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ABSTRACT

Mathematical reasoning is a challenging task for large language models (LLMs),
while the scaling relationship of it with respect to LLM capacity is under-explored.
In this paper, we investigate how the pre-training loss, supervised data amount,
and augmented data amount influence the reasoning performances of a supervised
LLM. We find that pre-training loss is a better indicator of the model’s perfor-
mance than the model’s parameter count. We apply supervised fine-tuning (SFT)
with different amounts of supervised data and empirically find a log-linear re-
lation between data amount and model performance, and we find better models
improve less with enlarged supervised datasets. To augment more data samples
for improving model performances without any human effort, we propose to apply
Rejection sampling Fine-Tuning (RFT). RFT uses supervised models to generate
and collect correct reasoning paths as augmented fine-tuning datasets. We find
with augmented samples containing more distinct reasoning paths, RFT improves
mathematical reasoning performance more for LLMs. We also find RFT brings
more improvement for less performant LLMs. Furthermore, we combine rejection
samples from multiple models which push LLaMA-7B to an accuracy of 49.3% on
GSMSK which outperforms the supervised fine-tuning (SFT) accuracy of 35.9%
significantly.

1 INTRODUCTION

Large language models (LLMs) (Anil et al., 2023 Touvron et al., 2023b; OpenAl,|2023) have shown
considerable abilities in various math reasoning tasks (Saxton et al.,|2019;|Cobbe et al., 2021} |[Light-
man et al} 2023). It is of interest to understand, predict, and improve an LLM’s math reasoning
ability based on different pre-trained LLMs and supervised datasets. With this knowledge, we can
better decide the effort we put into improving the LLM or augmenting the dataset. Many recent
works are focusing on using different prompts (Wei et al.| 2022b; [Yao et al., 2023)) or ensembling /
reranking multiple times of inferences (Cobbe et al., 2021; |Uesato et al., 2022; [Wang et al.| [2023}
Lightman et al.||2023) to improve models’ reasoning performances. While in-context learning (ICL)
and performing multiple inferences can improve performance, it is computationally expensive and
not suitable for online deployment scenarios. Therefore, we focus on the performance of the super-
vised LLMs with inference only once which is a setting closer to online deployment.

To this end, we empirically investigate the scaling relationship of factors that influence the math
reasoning abilities of a supervised LLM, including pre-training losses, the amount of supervised
data, and the amount of augmented data. Firstly, we analyze the supervised fine-tuning (SFT) and
ICL performance of LLMs. We observe that the pre-training loss is approximately negatively linear
correlated to the SFT and ICL accuracy in a given interval which is a better performance indicator
than pre-trained model sizes or pre-trained token counts. Secondly, we analyze the relationship
between SFT and different amounts of supervised data. We observe that the model performance
has a log-linear relation versus the supervised data amount while the increase diminishes with the
better pre-trained model. Thirdly, we want to leverage the model itself to generate more supervised
data to reinforce its reasoning ability and analyze the scaling relationship of the augmented data
amount. We apply rejection sampling on SFT models to sample and select correct reasoning paths
as augmented dataset (Uesato et al.| [2022} Zhu et al., 2023). We use these augmented datasets to
fine-tune base LLMs which would achieve better performances compared to SFT and we denote it
as rejection sampling fine-tuning (RFT). We find the key factor influencing RFT performance is the
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Figure 1: The key findings of scaling relationship on learning math reasoning ability with LLMs.

distinct reasoning path amount which can be increased by sampling more times or combing samples
from multiple models. We apply RFT on several pre-trained LLMs and show larger improvement
on less performant models. We discuss the reason RFT works is it provides multiple reasoning paths
which makes LLMs have better reasoning generalization. We also discuss that RFT is much cheaper
than pre-training in computational resources while training an LLM with lower pre-training loss is
the fundamental solution.

The key findings of this paper are shown in Figure [[|and are summarized here:

* When the pre-training loss gets smaller , the model reasoning performances of SFT and
ICL increase linearly within a range. The SFT performance improves slower than ICL.

» SFT improves in a log-linear manner with the increase of supervised data amount. The
benefits of increasing data amount diminish as the pre-trained model gets better.

* The model performance for RFT improves as the distinct reasoning path amount increases.
The RFT performance improves slower than SFT.

* The combination of rejection sampling samples from multiple models further enhances the
RFT performance, resulting in an accuracy of 49.3 for LLaMA-7B (+13.4 compared to
SFT), 50.3 for LLaMA2-7B (+8.7 compared to SFT), 52.1 for LLaMA-13B (+9.1 com-
pared to SFT), and 55.4 for LLaMA2-13B (+5.4 compared to SFT).

2 RELATED WORKS

Learning Math Reasoning with LLMs Recent research on LLMs has discovered the emergent
ability to solve reasoning tasks beyond a certain model scale (Wei et al.| |2022a). Such reasoning
abilities in LLMs can be elicited by fine-tuning, few-shot prompting, or zero-shot prompting (Cobbe
et al., [2021; Wet et al., [2021} Nye et al., 2021} [Wei et al., |2022b; Kojima et al.l 2022). A large
amount of research focuses on the reasoning tasks of math word problems (MWP), and methods are
evaluated on the benchmarks spanning different levels of MWPs (Koncel-Kedziorski et al.| (2016));
Patel et al.|(2021); |Lan et al.| (2021); |Cobbe et al.| (2021)); [Jie et al.| (2022); |Yuan et al.| (2023a); |[Fu
et al.| (2023a), inter alia). The core idea of improving the mathematical reasoning ability of LLMs
is to aggregate various sampled reasoning paths during either fine-tuning or inference. (Cobbe et al.
(2021) trained and devised a reasoning path verifier to select the correct results during inference.
Wang et al.|(2023) proposed to sample various reasoning paths during inference and then derive the
final result by majority voting on the answers or through verifiers (Li et al., 2023)). Several works
applied the idea of rejection sampling along with other techniques to filter the diverse sampled
reasoning paths for fine-tuning data augmentation (Huang et al., [2022; Zelikman et al.| [2022; Ni
et al.;,2023; Zhu et al., 2023). Rejection sampling is a simple yet effective fine-tuning augmentation
technique and is also used for LLM alignment with human preference (Bai et al., [2022; |Yuan et al.,
2023bj; |[Dong et al.l [2023; Touvron et al., [2023bj Song et al., 2023)). [Uesato et al| (2022) explored
to use of reinforcement learning methods for improving the mathematical reasoning abilities of
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Figure 2: The performance of SFT (blue lines) and ICL (red lines) settings on GSM8K. GPT-4 states
they use some part of the GSM8K data in pre-training, and suggest others consider its performance
between SFT and ICL.

