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ABSTRACT

Pre-trained language models (PLMs) have demonstrated a remarkable ability to
encode factual knowledge. However, the mechanisms underlying how this knowl-
edge is stored and retrieved remain poorly understood, with important implica-
tions for AI interpretability and safety. In this paper, we disentangle the multi-
faceted nature of knowledge: successfully completing a knowledge retrieval task
(e.g., “The capital of France is ”) involves mastering underlying concepts (e.g.,
France, Paris), relationships between these concepts (e.g., capital of ), the struc-
ture of prompts, including the language of the query. We propose to disentangle
these distinct aspects of knowledge and apply this typology to offer a critical view
of neuron-level knowledge attribution techniques. For concreteness, we focus on
Dai et al.’s (2022) Knowledge Neurons (KNs) across multiple PLMs, testing 10
natural languages and unnatural languages (e.g. Autoprompt). Our key contribu-
tions are twofold: (i) we show that KNs come in different flavors, some indeed
encoding entity level concepts, some having a much less transparent, more poly-
semantic role , and (ii) we uncover an unprecedented overlap in KNs across up to
all of the 10 languages we tested, pointing to the existence of a partially unified,
language-agnostic retrieval system. To do so, we introduce and release the Multi-
ParaRel dataset, an extension of ParaRel, featuring prompts and paraphrases for
cloze-style knowledge retrieval tasks in parallel over 10 languages.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have led to models trained on vast and diverse
linguistic datasets drawn from across the Internet, incorporating numerous languages simultaneously
(Scao et al., 2023; Touvron et al., 2023; Achiam et al., 2024). However, these languages are not
evenly represented, and performance on low-resource languages often depends on cross-linguistic
transfer from high-resource languages (Pires et al., 2019; Lample & Conneau, 2019; Conneau et al.,
2020a; Huang et al., 2021). Whether LLMs can develop common, language-agnostic representations
that enable such zero-shot transfer remains an open question in the literature (Singh et al., 2019;
Kudugunta et al., 2019; Kassner et al., 2021). Kervadec et al. (2023) extended this investigation
to machine-generated languages, revealing that different representations can emerge, suggesting
multiple ways knowledge may be encoded in LLMs.

Understanding how Pre-trained Language Models (PLMs) store and retrieve knowledge is essential
for enhancing interpretability and safety in AI systems. Many recent studies have sought to localize
and attribute specific knowledge to individual neurons within these models (Dai et al., 2022; Meng
et al., 2022; 2023). These methods often attempt to identify neurons whose activations are critical
for making accurate predictions. Typically, they focus on neurons in intermediate layers of Feed-
Forward Networks (FFNs) within transformer architectures (Geva et al., 2021). These approaches
face strong limitations, as highlighted in recent critiques (Hase et al., 2023; Niu et al., 2023; Huang
et al., 2023).

In this work, we offer a novel perspective by refining the concept of ”knowledge” itself. To cor-
rectly complete a prompt like The capital of France is, a model must process multiple layers of
information: sensitivity to the specific concept France, retrieval of the target concept Paris, and
understanding the relational context capital of. We introduce a method to distinguish these sub-
types of knowledge—conceptual and relational—that is compatible with any knowledge attribution
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(a) (b)

Figure 1: The Knowledge Neurons (KNs) hypothesis connects LLM success on a fill-in-the-blank
cloze task (e.g. The capital of France is) to the activation of a small set of neurons. (a) The same
neurons can be selected (green) in response to a single task, thereby qualifying as concept neurons
(about e.g., Paris) or in response to a range of tasks all concerning a certain relations between
concepts, thereby qualifying as relational neurons (e.g., capital of is a relation between France and
Paris, between England and London, etc.). (b) In multilingual LLMs, concept and relational neurons
may be selected specifically for a language or across languages.

technique. We apply this method to the Knowledge Neurons (KNs) framework introduced by Dai
et al. (2022), to provide a critical view on such a method and extend it to investigate how knowl-
edge is shared across languages in PLMs (Figure 1). Code and data available at [URL redacted for
anonymous review].

Our contributions are:

• We propose a finer-grained typology of knowledge, providing a critical perspective on
neuron-level attribution methods like the Knowledge Neuron hypothesis, in particular its
expectation of monosemanticity.

• We analyze through this prism multiple PLMs (BERT, mBERT, OPT, Llama 2, and Gemma
2), revealing that a substantial number of ‘Knowledge Neurons’ exhibit polysemantic be-
havior, while others are specifically responsive to individual concepts or relations.

• We release Multi-ParaRel, a multilingual version of the ParaRel dataset (Elazar
et al., 2021a), which includes 10 languages and is compatible with autoregressive models.

• We demonstrate that LLMs store knowledge in similar neurons across 10 languages, and
even in machine-generated languages (AutoPrompt), suggesting a shared cross-linguistic
mechanism for knowledge retrieval.

