-8B, and Llama-3.1-70B. We use the LLMs in a zero-shot
way, asking the model to generate the text representation of graphs according to text descriptions
with a prompt.

Metrics For each kind of graph in the test set, we report the proportion of generated graphs that
matches the given text descriptions. It is worth noting that there are generally more than one graph
matching a piece of text description, and any matching graph will count towards the metric.

Results and analysis The experimental results are shown in Table 1. We can find that: 1) Overall,
LLMs with a larger number of parameters perform better than those with a smaller number of pa-
rameters. Moreover, LLMs other than Llama-3.1-8B perform well for generating graphs with simple
structures such as trees and cycles, but perform poorly on tasks with more complex graph structures.
This indicates that LLMs struggle with generating complex graph structures. 2) In addition, our
method performs well on various tasks, indicating that graph-based methods can better generate
graphs with complex structures.

6
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Table 1: The result of graph generation on the synthetic dataset. The values in the table are the
proportions of generated graphs that matches the given text descriptions.

Model Tree Cycle Wheel Bipartite K-regular Component Mix

Qwen2.5-7B 0.778± 0.010 1.000± 0.000 0.020± 0.016 0.088± 0.038 0.295± 0.046 0.178± 0.078 0.178± 0.019
Qwen2.5-72B 1.000± 0.000 1.000± 0.000 0.259± 0.061 0.371± 0.047 0.767± 0.017 0.448± 0.060 0.319± 0.021

Gemma-2-9B 0.942± 0.018 1.000± 0.000 0.000± 0.000 0.040± 0.014 0.286± 0.024 0.146± 0.005 0.235± 0.025
Gemma-2-27B 1.000± 0.000 1.000± 0.000 0.000± 0.000 0.383± 0.037 0.020± 0.017 0.098± 0.006 0.231± 0.048

Llama-3.1-8B 0.178± 0.037 0.136± 0.042 0.000± 0.000 0.000± 0.000 0.007± 0.010 0.007± 0.010 0.121± 0.006
Llama-3.1-70B 1.000± 0.000 1.000± 0.000 0.597± 0.069 0.154± 0.006 0.353± 0.037 0.450± 0.026 0.347± 0.067

Ours 0.992± 0.012 0.636± 0.018 0.669± 0.029 0.916± 0.002 1.000± 0.000 0.962± 0.018 0.589± 0.068

4.2 TEXT CONDITIONAL MOLECULAR GRAPH GENERATION

We conducted experiments on the text to molecule dataset and demonstrated the effectiveness of our
method in generating molecular graphs based on text descriptions through comparison with the text
to molecule text model.

Datasets Generating molecules according to text is an emerging task, and currently the only
widely used and public dataset in this task is the ChEBI-20 dataset (Edwards et al., 2021). This
dataset contains 33010 molecules and their corresponding text descriptions. We follow the approach
of MolT5 (Edwards et al., 2022) for dataset splits and preprocessing.

Baselines We compare with the following methods.

• RNN: A 4-layer GRU recurrent neural network with bidirectional encoder trained on the ChEBI-
20 dataset.

• Transformer: A vanilla transformer model consisting of six encoder and decoder layers trained
on the ChEBI-20 dataset.

• MolT5: An encoder-decoder Transformer model initialized with a public checkpoint of T5, then
pretrained on the combined dataset of C4 and ZINC, finally finetuned on the ChEBI-20 dataset.

• Llama-3.1: An decoder-only Transformer model published by Meta. Llama-3.1-8B has 8B pa-
rameters, while Llama-3.1-70B has 70B parameters. We use the model in a zero-shot way, ask-
ing the model to generate the SMILES representation of molecules according to text descriptions
with a prompt.

Metrics We use the following metrics to evaluate our method and compare it with the baseline.

• Fingerprint-based molecule similarity metrics: We measure the fingerprint Tanimoto similarity
(FTS) between each generated molecule and the corresponding ground truth molecule. MACCS,
RDK, and Morgan represent the three different extraction methods for molecular fingerprints.
We consider these to be the primary metrics measuring the quality of generated graphs in our
experiments.

• FCD: We measure the Fréchet ChemNet Distance (FCD) (Preuer et al., 2018) between the gen-
erated molecules and ground truth molecules. It reflects the distance of chemical and biological
information between the two sets of molecules.