LLMs and they further discussed the difference between outcome-based and process-based reward
modeling. Followed by |Lightman et al.| (2023), they collected large-scale process-based supervision
signals through human annotation and verified that LLMs can benefit more from process-based
reward modeling with human-annotated supervision than outcome-based reward modeling. There is
also prior research that distilled the emergent reasoning ability of LLMs to small language models
(Fu et al., [2023b; |Shridhar et al., 2023)). Compared to previous works (Zelikman et al.| {2022} |Uesato
et al.} 2022 |Zhu et al.| 2023} N1 et al.| 2023)), we are using a simpler way of generating augmented
samples without any trained process-level reward models and we are focusing on researching the
scaling relationship between LLMs and math reasoning ability.

Scaling Laws of Large Language Models It is important to understand and predict the perfor-
mance gain as the language model scales up. Kaplan et al.[(2020) first investigated and derived a
predictable relationship on how the number of model parameters and data sizes contribute to the
loss over many orders of magnitudes. |Hoffmann et al.| (2022)) refined the scaling laws in (Kaplan
et al.,|2020) and found the scaling laws for computation-optimal training. Muennighoff et al.|(2023)
explored and extended the scaling laws under a data-constrained scenario. Besides investigating the
scaling performance for pre-training, |Gao et al.| (2022)) discussed the scaling laws for overparame-
terized reward models for alignment with human preference, and [Hernandez et al.| (2021]) developed
scaling laws for transferring performance from pre-trained models to downstream tasks. [Henighan
et al.| (2020); (Caballero et al.|(2022) investigated scaling laws of math problems. In this paper, we
are investigating the scaling relationships of large language models on learning math word problems
with pre-training losses, supervised data amount, and augmented data amount.

3 THE FACTORS OF MATH REASONING ABILITY IN SUPERVISED LLM

The target of this paper is to try to understand the performances of supervised LLMs in math reason-
ing. We expect a pre-trained LLM p to learn reasoning ability from a supervised reasoning dataset
D. The dataset is defined by D = {q;, 7, a; };, Where ¢ is a question, r is a chain-of-thought reason-
ing path, and a is a numerical answer. We perform supervised fine-tuning on dataset D to obtain an
SFT model . We use 7 to generate reasoning paths and answers in the test set by greedy decoding
and report the accuracy (i.e. acc or majl @1) as our metric here.

3.1 MODEL ACCURACY VS. PRE-TRAINING LOSS

Previous works state that the larger LLM shows better reasoning ability across the same series of
models (Brown et al.| 2020; (Chowdhery et al., 2022; [Touvron et al., 2023aib), and we find LLaMA
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Figure 3: The performance of SFT with different amounts of supervised data on GSM8K.

outperforms GPT-3 which shows the model parameter counts should not be the only indicator of
reasoning ability. While LLMs have different architectures, model parameters, and pre-training
token numbers, we find the pre-training loss is a stable performance indicator of the math reasoning
ability and we use it to represent the model instead of using their model parameters and pre-training
token numbers.

We analyze the SFT and ICL (8-shot) performance of GPT-3 (Brown et al., 2020), LLaMA (Touvron
et al.,|2023a), LLaMA2 (Touvron et al.,[2023b), and GPT-4 (OpenAl,|2023)). The pre-training losses
of these models are observed in their paper, we should notice that pre-training losses correspond to
different pre-training datasets and different tokenizers which means they could not be compared
strictly (and we cannot use it to do any sort of regression directly) while the tendency among these
losses is still enlightening. We use the results of GPT-3 fine-tuning from (Cobbe et al [2021) and
we fine-tune LLaMA and LLaMA?2 on the GSMS8K training set (detailed in Appendix [A.T). For
in-context learning, we use the results from LLaMA (Touvron et al.,2023a) and LLaMA2 (Touvron
et al.,[2023b) paper.

In Figure 2] we can find that:

* The pre-training losses are approximately negatively linear correlated to the SFT and ICL
accuracy during the given pre-training loss interval.

* SFT outperforms ICL consistently, while the improvements diminish when the pre-training
loss is lower.

The linear relation of SFT and ICL accuracy may only work in the given interval. The reasons
are (1) the slope of ICL is steeper than SFT, while the SFT performance should be greater than
ICL performance; (2) the accuracy can not bigger than 1 or smaller than 0. It should be using
—log(acc) instead of acc as the dependent variable theoretically while we find an apparent linear
relationship among pre-training loss and acc and use acc as the dependent variable. LLaMA-2
7B(13B) is a better counterpart of LLaMA 7B(13B) with a lower per-taining loss. Without changing
the parameter count, ICL and SFT performance both improve significantly. From the observations,
one effective way to improve reasoning ability is to train a better base model with lower pre-training
loss. The models with lower pre-training loss improve less from the fine-tuning which may be due to
the models having already obtained more reasoning abilities during pre-training and the supervised
data can provide less signal to supervise them.
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3.2 MODEL ACCURACY VS. SUPERVISED DATA COUNT

Supervised fine-tuning does improve LLMs’ reasoning ability, we want to know how the super-
vised data amount influences the model’s improvement. We fine-tune LLaMA and LLaMA?2 with
{1,1/2,1/4,1/8,1/16,1/32} amount of the training set from GSM8K (detailed in Appendix[A.2).
We want to use this experiment to extrapolate the model performances if we have more supervised
data. In Figure 3] we plot the results of training with different amounts of supervised data. From
this figure, we can observe that:

* The model performance has a log-linear relation versus data amount. When the data amount
doubles, the performance increases by a unit.