2 RELATED WORK

Multilingual Language Models Training separate models for different languages is resource-
intensive, data-hungry, and generally ineffective at leveraging cross-linguistic similarities and
knowledge. In practice, recent LLMs (Touvron et al., 2023; Achiam et al., 2024) are trained on
extensive portions of the Internet, making them de facto multilingual. Examples include mBERT
(Devlin et al., 2019), XLM-R (Lample & Conneau, 2019; Conneau et al., 2020a), mBART (Liu
et al., 2020), mT5 (Xue et al., 2021), and BLOOM (Scao et al., 2023), along with their fine-tuned
variants like BLOOMZ, mT0 (Muennighoff et al., 2023), and FLAN-T5 (Chung et al., 2022).

The performance of these models is believed to stem from the emergence of efficient representa-
tions that are shared across languages (Aharoni et al., 2019; Arivazhagan et al., 2019; Conneau
et al., 2020b). Research has investigated their cross-linguistic capabilities using artificial languages
(Ri & Tsuruoka, 2022; Deshpande et al., 2022; Guerin et al., 2024), evaluating their performance on
tasks across different languages (Pires et al., 2019; Wu & Dredze, 2019), analyzing their translation
capabilities (Lample et al., 2018; Sennrich et al., 2016; Artetxe et al., 2018), and assessing their per-
formance on low-resource languages (Garcia et al., 2021), as well as examining their architectural
properties (K et al., 2020). Some studies, including the current work, have directly compared repre-
sentations from one language to another (e.g., using Canonical Correlation Analysis across layers,
as in Singh et al., 2019; Kudugunta et al., 2019). The conclusions drawn from these comparisons
are mixed. For instance, Singh et al. (2019) argue that representations are distinctly partitioned be-
tween languages, while Kudugunta et al. (2019) suggest that representations are more or less shared,
depending on the linguistic proximity of the languages.
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More directly to the current work, Chen et al. (2024) recently looked at the overlap between knowl-
edge neurons obtained for English and Chinese. We examine a similar overlap, albeit comparing 10
natural languages at once and we believe it is essential. Pairwise sharing leaves ambiguity: are neu-
rons shared with all languages, none, or just pairs? Bias toward a dominant language (e.g., English)
or chance sharing between two languages is more likely than sharing across 10. Including 10 lan-
guages reveals symmetrical roles in neuron sharing, extending beyond language pairs and providing
robust evidence of truly multilingual knowledge representation. We also make a comparison with
an ‘unnatural language’ (Shin et al., 2020). Such prompts provide an extreme test for the idea that
knowledge could be accessed independently of form: they are not human-readable, and they had
been shown to be processed differently by LLMs (Kervadec et al., 2023).

Knowledge in LLMs LLMs acquire knowledge by training on extensive corpora (Petroni et al.,
2019; Roberts et al., 2020; Safavi & Koutra, 2021). The work by Petroni et al. (2019) introduced
LAMA, a dataset designed to evaluate BERT through a fill-in-the-blank cloze task (e.g., The capital
of France is [MASK].). Subsequent research has built upon LAMA (Jiang et al., 2021), highlighting
the limitations of LLMs as knowledge bases (Elazar et al., 2021b; AlKhamissi et al., 2022), while
also attempting to enhance their performance (Wei et al., 2021; Petroni et al., 2020). Consequently,
research has emerged focusing on localizing and editing knowledge directly within the model (Rad-
ford et al., 2017; Lakretz et al., 2019; Bau et al., 2020b; Sinitsin et al., 2020; Mitchell et al., 2021;
2022; De Cao et al., 2021; Santurkar et al., 2021; De Cao et al., 2022; Bau et al., 2020a; Cohen et al.,
2023).

In this context, knowledge attribution methods such as ROME (Meng et al., 2022) and MEMIT
(Meng et al., 2023) (both employing causal mediation techniques; Vig et al., 2020), along with
Knowledge Neurons (Dai et al., 2022) (utilizing an integrated gradient approach; Sundararajan et al.,
2017), have been proposed. These methods are predicated on the assumption that neurons within the
intermediate layers of transformers’ Feed-Forward Networks (FFNs) encode knowledge. However,
we align with other studies (Hase et al., 2023; Niu et al., 2023; Huang et al., 2023) that suggest this
assumption may be an oversimplification. While certain neurons play a significant role in specific
tasks (Lakretz et al., 2019; Manning et al., 2020; Rogers et al., 2020; He et al., 2024), LLM neurons
are not necessarily monosemantic; rather, they can serve multiple functions depending on the context
and task (Adly et al., 2024). Furthermore, their effectiveness in altering knowledge is subjective and
widely debated (Hase et al., 2023). Other works (Wang et al., 2024; Tang et al., 2024; Kojima et al.,
2024) have identified multilingual neurons in LLMs; this paper focuses specifically on knowledge-
related neurons, offering a more precise analysis. We propose a knowledge-attribution method-
agnostic typology, illustrated with Dai et al.’s (2022) Knowledge Neurons. This approach aims to
provide a critical view on the Knowledge Neurons hypothesis while exploring what insights it can
offer regarding how knowledge is encoded in LLMs.

