
Under review as a conference paper at ICLR 2022

RIPPLE ATTENTION FOR VISUAL PERCEPTION WITH
SUB-QUADRATIC COMPLEXITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer architectures are now central to modeling in natural language process-
ing tasks. At its heart is the attention mechanism, which enables effective modeling
of long-term dependencies in a sequence. Recently, transformers have been success-
fully applied in the computer vision domain, where 2D images are first segmented
into patches and then treated as 1D sequences. Such linearization, however, impairs
the notion of spatial locality in images, which bears important visual clues. To
bridge the gap, we propose ripple attention, a sub-quadratic attention mechanism
for visual perception. In ripple attention, contributions of different tokens to a
query are weighted with respect to their relative spatial distances in the 2D space.
To favor correlations with vicinal tokens yet permit long-term dependencies, we
derive the spatial weights through a stick-breaking transformation. We further
design a dynamic programming algorithm that computes weighted contributions
for all queries in linear observed time, taking advantage of the summed-area table
and recent advances in linearized attention. Extensive experiments and analyses
demonstrate the effectiveness of ripple attention on various visual tasks.

1 INTRODUCTION

The transformer architecture (Vaswani et al., 2017) has been dominant in various important natural
language processing (NLP) tasks, including machine translation (Vaswani et al., 2017; Dehghani
et al., 2019), language understanding (Devlin et al., 2018), language modeling (Dai et al., 2019;
Baevski & Auli, 2019) and many others. The cornerstone of a transformer is the attention mechanism
(Bahdanau et al., 2014) which computes pair-wise interactions between any token pairs of the input
sequence. As a result, it is capable of modeling long-term dependencies in a sequence, which is an
important factor to the success of transformers.

Recently, the transformer architecture has also found its applications in the domain of computer
vision (CV). It is adopted for image classification (Dosovitskiy et al., 2020; Touvron et al., 2020;
Liu et al., 2021a; Yang et al., 2021; Wang et al., 2021b), segmentation (Wang et al., 2020b; Strudel
et al., 2021), low-level image processing (Chen et al., 2020), image generation (Parmar et al., 2018),
object detection (Carion et al., 2020; Meng et al., 2021) and many other tasks. In these vision
applications, a 2D image is represented as a set of patches flattened into a 1D sequence. These
patches are analogous to the tokens in sequence modeling tasks that are commonly seen in NLP.
Nevertheless, such linearization undermines the inherent local structure of a 2D image, which bears
important visual clues (Simoncelli & Olshausen, 2001). There often exist strong correlations within
local neighborhoods in an image. Therefore, paying more attention to patches in a closer region could
facilitate gathering information that is particularly useful in visual pattern recognition. This is similar
to the concept of context in NLP, just that the structural context of a visual token is scattered in the
1D sequence, making it difficult for the transformer to capture such prior knowledge. In contrast, the
convolutional neural network (CNN) (Fukushima & Miyake, 1982; LeCun et al., 1989; Krizhevsky
et al., 2012), which has been the de-facto architecture in computer vision tasks for decades, utilizes
local receptive fields and achieves good performance. The drawback of that is, as convolution
operations are limited to small receptive fields, they have great difficulty in extracting global image
features.

Therefore, it is appealing to incorporate the notion of spatial vicinity into the transformer, while
still preserving its capacity of modeling long-term dependencies. To bridge the gap, we propose

1

Under review as a conference paper at ICLR 2022

ripple attention (Figure 1; §3), a novel attention mechanism for visual perception. In ripple attention,
contributions from different tokens to a query are weighted with respect to their relative spatial
distances in the 2D space. These spatial weights are derived through a stick-breaking transformation
(§3.2), which promotes local correlations by leaning to assign larger weights to spatially closer tokens.
We then design a dynamic programming algorithm (§3.3) that is capable of executing ripple attention
in linear observed time, taking advantage of the recently proposed linearized attention (§2.2) and the
summed-area table technique (§3.3).

We validate our method by conducting extensive experiments on image classification and object
detection tasks (§4). Ripple attention significantly improves the accuracy of the original vision
transformer in image classification and performs competitively with detection transformers for object
detection (§4.2), in asymptotically faster runtime (§5.2). Further analysis on the rippling distance and
ablation studies (§5.1) indicate that ripple attention favors contributions from tokens in the vicinity
yet preserves global information from long-term dependencies.

2 PRELIMINARY

2.1 ATTENTION MECHANISM

Let Q ∈ RN×D denote a set of N query vectors, which attend to M key and value vectors, denoted
by matrices K ∈ RM×D and V ∈ RM×C respectively. For a query vector at position n, the softmax
attention function computes the following quantity1:

Attn (qn,K,V) =

M∑
m=1

exp
(
q>n km

)∑M
m′=1 exp (q

>
n km′)

v>m := softmax(Kqn)
>V , (1)

which is an average of the set of value vectors V weighted by normalized similarity between
different queries and keys. However, such quantity requires computing the similarity between all
pairs of queries and keys, incurring quadratic complexity in both time and memory. It makes the
computational overhead for long sequences prohibitive, especially in the case of vision tasks.

2.2 LINEARIZED ATTENTION

To reduce the computational complexity in the attention mechanism, prior works propose to linearize
the softmax kernel (Choromanski et al., 2020; Katharopoulos et al., 2020; Peng et al., 2021). In
particular, they replace the exponential kernel used in softmax functions κ(q,k) := exp

(
q>k

)
with a dot product of two feature maps φ(q)>φ(k), where φ(·) : RD → RD′

. For example, in
Katharopoulos et al. (2020) they define φ(x) = elu(x) + 1, which works well on various tasks.2
With the defined feature map, linearized attention can be written as:

LinearAttn (qn,K,V) :=

M∑
m=1

φ(qn)
>φ(km)∑M

m′=1 φ(qn)
>φ(km′)

v>m

=
φ(qn)

>∑M
m=1 φ(km)v>m

φ(qn)>
∑M

m′=1 φ(km′)
. (2)

In other words, by grouping together the computations of keys and values, their statistics can be
shared for all queries. It therefore achieves linear complexity in both time and memory with respect
to the length of the sequence, as we only need to compute

∑M
m=1 φ(km)v>m and

∑M
m=1 φ(km) once

and then reuse them for each query.

3 MODEL

In this section, we introduce ripple attention, a novel attention mechanism that features the relative
spatial vicinity. We start from a reformulation of the linearized attention (§2.2) under the notation

1We omit the scaling factor for simplicity.
2These feature maps could also be random in the sense that they can also depend on a set of random variables

ω; however, throughout our experiments we use deterministic ones as they perform better in vision tasks. Further
details and discussions about the choice of feature maps can be found in Appendix C.1.

2

Under review as a conference paper at ICLR 2022

(a) (b) (c)

Figure 1: A demonstration of vicinal groups in ripple attention on a 9 × 9 image I . Each square
denotes a token, the circle denotes the query position and we use deeper color to indicate a larger
spatial weight. Left (a): an example of vicinal group partitioning in the case where the query lies
in the center of an image, resulting in a symmetric rippling effect over the 2D space; Middle (b):
another example of a group partitioning on the same image but the query token is not centered. In
this case, distal vicinal groups (the top-left corner) receives almost no spatial weights. Right (c): the
same case as in (b) with the threshold τ set such that r̂ = 4. Groups beyond r̂ − 1 (indicated by the
dashed line) contribute according to an equal spatial weight.

of vicinal groups (§3.1). This reformulation makes it straightforward to introduce a spatial weight
associated with each vicinal group, which is the cornerstone of ripple attention. We then describe
the derivation of these spatial weights through a stick-breaking transformation (§3.2) and a dynamic
programming algorithm (§3.3) based on the summed-area table technique to perform the computation
of ripple attention efficiently.

3.1 RIPPLE ATTENTION

We assume an input image consists of H ×W patch tokens. Given a query token at position (i, j),
we partition the whole set of patch tokens into R + 1 vicinal groups {Nr(i, j)}Rr=0, according to
their Chebyshev distances r from the position to the query3, which means for every token at position
(m,n) ∈ Nr(i, j) we have max(|m− i|, |n− j|) = r. Illustrations of such vicinal group partitioning
can be found in Figure 1a or Figure 1b, where each group is marked by a different color.