* Better model needs more amount of data to outperform its ICL performance.

* Better model benefits less when supervised data amount doubles.

The log-linear relation is stable during {1,1/2,1/4,1/8} amount of the training data. From the ob-
servation, it is straightforward to enlarge the training dataset to improve the performance, especially
for worse models. For better models, it benefits less which echoes that better models have learned
more reasoning ability during pre-training.

3.3 MODEL ACCURACY VS. AUGMENTED DATA COUNT

Increasing the amount of math reasoning labeled data is difficult, especially for proposing a new
question. It is easy for a well-educated student to solve hundreds of math word problems per day,
but it is very hard to come up with diverse and educational math problems. So our direction changes
to augment new data using existing resources. We have tried augmenting new queries (detailed in
Appendix [FT) and augmenting revisions (detailed in Appendix [F2)). These approaches have none
to marginal improvements compared to SFT. We find a simplified version of rejection sampling
(Zhu et al.| 2023)) is a naive and effective way to augment new reasoning paths and can improve
the model performance. We find the key factor influencing fine-tuning on rejection sampling (RFT)
augmented data is the distinct reasoning path amount. Combining rejection sampling samples from
multiple models, we can further fine-tune a LLaMA-7B model to an accuracy of 49.3 (compared
with SFT 35.9) and a LLaMA-13B model to an accuracy of 52.1 (compared with SFT 43.0).

Rejection Sampling Fine-tuning The SFT model 7 obtains the ability to perform zero-shot chain-
of-thought reasoning, and we use 7 to generate more correct reasoning paths r;; to supply the
training dataset. For each ¢;, we generate k candidate reasoning paths and answers r, a with a
temperature of 0.7 following (Cobbe et al.| [2021). We first filter out reasoning paths with wrong
answers a # a; or wrong calculations based on Python evaluation. Each reasoning path contains
a list of equations e;, and we select one reasoning path 7;; for each distinct equation list as the
augmented data and remove other reasoning paths with the same list of equations to deduplicate
similar reasoning paths. Different order of elements (e.g. 3 +4 = 7 and 4 4+ 3 = 7) or different
order of equations (e.g. 1+2 =3,34+4 =T7Tand 14+4 = 5,2+ 5 = 7) are considered different. It is
helpful for models to know these orders can be exchanged and is hard for models to learn this with
only one reasoning path for each problem. We define D, = D U {g;,7i;,a;}i ; as the augmented
dataset. We fine-tune D’ on pre-trained LLM p to mrer as RFT, and we detail how we apply RFT
in Appendix [A.3] We list the results of RFT with sampling £ = 100 candidate reasoning paths
on LLaMA and LLaMA-2 in Table E} For ICL, SFT, and RFT, we list the majl @1 (accuracy) and
majl @100 (sample 100 times and calculate accuracy based on majority voting) as metrics.

In the case of 7B and 13B models, RFT yields an approximate increase of 5 to 6 points in
majl@1 and about 4 points increase in majl @100. For 33B models, RFT does not improve
performance compared to SFT. The main reason comes from the augmented samples from rejec-
tion sampling. We can find that better models generate more correct reasoning paths per ques-
tion. For LLaMA-33B-SFT, it can generate an average of 88.7 correct paths per question. How-
ever, it overfits the training set and has difficulty generating more diverse paths on the train-
ing set questions. Rejection sampling with 33B is very time-consuming and we do not con-
duct a temperate grid search, we have tried using a larger temperate 1.0 for decoding LLaMA-
33B-SFT models, it generates 82.4 correct paths and 4.77 distinct paths per question which
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Setting 7B 7B-2 13B 13B-2 33B
Pretrain loss 1.8 1.75 1.73 1.68 1.62
ICL 11.0/18.1 14.6/- 17.8/29.3 28.7/- 35.6/53.1
SFT 35.9/48.7 41.6/55.4 43.0/55.2 50.0/61.7 54.6/-
RFT k = 100 41.7/52.7 47.5/58.7 49.1/59.9 54.8/65.4 54.5/-
Correct paths per question 53.3 60.8 62.5 71.6 88.7
Distinct paths per question 5.25 5.19 5.26 5.29 2.78

Table 1: The performance of RFT with £ = 100 on GSM8K compared with SFT and ICL. Distinct
path amount means distinct equation list amount here.

Model Performance
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Figure 4: The performance of RFT with different amounts of sampling count £ on GSMS8K.

is more diverse than using the temperate of 0.7 but still less diverse than 7B and 13B mod-
els. We admit there should be a temperate (or generation config) that can produce more dis-
tinct paths and generate good results for RFT in 33B and even larger models while it does
need more computation resources for inference compared to sampling using 7B and 13B models.
We will show we can use 7B and 13B models only

for rejection sampling to improve the 33B model. 2 7B _7B-2 13B 13B2 33B
1 1.17 119 1.15 1.18 1.06
Model Accuracy vs Rejection Sampling Data (35 i;‘j i;‘; }gé 147‘2 }ég
Count To understand the performance of RFT, we 12 1220 223 211 221 146
vary k among 1, 3,6,12,25,50,100 and apply RFT. 25 | 293 293 288 294 177
We also have another setting of & = 100 while not 50 | 394 391 390 3.94 219
removing any reasoning paths denoted as no dedup. 100 | 525 519 526 529 278
We list the RFT results with different & on Figure kp, .. = 400, paths per question = 12.84
Comparing using RFT k£ = 100 to no dedup, the kps = 500, paths per question = 13.65

U33B

performance is similar and shows that it is better to

estimate RFT performance based on distinct reason-
ing path amount instead of RFT augmented sample
counts. Furthermore, using deduplication has better

Table 2: Different reasoning paths per ques-
tion generated by different SFT models with
different k.

performances for 3 of 4 models and needs much less
training time.

When using k¥ = 3, RFT outperforms SFT by 2 points stably. For most data points, using larger
k leads to better performances. However, the merits of RFT are decreasing when doubling k. We
calculate different paths per question for different k£ in Table We can see that the amount of
different reasoning paths is not growing quickly along k£ growing. In Figure |3} we know doubling
training samples can have a linear performance improvement. Doubling reasoning paths should
improve less than doubling training samples since obtaining different reasoning paths does not obtain
any new questions. Therefore, doubling k leads to diminished performance improvements.
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Figure 5: The performance of RFT with rejection sampling samples from multiple models.