3 METHODOLOGICAL BACKGROUND

Knowledge The TREx dataset (Elsahar et al., 2018) is a collection of relational facts stored in
triplets of the form < h, r, t >, with r a relation and h and t entities entering in that relation. TREx
exhibit 41 relations, such as being the capital of, was born in, etc. Each full triplet can be referred
to as an instantiation of its own relation r.

Knowledge Localization Methods Geva et al. (2021) observed that a FFN can be seen as a Key-
Value memory system, similar to self-attention. To assess if and where knowledge could be stored in
FFNs, Dai et al. (2022) used a knowledge attribution method based on integrated gradients (see next
paragraph for details). They show that a fact (e.g., The capital of France is Paris) can be associated
to a few neurons (around 4), whose activations correlate with the probability of the model to fill
in the elements of the fact appropriately. Similarly, Meng et al. (2022) proposed Rank-One Model
Editing (ROME), which uses causal mediation to localize and edit knowledge in GPT, and Meng
et al. (2023) introduced Mass-Editing Memory in a Transformer (MEMIT), which edits facts at
scale. All of these knowledge attribution methods have their limitations; we apply our analysis to
the Knowledge Neurons by way of illustration. Our approach is applicable to all such methods.
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Knowledge Neurons Dai et al. (2022) track Knowledge Neurons (KNs) during a fill-in-the-
blank cloze task (see also Petroni et al., 2019) based on TREx. Let w

(l)
i be the ith neuron

of the intermediate layer of the lth FFN. The knowledge score of a neuron w
(l)
i is calculated

through the integrated gradient attribution method (Sundararajan et al., 2017), KNs are then fil-
tered through thresholds. First, they retain only neurons with an attribution score greater than
tkn × maxi,l Attrh,pr,t(w

(l)
i ).This procedure is carried out for each prompt associated with a fact

< h, r, t >, and thus yields a set of candidate KNs per prompt. Let us denote Nr the number of
prompts for a given relation r. To get results robust to noise, and to factor out signal associated to
specific prompts rather than knowledge, they keep only neurons appearing in the candidate neurons
set of at least pkn ×Nr prompts. They propose thresholds of tkn = 0.2 (only keep neurons scoring
at least at 20% of the max attribution score) and pkn = 0.7 (only keep neurons appearing in at least
70% of the different prompts for a given relation).

4 METHOD

Datasets For relational facts, we used the TREx dataset (Elsahar et al., 2018), which comprises
41 relations with approximately 1,000 facts per relation. For prompts, we employed the augmented
version of ParaRel provided by Kervadec et al. (2023). This version retains only prompts compat-
ible with autoregressive models and enriches the dataset with multiple paraphrases for each relation.
In Section 6, we explore multilingual models, which we tested on the multilingual variant of LAMA
(Kassner et al., 2021) as well as on a new multilingual version of ParaRel that we introduce. We
refer to this new dataset as Multi-ParaRel.

The detailed methodology for creating Multi-ParaRel, along with a quality assessment, is pro-
vided in Appendix A. Our dataset currently spans 10 languages: English, French, Spanish, Catalan,
Danish, German, Italian, Dutch, Portuguese, and Swedish. We also investigate an unnatural lan-
guage: AutoPrompt. Following the same train, development, and test splits as Shin et al. (2020), we
trained 10 different seeds of AutoPrompt for each relation and each model. We also make these sets
of prompts available.

Concept Neurons and Relation Neurons We propose a simple typology that refines the type of
knowledge attributed while answering fill-in-the-blank cloze tasks. For example, correctly answer-
ing the question What is the capital of France? not only requires knowledge of the answer Paris,
but also an understanding of the relationship between France and Paris. We thus introduce a sim-
ple principle: a neuron that is hypothesized to encode a specific concept, such as one about Paris,
should not be also responsible for encoding other concepts, and should therefore not be associated
to other facts such as The capital of Spain is Madrid. If a neuron consistently encodes the same
relation across multiple instances, we refer to it as a relational neuron, indicating that it is sensitive
to a relation, such as capital of.

We thus define Relation Neurons as KNs that appear in at least tr ×N instances of facts associated
with a particular relation, where N is the total number of facts, and tr is a predefined relational
threshold. In contrast, neurons that appear in less than tc×N of the facts, for some other threshold tc,
are referred to as Concept Neurons, as they are more likely to encode specific pieces of knowledge
or information about individual entities.