• Exact: We measure the proportion of generated molecules that are exact matches of their corre-
sponding ground truth molecules.

• Validity: We report the validity of the generated molecules as measured by RDKit sanitization.
• Diversity: We measure the diversity of generated molecules, defined as the average pairwise

differences between multiple molecules generated by the model guided by the same text descrip-
tion. The pairwise differences are calculated by subtracting their FTS from 1. In the experiments,
we select the first 100 text descriptions in the test set and generate 10 graphs for each description
to calculate the diversity metrics.

Results and analysis From Table 2, we can observe that: 1) our method has similar performance
to MolT5 in terms of FTS metrics, outperforming MolT5 in MACCS and RDK FTS, and has much
smaller trainable parameter sizes. 2) Our method generates relatively few exact molecule matches,

7
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Table 2: The result of molecule generation guided by the text in the test split of CheBI-20.
“MACCS”, “RDK”, and “Morgan” are fingerprint Tanimoto similarity metrics. The result of RNN,
Transformer, and MolT5 are sourced from Edwards et al. (2022), and other methods maintained
the same settings as Edwards et al. (2022) during testing. “Param.” denote the number of trainable
parameters of the model. The number of parameters for RNN and Transformer are unknown.

Model MACCS ↑ RDK ↑ Morgan ↑ FCD↓ Exact ↑ Validity↑ Param.

RNN 0.591 0.400 0.362 4.55 0.005 0.542 —
Transformer 0.480 0.320 0.217 11.32 0.000 0.906 —

MolT5 0.721 0.588 0.529 2.18 0.081 0.772 220M
Llama-3.1-8B 0.545± 0.004 0.305± 0.004 0.238± 0.002 5.86± 0.15 0.007± 0.001 0.370± 0.005 —

Llama-3.1-70B 0.683± 0.003 0.450± 0.004 0.390± 0.004 3.27± 0.10 0.049± 0.003 0.563± 0.008 —

Ours 0.787± 0.001 0.638± 0.002 0.470± 0.002 2.96± 0.06 0.050± 0.002 1.000± 0.000 16.5M

0.73 0.74 0.75 0.76 0.77 0.78
MACCS FTS

0.18

0.20

0.22

0.24

0.26

M
AC

C
S 

D
iv

er
si

ty

cfg = 1

cfg = 6
t = 0.1

t = 0.9

Ours
MolT5

(a) MACCS Diversity

0.57 0.58 0.59 0.60 0.61 0.62
RDK FTS

0.20

0.25

0.30

0.35

0.40

0.45

R
D

K
 D

iv
er

si
ty

cfg = 1

cfg = 6

t = 0.1

t = 0.9

Ours
MolT5

(b) RDK Diversity

0.42 0.44 0.46 0.48 0.50 0.52 0.54
Morgan FTS

0.2

0.3

0.4

0.5

0.6

M
or

ga
n 

D
iv

er
si

ty

cfg = 1

cfg = 6

t = 0.1

t = 0.9

Ours
MolT5

(c) Morgan Diversity

Figure 3: The diversity results of our method and MolT5. The horizontal axis represents the FTS
between the generated and real molecules, the vertical axis represents the diversity between the gen-
erated molecules. The orange dots represent the values measured by MolT5 when setting different
temperature values, and the blue dots represent the values measured by our method when setting
different classifier-free guidance scale values.

because the generated graphs of diffusion models are diverse and it is difficult to ensure full matches.
3) At the same time, we can also observe that zero-shot Llama-3.1 performs poorly on various
metrics, indicating that directly using LLMs for molecular generation tasks does not result in good
performances.

In addition, we report the diversity results of our method and MolT5. Since diversity can be affected
by the choice of parameters like the temperature value for MolT5 and the classifier-free guidance
scale for our method, we test the models using several configurations and report their FTS and
diversity metrics. The results can be seen in Figure 3. It can be seen that 1) the FTS metrics
generally increases when the temperature is reduced (for MolT5) or the CFG scale is increased (for
our method), while the diversity metrics generally decreases. 2) Overall, our method has higher
diversity scores than MolT5. When the two methods have similar FTS metrics, our method achieves
better diversity. While our method has lower performance than MolT5 in the Morgan FTS metric,
the diversity of our method is significantly higher. The result demonstrates that our proposed method
can generate graphs with higher diversity for the task of text-to-graph generation.