Under the notation of vicinal groups, we can reformulate the linearized attention as:

LinearAttn (qij ,K,V) =
φ(qij)

>∑R
r=0

∑
(m,n)∈Nr(i,j)

φ(kmn)v
>
mn

φ(qij)>
∑R

r=0

∑
(m′,n′)∈Nr(i,j)

φ(km′n′)
. (3)

This formulation is computationally equivalent since the summations over φ(k)v> and φ(k) also
cover all positions within the image. The essence of ripple attention is to let tokens respond differently
to a query, according to their relative distances. Typically, tokens close to the query in the 2D space
should weigh more than the tokens far away in general, since there exist strong local correlations in
images. This control is translated into a spatial weight αr(i, j) associated with each vicinal group
Nr(i, j) and can be easily introduced into linearized attention4:

RippleAttn (qij ,K,V) :=
φ(qij)

>∑R
r=0 αr(i, j)

∑
(m,n)∈Nr(i,j)

φ(kmn)v
>
mn

φ(qij)>
∑R

r=0 αr(i, j)
∑

(m′,n′)∈Nr(i,j)
φ(km′n′)

. (4)

We define αr(i, j) ∈ (0, 1),∀r = 0, 1, . . . , R and
∑R

r=0 αr(i, j) = 1, to reweigh contributions of
different vicinal groups with respect to a query in the attention computation. By respecting the spatial
structure of images, ripple attention constructs a structured context for queries, which facilitates the
model to reconcile both global and local information. The name ripple attention comes from its
similarity to the ripples on the surface of water (Figure 1).

3Chebyshev distances is also known as chessboard distance, or more generally L∞ metric, since it equals
limp→∞

(∑n
i=1 |xi − yi|

p
)1/p for any n-dimensional vectors x,y.

4The partitioning is hard to implement in softmax attention mechanism. More discussions about ripple-
softmax and its complexity can be found in Appendix A.

3

Under review as a conference paper at ICLR 2022

3.2 SPATIAL WEIGHTS

To derive the spatial weights αr ∈ (0, 1) ∀r = 0, 1, . . . , R,5 we first define a sequence of scalars
{sr}, where sr ∈ (0, 1)∀r = 1, . . . , R. The spatial weights are parameterized as follows (with
sR+1 = 1):

αr =

{
s1, if r = 0

sr+1

∏
r′≤r (1− sr′) , otherwise

(5)

The sequence {sr} is generated through a small neural network followed by a sigmoid function.
See Appendix C.3 for more details. Our construction is analogous to the stick-breaking process in
Bayesian nonparametrics (Wasserman, 2006), except that sr here is a deterministic scalar rather than
a random variable. One of its appealing properties is:

sup

sr+1

∏
i≤r

(1− si) : sr+1 ∈ (0, 1)

 ≥ sup

sr′+1

∏
i≤r′

(1− si) : sr′+1 ∈ (0, 1)

 if r < r′.

In other words, we only assume the supremum of each spatial weight αr is decreasing. A stronger
constraint could be monotonicity, for example αr > αr′ if r < r′. We argue that the former is more
favorable, because it offers the flexibility to let distant tokens outweigh when necessary; the effective
modeling of such long-term dependencies is deemed as the key to the success of the transformer
architecture as well.

In theory, the stick-breaking transformation produces R+ 1 different spatial weights. However, as
the weights become trivially small near the end of this transformation, the computational overhead
incurred by them becomes worthless. Therefore, we define a threshold τ to adaptively terminate
the transformation at vicinal group Nr̂(i, j) when the length of remaining stick is less than τ (i.e.,
1−

∑r̂
r=0 αr(i, j) < τ). We then merge all vicinal groups Nr(i, j) with r ≥ r̂ and share the same

weights among them assuming they contribute equally:

αr(i, j) =
1−

∑r̂−1
r′=0 αr′(i, j)

R− r̂ + 2
, if r >= r̂. (6)

This truncating-and-merging operation is demonstrated in Figure 1c, where the threshold τ is set
such that r̂ = 4. In this case, all the remaining groups (outside the dashed line) share the same weight
according to equation 6. Compared to Figure 1b, adaptive ripple allows a stop of the transformation
before hitting the boundary, which prevents potentially worthless computations for distal groups. At
the same time, it does weigh in the contributions from those groups, preserving the ability to capture
long-term dependencies.

3.3 DYNAMIC PROGRAMMING

The only problem left now is how to compute ripple attention effectively. A naïve implementation
of equation 4 has a time complexity of O(HWR2). Since R is bounded by max(H,W) − 1, the
computation is quadratic with respect to the length of the sequence. We give detailed derivations of
runtime complexity of each attention variant in Appendix A.

In this section, we present a dynamic programming algorithm built on the summed-area table (SAT)
technique, a classic algorithm in computer graphics and computer vision (Crow, 1984; Viola et al.,
2001), which reduces the time complexity of ripple attention to O(HWR). SAT is an efficient data
structure that stores prefix sums for each pixel position of an image such that summations over any
window in the image can be retrieved in constant time. For an image I with height H and width W ,
it first initializes the table by computing the cumulative sum S of all the tokens above and to the left
of (i, j) inclusively in the 2D plane6:

S(i, j) =

i∑
i′=1

j∑
j′=1

I(i′, j′). (7)

5In this section, we sometimes drop the dependence on position (i, j) for spatial weights αr(i, j) when there
is no ambiguity.

6In practice, we adopt a linear-complexity implementation which first performs the cumulative summation
over the row axis and then the column axis, yielding the same result.

4

Under review as a conference paper at ICLR 2022

For a square window with center (i, j) and radius r (i.e., a region centered at (i, j) with both its
height and width equal to 2r + 1), the summation over its elements is denoted by W(i, j, r) and can
be computed in constant time (Crow, 1984):

W(i, j, r) := S(i+r, j+r)− S(i−r−1, j+r)− S(i+r, j−r−1) + S(i−r−1, j−r−1). (8)

In this work, we consider {φ(kij)v
>
ij} and {φ(kij)} as generalized pixels within the input image

and construct two SATs S1 and S2 to compute their prefix summations respectively. According to
equation 8, the window sums can be obtained efficiently and are denoted as W1 and W2.

We show that the sum of φ(k)v> and φ(k) over vicinal group Nr(i, j) can also be computed within
constant time from SATs:∑

(m,n)∈Nr(i,j)

φ(kmn)v
>
mn = W1(i, j, r)−W1(i, j, r − 1);

∑
(m,n)∈Nr(i,j)

φ(kmn) = W2(i, j, r)−W2(i, j, r − 1).

Intuitively, this can be viewed as taking the difference between the largest square window wrapped by
the group and the smallest square window containing the group. Equipped with SATs, the formulation
of ripple attention becomes:

RippleAttn (qij ,K,V) =
φ(qij)

>∑R
r=0 αr(i, j) (W1(i, j, r)−W1(i, j, r − 1))

φ(qij)>
∑R

r=0 αr(i, j) (W2(i, j, r)−W2(i, j, r − 1))
. (9)

In §3.2, we merge all groups Nr(i, j) with r >= r̂ assuming equal contributions (equation 6), which
can be jointly computed in constant time using S(H,W)−W(i, j, r̂ − 1). Therefore, given a rea-
sonable hyper-parameter choice of τ , the algorithm can achieve linear observed time in the sequence
length. This is due to the fact that after the precomputation of SATs (in linear complexity), for each
query the required summations of vicinal groups can be computed in constant time. In practice, we
do not even need to materialize the tensor W, due to the fact that previously computed results for
close vicinal groups could be reused for distant vicinal groups. Therefore, the space complexity of
ripple attention remains to be O(HW) irrespective of the rippling distance R. Algorithm 1 sketches
the dynamic programming for the ripple attention mechanism given a single query and a threshold τ .