The aim is to test the robustness of this distinction by investigating the role of the thresholds tr
and tc. A ‘clean’ scenario that supports the Knowledge Neuron hypothesis and the idea of monose-
manticity would show that some concept neurons are found even for tC ×N = 1 (very specific to a
concept), and relational neurons are found when tR×N = N (completely systematically present for
a relation). Alternatively, softer boundaries would suggest that these KNs play a more polysemantic
and nuanced role, whereby knowledge is partially distributed across different neurons on different
occasions (e.g., the concept of Paris and Madrid cannot be disentangled at the neuron level, or the
relation capital of is not always encoded in the same way).

As we do not know a priori which neurons play specific roles, we performed an exhaustive study
across varying thresholds. In fact, it is part of the method to look at all possible thresholds to identify
the behavior of KNs. Moreover, no major variation based on the choice of threshold was found.
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Llama-2-7b

(a)

(b)

Figure 2: Each panel corresponds to a relation (P108, P159, etc.). (a) Distribution of KNs based
on the number of instantiations (i.e. specific triplets, specific facts) within a relation for which a
KN was identified. A large number of neurons are identified as KN for a single instantiation, while
a roughly similar number of neurons are identified as KN for a continuously increasing number
of instantiations within a relation. (b) Average proportion of the KNs from a single instantiation
which can be categorized as Concept, Relation or neither, according to different thresholds (x-
axis). The proportion of relational neurons is stable across different thresholds, the proportion of
concept neurons decreases with more demanding thresholds.

Multilingual Knowledge Neurons Similarly, we ask whether knowledge is language-agnostic;
for example, humans do not need to relearn facts when acquiring a new language. Knowledge could
be language-dependent in LLMs however: if a fact is present from the English corpus but missing
from a Spanish training corpus, an LLM may be able to retrieve that knowledge when prompted in
English but not when prompted in Spanish. We employ the KNs framework to investigate the open
question of whether a common language-agnostic knowledge representation exists in multilingual
models at the level of neurons.

We hypothesize that some KNs may be specific to one language, while others may be sensitive
to prompts in multiple languages. We thus analyze the number of languages across which such
neurons are shared. We do so by identifying KNs for relations in the ParaRel dataset across
multiple languages, using the Multi-ParaRel dataset, which was specifically created for this
multilingual evaluation.

5 MONOLINGUAL EXPERIMENTS: TRACKING CONCEPT AND RELATION
NEURONS

5.1 EXPERIMENTAL SETTINGS

Models We studied BERT (Devlin et al., 2019), and more precisely bert-base-uncased and
bert-large-uncased, as it has been the reference model for evaluation on TREx since Petroni
et al. (2019). Having been trained on Wikipedia from which TREx is derived, their performance
is very good (P@1> 0.4). We also studied OPT (Zhang et al., 2022) in its 350 million-parameters
version opt-350m and 6.7 billion-parameters version opt-6.7b, Llama 2 (Touvron et al., 2023)
in its 7 billion-parameter version Llama-2-7b-hf as well as Gemma 2 (Team et al., 2024) in its
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9 billion parameters version gemma-2-9b. For all these models we use the HuggingFace imple-
mentation. KNs computations were performed on NVIDIA Tesla V100 GPUs for models with less
than a billion parameters, and on NVIDIA Tesla A100 GPUs for larger models. The computation
took less than an hour per relation.

Template filtering Per model, we excluded prompts with less than 10% top-1 accuracy (that is, ac-
curacy of the most probable continuation). We then excluded relationships with less than 4 prompts
left. Since all actual answers were made of a single token, we also limit answers made of a single
token. After this filtering, we obtained on average 15 prompts per relation for BERT and 8 prompts
per relation for OPT (starting from 18), confirming the higher accuracy of BERT at the task.

5.2 TRACKING A TYPOLOGY OF KNOWLEDGE

Before classifying Knowledge Neurons (KNs) according to our typology, we first analyzed the dis-
tribution of KNs based on the number of instantiations for which a KN was identified. Figure 2a
illustrates the results for four relations using the Llama-2-7b model (complete results are pro-
vided in Appendix B). A qualitative analysis reveals two key findings: (i) many KNs appear in only
one instantiation, indicating that these neurons are task-specific and sensitive to a single concept;
and (ii) there is a continuous range of KNs sensitive to between 3 and N instantiations, suggesting
a more nuanced role for these neurons that lies between relational and conceptual.

The second observation challenges the simplistic interpretation of assigning neurons exclusively to
concepts. At the same time, it also demonstrates the presence of a significant number of neurons
sensitive to enough instantiations to hypothesize a more relational role in knowledge retrieval mech-
anisms.

Thus, we have identified potential candidates for the roles of both Concept Neurons and Relation
Neurons, as well as neurons that fall into an intermediate category. The natural question that arises
is: what is the proportion of each neuron type per instantiation, based on thresholds tr and tc?
This information is not directly inferable from Figure 2a, as neurons appearing consistently across
instantiations are less visible than neurons that appear uniquely in each instance.1 To address this,
we computed the proportion of each neuron type as a function of thresholds at the instantiation level
(see Figure 2b). For simplicity, we used symmetrical thresholds, setting tr = 1− tc.