Combining rejection sampling
samples from multiple mod-
els The experiment results above
demonstrate performance boosts in
mathematical reasoning, benefitting
from rejection sampling. Through
case studies in we show that
rejection sampling can augment
training data with reasoning paths of
diverse calculation processes. How-
ever, the reasoning paths sampled
from one single SFT model can be
logically non-diverse.  Therefore,
we expect to further improve the
mathematical reasoning performance
by leveraging rejection sampled
reasoning paths aggregated from
different models. We denote two
final datasets as D{ ;5 and D35,
which are aggregated from rejec-
tion sampling different models

U1ss = D7p ® Dipy ® Disg © Digp,y
and D{;3;5 = D{jj3p ® Disp. where
U means models under a certain
size, 7B/13B/33B means LLaMA-
7B/13B/33B and 7B2/13B2 means
LLaMA2-7B/13B. @ means an
aggregation process in which all the
reasoning paths from different sets

[0 SFT LLaMA-33B

[0 SFT LLaMA-7B

[0 SFT LLaMA2-7B
SFT LLaMA-13B
SFT LLaMA2-13B

14.1%

1.5%

1.1%
2.0%

15.5% 15.0%

Figure 6: The Venn diagram of the proportions of the rea-
soning calculation paths that each model provides to D{j35.
For example, 15.5% (in the yellow part) of the reasoning
calculation paths in Dy, can only be exclusively found in
the rejection sampling results from LLaMA2-13B-SFT.

are first combined and then Algorithm [T]is applied to deduplicate the reasoning paths with the same
calculation process regarding the equation forms and orders.

We can see, through the results visualized in Figure 5| that using the aggregated dataset Dy},;5 and
D{}335 can lead to uniformly better performance than fine-tuning with datasets from a single model
across different model sizes. RFT on these two augmented datasets Dy},;5 and D{j;55 decreases the
performance gaps among the same size models in SFT and RFT £ = 100 which mean the combined
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Base Model Training majl @1 majl @K*
Proprietary LLMs

GPT-4 (OpenAlL 2023) 5-shot ICL 92.0 -
GPT-3-175B (Brown et al.; 2020) SFT 34.0 -
PalLM2 (Anil et al.,[2023) 8-shot ICL 80.7 91.0@K=40
PalLM-540B (Chowdhery et al.,2022) 8-shot ICL 56.5 74.4@K=40
Chinchilla-70B (Uesato et al.;[2022) 5-shot ICL 43.7 58.6@K=96
Chinchilla-70B SFT 58.9 77.7@K=96
Open-sourced LLMs

GPT-Neo-2.7B (Black et al.;, 2021) FCS + PCS (Ni et al.,|2023) 19.5 414
GPT-J-6B (Wang & Komatsuzaki, 2021) CoRE (Zhu et al.| [2023) 34.9 63.2@K=40
ChatGLM2-6B (Zeng et al.| [2022) 8-shot ICL 32.4 -
ChatGLM2-12B 8-shot ICL 40.9 -
InternLM-7B (Teaml, |[2023) 4-shot ICL 31.2 -
LLaMA-7B SFT 35.9 48.7
Our RFT on open-sourced LLMs

LLaMA-7B RFT-U13B 49.3 61.8
LLaMA2-7B RFT-U13B 50.3 65.6
LLaMA-13B RFT-U13B 52.1 66.2
LLaMA2-13B RFT-U13B 55.4 69.1

Table 3: Compare GSMSK results with other baselines. RFT-U13B means models fine-tuned on
D{;135- FCS and PCS represent fully-correct solutions and partially-correct solutions respectively.
*K=100 if not specified.

augmented datasets provide enough reasoning supervision to fulfill the pre-training gap. We can
assume with sufficient supervised data amounts, the performance indicator should be the model size
but not the pre-training losses. We have stated that it is expensive to apply RFT £ = 100 on 33B
models and it needs a temperate grid search to achieve an improvement compared to SFT. However,
fine-tuning on Dy, has a similar rejection sampling computational cost compared with sampling
100 times on 33B and achieves better performance.

Another phenomenon is including D}, in aggregation barely influences the performance. To give
a more comprehensive analysis of the results, we calculate the average reasoning path number per
question in Table [2| and depict a Venn diagram to visualize the source of different reasoning paths
shown in Figure n Table the average reasoning path numbers of D{; s and D{j;55 surpass those
of a single model by large amounts, while Djj;, only have slightly more reasoning paths than D{j,;
by 0.81. In the meanwhile, as shown in Figure [6] the models under and including the size of 13B
can contribute unique reasoning paths of similar proportion in D{j;;5 around 15%. However, only
6.5% of the reasoning paths can be exclusively acquired from the LLaMA-33B-SFT model. This
shows that the SFT model of 33B can provide limited reasoning diversity when sampling the training
questions. This finding is consistent with the results above in Table[I] indicating the 33B model (and
possibly 65B and 70B models) can well memorize the human-annotated reasoning paths. For 65B
models, we find using Dy},55 does not improve the performance compared to SFT. The reason can be
better models benefit less from the supervised sample amounts while it has learned more reasoning
ability during pre-training.

Overall, we can come to the conclusion that (1) RFT improves the mathematical reasoning per-
formance of (worse) LLMs through diverse reasoning paths from rejection sampling of the SFT
models, and aggregating more diverse reasoning paths can improve the performance further. (2)
Different SFT models can contribute reasoning paths with different calculation processes from re-
jection sampling, leading to more diverse training data for RFT, and LLMs of larger parameter sizes
may degrade in generating diversified reasoning paths as a result of overfitting the training ques-
tions. There may be a generation config or training config for large enough LMs not to overfit on
the training dataset while it is not trivial to find them.