4.3 ABLATION STUDY

We conducted ablation experiments to explore the effects of different settings. All ablation experi-
ments are performed on the ChEBI-20 dataset. The metrics are the same as the molecule generation
experiments in Section 4.2.

4.3.1 THE EFFECT OF DIFFERENT TEXT CONDITIONING METHODS

We compare our structure-aware cross-attention mechanism with other text conditioning methods
for diffusion models.

Compared methods We compare the following methods:
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Table 3: Molecule generation results of different text conditioning methods.

Model MACCS ↑ RDK ↑ Morgan ↑ FCD↓ Exact ↑

Affine 0.734 0.570 0.391 3.67 0.028
Cross-attention 0.770 0.615 0.440 3.28 0.040

Ours 0.789 0.639 0.473 2.98 0.048

Table 4: Molecule generation results of LLM finetuning.

Model MACCS ↑ RDK ↑ Morgan ↑ FCD↓ Exact ↑

No LLM finetune 0.728 0.574 0.385 4.23 0.031
LLM finetune 0.789 0.639 0.473 2.98 0.048

• Affine: The features of the last token in the text description are inserted into the score predictor
using feature-wise affine transformations, also known as feature-wise linear modulation (FiLM).

• Cross-attention: The text features are inserted into the score predictor using cross-attention be-
tween node features and text features. The edge features are not modified directly.

• Ours: The text features are inserted into the score predictor using our proposed structure-aware
cross-attention mechanism.

Results and analysis The experimental results are shown in Table 3. We can find that structure-
aware cross-attention achieves the best performance among compared methods in terms of molecular
similarity to the ground truth. This indicates that our proposed method can better incorporate text
features into graph diffusion models.

4.3.2 THE EFFECT OF LLM FINETUNING

Compared methods We compare with the following experimental settings:

• No LLM finetune: The model uses pretrained Llama-3-8B directly to extract features from text.
• LLM finetune: The model uses our finetuned LLM to extract graph-aligned features from text.

Results and analysis The experimental results are shown in Table 4. We can find that using
the finetuned LLM for feature extraction is crucial for improving the quality of graph generation.
Although the validity has slightly decreased, other metrics have significantly improved with the
finetuned LLM.

4.3.3 THE EFFECT OF CLASSIFIER-FREE GUIDANCE SCALE

It is known that the classifier-free guidance scale has a significant impact on the performance of
text-to-image diffusion models. In this section, we explore the effect of different guidance scales on
our text-to-graph model.

Results and analysis The experimental results are shown in Table 5. It can be seen that: 1) The
validity of generated molecules decreases as the guidance scale increases, indicating that strong

Table 5: Molecule generation results using different classifier-free guidance scales.

Model MACCS ↑ RDK ↑ Morgan ↑ FCD↓ Exact ↑

CFG scale = 1 0.752 0.584 0.411 3.355 0.037
CFG scale = 3 0.787 0.635 0.465 2.98 0.048
CFG scale = 5 0.789 0.639 0.473 2.98 0.048
CFG scale = 7 0.575 0.432 0.297 3.005 0.026
CFG scale = 9 0.336 0.210 0.111 2.97 0.002
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guidance from the text can lead to generating inconsistent graph structures. 2) The influence of
guidance scale on molecular similarity metrics are minimal, indicating that our method is robust
to the choice of guidance scale. Generally, choosing a guidance scale around 5 leads to the best
performance.

5 RELATED WORK

5.1 DIFFUSION-BASED GRAPH GENERATION

Diffusion model has achieved great success in the field of computer vision. Recently, some re-
searchers have used diffusion models to solve graph generation task. For example, EDP-GNN (Niu
et al., 2020) is the first work using Score Matching with Langevin Dynamics (SMLD) (Song & Er-
mon, 2019) diffusion model to generate graphs, which learns the score function of the adjacency
matrices distributions of the graphs. GDSS (Jo et al., 2022) proposes a graph generation method
using continuous-time diffusion models (Song et al., 2021), which models the joint distribution of
the nodes and edges through stochastic differential equations (SDEs). DiGress (Vignac et al., 2023)
uses a diffusion model over discrete data space for graph generation, and additionally preserves the
marginal distribution of node and edge types and incorporates auxiliary graph-theoretic features.
These methods have demonstrated excellent performance on the task of graph generation.