Efficient gradient computation. The algorithm discussed above addresses the runtime complexity
of the forward pass of ripple attention. In Appendix B, we also present a dynamic programming
algorithm to compute gradients for the backward pass, again in O(HWR) time and space complexity.
The main idea is to utilize the symmetry of vicinal groups and reformulate the gradient calculations
as summations over different groups, where computations could be further reduced using SATs; in
contrast, a naiv̈e implementation would come with O(HWR2) complexity.

4 EXPERIMENTS

We conduct extensive experiments on image classification and detection tasks to demonstrate the
effectiveness of ripple attention.

4.1 EXPERIMENTAL SETUP

Datasets For image classification, we evaluate our model on standard benchmark datasets: (1)
ImageNet1k dataset (Deng et al., 2009), consisting of approximately 1,280K/50K images of 1000
classes for training/validation splits respectively; (2) CIFAR-100 (Krizhevsky et al., 2009), which
contains 50K images of 100 classes for training and 10K for evaluation. For detection tasks, we
conduct our experiment on the COCO benchmark (Lin et al., 2014) consisting of 118k training and 5k
validation images respectively.

Baselines Our model for image classification is based on the vision transformer architecture (ViT)
(Dosovitskiy et al., 2020; Touvron et al., 2020), where the attention block is replaced with ripple
attention. We compare ripple attention (referred to as RIPPLE hereafter) with various attention
mechanisms in ViT:

5

Under review as a conference paper at ICLR 2022

Algorithm 1 Dynamic Programming for Ripple Attention

Input: the key-value statistics I ∈ RH×W , query position (i, j), spatial weights {αr(i, j)} and
threshold τ ;
Output: The quantity result :=

∑R
r=0 αr(i, j) (W(i, j, r)−W(i, j, r − 1));

Initialize: result← 0, Wcur ← 0, Wprev ← 0, S ∈ RH×W ← 0;
Compute: summed-area table S by calling cumsum() function twice over horizontal and vertical
directions respectively;
Compute: r̂ by summing over αr(i, j) until 1−

∑r̂
r=0 αr(i, j) < τ ;

for r = 0, 1, . . . , r̂ − 1 do
S1 ← S(i+ r, j + r); . Cumulative sum at the bottom-right corner
S2 ← S(i− r − 1, j + r); . Cumulative sum at the bottom-left corner
S3 ← S(i+ r, j − r − 1); . Cumulative sum at the top-right corner
S4 ← S(i− r − 1, j − r − 1); . Cumulative sum at the top-left corner
Wcur ← S1 − S2 − S3 + S4;
result← result+ αr(i, j)(Wcur −Wprev);
Wprev ←Wcur;

end for
result← result+ αr̂(i, j)(S(H,W)−W(i, j, r̂ − 1));
return result

• DEIT, which adopts the same architecture as ViT and vanilla softmax attention.7
• CONVIT, which imposes a soft convolutional inductive bias on the vanilla attention mechanism.
• DEIT-LA, a DEIT model equipped with linearized attention (§2.2) instead of softmax attention. We

also include several variants that improve DEIT-LA, such as PERMUTEFORMER (Chen, 2021), SPE
(Liutkus et al., 2021) and Rotary positional embeddings (ROPE, Su et al., 2021) that incorporates
relative positional encodings.

For object detection, we evaluate our model in the general framework of detection transformer
(DETR; Carion et al., 2020) to test the generalization ability of RIPPLE. However, due to the slow
convergence of DETR, we are unable to run DETR model for a full training schedule given limited
computational resources. Instead, we adopt SMCA (Gao et al., 2021) as our baseline, a variant of
DETR that greatly speeds up the convergence by constraining the attention map in the decoder side.
Our model, referred to as SMCA-RIPPLE, replaces all attention blocks with ripple attention in the
transformer encoder. For completeness, we also compare with SMCA-LA, an SMCA variant that
adopts linearized attention in encoder attention block.

Implementation details Note that RIPPLE is based on linearized attention mechanism (§2.2). In
this work, the feature map φ(·) is defined to be deterministic with learnable parameters, which
consists of a two-layer MLP with trigonometric and ReLU activations in turn. We find it works very
well in our experiments. Detailed discussions about our choice and a corresponding ablation study
can be found in Appendix C.1.

Besides, in RIPPLE we introduce a hard constraintRmax such that the model stops rippling propagation
at distance Rmax and then merges all the remaining groups. This can be seen as a stronger version
of halting threshold τ (§3.2) and is adopted in practice due to its explicit effect on controlling the
rippling process.8 Furthermore, when applied in vision transformers, we only replace the first several
attention layers with ripple attention, while the remaining ones adopt linearized attention. We refer
readers to Appendix C for more discussions about our implementation choices and further details.

4.2 MAIN RESULTS

Results on ImageNet-1K dataset. The results of comparisons among RIPPLE and other models
on ImageNet1k dataset are presented in Table 1. We observe RIPPLE outperforms both DEIT-LA,
upon which RIPPLE is built, and its variants by a large margin. Although DEIT-LA gives a clear

7To facilitate comparisons and simplify experimental settings, we do not use the distillation technique.
8Given Rmax, our model is robust to the change of τ ; therefore, we only set τ to 0.001 by default and mainly

conduct ablation studies on Rmax (§5.1).

6

Under review as a conference paper at ICLR 2022

Model # Params Top-1 Acc. Top-5 Acc.

Models with quadratic complexity

DEIT 5.72M 72.20 91.10
CONVIT (d’Ascoli et al., 2021) 5.72M 73.11 91.71

Models with sub-quadratic complexity

DEIT-LA 5.76M 70.67 90.16
DEIT-LA + SINCSPE (Liutkus et al., 2021) 5.84M 67.32 88.14

DEIT-LA + CONVSPE (Liutkus et al., 2021) 6.69M 67.64 88.40
DEIT-LA + ROPE (Su et al., 2021) 5.76M 71.19 90.48
PERMUTEFORMER (Chen, 2021) 5.76M 71.42 90.51

RIPPLE 5.78M 73.02 91.56

Table 1: Image classification results for different vision transformers on ImageNet1k dataset. All
the variants of DEIT-LA, including PERMUTEFORMER, are trained by us.

Model
w/ APE w/o APE

Params Top-1 Acc. Top-5 Acc. # Params Top-1 Acc. Top-5 Acc.

DEIT-LA 5.42M 67.00 88.57 5.36M 54.04 79.66
DEIT 5.42M 67.87 89.71 5.36M 53.64 80.30

CONVIT 5.42M 74.34 92.87 5.36M 73.88 92.20
RIPPLE 5.47M 73.94 92.37 5.42M 72.94 91.86

Table 2: Image classification results for different vision transformers on CIFAR-100 dataset. All of
these models are trained by us. APE denotes the absolute positional embedding.

performance drop compared to the standard vision transformer DEIT, RIPPLE still performs better
than DEIT and achieves results comparable to the improved variant CONVIT while in asymptotically
faster runtime, which clearly demonstrates the effectiveness of our approach.

Results on CIFAR-100 dataset. We further conduct experiments on CIFAR-100 dataset and
report the results in Table 2. RIPPLE outperforms both DEIT-LA and DEIT by a substantial margin
on CIFAR-100 dataset, and also achieves competitive performance compared to CONVIT. This
suggests that RIPPLE also generalizes well on a relatively smaller dataset. Following the setting in
(Wu et al., 2021; Yan et al., 2021), we also make a comparison of these models in the absence of
absolute positional embeddings. We observe a significantly larger performance gap between vanilla
vision transformers and models designed to incorporate the notion of locality (Table 2). This implies
RIPPLE could structure the scattered spatial context, which is beneficial to information aggregation
among patches. Still, the performance decrease in RIPPLE in the absence of positional embeddings
suggests that absolute global positions contain complementary information to the prior knowledge of
locality, which is also consistent with a recent study (Islam et al., 2020).