Comparing to other baselines We compare our RFT results of training on D5 to several base-
lines and the results are detailed in Table [3] Although LLaMA and LLaMA2 are top-tier open-
sourced LLMs , their mathematical reasoning performances still lag behind the current proprietary
LLMs which are of larger parameter scales, such as GPT-4 and PaLM2. Compared to results on
open-resourced models, our results on LLaMA present better performance than two recent state-
of-the-art reasoning augmentation methods. Our RFT method is simpler compared to CoRE, since
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Figure 7: The histograms of question numbers solved with different numbers of unique reasoning
calculation paths. We show the difference in question counts between SFT and RFT U13B in two
cases where the numbers of unique reasoning calculation paths are 1 or more than 10.

RFT does not require training verifier models and decoding with Monte Carlo Tree Search (MCTS).
Compared to other open-sourced aligned language models, we can find that 7B models struggle at
a level of 35 scores which are very similar to SFT performances of LLaMA-7B. We guess they use
GSMBEK during their pre-training phase following (OpenAl, [2023) or human alignment fine-tuning
phase following (Qingyi et al., 2023). Using our augmented dataset Dy;,;5 to replace the original
GSMBEK can significantly boost their 7B models’ performances.

4 DISCUSSION

In the aforementioned analysis of RFT training data, we observe that rejection sampling can augment
the training question with diverse reasoning calculation paths. In this section, we investigate whether
RFT models can learn to generate different reasoning paths to reach the correct answers. We fine-
tune LLaMA and LLaMA?2 of 7B and 13B on Dy{j;5. During inference, we sample 100 different
reasoning paths from each trained model for each test set question with a temperature of 0.7. For
each question, we compute the number of different calculation processes presented in 100 sampled
reasoning paths that lead to the correct answer and draw histograms with respect to test set questions.
SFT and RFT models on self-sampled datasets (RFT k=100) are included for comparison.

As shown in Figure [/} the models trained by RFT on Dy, ;5 exhibit more question counts than the
models trained by RFT k=100 and SFT on the larger numbers of unique calculation processes. There
are more question counts for SFT models where all the sampled reasoning paths only correspond to
one single calculation process and SFT models can barely generate more than 8 different calculation
processes for a question. This analysis demonstrates that diverse reasoning calculation paths in
training data can equip the LLMs with finding diverse reasoning logic for solving math problems.

5 CONCLUSIONS

In this paper, we are investigating the scaling relationship in supervising math reasoning abilities
with large language models. We find the relationship between math performance and pre-training
losses, supervised data amount, and distinct reasoning paths. We find that better language models
benefit less with SFT and RFT, and the most important thing is to pre-train a better language model
towards excellent math reasoning abilities.
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A DETAILED EXPERIMENT SETTING

A.1 SFT oN GSMS8K

We fine-tune GSM8K with 3 epochs and a batch size of 128 on NVIDIA A100 GPUs. We use 8
GPUs for 7B and 13B models, 16 GPUs for 33B models, and 32 GPUs for 65B and 70B models
during fine-tuning. We use a peak learning rate of 2e-5 with a 3% learning rate warmup. We
evaluate the results on the final epoch. We use greedy decode to calculate majl @1 and decode with
temperature 0.7 to calculate majl @ 100.

A.2 SFT ON DOWNSAMPLED GSM8&K

We random downsample GSM8K dataset for fine-tuning. We find that using 3 epochs for little
data will result in very poor results which are listed in Table ] We search training epoch among
{3, W‘thwn} and evaluate the latest epoch. We report better test results among these two different

epoch settings.

A.3 REJECTION SAMPLING FINE-TUNING ON GSM&K

We use an SFT model 7 to sample on training dataset for & = 100 times with a temperature of
0.7. We extract the equation list in generated reasoning paths by finding <<equation>> first,
removing all white spaces, and joining the equation string list by a special symbol to a string (called
it get_equation in our algorithm) for deduplication. We select the reasoning paths by this algorithm:

Algorithm 1: Reasoning Path Selection

Data: Reasoning paths for question g, R,

Result: Selected reasoning paths for question ¢, R
Initialize selected reasoning paths, R = list()
Initialize appeared equation set, £; = set()

for r in R, do

if get_equation(r) ¢ £; then

R-append(r);

& ; .update([get_equation(r)])

s
q

end

else

find r® € Ry s.t. get_equation(r*) = get_equation(r),

if Zi:rfefg,rf;érs Levenstein_dist(r, i) > Zi;r;‘eg;,rf¢rs Levenstein_dist(r®, r;) then
| ri=r

end

end
end

We are trying to find the most dissimilar reasoning paths based on Levenstein distances. The idea
comes from we want diverse reasoning paths for better generalization.
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B DETAILED RESULTS OF SFT AND RFT

We list detailed results of SFT and RFT in Table 4] and

Model Data Epoch | 7B 7B-2 13B 13B-2 33B 65B 70B-2
ICL-8shot 0 0 11.0 146 17.8 287 356 509  56.8
SFT 1/32 96 9.5 10.1 8.6 17.1 18.6 252 274
SFT 1/16 48 143 155 142 239 259 289 336
SFT 1/8 24 179 208 184 285 316 358 389
SFT 1/4 12 21.6 277 267 363 384 456 469
SFT 172 6 290 331 352 437 48,6 505 575
SFT 1/32 3 78 142 0.0 59 253 289 158
SFT 1/16 3 127 162 74 277 292 395 528
SFT 1/8 3 165 218 195 334 393 460 578
SFT 1/4 3 227 281 274 375 446 504 578
SFT 172 3 309 346 361 453 508 556 610
SFT 7.4K 3 359 416 430 500 546 593 632
RFT no dedup | 1/32 3 37.5 - - - - - -
RFT no dedup 1/16 3 38.3 - - - - - -
RFT no dedup 1/8 3 41.1 - - - - - -
RFT no dedup 1/4 3 41.2 - - - - - -
RFT no dedup 172 3 439 - - - - - -
RFT no dedup | 400K 3 43.6 467 469 537 - - -
RFT k=1 ~12K 3 37.6 434 427 521 - - -
RFT k=3 ~15K 3 390 453 452 519 - - -
RFT k=6 ~18K 3 395 456 468 522 - - -
RFT k=12 ~22K 3 41.6 453 48.0 53.1 - - -
RFT k=25 ~28K 3 409 465 460 526 - - -
RFT k=50 ~35K 3 40.7 470 494 545 - - -
RFT k=100 ~47K 3 417 475 49.1 548 545 - -
RFT-U13B 104K 3 493 503 521 554 565 59.0 623
RFT-U33B 110K 3 49.1 512 514 553 579 597 648

Table 4: Detailed numerical results in this paper, some experiments are still under running. We
report majl @1 (accuracy) in this table.