As expected, when the thresholds become more restrictive, the number of neurons with well-defined
roles decreases, giving way to neurons with less clearly defined functions across all relations. For
the Llama-2-7b model, we observe that the number of neurons classified as Relation Neurons
remains more stable compared to those classified as Concept Neurons. Furthermore, for a single
instantiation, there are few KNs that are exclusive to that instance: when tc < 0.1, the proportion of
Concept Neurons is less than 0.2.

We also examined the distribution of neuron types across the model’s layers but found no significant
variation. As observed by Dai et al. (2022), KNs are primarily concentrated in the final layers.

In summary, we have demonstrated the existence of neurons reacting specifically to a single concept
within a relation. We have also identified neurons that play a much broader role in such relations,
with some reacting to almost all instances of that relation. We attempt to verify this hypothesis
through causal experiments in the next section. Finally, some neurons are activated by a subset of
the instantiations, carrying a much less transparent type of knowledge. In principle, it could encode
subtypes of relations, such as ‘capital of a European country’, although we find this highly stipulative
at the moment. In the next section, we will focus on concept and relation neurons and evaluate their
role through causal experiments.

6
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Figure 3: Boosting experiments results for bert-base-uncased (left) and Llama-2-7b
(right) for two couple of thresholds tr = 0.6, tc = 0.4 (top) and tr = 0.8, tc = 0.2 (bottom).
The lines corresponds to the ∆P@k (resp. ∆CCP@k) for different k values ranging from 1 to 100.
Thick lines represents the doubled activations results and thin lines the nullified activations results.
We also plotted the standrad error accross the evaluated instantiations of the relations.

5.3 BOOSTING EXPERIMENTS

In this experiment, we investigate the effect of either doubling or nullifying the activation of KNs
on model predictions. Dai et al. (2022) conducted similar experiments, focusing on how manual
changes to neuron activations influenced output probabilities. In contrast, we employ two more
concrete impact metrics: precision at rank k, denoted P@k, which measures the proportion of correct
responses in the top k model predictions, and correct category proportion at rank k, denoted CCP@k,
which reflects the proportion of responses in the correct category (e.g., capitals) within the top k
predictions. The original metric of relative probabilities change would not show specificity (e.g.
unrelated tokens could be even more boosted). For this reason, we report P@k and CCP@k. Effects
here ensure that the boost to the correct answer overcomes any boost for other answers. We also
include a control experiment in Appendix B to better investigate specificity.

Our goal is to verify whether the behavior of the identified KNs aligns with our proposed typology.
Specifically, we hypothesize that (i) there will be a marked increase (or decrease) in precision at rank
k=1 when the activations of Concept Neurons are doubled (or nullified), with the effect diminishing
as k increases. Similarly, we anticipate (ii) that the effect of Relation Neurons on P@k will be
weaker than that of Concept Neurons, as precision is primarily sensitive to the correct response. In
contrast, for the CCP@k metric, we expect (iii) that Relation Neurons will play a more significant
role, as these neurons should be more likely to favor the correct category (e.g., capitals), even if it
does not boost the correct answer specifically. We assess these effects for a range of thresholds tc
and tr. Results for the bert-base-uncased and Llama-2-7b models are shown in Figure 3
(see Appendix B for additional models and thresholds as well).

The figures show the delta in P@k and CCP@k for the predictions with altered (doubling or nuli-
fying) vs unaltered activations. The horizontal line at zero thus represents the baseline model per-
formance. Of the six models evaluated, all six display the expected effect (i) consistently across
all thresholds: in short, the top response is more accurate when the activations of concept neurons
are increased. However, only two models, Llama-2 and the Gemma-2, exhibit effect (ii). Addi-
tionally, four models, belonging to the BERT and OPT families, align with expectation (iii). Over-
all, bert-large-uncased and gemma-2-9b adhere to all three expected behaviors across all
cases. This happens under restrictive thresholds however (tr = 0.9 and tc = 0.1), and the four other
tested models fail to match all of these expectations.

1For example, if each instantiation contains 10 KNs, including 2 perfect conceptual neurons and 8 perfect
relational neurons (present in only 1 instantiation and all instantiations, respectively), Figure 2a would display
a bar of 200 at the 1 abscissa and a bar of 8 at the 100 abscissa, which would obscure the predominant role of
Relation Neurons.
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(a) (b) (c)

Figure 4: (a) Number of KNs shared by language pairs for Llama-2-7b. About a quarter of neu-
rons are shared between two languages. (b) Same for bert-base-multilingual-uncased.
(c) Proportion of shared KNs in a relation as a function of the number of languages in the intersec-
tion for Llama-2-7b and bert-base-multilingual-uncased.