Results on COCO benchmark. In Table 3 we report the results for object detection. Again, we
see the same trend that the performance drops by over 2 AP when using linearized attention in
the encoder (SMCA-LA). However, SMCA-RIPPLE improves SMCA-LA on all object scales with a
marginal increase of GFLOPs and almost catches up with SMCA. The mAP gap between SMCA-
RIPPLE and SMCA is further narrowed down from 0.5 to 0.3 with 108 training epochs. In addition,
SMCA-RIPPLE achieves better results than SMCA on small scale objects, which is attributed to the
promoted locality of ripple attention.

5 ANALYSIS

5.1 INSPECTING THE RIPPLING PROCESS

On the effect of maximum rippling distances. The maximum rippling distance Rmax defined in
§4.1 controls the boundary of RIPPLE with informative spatial weights. To evaluate its effect on
the modeling performance, we vary the maximum rippling distance Rmax and report the results on

7

Under review as a conference paper at ICLR 2022

Model # Params GFLOPs Inference
time(s)

50 epochs 108 epochs

AP APS APM APL AP APS APM APL

SMCA 41.5M 88 0.059 41.0 21.9 44.3 59.1 42.7 22.8 46.1 60.0
SMCA-LA 41.7M 79 0.062 39.1 19.8 42.8 56.5 41.1 22.0 44.5 59.0

SMCA-RIPPLE 41.8M 80 0.065 40.5 22.1 44.1 57.7 42.3 23.2 45.6 60.0

Table 3: Object detection results for different detection transformers on COCO benchmark under both
50 training epoch schedule and 108 epoch schedule.

Model locality global dep. Rmax Speed Top-1 Acc. Top-5 Acc.

RIPPLE 3 3

2 832 72.65 91.83
4 792 73.94 92.37
8 578 73.37 92.21

16 382 73.48 92.25

FIXED-RIPPLE 3 3 4 795 71.34 90.77

TRUNCATED-RIPPLE 3 7 4 820 72.18 91.66

RIPPLE w/o SBT 7 3 4 784 71.94 91.83

DEIT-LA 7 3 – 2664 67.00 88.57

Table 4: Classification results on CIFAR-100 dataset under different maximum rippling distances
Rmax for RIPPLE, compared to several model variants. The speed is measured by the number of
images processed per second with a batch size of 64. RIPPLE w/o SBT represents ripple attention
whose spatial weights are generated through a softmax function instead of stick breaking transforms
(SBT). “–” indicates not applicable.

CIFAR-100 dataset in Table 4. Overall, RIPPLE performs well with a moderate or larger Rmax. If
Rmax is too small, the performance drops significantly, although still outperforming DEIT-LA. It can
be attributed to the fact that if the stick-breaking transformation terminates early, the query would
attend mostly to its immediate spatial neighbors while not sufficiently respecting global dependencies.

On the effect of stick-breaking transformation. We construct a variant of RIPPLE with fixed and
exponentially-decayed spatial weights (i.e., 1/2, (1/2)2, (1/2)3, · · · , (1/2)Rmax), which is denoted
by FIXED-RIPPLE. We find RIPPLE with hard-coded weights also performs better than DEIT-LA,
which indicates the effectiveness of recovering spatial structures in transformers. Our stick-breaking
transformation gives a further boost over the fixed-weight baseline, thanks to its flexibility in the
spatial weights. We also consider a baseline RIPPLE w/o SBT, which replaces the stick-breaking
transformation (§3.2) with a simple softmax function to generate spatial weights. This variant does not
promote any locality but has the potential to learn such pattern implicitly. It performs slightly better
than hard-coded spatial weights and much worse compared to RIPPLE, verifying the effectiveness of
stick-breaking transformation.

On the effect of global and local information. To demonstrate the relation between global and
local information, we design another baseline TRUNCATED-RIPPLE, which puts a hard termination of
rippling process such that all distant groups beyond Rmax = 4 are discarded (i.e., αr(i, j) = 0, if r ≥
4) instead of merged. This results in a limited receptive field without global dependency modeling.
As shown in Table 4, the comparison among TRUNCATED-RIPPLE, RIPPLE and DEIT-LA reveals that
both global and local information play an important role in modeling, while the notion of locality
is possibly more important than global connectivity in vision tasks, which concurs with previous
findings (Dosovitskiy et al., 2020; d’Ascoli et al., 2021).

5.2 EMPIRICAL RUNNING TIME AND MEMORY CONSUMPTION

To verify the advantage of asymptotically faster running complexity in RIPPLE, we conduct a
simulation experiment on vision transformers to compare the empirical running time and memory
consumption of RIPPLE against its baselines under different numbers of tokens. The detailed setup
can be found in Appendix E. Figures 2 demonstrate the comparison results. As mentioned in §3.3,
both DEIT and RIPPLE (Naïve) come with quadratic complexity in the number of tokens. We observe
that RIPPLE with dynamic programming (DP) performs significantly better than RIPPLE (Naïve),
which demonstrates the effectiveness of our dynamic programming algorithm. Furthermore, RIPPLE

8

Under review as a conference paper at ICLR 2022

12 162 322 482 642 802 962 1122 1282

Number of Tokens

0

500

1000

1500

2000

R
un

ni
ng

 T
im

e
(m

s)

Ripple (DP)
Ripple (Naive)
DEIT-LA
DEIT

12 162 322 482 642 802 962 1122 1282

Number of Tokens

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
em

or
y

(G
B

)

Ripple (DP)
Ripple (Naive)
DEIT-LA
DEIT

Figure 2: Empirical running time (left) and memory consumption (right) under different numbers
of tokens. All models are tested with a batch size of 4 on a single NVIDIA V100 GPU machine,
averaged by 10 runs.

behaves similarly to DEIT-LA as the number of tokens increases, verifying that it could be executed in
linear observed time. When processing a large number of tokens, RIPPLE often achieves a 5× or even
10× reduction in running time and memory compared to its quadratic counterparts.

6 RELATED WORK

Transformer architectures (Vaswani et al., 2017) are first introduced for neural machine translation.
Recently, researchers begin to apply the transformer model in the computer vision domain, showing
promising results in various tasks, such as image generation (Parmar et al., 2018), video action
recognition (Bertasius et al., 2021; Liu et al., 2021b), segmentation (Wang et al., 2020b; Strudel
et al., 2021), object detection (Carion et al., 2020; Gao et al., 2021), low-level image processing
(Chen et al., 2020) and image classification (Dosovitskiy et al., 2020; Touvron et al., 2020; Liu et al.,
2021a). A large body of research has been devoted into improving efficiency and effectiveness of
vision transformers (Dosovitskiy et al., 2020). Recent advances improve original vision transformers
from various perspectives, such as data-efficient training (Touvron et al., 2020), adopting pyramid
architectures (Wang et al., 2021a; Liu et al., 2021a; Heo et al., 2021) and incorporating the notion of
locality, which can be done by applying convolutional modules into the architecture (Li et al., 2021;
Wu et al., 2021; Yan et al., 2021; Xu et al., 2021; Yuan et al., 2021; d’Ascoli et al., 2021), restricting
the scope of the self-attention (Liu et al., 2021a; Dong et al., 2021) or initializing self-attention maps
as a convolution kernel (d’Ascoli et al., 2021). In contrast to these prior works, we directly model
the locality inside the attention mechanism yet permit long-term dependencies, without relying on
any convolutional operations or limiting the receptive field; at the same time, ripple attention runs in
linear observed time so that the quadratic bottleneck in standard vision transformers can be greatly
alleviated. Our work is orthogonal to previous works that modify the transformer architecture and it
is worth exploring their combination to improve the overall vision transformer design.

Our model is built on the linearized attention mechanism, which approximates the softmax kernel
with the dot product of feature maps. The feature maps can be stochastic, such as in RFA (Peng et al.,
2021) and Performer (Choromanski et al., 2020), or deterministic (Katharopoulos et al., 2020; Schlag
et al., 2021). Recently, many works are proposed to improve linearized attention by incorporating
relative positional encodings (Liutkus et al., 2021; Luo et al., 2021; Chen, 2021; Su et al., 2021).
Other efficient attention mechanisms include methods that limit the attention pattern to be sparse
(Child et al., 2019; Ho et al., 2019; Kitaev et al., 2020) or utilizes a low rank approximation by
projecting input sequences to fewer key-value pairs (Wang et al., 2020a). A comprehensive review of
recent advances in efficient attention mechanisms can be found in Tay et al. (2020a;b).