Setting 7B 7B-2 13B 13B-2 33B 65B 70B-2
ICL-8shot 11.0/18.1 14.6/- 17.8/29.3 28.7/- 35.6/53.1  50.9/69.7 56.8/-
SFT 35.9/48.7 41.6/55.4 43.0/552 50.0/61.7 54.6/72.6 59.3/69.7 63.2/73.5
RFT k=100 | 41.7/52.7 47.5/58.7 49.1/59.9 54.8/65.4 54.5/- - -
RFT-U13B | 49.3/61.8 50.3/65.6 52.1/66.2 55.4/69.1 56.5/- 59.0/- 62.3/-
RFT-U33B | 49.1/61.6 51.2/64.1 51.4/66.3 55.3/69.1 57.9/71.3 59.7/- 64.8/-

Table 5: Detailed numerical results in this paper, some experiments are still under running. We
report majl @100 in this table.

C CASE STtUuDY OF RFT

In this section, we present the cases of the training samples from rejection sampling. The case studies
would shed light on how RFT potentially improves the mathematical reasoning performance of
LLMs. The cases are shown in Table[§] As aforementioned, RFT considers the reasoning paths with
different calculation processes regarding equation forms or orders, leading to the correct answers.
In the cases from Table[6] all the reasoning paths from RFT result in the correct answer of 10, while
the calculation processes of reasoning are diverse. Path 1 and 2, as well as Path 4 and 5, are different
in the equation forms as highlighted in red. Path 1 and 2 present a two-step calculation reasoning
process while Path 4 and 5 alter to a one-step calculation reasoning process. The case demonstrates
that rejection sampling can potentially provide more supervision signals that improve mathematical
reasoning performance. The filtered reasoning paths sampled from LLMs themselves are of similar
quality to the reasoning demonstrations from human annotations.
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Query A | Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting.
How much did she earn?

Path 1 Weng earned 12/60 = ${(12/60=0.2))0.2 an hour for the 50 minutes that she worked yes-

terday. Therefore, she earned $0.2 x 50 = $((0.2*50=10))10 for the 50 minutes that she
worked yesterday.#### 10

Path 2 Weng earns 12 / 60 = $((12/60=0.2))0.2 per minute. So, Weng earned 50 * 0.2 =
$((50%0.2=10))10 for the 50 minutes of babysitting. #### 10
Path 3 Since there are 60 minutes in an hour, then Weng did 50/60 = ({50/60=0.8333))0.8333 of

an hour of babysitting. So, she earned $12 x 0.8333 = $((12%0.8333=10)) 10. ### 10
Path 4 She earns 12 * 50 / 60 = $((12%*50/60=10)) 10. #### 10
Path 5 Weng earns 12 * (50 / 60) = $((12*(50/60)=10)) 10. #### 10

Query B A local college is offering German lessons and currently has 8 students enrolled. Through
advertising, 8 more became interested but a fourth of these dropped out within a day. 2
more got frustrated and left. The class then rallied to show how simple the course actually
is and increased enrollment by 5 times the amount of students already enrolled in the
class, but 2 had to drop it because of scheduling conflicts. After one last rally, 6 more
people enrolled. As the days passed, half of the class eventually dropped, and half of the
remaining students graduated. How many are still enrolled?

Path 1 8+8=((8+8=16))16 students are enrolled in the German class. 8%.25=((8*.25=2))2
dropped out from the new recruits. 2 more left, so the class had 16-2-2=((16-2-2=12))12
students left. There were 12%5+12=((12*5+12=72))72 total students in the class after
the rally. Two people had to drop the class, so there were 72-2=((72-2=70))70 left.
70+6=((70+6=76))76 were enrolled after the final rally. 76/2=((76/2=38))38 are left after
half the class dropped. 38/2=((38/2=19))19 are left after half the class graduated. ##it#
19

Path 2 8+8=((8+8=16)) 16 students are enrolled after the first rally. 16/4=((16/4=4))4 dropped
out. 16-4=((16-4=12))12 remain. 12*5+12=((12%5+12=72))72 after the second rally.
72-2=((72-2=70))70 after 2 more dropped. 70+6=((70+6=76))76 after 6 more enrolled.
76/2=((76/2=38))38 remain after half the class dropped. 38/2=((38/2=19))19 remain after
half the class graduated. #### 19

Path 3 Advertising brought in 8+8=((8+8=16))16 students. Of these, 16/4=((16/4=4))4 dropped
out. 16-4-2=((16-4-2=10))10 remained. Then 10*5=((10*5=50))50 more enrolled.
This brought the class to 50+10=((50+10=60))60 students. Then 60+6=({60+6=66))66
enrolled. So there were 66+10=((66+10=76))76 students. Then 76/2=((76/2=38))38
dropped. So 76-38=((76-38=38))38 remained. Then 38/2=((38/2=19))19 graduated. So
38-19=((38-19=19))19 were left. #### 19

Table 6: Cases of generated reasoning paths with different reasoning complexity from rejection
sampling for RFT. The calculations are highlighted in red.

D TOWARDS EXCELSIOR MATHEMATICAL REASONING

From our findings, there are two main factors that can improve mathematical reasoning abilities
given a preset amount of human-annotated samples, including: (1) Pre-training the LLMs to lower
losses; (2) Augmenting fine-tuning with rejection sampling. Through extensive experiments, we em-
pirically verify the scaling relationships between the mathematical reasoning performance of LLM
with both factors respectively. Out of the consideration of sustainable NLP, in this section, we inves-
tigate the possible computational resources required to extrapolate the mathematical performance of
LLMs by both factors and discuss how to improve the performance more efficiently.