In order to generate graphs that match specific requirements, conditional graph generation has re-
ceived attention in recent years. For example, DiGress (Vignac et al., 2023) uses classifier guidance
to perform graph generation guided by several graph-level properties, like the dipole moment and
highest occupied molecular orbit of molecular graphs. However, existing methods have not ex-
plored the task of text-guided graph generation, which is necessary for the popularization of graph
generation methods in various fields.

5.2 LARGE LANGUAGE MODELS FOR GRAPHS

LLMs have achieved good results on various natural language process tasks. Recently, many works
explored the application of LLMs in graph tasks. For example, Chen et al. (2023) uses LLMs to
predict node categories on text attribute graphs. Wang et al. (2023) proposes a benchmark framework
to evaluate the performance of LLMs with several graph algorithmic tasks, including topological
sort, maximum flows, etc. Zhang et al. (2023) evaluates the abilities of LLMs to handle spatial-
temporal information on dynamic graphs. Yao et al. (2024) designs a series of tasks to evaluate
the graph generation ability of LLMs. These and other studies have demonstrated the potential of
LLMs for processing graph tasks, showing the possibility to extract graph structure features from
text description using LLMs.

Christofidellis et al. (2023) and Fang et al. (2024) are text-to-molecule methods that leverage lan-
guage models for generation, where molecules are represented in the SMILES format. Gong et al.
(2024) employs a text diffusion model to generate the SMILES representation of molecules. While
these methods focus on generating molecules from text representations, they do not extend to other
graph generation tasks. Zhu et al. (2024) utilizes a latent space diffusion model to generate latent
features, which are then decoded into molecule graphs using a graph decoder. In contrast, this pa-
per explores for the first time the use of graph-aligned LLMs to extract text features for guiding
conditional graph diffusion models.

6 CONCLUSION

This paper addresses the critical gap in text-to-graph generation by proposing the LLM-aligned
Graph Diffusion Model (LLM-GDM), which integrates large language models with graph diffusion
model to generate graphs from natural language instructions. By developing a self-supervised text-
graph alignment process and introducing a structure-aware cross-attention mechanism, our approach
enhances the model’s understanding of graph structures and properties and ensures that generated
graphs adhere to the specified relational semantics in the text. Extensive experimental results on
synthetic and molecular datasets confirm the efficiency of our method.
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A EXPERIMENTAL SETTING

Our code is based on GDSS-Transformer (https://github.com/DongkiKim95/GDSS-Transformer/).
We modified the code to allow text-conditional graph generation. We initialized the parameters of
the base architecture with the checkpoint of GDSS-Transformers’s model trained on ZINC250k, and
then trained our structure-aware cross-attention along with the base architecture with a learning rate
of 2e-4 on ChEBI-20. For LLM finetuning, we use LoRA with rank set to 8 and alpha set to 64, and
trained for 6 epochs.

All experiments are performed with a single NVIDIA A100-SXM4-40GB. Finetuning the LLM
takes about 5 hours, and training our diffusion model on ChEBI-20 takes about 1 day per run.
Evaluating the diffusion model on ChEBI-20 takes about 4 hours per run.

B DATASETS

The synthetic dataset we used in the experiment was constructed based on the following rules:

• Tree: A tree with the specified number of node. An example of text description in the dataset is
“A tree with 12 nodes”.

• Cycle: A cycle with the specified number of nodes. An example of text description in the dataset
is “A tree with 12 nodes”.

• Wheel: A graph formed by connecting a single node to all nodes of a cycle. An example of text
description in the dataset is “A wheel with 12 nodes”.

• Bipartite: A complete bipartite graph with the specified number of nodes. An example of text
description in the dataset is “A complete bipartite graph with 6 nodes and 8 nodes in each split”.

• K-regular graphs: A graph whose every node have the same number of neighbors. An example
of text description in the dataset is “A 2-regular graph with 12 nodes”.