7 CONCLUSION

In this work, we present ripple attention, a novel attention mechanism for visual perception with
sub-quadratic complexity. In ripple attention, contributions of different tokens to a query are weighted
with respect to their spatial distances in the 2D space. We design a dynamic programming algorithm
that computes weighted contributions for all queries in linear observed time and derive the spatial
weights through an adaptive stick-breaking transformation. We conduct extensive experiments and
analyses to demonstrate the effectiveness of ripple attention.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling.
In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxZX20qFQ.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Maxim Berman, Hervé Jégou, Andrea Vedaldi, Iasonas Kokkinos, and Matthijs Douze. Multigrain: a
unified image embedding for classes and instances. arXiv preprint arXiv:1902.05509, 2019.

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding? In Proceedings of the International Conference on Machine Learning (ICML),
July 2021.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer
Vision, pp. 213–229. Springer, 2020.

Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chun-
jing Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. arXiv preprint
arXiv:2012.00364, 2020.

Peng Chen. Permuteformer: Efficient relative position encoding for long sequences. arXiv preprint
arXiv:2109.02377, 2021.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Franklin C Crow. Summed-area tables for texture mapping. In Proceedings of the 11th annual
conference on Computer graphics and interactive techniques, pp. 207–212, 1984.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp. 702–703, 2020.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988,
Florence, Italy, 2019. Association for Computational Linguistics. URL https://www.aclweb.
org/anthology/P19-1285.

Stéphane d’Ascoli, Hugo Touvron, Matthew Leavitt, Ari Morcos, Giulio Biroli, and Levent Sagun.
Convit: Improving vision transformers with soft convolutional inductive biases. arXiv preprint
arXiv:2103.10697, 2021.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyzdRiR9Y7.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen,
and Baining Guo. Cswin transformer: A general vision transformer backbone with cross-shaped
windows. arXiv preprint arXiv:2107.00652, 2021.

10

https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
https://www.aclweb.org/anthology/P19-1285
https://www.aclweb.org/anthology/P19-1285
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7

Under review as a conference paper at ICLR 2022

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network model for
a mechanism of visual pattern recognition. In Competition and cooperation in neural nets, pp.
267–285. Springer, 1982.

Peng Gao, Minghang Zheng, Xiaogang Wang, Jifeng Dai, and Hongsheng Li. Fast convergence of
detr with spatially modulated co-attention. arXiv preprint arXiv:2101.07448, 2021.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and Seong Joon Oh.
Rethinking spatial dimensions of vision transformers. arXiv preprint arXiv:2103.16302, 2021.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidi-
mensional transformers. arXiv preprint arXiv:1912.12180, 2019.

Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, and Daniel Soudry. Augment
your batch: Improving generalization through instance repetition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8129–8138, 2020.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In European conference on computer vision, pp. 646–661. Springer, 2016.

Md Amirul Islam, Sen Jia, and Neil D. B. Bruce. How much position information do convolutional
neural networks encode? In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=rJeB36NKvB.

Jungo Kasai, Hao Peng, Yizhe Zhang, Dani Yogatama, Gabriel Ilharco, Nikolaos Pappas, Yi Mao,
Weizhu Chen, and Noah A Smith. Finetuning pretrained transformers into rnns. arXiv preprint
arXiv:2103.13076, 2021.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International Conference on Machine
Learning, pp. 5156–5165. PMLR, 2020.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=rkgNKkHtvB.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25:1097–1105,
2012.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc Van Gool. Localvit: Bringing locality to
vision transformers. arXiv preprint arXiv:2104.05707, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

11

https://openreview.net/forum?id=rJeB36NKvB
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB

Under review as a conference paper at ICLR 2022

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030, 2021a.

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin
transformer. arXiv preprint arXiv:2106.13230, 2021b.

Antoine Liutkus, Ondřej Cífka, Shih-Lun Wu, Umut Simsekli, Yi-Hsuan Yang, and Gael Richard.
Relative positional encoding for transformers with linear complexity. In International Conference
on Machine Learning, pp. 7067–7079. PMLR, 2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Shengjie Luo, Shanda Li, Tianle Cai, Di He, Dinglan Peng, Shuxin Zheng, Guolin Ke, Liwei Wang,
and Tie-Yan Liu. Stable, fast and accurate: Kernelized attention with relative positional encoding.
arXiv preprint arXiv:2106.12566, 2021.

Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, and Jingdong
Wang. Conditional detr for fast training convergence. arXiv preprint arXiv:2108.06152, 2021.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In International Conference on Machine Learning, pp. 4055–4064.
PMLR, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems, 32:
8026–8037, 2019.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong.
Random feature attention. arXiv preprint arXiv:2103.02143, 2021.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pp. 9355–9366. PMLR, 2021.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
In NAACL-HLT (2), 2018.

Eero P Simoncelli and Bruno A Olshausen. Natural image statistics and neural representation. Annual
review of neuroscience, 24(1):1193–1216, 2001.

Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer for
semantic segmentation. arXiv preprint arXiv:2105.05633, 2021.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with
rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020a.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. arXiv
preprint arXiv:2009.06732, 2020b.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. arXiv preprint
arXiv:2012.12877, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

12

Under review as a conference paper at ICLR 2022

Paul Viola, Michael Jones, et al. Robust real-time object detection. International journal of computer
vision, 4(34-47):4, 2001.

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020a.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. arXiv preprint arXiv:2102.12122, 2021a.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pvtv2: Improved baselines with pyramid vision transformer. arXiv preprint
arXiv:2106.13797, 2021b.

Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan Cheng, Hao Shen, and Huaxia
Xia. End-to-end video instance segmentation with transformers. arXiv preprint arXiv:2011.14503,
2020b.

Larry Wasserman. All of nonparametric statistics. Springer Science & Business Media, 2006.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. arXiv preprint arXiv:2103.15808, 2021.

Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Dollár, and Ross Girshick. Early
convolutions help transformers see better. arXiv preprint arXiv:2106.14881, 2021.

Yufei Xu, Qiming Zhang, Jing Zhang, and Dacheng Tao. Vitae: Vision transformer advanced by
exploring intrinsic inductive bias. arXiv preprint arXiv:2106.03348, 2021.

Haotian Yan, Zhe Li, Weijian Li, Changhu Wang, Ming Wu, and Chuang Zhang. Contnet: Why not
use convolution and transformer at the same time? arXiv preprint arXiv:2104.13497, 2021.

Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, and Jianfeng
Gao. Focal self-attention for local-global interactions in vision transformers. arXiv preprint
arXiv:2107.00641, 2021.

Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Fengwei Yu, and Wei Wu. Incorporating
convolution designs into visual transformers. arXiv preprint arXiv:2103.11816, 2021.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data aug-
mentation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
13001–13008, 2020.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Under review as a conference paper at ICLR 2022

Appendices

A ANALYSIS OF RUNTIME COMPLEXITY

In this section, we give more details about the runtime complexity (§3.3) for different attention
mechanisms in Table 5. In particular, we focus on variants (1) Ripple-softmax and (2) Ripple (naïve),
since the rest have been clarified in the main text.

Complexity of ripple-softmax. Ripple-softmax aims to inject radial bias through rippling into the
vanilla softmax attention. Here we present two possible ways to achieve this goal, either explicitly
or implicitly. Given a query, we could perform vanilla attention over one of its vicinal groups once
so that the rippling effect could be explicitly encoded. Since the number of tokens within vicinal
group of distance r is directly proportional to r (note that the number of tokens within vicinal group
of distance r is simply the difference between (2r + 1)2 − (2r − 1)2 = 8r) and there are R groups
in total, the overall complexity would be O(R2); then considering all queries results in O(HWR2)
complexity (along with a large constant). On the other hand, we could also add specific spatial
weights directly to the attention matrix, implicitly enforcing the radial bias. This is similar to relative
positional encodings (Shaw et al., 2018), but in this case the overall complexity is at least O(H2W 2)
due to the computation of attention matrices, which is as inefficient as vanilla softmax attention in
terms of complexity. In this work, we simply refer to the explicit method as Ripple-softmax.

