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ABSTRACT

In the absence of large quantities of annotated data, few shot learning is used to train neural
networks that make predictions based on similarities between datapoints. To better under-
stand how models would behave when presented with unfamiliar data, research on gen-
eralization bounds have revealed some important properties about deep neural networks.
However, when extended to the domain of few shot learning it often yields loose bounds
since it does not take into the account the nature and methodology of few shot learning.
We propose a novel stochastic generalization bound for prototypical neural networks by
constructing a Wasserstein sphere centered around the distribution of weight matrices. We
show that by applying concentration inequalities on the distribution of weight matrices in
the Wasserstein sphere stricter generalization bounds can be obtained. Comparison with
previous generalization bounds shows the efficacy of our approach and to our knowledge
this is the first bound that makes use of Wasserstein distance to give a measure of general-
izability of deep neural networks.

1 INTRODUCTION

The problem of finding sharp generalization bounds for deep neural networks is of prominent importance
as it allows us to bound the overall uncertainty involved in their application. In recent times the theoretical
properties of these bounds have received increased attention and has been an active subject of investigation.
Various classical results exploring the r expressivity of neural networks have acknowledged their univer-
sality [Leshno et al.| (1993)) and their unexpected advantage over-hand crafted features [Barron| (1993)) even
though training of neural networks itself is a hard problem |[Blum & Rivest (1992). Other studies have also
revealed that deep neural networks may have structural properties that enable them to perform non-convex
optimization (Choromanska et al.| (2015)); [Kawaguchi| (2016) further alluding to the fact that given enough
data these models can learn any function [Cybenko|(1989). However, simply possessing such desirable prop-
erties does not guarantee that the models will perform accurately on future unknown inputs, this is because
without proper restrictions on the optimization the models become prone to over-fitting and to effectively
address this challenge leads us to study the generalization of these models. However, though there exits a
great body of research pertaining the generalization of classification models relatively little is studied about
generalization properties of meta learning models [Vanschoren| (2019), specifically Few-shot learning (FSL)
Wang et al.| (2020).

In this paper we study the generalization of FSL specifically that of Prototypical Networks Snell et al.
(2017). By leveraging stochastic bounds from classic PAC learning theory [Vapnik et al.|(1994) we derive
a Wasserstein bound on the probability of the absolute difference between the true and the empirical error
deviating from a established threshold. Some of the most sharp generalization bounds are obtained using the
PAC-Bayesian Framework [McAllester|(1998;1999) and in this work we make use of it to derive a stochastic
bound for FSL involving Prototypical networks. However, the standard PAC-Bayesian framework relies
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on the KL divergence between some prior distribution of set of classifiers and data distribution, our work
leverages the Wasserstein metric |Vallender| (1974) to obtain a better bound. The unique nature of FSL is in
stark contrast to traditional task of classification and when combining them with the methodology used in
classification of prototypical networks we are able to obtain a tight stochastic bound.

Also prior works assume homogeneous nature of data samples while obtaining the bound , we however do
not impose any such restriction while studying it and also our final bound involves the deviation of final
distribution from the initial distribution in wasserstein metric.

2  RELATED WORK

Various classical theory work attributes generalization ability to understanding the class-capacity Vapnik
(1999); Mohri et al.| (2018). Recent work in deep hypothesis spaces |[Pascanu et al.| (2013)); Montufar et al.
(2014); Livni et al.| (2014)); Telgarsky| (2016) also revealed deep neural networks can perform convex opti-
mization thereby being to generalize over a vast set of datapoints. [Harvey et al.| (2017) generalization error
bound showed that the VC dimension of neural network depends on the product of it depth and parameters
considerably improving the previous bounds given by Bartlett et al.| (1998). Feed forward neural networks
were revealed to have unit-wise ¢; norm generalization bound with exponential dependence on depth. A
sharpness based measure was suggested by |[Keskar et al. (2016) to predict the difference in generaliza-
tion behaviours of networks trained with different batch size SGD. More recent PAC-Bayesian approaches
Neyshabur et al.|(2017)); Nagarajan & Kolter|(2019) also gave very sharp bounds utilizing spectral and Frobe-
nius norm of weight matrices. In the domain of few shot learning|Cao et al.|(2019) provided a framework to
obtain the optimal & shot for prototypical networks.