These mixed results show that classifying KNs into distinct and disentangled roles is not perfect, po-
tentially due to noise in our methods or in knowledge attribution methods in the first place. Yet, our
experiments do indicate that, for certain models, KNs exhibit specific behaviors and manipulating
them leads to predictable effects.

5.4 DISCUSSION

As anticipated, these experiments underscore the complexity of the internal mechanisms within
LLMs, making it impractical to map a single, well-defined function to individual neurons. Many
of the identified KNs do not adhere to a clearly defined role and cannot be neatly categorized as
encoding either concepts or relations, even within a highly controlled environment like ParaRel.
We believe that the polysemantic nature of neurons prevents such precise delineation, which also
helps explain the knowledge editing limitations highlighted in prior research. However, contrary
to our initial expectations, certain KNs do appear to serve rather specific functions, and this has
been experimentally confirmed for some models in boosting experiments. Hence, while the idea
that knowledge would be represented entirely in mono-semantic single neurons is unrealistic, the
historically associated methods of, e.g., Knowledge Neurons nonetheless detect transparent signal
about how knowledge is encoded. KNs are thus a useful tool to pursue the study of knowledge
representation in multilingual models too, which we do in the next section.

6 MULTILINGUAL EXPERIMENTS

When we learn a new language, we do not learn all facts about the world again, just new ways to
express them. That is, there is a central knowledge base, that we can prompt with several languages.
In this section we inquire if knowledge is shared across languages in multilingual models too and, if
so, what knowledge.

6.1 EXPERIMENTAL SETTINGS

Models For this experiment we studied bert-base-multilingual-uncased (Devlin
et al., 2019) and Llama-2-7b. We used a NVIDIA Tesla V100 GPU for BERT and NVIDIA
Tesla A100 GPU for Llama 2, both for about one hour per relation and per language.

Multi-ParaRel We built and release a new dataset Multi-ParaRel, a multilingual version
of ParaRel. More details are given in Appendix A. Multi-ParaRel currently includes 10
languages: English, French, Spanish, Catalan, Danish, German, Italian, Dutch, Portuguese and
Swedish. We also offer a translation and curation pipeline which makes it possible to add more
paraphrases and more languages. It has an average of 17 prompts per relation and per language but
this value varies (from 9 for German to 19 for English). Each prompt is compatible with autoregres-
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Figure 5: Influence of typology on the average overlap coefficient calculated per language pair of
Llama-2-7b (left) and bert-base-multilingual-uncased (right).

sive models. After filtering for quality as above, we obtain on average 10 prompts per relation and
language.

6.2 KNOWLEDGE NEURONS ARE SHARED ACROSS LANGUAGES

Are KNs Bilingual? KNs were calculated separately for each relation and language. A KN is
considered shared between two languages if it appears as a KN in both languages for the same
relation. We conducted this pairwise analysis across all languages, thereby extending the findings
of Chen et al. (2024) to encompass 10 languages.

The results are presented in Figures 4a and 4b. For the Llama-2-7b model, over a quarter of the
neurons are shared between any two languages, with this proportion increasing to approximately
one-third for bert-base-multilingual-uncased. This represents a significant degree of
neuron sharing, especially when considering that bert-base-uncased, for example, has more
than 12 × 3, 072 = 36, 864 neurons in the intermediate layers of its FFNs. To quantify this, note
that among these 36, 864 neurons, only 1, 929 are identified as KNs across all relations for English,
and 2, 195 for French (roughly 5%). If KNs were randomly selected for each language, we would
expect around 100 shared neurons between them (5% overlap); however, in reality, 710 neurons are
shared. A similar analysis for Llama-2-7b gives even more extreme results: by chance, there
should be 2 shared neurons, while in practice 189 are found. Moreover, these numbers represent a
lower bound, as some relations were excluded from the prompt filtering process for certain language
pairs, effectively reducing the shared KN count for those relations to zero. Thus, the data indicates
significant overlap of KNs across languages, suggesting a partially shared mechanism for knowledge
retrieval across different language pairs.

Are KNs Multilingual? Next, we examine how the number of shared KNs scales with the num-
ber of languages in the intersection. Figure 4c shows these results for all relations, along with
the average behavior. Across all relations, we observe a consistent pattern: the number of shared
neurons decays as a function of the form (number of languages)−α, with a fitted α = 2.04 for
Llama-2-7b. In comparison, if neurons were shared at random, the expected behavior would
follow ∝ pnumber of languages, where p is the probability of a neuron being a KN (e.g. p = 0.05 for
BERT). This demonstrates that KNs are more multilingual than chance, reinforcing the notion of a
language-agnostic knowledge retrieval mechanism. Similar to the findings in Section 5, we observe
some but few neurons activated for all languages.