Complexity of Ripple (naïve). Naïvely implementing ripple attention comes with O(HWR2)
complexity, as mentioned in the beginning of § 3.3. This is due to the fact that for each query, we
have to first sum over all tokens in one vicinal group, which is O(r) (see the analysis in the paragraph
above), and then aggregate over all groups. This results in O(R2) complexity, and O(HWR2) for all
queries (also with a large constant; see the empirical running comparison in §5.2).

B EFFICIENT GRADIENT COMPUTATION IN RIPPLE ATTENTION

To perform gradient back-propagation for ripple attention, a naive implementation would be directly
adopting the automatic differentiation, since all operations in our forward pass (Algorithm 1) are
differentiable; however, since many computations in Algorithm 1 overlap with each other, it would
lead to substantially repetitive calculations. In addition, we find it even takes O(T 2) time and memory,
which is highly inefficient compared to the forward pass.

In this section, we present an algorithm based on dynamic programming to perform efficient back-
propagation for ripple attention, which again comes with sub-quadratic complexity. Recall that given
a single query qij , all the keys K and values V , ripple attention executes the following computation

Softmax attention Ripple-softmax† Linearized attention Ripple (naïve) Ripple (DP)

O
(
H2W 2

)
O
(
HWR2

)
O (HW) O

(
HWR2

)
O (HWR)

O
(
T 2
)

O
(
T 2
)

O (T) O
(
T 2
)

O
(
T 3/2

)
Table 5: Runtime complexity comparisons between different attention variants, with respect to
an image with H ×W patches (in the first row) and with respect to the number of patch tokens
T := H ×W (in the second row). †Ripple-softmax indicates the complexity if we would like to
implement ripple-like mechanisms in vanilla softmax attention.

14

Under review as a conference paper at ICLR 2022

during the forward pass9:

RippleAttn (qij ,K,V) :=
q>ij
∑R

r=0 αr(i, j)
∑

(m,n)∈Nr(i,j)
kmnv

>
mn

q>ij
∑R

r=0 αr(i, j)
∑

(m′,n′)∈Nr(i,j)
km′n′

. (10)

The main difference between linearized attention and ripple attention lies in the computation procedure
of summation over kv> and k. Therefore, we put main focus on calculating gradients for the
following quantity

yij :=

R∑
r=0

αr(i, j)
∑

(m,n)∈Nr(i,j)
xmn, (11)

where xmn ∈ RD denotes a D-dimensional vector located at position (m,n), which could be
(unrolled) kmnv

>
mn or kmn.10 The remaining computation in ripple attention (e.g., dot product

with qij) can be easily handled by standard automatic differentiation. We are mainly interested in
computing gradients with respect to αr(i, j) and xmn

In ripple attention, we maintain a summed area table (SAT) to efficiently retrieve the partial reduction
over vicinal groups (see Algorithm 1 for more details). Although all operations in Algorithm 1 is
differentiable and thus admits the use of automatic differentiation to calculate gradients, it is very
inefficient since computations of most intermediate nodes in the computation graph (for example,
S1, S2, S3 and S4 in Algorithm 1) overlap with each other, resulting in a large amount of repeated
computation.

Here we inspect the form (equation 11) and show that the properties of vicinal groups could be made
use of to derive efficient gradient computation.

Gradients with respect to spatial weights. We assume gradients ∇yij
L, that is, the gradient of

our loss objective w.r.t. output at all positions (i, j) are available during back-propagation. According
to the chain rule, the partial derivative of the objective L w.r.t. αr(i, j) has the following form:

∂L

∂αr(i, j)
=

D∑
d=1

∂L

∂yijd

∂yijd
∂αr(i, j)

=

D∑
d=1

∂L

∂yijd

∑
(m,n)∈Nr(i,j)

xmnd,

where xmnd and ymnd denote the d-th dimension of xmn and the output ymn respectively. The first
quality holds since spatial weights at every position only depends on the output at that position; but
since the same spatial weight applies to all dimensions of yij , we have to reduce over the embedding
dimension to compute the partial derivative. Similar to the forward pass computation (equation 9), we
recognize that the inner summation over the vicinal group Nr(i, j) can be again computed efficiently
by utilizing SATs with Algorithm 1.

Gradients with respect to xmn. The partial derivative w.r.t. element xmnd can be written as

∂L

∂xmnd
=

H∑
i=1

W∑
j=1

∂L

∂yijd

∂yijd
∂xmnd

=

H∑
i=1

W∑
j=1

∂L

∂yijd

R∑
r=0

αr(i, j)I [(m,n) ∈ Nr(i, j)] . (12)

where we define I [(m,n) ∈ Nr(i, j)] as the indicator function such that it is set to 1 if (m,n) ∈
Nr(i, j) and 0 otherwise. A naive way to compute the partial derivatives above has O(H2W 2R)
complexity, since for every key vector at position (m,n) we need to sum its influences over all
positions. However, we show that we could again solve them via dynamic programming.

9Without loss of generality, we merge the feature map φ(·) into the vector representation of queries and keys
to simplify notations.

10We focus on the general form here since the derived algorithm applies to both the nominator and the
denominator.

15

Under review as a conference paper at ICLR 2022

Our key observation is that the vicinal group is symmetrical w.r.t. its arguments, that is, (m,n) ∈
Nr(i, j) if and only if (i, j) ∈ Nr(m,n). Then the partial derivative (equation 12) is equivalent to

∂L

∂xmnd
=

H∑
i=1

W∑
j=1

∂L

∂yijd

R∑
r=0

αr(i, j)I [(m,n) ∈ Nr(i, j)]

=

H∑
i=1

W∑
j=1

∂L

∂yijd

R∑
r=0

αr(i, j)I [(i, j) ∈ Nr(m,n)]

=

R∑
r=0

H∑
i=1

W∑
j=1

I [(i, j) ∈ Nr(m,n)]
∂L

∂yijd
αr(i, j)

=

R∑
r=0

∑
(i,j)∈Nr(m,n)

∂L

∂yijd
αr(i, j).

Thanks to the symmetry, the computation of partial derivatives is converted into reduction over vicinal
groups, it can be effectively solved by dynamic programming (§3.3) in again O(HWR) time, which
involves instantiating an SAT for the quantity ∂L

∂ỹijcd
αr(i, j) over all positions (i, j). Equipped with

this result, substituting kmnv
>
mn or kmn into xmn yields the term in the nominator and denominator,

respectively.

C ADDITIONAL IMPLEMENTATION DETAILS

We implement our model using PyTorch (Paszke et al., 2019) and PyTorch image models (timm)
toolkit (Wightman, 2019). We also implement a CUDA kernel for the ripple attention mechanism.

C.1 DETERMINISTIC ADAPTIVE FEATURE MAPS FOR LINEARIZED ATTENTION

Background. Generally, a random feature map φω(·) is defined by a function h(·) : RD → R, m
uni-variate functions f1, f2, . . . , fm : R → R as well as d identically distributed random vectors
ω1, ω2, . . . , ωd following some distribution (Choromanski et al., 2020):

φω(x) :=
h(x)√
d

[
f1(ω

>
1 x), . . . , f1(ω

>
d x), . . . , fm(ω>1 x), . . . , fm(ω>d x)

]
yielding a map from RD to RD′

, where D′ = md. Then by setting different configurations of f ’s,
ω’s and h, we could construct various unbiased estimators for the quantity exp(x>y), that is,

exp(x>y) = Eω1,...,ωd

[
φω(x)

>φω(y)
]

For instance, we could let m = 2, where f1 = sin, f2 = cos are trigonometric functions and
h(x) = exp

(
||x||2/2

)
(Peng et al., 2021; Choromanski et al., 2020). Although unbiased, researchers

note that the use of trigonometric functions does not ensure non-negative scores, which may lead to
large estimate variance and unstable training (Choromanski et al., 2020). Alternatively, we could
construct an estimator by setting m = 1 with f1 = exp and h(x) = exp

(
−||x||2/2

)
, which is again

unbiased but enjoys positiveness (FAVOR+, Choromanski et al., 2020).