3 BACKGROUND

3.1 PROBLEM SETUP

Consider N distinct classes being sampled i.i.d. from the set of all possible classes C for an N-way clas-
sification problem. For each class ¢; € {c1,co,...,cn} k datapoints are sampled i.i.d. from the class
conditional distribution p(z|Y (z) = ¢;), where z € RP, Y () is the class assignment of = and D is the
dimension of the data.

The k datapoints constitute the support set of the class ¢; : S; = {z1,... 2} where Y (z;) = c;and z; € S;
for all ¢; € C. Given a datapoint (z;,y;), where y; € {c1,¢2,...,cy}and z; ¢ {S1,..., Sk}, the few shot

classification task is to predict the correct assignment label y; using S = Uf;l Si.

3.2 PROTOTYPICAL NETWORKS

Prototypical Networks |Snell et al.|(2017) are trained to learn the low dimensional representation of data i.e.,
they learn a function ¢ : R” — R™, where M is the dimension of the representation space. The prototype
representation of each class ¢(S;) is generating by taking the average of the representations of its support
set:

H(S) =1 3 ola) 1)

z€S;
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Classification of input z is obtained by taking the softmax of the distance between the input embedding and

the prototype representation of each class:

) exp (—d (¢ (z),d (S

poly = i, §) = SR (CAB @), 6(51))
>im1exp (=d (¢ (), 9(5:)))

where d is a distance function : RM x RM — [0, +00).

@

Most applications including our approach use the euclidean distance as the distance function. Learning
involves minimizing the negative log probability J(¢) = —log ps(y = j|x) using SGD and the function ¢
is generally a deep neural network.

3.3 WASSERSTEIN BALL AND TOTAL VARIATION
3.4 WASSERSTEIN BALL

Given the space of all probability distributions 7 with compact support set, the p* Wasserstein metric on
the space P is defined as:

Wy (v, ) = (inf E[d(X,Y)"])!/? ©)

where X and Y are random variables with marginals ;4 and v and infimum is taken over all possible joint
distributions of X and Y. For our analysis we focus on the first order Wasserstein distance by taking the
distance measure d as the Manhattan distance:

W(v, ) = (inf E[I(X,¥)]1]) 0

The rationale for using Wasserstein distance is that it gives a metric to measure the minimum difference be-
tween two distributions which we use to obtain a sharper generalization bound. Consequently, a wasserstein
ball of radius R centered around  is defined as:

Wu(R)={veP|W(p <R} 5)

3.5 TOTAL VARIATION
The total variation distance between two distributions v and p is given by
(v, p) = sup [v(A) — u(A)| ©)
AeP

Intuitively, this is the largest possible difference between the probabilities that the two probability distribu-
tions can assign to the same event. In some cases we can also have the below relation

1
5(v,u)=§|lv—u|l1 @)

This is similar to Wasserstein distance in many aspects , The total variation distance (or half the norm) arises
as the optimal transportation cost, when the cost function is ¢(x,y) = 1,2yc(x,y) = 152, that s,

1
Sl = plly = 06w, p) = mEP(v # p) = inf Ex[1,,] ®)

It however differs in taking distributions directly rather than their supports , which makes it less desirable
than wasserstein distance for our case. We use it mainly to compare the wasseserstein diatnce with the K — L
divergence , which otherwise cannot be compared mathematically with wasserstein metric.
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4  WASSERSTEIN BOUND

Prototypical networks make predictions are based on the nearest neighbour from the support set S and the
embedding function ¢. Thus, to formulate the relationship between the complexity of the classifier and the
support set we make us of the classical PAC learning theory [Vapnik et al.[(1994)). Consider the simple binary
classification problem where the probability of the difference between true and empirical error is bounded
by:

P(He’r’rtrue(h) - eTTtrain(h)”l S 5) Z 1-946 (9)

where h is the classifier, erry,,. is true error, erry,qy is the empirical training error obtained on the support
set S, 0 < 6 < 1and ¢ is defined as:

s D(ln%-l—l)—i—ln%
= o (10)

where D is the VC Dimension. [, metric is conventionally used to measure the deviation but metrics which
do not over estimate are crucial for the accurate prediction of the error difference. A sharper bound which is
symmetric about the distributions is extremely necessary for studying generalization in Few shot learning.