Are some neurons more Multilingual? Concept Neurons and Relation Neurons were com-
puted separately for each language and each model. Figure 5 displays the average pairwise overlap
coefficient for each neuron type, across various tr and tc thresholds, alongside with the pairwise
overlap coefficient for all KNs. The results reveal a significant difference in overlap between Con-
cept Neurons and Relation Neurons at all threshold levels. However, the direction of this difference
varies depending on the model and on the threshold. At the most demanding thresholds (those to
the right selecting the purest types), we observe that relational neurons appear to be more bilin-
gual. Given the variability at other thresholds (in particular for Llama, which is less performant than
BERT in this task), we remain cautious about this conclusion.
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6.3 KNOWLEDGE NEURONS ARE SHARED BETWEEN NATURAL AND UNNATURAL
LANGUAGES

We have extended the analysis to non-natural languages, in order to deepen the work of Kervadec
et al. (2023) in the specific framework of KNs. More specifically, we calculated 10 seeds of Auto-
prompt (Shin et al., 2020) for each model and each relation of ParaRel and the associated KNs.
We then calculated the overlap coefficient between the KNs calculated in this way and those cal-
culated for English at the relationship level. The results are presented in Table 1. This reveals a
very large overlap for all models, going up to an almost complete overlap (≥ 80%) for models other
than BERT. In the same way that there were important overlaps across natural languages, this new
result suggests a similar mechanism of knowledge retrieval even between natural and non-natural
languages. It is possible however that there exists a confound here because both Autoprompt and
KNs are gradient based.

Model bert-base bert-large opt-350m opt-6.7b Llama-2-7b

Avg. Overlap Coeff. 40% 32% 83% 87% 79%

Table 1: Average overlap coefficient of KNs sets computed at the relation level between English and
Autoprompt.

7 DISCUSSION

While knowledge neurons may be shared across languages, this does not guarantee that they serve
the same role in the two languages. A neuron active in both English and French for a given task
may perform different overall tasks depending on the language, that is, parallel activation does not
equate to shared functionality. Here, we partially controlled for this and narrowed down the role
of these neurons by computing intersections across languages and at the relation level. Yet, further
work is needed to investigate more intersections, narrowing down the possible roles, at the level of
relations, concepts, responses or formats of the prompt. Our method can further help narrow down
shared functions, across languages.

8 CONCLUSION

We introduced a typology for knowledge and applied it to the knowledge attribution method pro-
posed by Dai et al. (2022) to better classify and understand the behavior of Knowledge Neurons
(KNs). Notably, our method remains agnostic to the specific knowledge attribution technique used.
Coherently with the initial assumptions in the original work, we found that some of these neurons
encode specific concepts, but we also found many which do not and instead seem to exhibit a dis-
tributed role, where multiple neurons share responsibility for encoding concepts within the same
relation, or maybe encode the whole relation. We hypothesize that this polysemantic nature of neu-
rons contributes to the mixed success observed when using KNs for knowledge editing tasks. Yet
again, we were able to identify a subset of more specialized neurons, which we categorized as either
conceptual (sensitive to a single concept) or relational (sensitive to relationships between concepts).
And in some contexts their manual manipulations show the expected effects on downstream tasks.
We extended our analysis to multilingual models and found that a significant number of KNs are
shared across languages—both in pairwise comparisons and across all 10 languages tested. This in-
dicates the presence of a shared, language-agnostic knowledge base within multilingual models. To
facilitate this research, we created a multilingual dataset of facts and prompts, enriched with para-
phrases in 10 languages. Our findings suggest that even a simple method like Knowledge Neurons
can provide valuable insights into the benefits of multilingual training. Looking ahead, we aim to
further explore how this shared knowledge can be leveraged to improve the integration of new lan-
guages into existing multilingual models. Our results indicate that it may not be necessary to relearn
factual knowledge for each language, which could pave the way for more efficient training strate-
gies, particularly for low-resource languages. Instead of focusing on exhaustive coverage of world
knowledge, future efforts could prioritize data that highlights the unique syntactic and linguistic
features of these languages, thus optimizing resource use and improving model performance.
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Figure 6: In mLAMA, the number of triplets available varies widely across the different languages.

A NEW DATASET: MULTI-PARAREL

Creation Procedure To build the Multi-ParaRel dataset, we used our augmented autoregres-
sive version of ParaRel and mLAMA. The goal is to translate a template such as The capital of
[X] is [Y]. The problem is that translators are confused by the presence of placeholders [X] and
[Y], often resulting in translation errors. To overcome the difficulty, we instantiated [X] and [Y],
translated the whole sentence with these specific instances, and replaced the instantiations back with
placeholders. To do so, we used mLAMA, which contains triplets for over 53 languages.