Our proposed deterministic adaptive feature map. Recently, researchers also proposed various
heuristic designs of feature maps (Choromanski et al., 2020; Schlag et al., 2021; Kasai et al., 2021)
that do not guarantee unbiasedness but might either exhibit lower variance, simplify computation
or bring other useful benefits. Unfortunately, through extensive preliminary experiments we found
most of these linearized attention variants (either random or deterministic) did not work well in the
setting of vision transformers. We hypothesize there are two reasons for the performance drop: the
first one is the usage of random samples, which suffers from the slow Monte Carlo convergence rate
and instability during training; the second one is due to fixed weights, preventing the map from being
adaptive and learning useful patterns. To this end, we propose the following deterministic feature
map:

φ(x) = ReLU(W2[sin(W1x); cos(W1x)] + b2). (13)

16

Under review as a conference paper at ICLR 2022

Feature map Deterministic Top-1 Acc.

RFA (Peng et al., 2021) 7 67.10
Performer (Choromanski et al., 2020) 7 65.92

DPFP (Schlag et al., 2021) 3 63.95*

T2R (Kasai et al., 2021) 3 70.02

Ours 3 70.67
Ours w/ randomly sampled W1 7 66.82

Ours w/o fully connected network 3 70.02†

Table 6: Classification results on ImageNet1k dataset under different choices of feature maps. †

indicates that our feature map design without fully connected network is identical to T2R (Kasai
et al., 2021). * denotes the model does not fully converge.

Intuitively, we still follow the trigonometric feature map, except that we set W1 to be initialized as
independent standard Gaussian samples but then learnable during training; the generated feature is
then passed through a fully connected layer followed by a ReLU activation. It is deterministic and
involves learnable parameters, which we found greatly improves performance.

Comparison with other feature maps and ablation study. We conduct a simple ablation study to
demonstrate the effectiveness of our proposed feature map and report comparisons with other feature
maps11, as shown in Table 6. In general, we find it works pretty well in practice and outperforms other
feature maps that are either deterministic or random. For our ablation study, we consider two variants
of our proposed approach: (1) the method that recovers the original random trigonometric feature
map, that is, recasting W1 as random samples and re-drawing it at every iteration; (2) the method that
removes the fully connected layer (characterized by parameters W2 and b2). From Table 6, we see a
great performance drop if we use random weights, which indicates that random feature maps lead to
more difficult training in vision transformers. In addition, a feed-forward layer will give a further
performance boost due to the increased flexibility. Therefore, we adopt our proposed deterministic
feature map throughout our work.

C.2 EXPLICITLY CONTROLLING THE MAXIMUM RIPPLING DISTANCE.

In §3.2 we define the threshold τ to control the termination of rippling process. In practice we find it
beneficial to introduce a hard constraint Rmax such that the model limits the maximum distance of
rippling propagation to Rmax and then merges all the remaining groups. In this way, we could not
only further reduce the computation overhead, but also encourage the attention mechanism to allocate
more weights to distal groups. This can be seen as a stronger version of halting threshold τ , which is
easier to tune due to a more intuitive effect on the rippling process. We find an intermediate value
gives a reasonable trade-off between local and long-term dependencies. Given Rmax, our model is
robust to the change of τ ; therefore, we only set τ to 0.001 by default and mainly conduct ablation
studies on Rmax.

C.3 THE PARAMETERIZATION OF SPATIAL WEIGHTS

In terms of parameterizing spatial weights, we allocate an embedding vector for every of Rmax
stick units, so that they could adapt themselves to learn useful patterns from data. To compute
spatial weights, we first linearly project each value vector vij and then perform dot-product with
each of Rmax stick unit embeddings12 to produce Rmax logits {or(i, j)}Rmax

r=1 . Every logit is then
passed through a modified sigmoid function to yield the length of each stick unit sr(i, j) =

11For methods that adopt random features, we sample a set of random weights at every training step and use
the same set of weights during evaluation. We also attempted various ways to schedule the redrawing random
weights during training, but did not observe any performance gain.

12Since stick-breaking transformations ensure the produced weights to be inside a simplex, Rmax logits would
suffice to produce a sequence of spatial weights with size Rmax + 1.

17

Under review as a conference paper at ICLR 2022

1/ [1 + (Rmax − r) exp (−or(i, j))]. This modification, which is inspired by the default stick-
breaking transform implementation in PyTorch distribution package (Paszke et al., 2019), ensures
the model does not put most of mass on the first several sticks. We find this trick slightly improves
performance. Consequently, spatial weights {αr(i, j)}Rmax

r=0 are derived by applying stick-breaking
transformations to sr(i, j)’s according to equation 5.

C.4 ARCHITECTURE DETAILS

For image classification, all model architectures follow the tiny variant of DEIT (Touvron et al.,
2020), consists of 12 transformer layers, with the embedding dimension set to 192, except that we
set the number of heads per attention block to 6 for all models. For object detection, our model
is based on the architecture of SMCA with single scale features (Gao et al., 2021), which could
facilitate comparisons and demonstrate the effectiveness of ripple attention more clearly. In particular,
the number of transformer layers is 6 for both the encoder and decoder, with the number attention
heads and the embedding dimension set to 8 and 256, respectively; the backbone is the pre-trained
ResNet-50 (He et al., 2016) on ImageNet1k with fixed batch-norm layers.

C.5 SPECIFICS FOR APPLYING RIPPLE ATTENTION IN VISION TRANSFORMERS

Average pooling instead of using class tokens for classification. Since ripple attention directly
operates on 2D images, it is hard to directly employ the widely used class token for classification
tasks (Dosovitskiy et al., 2020; Touvron et al., 2020). Instead, we adopt mean average pooling over
all tokens instead of class tokens to extract feature vectors that are fed into the classification head.

Multi-head ripple attention. Similar to multi-head attention (Vaswani et al., 2017), which is used
in most Vision transformer architectures, we also adopt a multi-head variant of ripple attention, where
different heads maintain different sets of spatial weights. The multi-head ripple attention allows
different heads to focus on locality to various degrees, increasing the overall expressiveness.

On the number of ripple layers. A straightforward implementation choice is to replace regular
attention at all layers of ViT with ripple attention. However, we argue this is sub-optimal. Since the
input tokens of transformers consist of local patches, promoting local correlations at lower layers
and maintaining structural spatial contexts could facilitate information aggregation; but as tokens
go higher, every token is contextualized by global information and in this case adding the notion of
locality might mislead the modeling. Therefore, we propose to use a hybrid architecture, where the
lower layers use ripple attention while upper ones still adopt linear attention mechanisms. This choice
is further supported by our ablation study experiments Appendix D.1, where our model achieves
the best performance over various settings if only the first 9 transformer layers use ripple attention.
Therefore, throughout experiments we use this configuration unless otherwise stated.

C.6 TRAINING SETUP

In this section, we describe our full training setup for both image classification and object detection.

Training details for image classification We following the same procedure to train the models
as in DEIT (Touvron et al., 2020), including the data-augmentation, the regularization and the
hyper-parameter setting for a head-to-head comparison. We use AdamW optimizer (Loshchilov &
Hutter, 2019) to train our model on 8 NVIDIA V100 GPUs for 300 epochs on both CIFAR-100
and ImageNet1k datasets. We adopt commonly used data augmentation methods, including
random clipping, cropping, Rand-Augment (Cubuk et al., 2020) and random erasing (Zhong et al.,
2020). However, we remove repeated augmentation (Hoffer et al., 2020) as we find it slows down
convergence for both linearized attention and ripple attention, as also observed in previous studies
(Berman et al., 2019; Xiao et al., 2021). For regularization, we employ stochastic depth (Huang et al.,
2016), Mixup (Zhang et al., 2017), Cutmix (Yun et al., 2019), all of which are set to default settings
in DeiT (Touvron et al., 2020). Training protocols that are specific to different datasets are listed as
follows:

18

Under review as a conference paper at ICLR 2022

ripple layers speed Top-1 Acc. Top-5 Acc.