Lilshowed that effective prediction by neural networks is generally the result of the final layers of the network
where the embeddings are split apart to facilitate effective linear classification. However, the embeddings
learnt by the networks before the final layer can be very compact in some high dimensional vector space.
Consider two distributions v and y from this compact embeddings, the KL divergence of these two distribu-

tions is given by:
KL(v||p) Z/mu(@ In (:g;) (11)

If the context of few shot learning the embeddings ¢(S;) may be close enough enough such that their class
conditional distributions are very similar, i.e.

KL(v||u) = lim KL(v||n)
v—rp

s [ (355)

By monotone convergence theorem, for finite measures equation (12)) can be written as:

KL(v||p) :/ lim p(z)In (”(”3)> =0 (13)

2V p()

As we could see from Equation (I3)) the KL divergence could be pretty inaccurate in capturing the distance
between the class conditional distributions tends to 0 which would be further exacerbated by the log factor
present in its formulation. The Wasserstein metric is preferable in this regard to Kullback—Leibler (KL)
divergence as it over comes this problem of magnitude reduction by projecting it into higher dimensional
product measure space and effectively capturing it|Otto & Villani|(2000):

Wiy, p) = inf / d(z,y)?dn(z,y) (14)
m€[1w.n) Jvx M

where [[(v, ) denotes the set of probability measures on M x M where M is some finite dimensional vector
space. More specifically, for any two distributions v and u by Equation and (T4) we have the following
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inequalities demonstrating the sharpness of the Wasserstein metric in comparison to KL-divergence in the

limiting cases:
1
idTV(V7/’[’) < V KL(Vvl’[’) (15)

W(V7 :U’) < O(dTV(Vv M)) (16)

From Equations and we can conclude that W (v, u) < /K L(v, ). Therefore, the usage of a was
a Wasserstein distance is more appropriate in the present context of few shot generalization.

Lemma 1. Given a prototypical network ¢¢ with a N-way k-shot classification task, a query sample x4 €
RP with support set S , R is the radius of this support set and if R; is the radius of the Wasserstein ball for
class c; centered around ¢(S;) , for Z; = ¢(xq) — ¢(S;) , we define v(Z;) = ||E(Z;.Z}]|, then v(Z;) can
be simplified as

v(Z) = 2(1+%)(R+Ri) 17

Proof. First, from the definition of v(Z), by taking conditional probabilities into account we get v(Z) =
Ex.s, , since 7, € RP hence ¢(x) = ¢(z) into two parts and examine them separately:

v(Zi) = Ex.s, = E[(¢(x) — ¢(5:)).(6(x) — 6(5:))] (18)
In general, from probability theory we have for random vector X, the expectation of the quadratic is
E[||X||?] = Tr(Var(X)) + E[X]TE[X]. Hence,

v(Zi) = Elllg(z) — ¢(S:)]’]
— TH(S, ) gr5) + El6(x) — (SO Elé(x) — 9(S,);
where the first term inside the trace can be expanded as:
2 o) a5y = Varlo(z) — 6(Si)]
=E[(¢(z) — ¢(5:))(¢(x) — 6(8:))"] = (ka — b6)(Ka — p6)"

1
=S¢ + papl + 73+ Bty — Batty — Mokte — (o — ) (o — )T (20)

19)

1
=1+ E)EC (Last terms cancel out).

by linearity of trace we can obtain the following equation from equation(20)

1
Trace(X,,) z&y) = (1+ %)Trace(Zc) 21)
We note that Var(X) = E[XX7] — E[X]E[X]” and £, £ Var(¢(z) + ¢(S;)). Hence, equation (20) is
obtained by expanding out the first term and taking the expectation of each resulting item. The second term
of Equation (T9) is rewritten for notational convenience as :

Ex.sll|é(x) — 6(Si)|[*] = pa — . (22)
Putting them together:
1
i = (1 DITe(Se) + (1o = 6)" (1o = 110) (23)
O
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Similarly for E[¢(z) — ¢(S;)]*E[é(z) — ¢(S;)] we have :
El¢(z) — ¢(S)]"E[p(z) — ¢(Si)] = Ex,sll|é(x) — 6(S))||’]
=Ti(2,,)_g57) T El6(@) — o(S)]"E[g(x) — 6(5:)] (24)

=1+ %)Tr(Ec).