We estimate the pre-training, SFT, RFT inference, and RFT FLOPs following Kaplan et al.| (2020)
and GPU times in Table We can find that the cost times of SFT (~ 1x107°) and RFT (~ 1x10~%)
are negligible compared to pre-training. One can always use SFT and RFT to improve models’
performance. However, it could be hard to use RFT to further boost performance. Since we need
much more sampling counts (at an exponential level) to increase distinct reasoning paths and there
exists an upper bound of distinct reasoning path amount for a given math reasoning question.

We assume that performance follows RFT>SFT>ICL, from the findings in this paper we know
the improvement speed follows RFT<SFT<ICL. And if we have an omnipotent language model
which has a pre-training loss that is the same as the corpus randomness, it could have RFT = SFT
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Model size 7B 7B-2 13B 13B-2 33B 65B 70B
Pre-train FLOPs 4.2x 102 84x10? 7.8x10% 1.6x10*® 27x10® 55x102® 84 x10%
SFT FLOPs 1.7 x 10'7 3.3 x 10%7 7.7x 10" 1.3x10'® 1.7 x 108
RFT Inference FLOPs 1.4 x 10" 2.6 x 10"8 6.9 x 10" 1.4 x10° 1.8 x10"
RFT-U33B FLOPs 3.0 x 108 5.7 x 108 1.3x 10  2.2x 10 3.0 x 10"
Pre-train GPU hrs 82k 184k 135k 368k 530k 1022k 1720k
SFT GPU hrs 0.6 4 40 74 80
RFT Inference GPU hrs 10 0.1k 0.1k 4.3k 4.5k
RFT-U33B GPU hrs 9 62 0.6k 1k 1.2k
ICL Accuracy 11.0 14.6 17.8 28.7 35.6 50.9 56.8
SFT Accuracy 35.9 41.6 43.0 50.0 54.6 59.3 63.2
RFT-U33B Accuracy 49.1 51.2 51.4 55.3 57.9 59.7 64.8

Table 7: The statistics of FLOPs and GPU hours required for pre-training, SFT, RFT inference, and
RFT. We take the pre-training GPU hours from [Touvron et al.| (2023a3b). The GPU hours for RFT
inference are calculated for 7,473 train set questions and 100 samples per question. To make the best
of GPUs and properly fit models into the GPU memory, we tune the inference batch size. For 33B,
65B, and 70B models, we use DeepSpeed ZeRO3 (Rasley et al., 2020) for distributed training. All
the GPU hours are based on NVIDIA A100 80GB GPU. Note we use non-embedding parameters to
compute FLOPs in our experiments.

= ICL = 100. Thus when you pre-train a better language model (i.e., smaller pre-training loss),
your model’s performance still follows RFT>SFT >ICL but their performance gaps are diminishing.
Since you can obtain an RFT model without too much effort (compared to pre-training), then the
most important thing we should do is to decrease the model’s pre-training loss. From LLaMA-7B to
LLaMAZ2-7B, it needs to add 4.2 x 10?2 FLOPs to obtain a 2.1 improvement in the RFT-U33B setting
with a 0.05 pre-training loss decrease. From LLaMA-7B to LLaMA-13B, it adds 3.6 x 10?2 FLOPs
to obtain a 2.3 improvement in the RFT-U33B setting with a 0.07 pre-training loss decrease. While
minimizing pre-training loss is expensive compared to SFT and RFT, we believe other abilities may
follow a similar pattern and better pre-training can benefit all other tasks.

E LIMITATIONS

In this paper, we miss the following parts which are very important for building math reasoning
abilities for LLMs and should be discussed in the revised version of this paper or future works.

* Pre-training on the math-related corpus. This is obviously useful shown in |[Lewkowycz
et al.| (2022)). While the pre-training loss obtained here cannot align with general domain
pre-trained models’ losses.

* We do not regress any scaling laws in this paper since many numbers are estimated and
pre-training losses, ICL prompts and SFT settings of various models may not be aligned.

F PRELIMINARY EXPERIMENTS

F.1 SELF QUERY AUGMENTATION

Through our preliminary experiments and case studies, the errors made by the fine-tuned LLMs are
partly attributed to the incorrect reasoning chains where LLMs mistakenly understand the context
information or fail to consider all the information in the queries. Although such incorrect reasoning
chains lead to wrong answers to the original queries, the reasoning chains themselves represent
reasonable logic. For example, for the query Josh decides to try flipping a house. He buys a house
for $80,000 and then puts in $50,000 in repairs. This increased the value of the house by 150%. How
much profit did he make?, a fine-tuned LLaMA model predicts The value of the house increased
by 80,000%.15=$12,000. So the house was worth 80,000+12,000=392,000. So he made a profit
of 92,000-80,000-50,000=$42,000 where the model erroneously interprets 150% as 15%, but the
reasoning chain is reasonable if we ignore the error.
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Figure 8: Results for different methods of self data augmentation. GSM. and H. represent GSM8K
and Hindsight respectively. The red dotted lines in the middle and right figures represent the results
of vanilla fine-tuning on GSMS8K.

Therefore, such wrong predictions made by the LLMs may be correct under other queries (if we
change 150% to 15% in the above example). We conduct experiments to generate queries for the
predicted reasoning chains. This is a similar idea to the hindsight experience replay
in reinforcement learning where the method is designed to deal with the sparse reward
problems by changing the original objectives for the failed samples to form samples with positive
rewards. Such an idea was recently adopted by HIR (Zhang et al., [2023)) to better align LLMs with
instructions.

Concretely, we reformat GSMS8K reversely by predicting the query given the corresponding ground-
true reasoning result and then we fine-tune a LLaMA model on the reversed task. We use this model
to generate queries on the predicted reasoning chains by a normally fine-tuned LLaMA model on
the training set of GSMS8K, formalizing a training sample for augmentation. We experiment on the
LLaMA 7B model and fine-tune models on the data mixing original and generated samples or solely
on generated samples.