0 2664 70.67 90.16
3 1355 71.63 90.42
6 916 72.41 90.32
9 792 73.02 91.56

12 563 72.69 91.30

Table 7: Classification results on ImageNet1k dataset under different numbers of rippling layers
for RIPPLE. The speed is measured by the number of images processed per second with a batch size
of 64 on a single NVIDIA V100 GPU machine, averaged by 5 runs.

• For ImageNet1k dataset we set the batch size to 1024 and the learning rate to 0.001 with cosine
learning rate decay (Loshchilov & Hutter, 2016). The image size is set to 224× 224 with patch
size 16, resulting in 14× 14 tokens.

• for CIFAR-100 dataset, the batch size and the learning rate is set to 512 and 0.0005 respectively,
with the same cosine learning rate decay. In terms of the image size, we use the original scale
32× 32, where a patch size 2 is used to produce 16× 16 non-overlapping patches.

During evaluation, we report top-1 and top-5 accuracy on the evaluation set of both ImageNet1k
and CIFAR-100 datasets.

Training details for object detection We follow the same training protocol as SMCA (Gao et al.,
2021). In particular, we initialize the transformer parameters with Xavier initialization (Glorot &
Bengio, 2010), and use the pretrained weights on ImageNet1k for the backbone. We adopt the
AdamW optimizer (Loshchilov & Hutter, 2019), set the weight decay to 10−4 and the learning rate
to 10−5 and 10−4 for the backbone and transformer, respectively. We also decrease the learning rate
to 1/10 of its original value after 40 epochs for 50 epoch schedule and after 80 epochs for 108 epoch
training schedule. The dropout rate is set to 0.1. The data augmentation scheme and the loss objective
is also the same as SMCA (Gao et al., 2021). All detection models are trained on 8 NVIDIA V100
GPUs with a total batch size of 16.

D ADDITIONAL EXPERIMENT RESULTS

D.1 ON THE EFFECT OF VARIOUS RIPPLE LAYERS

As mentioned in §4.1, directly replacing all attention layers in DEIT-LA with RIPPLE could be a
sub-optimal choice. To validate this, we conduct an ablation study on ImageNet1k dataset to
investigate the effect of different numbers of ripple layers, where the first several layers use ripple
attention while upper ones still adopt linearized attention mechanism. The results are shown in
Table 7. In particular, we find the model performance consistently improves as the number of ripple
layers increases, but drops a little when the depth of ripple layers reaches a certain level (e.g., 9). Our
observation aligns with our intuition, which suggests using hybrid attention layers could achieve a
good trade-off between locality promotion and global dependency modeling. Therefore, RIPPLE uses
9 ripple layers by default throughout our experiments unless otherwise stated.

D.2 ON THE EFFECT OF DIFFERENT PARAMETERIZATION SCHEMES FOR SPATIAL WEIGHTS

Ripple attention is a flexible framework in that it allows the trade-off between the running time
complexity and task accuracy. To explore this, we compare the full ripple attention against a rippling
process where ripples get exponentially thicker so that the process could reach the image boundary
in logarithmic time. This model, which we refer to as RIPPLE-LOGARITHMIC, enjoys O(T log T)
time complexity and is more efficient than base ripple attention. To see this, we plot the empirical
running statistics of RIPPLE-LOGARITHMIC under different numbers of tokens. For completeness,
we also include a variant where Rmax scales linearly with the image height (or width), denoted by
RIPPLE-DENSE. As shown in Figure 3, we observe RIPPLE-LOGARITHMIC runs as fast as base ripple
(whose Rmax is fixed) and becomes more efficient than the dense version as the number of tokens

19

Under review as a conference paper at ICLR 2022

12 162 322 482 642 802 962 1122 1282

Number of Tokens

0

250

500

750

1000

1250

1500

1750

R
un

ni
ng

 T
im

e
(m

s)

Ripple (DP)
Ripple (Naive)
Ripple (Dense)
Ripple (Logarithmic)
DEIT-LA
DEIT

12 162 322 482 642 802 962 1122 1282

Number of Tokens

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
em

or
y

(G
B

)

Ripple (DP)
Ripple (Naive)
Ripple (Dense)
Ripple (Logarithmic)
DEIT-LA
DEIT

Figure 3: Empirical running time (left) and memory consumption (right) under different numbers of
tokens, averaged by 5 runs.

increases. On the other hand, all of these models run with the same amount of memory consumption,
as their space complexity is constant in the rippling distance. In terms of task performance, as
reported in Table 8, we see a clear performance drop if we adopt RIPPLE-LOGARITHMIC, which could
be due to that RIPPLE-LOGARITHMIC processes visual tokens at a coarser-grained level. This again
justifies the flexibility of our framework: one could trade off the task accuracy for more efficiency
and vice versa.

D.3 ON THE TRAINING DYNAMIC OF SPATIAL WEIGHTS

Recall that in §5.1 we compare RIPPLE against a baseline with fixed exponentially decayed spatial
weights (denoted by FIXED-RIPPLE), which appears to be a trivial solution for incorporating the
locality. However, it does not respect potentially strong long-term dependencies and only assign
diminishing weights to distal groups. To further investigate how spatial weights generated from
our proposed stick-breaking transform (SBT;§3.2) differ from FIXED-RIPPLE, we plot the training
dynamic of the average13 Jensen-Shannon divergence (JSD) between distributions induced by SBT
and FIXED-RIPPLE, which is shown in Figure 4. Intuitively, a higher JSD value reflects a large
discrepancy between their induced distributions. Since the logits in SBT are usually initialized around
0, the spatial weights are close to the exponential weights at first; however, as soon as the training
starts, the JSD value rises sharply, which is possibly due to balancing between global and local
information; after that, the curve decreases slightly, indicating that the mechanism might tend to favor
local correlations; finally it plateaus at a high JSD value, which indicates that the induced distribution
does not simply degenerate to a fixed distribution nor to a vanilla linearized attention (with uniform
weights).

0 50 100 150 200 250 300

Epochs

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Av
er

ag
e

JS
D

Figure 4: Training dynamic of average JSD between
induced distributions of the proposed stick-breaking
transform and fixed exponentially decayed weights. The
solid line denotes the training dynamic of JSD between
SBT and FIXED-RIPPLE, while the dashed line denotes
the JSD between the uniform distribution (as in vanilla
linearized attention) and FIXED-RIPPLE.

Scheme Top-1 Acc. Top-5 Acc.

Logarithmic 73.26 91.98
Dense 74.43 92.37

Table 8: Classification results on
CIFAR-100 dataset under differ-
ent parameterization schemes of
spatial weights.

13We average the computed JSD score over all training samples, for each of which we further average over all
attention blocks and heads.

20

Under review as a conference paper at ICLR 2022

E SETUP FOR EMPIRICAL RUNNING TIME AND MEMORY CONSUMPTION.

For the simulation experiment conducted in §5.2, we use the same vision transformer architecture for
all models, whose hyper-parameter setting is specified in Appendix C.4, except that we set embedding
dimension to 96 and batch size to 4; otherwise, most configurations tested here will make it infeasible
for DEIT and RIPPLE (Naïve) to fit into the 32GB memory of a single NVIDIA V100 GPU machine.

21

	Introduction
	Preliminary
	Attention Mechanism
	Linearized Attention

	Model
	Ripple Attention
	Spatial Weights
	Dynamic Programming

	Experiments
	Experimental Setup
	Main results

	Analysis
	Inspecting the rippling process
	Empirical running time and memory consumption

	Related work
	Conclusion
	Analysis of runtime complexity
	Efficient gradient computation in ripple attention
	Additional implementation details
	Deterministic adaptive feature maps for linearized attention
	Explicitly controlling the maximum rippling distance.
	The parameterization of spatial weights
	Architecture details
	Specifics for applying ripple attention in vision transformers
	Training setup

	Additional experiment results
	On the effect of various ripple layers
	On the effect of different parameterization schemes for spatial weights
	On the training dynamic of spatial weights

	Setup for empirical running time and memory consumption.