For example, consider the translation from English into French of the template:

The capital of [X] is [Y]

We use the English triplet <Great Britain, capital of, London> to obtain the sentence:

The capital of Great Britain is London

This sentence is then translated into French:

La capitale de la Grande Bretagne est Londres

Then using the French version of the original triplet (<la Grande Bretagne, capital of, Londres>),
we can find and replace the entity elements of the triplet with placeholders [X] and [Y], resulting in
the new template:

La capitale de [X] est [Y]

With this overall idea, we can now provide more detail. First of all, such a protocol requires associ-
ated triplets in mLAMA from one language to another. However, mLAMA has many more triplets in
English than in other languages (see Figure 6), and some triplets are language-specific and therefore
cannot be associated with triplets in other languages. We therefore looked into a common English-
Target language subset. Then, to avoid translation errors, problems linked to gendered determinants
and redundancy (two different templates in English but translated identically in the target language),
we used a voting system. Each template was translated 30 times, using 30 triplets. Each transla-
tion is assigned a score, which is the number of times the template has been obtained out of the 30
triplets. The template with the highest score is then retained, provided that (i) it is autoregressive,
(ii) it has not already been selected and (iii) it is in the top 5 translations.

As a translation model, we used Meta’s SeamlessM4T and, more specifically, the Huggingface
implementation2. We used an NVIDIA Tesla V100 GPU for inference.

Statistics and Exemples Table 3 provides examples of translated templates from different lan-
guages and relations. The average number of templates obtained per relationship for each language
is:

2https://huggingface.co/facebook/seamless-m4t-large
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Language Avg templates
Catalan 19
Danish 15
Dutch 17
English 19
French 14
German 9
Italian 19
Portuguese 19
Spanish 19
Swedish 16

Table 2: Language Values

Relation English Spanish French

P36 The capital of [X] is [Y] La capital de [X] es [Y] La capitale de [X] est [Y]

[X], which has the capital [Y] [X], que tiene la capital [Y] [X], dont la capitale est [Y]

P106 The occupation of [X] is [Y] La ocupación de [X] es [Y] La profession de [X] est [Y]

[X] works as [Y] [X] trabaja como [Y] [X] travaille comme [Y]

P1001 [X] counts as a legal term in [Y] [X] cuenta como término legal en [Y]. [X] est un terme légal en [Y]

[X] is a valid legal term in [Y] [X] es un término legal válido en [Y]. [X] est un terme juridique valide en [Y]

Table 3: Examples of templates from Multi-ParaRel

Quality Analysis To judge the quality of our dataset, we asked a native speaker of French and a na-
tive speaker of Spanish to rate the resulting templates in three categories: fluent, weird, ungrammat-
ical. For French 88% are correct, 7% weird and 5% are ungrammatical. For Spanish: 78% of sen-
tences are fluent, 10% weird and 12% are ungrammatical. Although imperfect, Multi-ParaRel
coupled with a less efficient filtering of prompts gives very good results on mLAMA.

B FULL RESULTS

First we provide an overview of all the models behavior with respect to our expectations in Table
4. We also add a control experiment for the BERT family where we conducted the same boosting
experiments but sampling KNs randomly within the relation for the Concept Neurons and across
relations for Relation Neurons. The goal of such a control is to test the specificity of identified KNs.
Results are in Table 5. We see that the effects are destroyed when looking at randomly selected KNs.

Second, we provide all graphs computed for all models and relations concerning the distinction
between concept and relation neurons. This corresponds to the results as presented in Section 5.2,
Figure 2, also showing all relations each time. Second, we provide all graphs corresponding to the
boosting experiments (Section 5.3, Figure 3).
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Model Expectation (i) Expectation (ii) Expectation (iii)

bert-base-uncased Yes No Yes
bert-large-uncased Yes Yes Yes
opt-350m Yes No Yes
opt-6.7b Yes No Yes
Llama-2-7b Yes Yes No
gemma-2-9b Yes Yes No

Table 4: Overview of boosting results for all models. Expectations are: (i) there will be a marked
increase (or decrease) in precision at rank k=1 when the activations of Concept Neurons are doubled
(or nullified), with the effect diminishing as k increases, (ii) the effect of Relation Neurons on P@k
will be weaker than that of Concept Neurons, as precision is primarily sensitive to the correct
response, (iii) Relation Neurons will play a more significant role, as these neurons should be more
likely to favor the correct category (e.g., capitals), even if it does not boost the correct answer
specifically.

Model Expectation (i) Expectation (ii) Expectation (iii)

bert-base-uncased No No Yes but effect 10× smaller
bert-large-uncased No No No

Table 5: Overview of boosting results for the control experiment.
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(a)

(b)

Figure 7: bert-base-uncased
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(a)

(b)

Figure 8: opt-6.7b

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a)

(b)

Figure 9: Llama-2-7b
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(a)

(b)

Figure 10: gemma-2-9b
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Figure 11: bert-large-uncased
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Figure 12: opt-6.7b
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Figure 13: gemma-2-9b
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