• Component: A graph with the specified number of nodes and connected components. An ex-
ample of text description in the dataset is “A graph with 12 nodes and 3 connected components”.

• Mix: A graph with the specified number of nodes and connected components, and every com-
ponent is a graph that satisfies a certain rule. An example of text description in the dataset is “A
graph with 12 nodes and 3 components. 2 components are trees. 1 component is a cycle.”.

C COMPUTATIONAL COSTS

Compared to unconditional graph diffusion models, our method only requires a small increase in
training and inference time. For training our model, our method has the additional step of LLM
finetuning, which takes a few days but only needs to be done once. For inference, our method,
with the addition of text feature extraction and structure-aware cross-attention, only increased the
inference time by about 30%.

D MORE EXPERIMENT RESULTS

We list the numerical results of the diversity metrics in Table 6 in complement to the visualization
in Figure 3.

In order to better illustrate the quality of generated graphs of our method, we list in Table 7 some
comparison results with MolT5. It can be seen from the table that our method can generate diverse
results while maintaining the basic molecular structure, while the diversity and accuracy of MolT5 is
generally worse. This indicates that our method has more potential in the application of text-to-graph
generation.
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Table 6: The values of diversity and FTS under different parameters when generating molecules
using various methods. ”MACCS”, ”RDK”, ”Morgan” are three types methods calculating molecule
fingerprint. ”Diver.” is diversity metric value. ”FTS” is fingerprint-based molecule similarity metric.

Model MACCS Diver. MACCS FTS RDK Diver. RDK FTS Morgan Diver. Morgan FTS

Ours (CFG = 1) 0.748 0.726 0.581 0.544 0.416 0.382
Ours (CFG = 2) 0.776 0.770 0.613 0.601 0.454 0.448
Ours (CFG = 3) 0.780 0.778 0.615 0.607 0.454 0.455
Ours (CFG = 4) 0.780 0.785 0.620 0.619 0.457 0.465
Ours (CFG = 5) 0.786 0.790 0.620 0.623 0.464 0.476
Ours (CFG = 6) 0.785 0.790 0.622 0.627 0.458 0.471
Ours (CFG = 7) 0.474 0.543 0.332 0.397 0.213 0.275
Ours (CFG = 8) 0.321 0.398 0.195 0.264 0.099 0.158
Ours (CFG = 9) 0.314 0.374 0.191 0.243 0.098 0.140

Ours (CFG = 10) 0.359 0.338 0.230 0.217 0.137 0.119

MolT5 (t = 0.1) 0.740 0.807 0.594 0.794 0.542 0.795
MolT5 (t = 0.2) 0.746 0.807 0.596 0.784 0.543 0.784
MolT5 (t = 0.3) 0.734 0.823 0.583 0.798 0.536 0.792
MolT5 (t = 0.4) 0.740 0.821 0.585 0.786 0.538 0.777
MolT5 (t = 0.5) 0.730 0.807 0.574 0.768 0.529 0.756
MolT5 (t = 0.7) 0.736 0.807 0.580 0.757 0.536 0.744
MolT5 (t = 0.8) 0.734 0.797 0.577 0.739 0.529 0.727
MolT5 (t = 0.9) 0.734 0.798 0.574 0.740 0.525 0.719
MolT5 (t = 1.0) 0.727 0.757 0.569 0.678 0.528 0.669

Table 7: Visualization of generated molecules by our method and MolT5.

Text description Ground truth Our method MolT5
The molecule is an
indolylmethylglucosinolate that is
the conjugate base of
4-methoxyglucobrassicin, obtained
by deprotonation of the sulfo group.
It is a conjugate base of a
4-methoxyglucobrassicin.

The molecule is a member of the
class of naphthoates that is
1-naphthoate substituted at positions
3 and 5 by hydroxy and methyl
groups respectively; major species
at pH 7.3. It has a role as a bacterial
metabolite. It is a conjugate base of
a 3-hydroxy-5-methyl-1-naphthoic
acid.

The molecule is a myricetin
O-glucuronide that is myricetin with
a beta-D-glucosiduronic acid
residue attached at the 5-position. It
has a role as a metabolite. It is a
myricetin O-glucuronide, a
pentahydroxyflavone, a member of
flavonols and a monosaccharide
derivative.
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