Putting together equation21] and equation24}

s = (14 2)Tr(Se) + (ha — 1) (bt — p1)" + (14 S)Te(S)
k k (25)

= (pa — )" (ppa — ) +2.(1 + %)Tr(zc).

we note that p? 'y, and pl py, are quadratic forms while p? 1y, describe the dot product between two inde-
pendent randomly drawn samples which has expectation 0 , as we assume all the random variables involved
are centered around 0. By the iid assumption on the random variables , off-diagonal terms of the 3. are zero
, hence trace is just the variance of the random vector .

Variance is however the largest possible deviation in the distributed space hence by the assumptions made in
the lemma we can write the final expression as 2(1 + +)(R + R;)

For proof of Lemmal(I] we first re-state the result on quadratic forms of normally distributed random vectors
by Rencher & Schaalje| (2008)).

Theorem 2. Given a prototypical network ¢g with a N-way k-shot classification task, a query sample
z, € RP with support set S, comes from a sphere of radius R, then the probability the model correctly
predicts the class assignment bounded by:

(3 (60w ll2 — R)’
p( 2 <3.2.<1+,1><R+Ri>—L<|¢e<xq>|Q—R»?))] 20

where R; is the radius of the Wasserstein ball centered around ¢(S;) measured in wasserstein metric and
includes class c; ,i.e ¢; € Wys,)(Ri)and L = max(Ry,...,Ry), Y(zq) = j

N
po(y = jlzg,S) < [[ 1-(1+D)
i=1

Proof. The Wasserstein ball for each class ¢; is given by equation (3):

Wesi)(Ri) = {v € P, | W(u,v) < R;} 27)

where P, is the class conditional distribution. For the prototypical network ¢ to correctly predict Y (x,)
the representational embedding of =, must be closer to ¢(.S;), i.e. ¢(x,) should be closer to the center of
the Wasserstein ball W (s;) than any other Wy, s,) for all m € {1,...,N}and j # m:

p¢(y :j|xq’8) 2p¢(y: m|$q78) (28)

For the network to generalize to previously unseen query samples equation (28) should hold true. Therefore:

exp (—d (¢ (x), ¢ (5;))) = exp (—=d (¢ (x), ¢ (Sm))) (29)

Since the classification depends only on the distance between the representational embeddings, Equation
(29) can we rewritten as:
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P(llo(s) = o(S)ll = llo(a) = 6(S,)1l) (30)
forp=1,2,..N
As ¢(x), S1,..., Sy are random we will consider expected value rather than the exact random value , now
we get
P(llo(z) — E¢(S))]) = P(llg(z) — E¢(Sp)lI) 3D

Now, the probability that z, is correctly classified by the model is given by:

Py = jlzg,S) = P(llo(x) — ¢(5))I| > [[¢(x) — o(S1)I],
llo(z) = @(S5)I > [[o(x) — o(Sa)ll,

(32)
llg(z) = @(S5)I > [lo(x) — d(Sn)II)

Next we note that that the sampling was i.i.d so we can split the RHS of Equation (32)) into product of several
probabilities:

=3
Ny
I
i
)
s
<)
|
=
=
&
|

: (33)
P(llp(x) = o(SiII = [l¢(z) — ¢(Sn)II)

Applying Bernstein’s inequality to the i*" probability in the product of probabilities in Equation 33|i.e., on
P(||¢(x) — ¢(S5)]] > ||o(x) — ¢#(S;)||) we get the following bound:

P(ll¢(x) = (S = llp(x) — o(Si)l]) <

exp<3< (6oLl — B ))
2\ 30(2) — L (||¢o(zq)ll2 — Ri)*

where v(Z) = E[¢(x) — ¢(S;)(¢(x) — ¢(S;)*] and Lis a quantity which bounds all the random embeddings
of the classes in embedding space , (i.e) L > ||¢(S;)||, we hence choose L = max(Ry, ..., Ry), as all the
embeddings lie in the sphere of radius R; this quantity bounds all of them. Also , by triangle inequality we

have
L > |[¢(S:) — ¢(Si)l| = [lo(S)l| — [lo(Si)l| (35)

After applying the basic assumptions that query sample is uncorrelated with the support sets S; , we can now
use lemma(T) to further simplify this to

1-(1+D) G

1
v(Z) = 32.(1+ L)(R+R)) (36)
Now by using equation(33)) and equation(36)we can rewrite Equation (34) as:
P(llp(z) — o(S;1l = lIg(x) — ¢(S1ll)) <

exp (3 < (g0 (zg)ll2 — R’ ))] (37
2 \3.2.(1+ 3)(R+ Ri) — L(||¢o(xy)|l2 — R)?

1-(1+ D)




Under review as a conference paper at ICLR 2023

now in similar way applying this for all probabilities in Equation [32] factors we get the final expression of

Equation (38).
o (3 < (léog)lls ~ R ))] a8)
2\32.(1+ £)(R+ R;) — L(||¢o(zq)|]2 — Rs)

O

N
po(y = jlwg,S) < [ 1-(1+D)
i=1

5 EXPERIMENTS

In this section, we present our result illustrating the advantage of our bound on following datasets: Omniglot
Lake et al.| (2015)), minilmageNet |Vinyals et al.[(2016) and fieredImageNet Ren et al.|(2018). In table @
all experiments are performed on a 4 layer neural network, similar to that used by |Snell et al.| and 7 layer
residual neural network [He et al.| (2016). For the purpose of clarity the specific architecture of the neural
networks and the preprocessing of the data is the same as that used by [Cao et al.| (2019). Relatively simple
models are used to highlight the behaviour of our stochastic bound given different network architecture
and difference in testing shots k € {1,--- ,5}. PCA Protonet |Cao et al.| (2019) uses principal component
analysis to consider only the resulting leading d = 60 dimensions as inputs while zeroing out the rest and the
Mixed Protonet is a standard prototypical network trained with a randomized number of shots in the range
[1,5].

We demonstrate the error classification percentage (i.e) 100*p where p is the probability of error classifica-
tion , we can see that the error classification percentage only increases with the number of shots increasing
, both in the training and in the testing phase.6.(1 + 1 )(R + R;) — L (||¢o(z4)]|2 — R;)? is inversely pro-
portional to % for a fixed embedding and a query sample, hence it increases with the number of shots , also
the Mixed - shot classification percentage id higher due to the heterogeneous nature of the data, and means
more information regarding the distribution of the data.

MODEL CONFIGURATION: Vanilla ProtoNet is used as our baseline . We present the performance of
multiple ProtoNets trained with different shots to illustrate the performance degradation issue. ProtoNet-
PCA uses principal components of the training split embeddings , with components other than the D leading
ones zeroed out. We carry out a parameter sweep on minilmageNet and set d = 60; the same value is used
on the other two data sets. For selecting the training shot of the embedding network, we find that overall
performance to be optimal using k = 5. we set R = 0.001 N = 85 and randomly choose R; from a sphere of
radius 1 and D = 60 based on performance on minilmageNet

We observe that matching the training shot to the test shot generally provides the best performance for
vanilla ProtoNets. Also importantly, training with a mixture of different values of k does not provide optimal
performance when evaluated on the same mixture of k values. Instead, the resulting performance is mediocre
in all test shots.We obtain the PCA of the embedded data by eigendecomposing the covariance matrix of
embeddings, we obtain the principal components expressed as the significant eigenvalues, and the principal
directions expressed as the eigenvectors corresponding to those eigenvalues. The number of significant
eigenvalues approximates the intrinsic dimension of the embedding space. When the subspace is linear, this
approximation is exact; otherwise, it serves as an upper bound to the true intrinsic dimension |Fukunaga &
Olsen| (1971)