The results are shown in the left subfigure in Figure[8] We can see that fine-tuning with self query
augmentation data leads to the worst results, and the performance of mixing the original data with
self query augmented data still falls short of that of the original data. The fine-tuned performance for
mathematical reasoning does not benefit from the naive idea of self query augmentation. Through
several case studies of generated data, we find that there are two major defects in the generated
data. The first one is some reasoning chains themselves are not logically reasonable, for example,
there may be some calculation errors in the reasoning chains. The second one is that the generated
query may not be suitable for a reasoning chain. The query generation model may still erroneously
interpret the information in the reasoning chains. Both defects attribute to a mediocre augmented
data quality, hence can be possible reasons for the failure of this data augmentation procedure.

F.2 SELF REVISING AUGMENTATION

We also explore improving the mathematical reasoning abilities of LLMs through revising augmen-
tation. To equip LLaMA with revising abilities, we generate a revising dataset by first sampling
K reasoning paths from a fine-tuned LLaMA model, then concatenating the query with one of the
sampled reasoning paths using a template, and finally pairing with the ground-true reasoning path
to form a training sample. We use a sampling temperature of 0.7 for generating reasoning paths.
During inference, we use the fine-tuned revising model to revise the prediction from the normally
fine-tuned model.

The results are shown in the middle subfigure of Figure [§] We can see that with K = 1 the revising
model improves the final accuracy marginally comparing 36.09% to 35.90%. Surprisingly, as we
increase K, the performances degrade. The possible defect of the revising model is that generated
samples on the training set for revising training suffer from a distribution discrepancy with generated
samples on the test set for revising inference. The sampled reasoning paths on the training set may
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have a larger lexical similarity to the ground true reasoning paths compared to those on the test set.
Therefore we try two different procedures to alleviate such an issue.

1. We use the sampled reasoning path with the largest Levenstein distance out of K sampled paths
with respect to the ground true path to form a training sample.

2. We split the train set to N folds, and fine-tune a model on each N — 1 folds and sampling
reasoning path on the left fold.

The results are shown in the middle and right subfigures in Figure[8] we can see that when leveraging
Levenstein distance for reasoning path selection, the fine-tuned revising model enjoys a performance
boost, harvesting uniformly better performance than the fine-tuning baseline across different K’s.
The results demonstrate that for the revising performance, the lexical diversity of reasoning paths
matters when constructing training samples. However, the revising performance does not benefit
from the N-fold procedure.

G EsTtiMATING FLOPS ofF SFT AND RFT

We mainly follow the notations of (Kaplan et al.,[2020) here.

Training FLOPs For each input sample of length n.;, in GSM8K dataset, we can split it into two
parts:
Netxe = NQ +ngr (H

where ng, nr denotes the length of question and generated reasoning path and answers respectively.

Clrain = 6 N2 N 2
where N, denotes the numbers of samples.

Inference FLOPs We roughly computed the FLOPs of each token during the forward pass:
Cforward(nctx) =2N + 2nlayernctxdmodel (3)

To ensure the results were more accurate and reliable, we also took into account the Key-Value (KV)
cache during the decoding procedure.

K Veache = 4nlayerd§10del )

Therefore, we obtain the FLOPs per token during the forward pass considering the KV cache.

Cromard(Metz) = 2N + 2n1ayererz dmodel — K Veache %)
= 24Nayerdaogel + 2MayerTeta Gmodel — AMayerdoogel (6)
= 2On1ayerdr2n0del + 2NayerN etz Amodel @)
~ 1.66N 4 2njayernetadmodel (8

The total inference FLOPs are computed as follows:

Ng+ng,

Crotat = N5 - [nquorward(nq) + Z X Cflorward(i)] 9

1=MNgq

where N, denotes the numbers of samples. n,,n, denotes the average length (tokens) of the user
query and generated response respectively. In GSM8K dataset, n, ~ 66 and n,. ~ 130.
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H ADDITIONAL RESULTS

We use the sampled test set (512 samples, truncated at 2,048 input length) from The Pile (Gao et al.,
2020) to calculate pre-train losses among different pre-trained language models including LLaMA
(Touvron et al.,[2023a)), LLaMA?2 (Touvron et al.|[2023b)), and Pythia (Biderman et al.| 2023).

To understand the scaling relationship in other math reasoning tasks. We conduct experiments on
the MATH (Hendrycks et al., [2021) benchmark with LLaMA and LLaMA?2 and show results in
Table[§]and Figure[I0} We find that (a) The pre-training losses are also negatively correlated to SFT
performances; (b) The model performance improves with data amount doubles.

We also conduct experiments with SFT and RFT on Pythia series models and show results in Table[9]
and Figure [0] We find that observations from our paper still hold for Pythia including (a) The pre-
training losses are negatively linear correlated to SFT performance; (b) The model performance has
a log-linear relation versus data amount; (c) RFT improves performances of Pythia series models
significantly.
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Figure 9: The performance of SFT with different amounts of supervised data on GSM8K using
Pythia and LLaMA. Pretrained losses are calculated based on The Pile.

Setting 7B 7B2 13B 13B2 33B 65B 70B2
Original Ptloss | 1.80 1.75 1.73 1.68 1.62 157 1.50
The Pile Ptloss | 1.71 1.67 1.63 1.60 154 149 147
ICL 29 25 39 39 7.1 106 135
1/32 12 06 02 0.4 00 64 10.0
1/16 30 38 24 3.6 50 7.2 10.0
1/8 24 32 28 34 64 88 10.0
1/4 34 46 50 5.8 80 92 110
172 38 50 52 6.2 94 98 126
SFT 54 6.0 6.6 88 102 11.6 14.6

Table 8: MATH accuracy on LLaMA series.
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Figure 10: The performance of SFT with different amounts of supervised data on MATH using
LLaMA. Pretrained losses are calculated based on The Pile.

Setting 410M 1B 14B 2.8B
The Pile Ptloss | 2.28  2.11 2.03 1.93
1/32 0.2 02 05 0.8
1/16 0.8 1.8 1.9 32
178 1.0 1.8 40 59
1/4 1.4 3.1 53  10.2
172 3.6 5.1 9.3 147
SFT 5.6 86 129 188
RFT-U13B 189 247 29.6 346

Table 9: GSMS8K accuracy on Pythia-v2 series.
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