6 CONCLUSION AND FUTURE WORK

In this paper we provide a novel bound on the generalization error on the N way k shot classification task
using prototypical networks, which is crucial in the sense that existing works hold for large samples of
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TRAINING TESTING SHOTS TRAINING TESTING SHOTS
MODEL SHOTS 1 5 MODEL SHOTS 1 5 10
PROTONET 1 94.07 95.54 PROTONET 1 94.46 99.07 98.35
PROTONET 5 97.36 96.38 PROTONET 5 96.02 98.99 98.19
MIXED SHOT 1-5 98.65 97.56 MIXED SHOT 1-5 96.53 99.15 98.43
PCA PROTONET 1 94.94 98.85 PCA PROTONET 1 98.45 96.54 96.12
(a) Omiglot-20-way, with 4 layer CNN. (b) Omiglot-20-way, with 7 layer ResNet.

TRAINING TESTING SHOTS TRAINING TESTING SHOTS
MODEL SHOTS 1 5 10 MODEL SHOTS 1 5 10
PROTONET 1 44.75 64.7 68.90 PROTONET 1 52.65 68.27 72.29
PROTONET 5 4896 68.23 72.23 PROTONET 5 474  69.63 74.45
MIXED SHOT 1-5 49.36 68.96 72.89 MIXED SHOT 1-5 422  68.23 74.54
PCA PROTONET 1 48.36 68.83 65.54 PCA PROTONET 1 51.93 69.98 74.8

(c) minilmageNet-5-way, with 4 layer CNN.

(d) minilmageNet-5-way, with 7 layer ResNet.

TRAINING TESTING SHOTS TRAINING TESTING SHOTS
MODEL SHOTS 1 5 10 MODEL SHOTS 1 5 10
PROTONET 1 42.37 62.37 67.98 PROTONET 1 44.64 68.54 72.34
PROTONET 5 43.65 63.76 70.45 PROTONET 5 48.65 70.54 76.42
MIXED SHOT 1-5 47.78 69.84 75.36 MIXED SHOT 1-5 55.21 65.98 73.83
PCA PROTONET 1 45.65 60.36 72.54 PCA PROTONET 1 51.33 68.88 72.17

(e) tieredlmageNet-5-way, with 4 layer CNN.

(f) tieredlmageNet-5-way, with 7 layer ResNet.

Table 1: Error Classification percentage for various Prototypical variants.

Testing Shots
Model Training Shots 1 2 3 4 5 Average Accuracy H
Vanilla Proto-Net 1 96.46% 98.39% 98.82% 99.01% 99.07% 98.35 + 0.05%
Vanilla Proto-Net 2 95.85% 98.32% 98.80% 98.35% 99.07% 98.2 £ 0.05%
Vanilla Proto-Net 3 95.35% 98.16% 98.23% 98.36% 99.45% 98.02 £+ 0.05%
Vanilla Proto-Net 4 95.34% 98.99% 96.75% 98.72%  97.49% 98.22 + 0.05%
Vanilla Proto-Net 5 96.97% 98.54% 97.69% 98.76% 97.54% 97.75 £+ 0.05%
PCA-Prot-Net 1-5 96.53% 98.73% 98.63% 99.06% 99.15% 98.43+0.06%
PCA-Proto-Net 1 96.02% 98.22% 98.76% 98.84% 99.03% 98.19 + 0.05%

Table 2: Error Classification percentage on Omniglot-20-way, with 7 layer ResNet embedding network.

data and hence cannot be applied to k shot learning , where data samples are limited . We also integrate
the prototypical architecture of the network in obtaining the error probability of the task classification hence
making it much more accurate for few shot learning. We do not assume homogeneous distribution of samples
while classification , making it more relevant to practical applications.Sharpness and accuracy of our bound
is also demonstrated on various data sets in the experimental section.

Future work includes obtaining a framework to analyze best possible architecture for k -shot learning specific
to the data sets wherein presently , we study classification pertaining to a given architecture , however trying
to obtain the best possible architecture mathematically which is better in generalization perspective would
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be much more relevant and also efficient way of learning inner working of K shot learning. We would like
to work in this direction.
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