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ABSTRACT

We introduce, Q-Sparse, a simple yet effective approach to training sparsely-
activated large language models (LLMs). Q-Sparse enables full sparsity of acti-
vations in LLMs which can bring significant efficiency gains in inference. This
is achieved by applying top-K sparsification to the activations and the straight-
through-estimator to the training. We also introduce Block Q-Sparse for batch
training and inference. The key results from this work are, (1) Q-Sparse can
achieve results comparable to those of baseline LLMs while being much more
efficient at inference time; (2) We present an inference-optimal scaling law for
sparsely-activated LLMs; (3) Q-Sparse is effective in different settings, including
training-from-scratch, continue-training of off-the-shelf LLMs, and finetuning; (4)
Q-Sparse works for both full-precision and 1-bit LLMs (e.g., BitNet b1.58 (Wang
et al., 2023)). Particularly, the synergy of BitNet b1.58 and Q-Sparse (can be
equipped with MoE) provides the cornerstone and a clear path to revolutionize the
efficiency, including cost and energy consumption, of future LLMs.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable performance on a wide range of natural
language processing (NLP) tasks. However, the deployment of LLMs in real-world applications
is challenging due to their high computational cost and memory footprint, especially during the
inference stage. To address this challenge, recent works (Ma et al., 2024; Wang et al., 2023; Song
et al., 2024b; Xia et al., 2023; Leviathan et al., 2023) have focused on improving the efficiency of
LLMs with various approaches, including quantization (Ma et al., 2024; Wang et al., 2023; Frantar
et al., 2023), pruning (Xia et al., 2023), distillation (Gu et al., 2023), better decoding (Leviathan
et al., 2023), and so on. One promising approach is to use sparsity to reduce the number of activated
parameters in LLMs.

Sparsity contributes two factors to the efficiency of LLMs. First, sparsity can reduce the amount of
computation of the matrix multiplication as zero elements are not computed. Second, sparsity can
reduce the amount of input/output (I/O) that transfers the parameters between the memory and the
computation units. The I/O transfer serves as the major bottleneck in the inference stage of LLMs.

One common approach to sparsity in LLMs is to use weight sparsity, which prunes the model weights
to save the computation. However, unstructured weight sparsity is difficult to parallelize in GPU
devices, while structured weight sparsity has a large impact to the accuracy of the model.

Another approach is to use activation sparsity, which reduces the number of activated elements in
the activation tensors. Activation sparsity can be achieved by using the mixture-of-experts (MoE)
mechanism (Lepikhin et al., 2021; Fedus et al., 2021), modifying the activation function (Mirzadeh
et al., 2023; Song et al., 2024b), or predicting the position to be sparsed (Liu et al., 2023). However,
these approaches do not enable full sparsity of activations in LLMs, which can limit the efficiency
gains during the inference stage. Moreover, compared to the dense models, the scaling laws for the
sparsely-activated LLMs have not been well studied.

To explore the full potential of sparsity in LLMs, we introduce Q-Sparse, a simple yet effective
approach to enable full sparsity of activations in LLMs. The major modification on LLMs is in
the linear projection (i.e., matrix multiplication). As shown in Figure 1, for each linear projection,
it has a top-K sparsification function that selects the top-K activations in the input tensor. For the
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backprogation, we use the straight through estimator to compute the gradients of the activations. We
also introduce a squared ReLU function for the feed-forward layers to further improve the sparsity of
the activations. Q-Sparse can be used with both full-precision and quantized LLMs. Furthermore,
we introduce, Block Q-Sparse, a block sparsity implementation to make Q-Sparse compatible with
batch training and inference.

To study the scaling law of sparsely-activated LLMs, we conduct a series of scaling experiments and
derive an inference-optimal scaling law for sparsely-activated LLMs. We summarize the findings
from the scaling experiments and the implications of the scaling law as below:

• The performance of the sparsely-activated models is better than the dense baselines with the
same inference compute budget (i.e., activated parameters or FLOPs).

• As the parameters N scales, the performance gap between the sparsely-activated models
and the dense baselines decreases.

• The performance of the sparsely-activated models with around 40% sparsity ratio can match
the performance of the dense baselines with the same model size and training tokens.

• Given the same inference budget Na, a sparsely-activated full-precision model with a
sparsity ratio of 45.58% (or 1.84Na parameters) can achieve the best performance. For the
1.58-bit models, the optimal sparsity ratio is 61.25%.

We also conduct experiments to evaluate the effectiveness of Q-Sparse in different settings, includ-
ing training-from-scratch, continue-training of off-the-shelf LLMs, and finetuning. We show that
Q-Sparse can achieve results comparable to those of baseline LLMs with the same training cost while
being much more efficient at inference time.

2 Q-SPARSE: FULLY SPARSELY-ACTIVATED LLMS

2.1 ARCHITECTURE

The Q-Sparse architecture is based on the Transformer architecture (Vaswani et al., 2017; Touvron
et al., 2023) with modifications to enable sparsity in the activations.

Top-K Sparsity

The Transformer architecture uses nn.Linear to perform the projection in both attention and feed-
forward layers, which can be written as:

Y = X ·WT (1)

where X ∈ RN×D is the input tensor, W ∈ RM×D is the weight tensor, and Y ∈ RN×M is the
output tensor. The nn.Linear operation is equivalent to the matrix multiplication operation.

We introduce a top-K sparsity function on top of the matrix multiplication operation. The top-K
sparsity function is defined as:

Y = (X⊙M) ·WT , M = Topk(|X|) (2)

where M ∈ RN×D is the mask tensor that indicates the top-K activations in the input tensor X in
terms of the absolute values, ⊙ is the element-wise multiplication operation, and Topk is the function
that selects the top-K elements in the tensors. To reduce the interval around zero, we re-scale the
tensor by its L2 norm after performing the top-K sparsity function.

Quantized Top-K Sparsity

Recent works (Wang et al., 2023) have shown that quantization can be used to reduce the memory
footprint and computational cost of LLMs without the loss of performance. We introduce a quantized
version of the top-K sparsity function. The quantized top-K sparsity function is defined as:

Y = (Q(X)⊙M) ·WT (3)

where Q(·) is the quantization function that quantizes the input tensor X to a 8-bit representation:

Q(X) = RoundClip(
127

γ + ϵ
X,−128, 127), γ = max(|X|) (4)
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Figure 1: Q-Sparse achieves a superior inference-optimal scaling law than the dense models. It saves
significant compute of matrix multiplication by top-K sparsification of the activations.

RoundClip(X, a, b) = min(max(round(X), a), b) (5)
where ϵ is a small constant to avoid division by zero, and γ is the maximum absolute value in the
input tensor X.

Q-Sparse can be used with both full-precision and quantized LLMs. Specifically, the quantized
version of Q-Sparse is compatible with 1-bit LLMs, such as BitNet b1.58 (Wang et al., 2023). When
using Q-Sparse with 1-bit LLMs, the quantization function is performed on the weight tensor W:

Y = (Q(X)⊙M) · Qw(W)T (6)
where Qw(·) is the absmean function that quantizes the weight tensor W to a 1.58-bit representation:

Qw(W ) = RoundClip(
W

α+ ϵ
,−1, 1), α = mean(|W|) (7)

where α is the mean absolute value in the weight tensor W.

Squared ReLU

To further improve the sparsity of the activations, we use the squared ReLU function (So et al., 2021)
for the feed-forward layers. The squared ReLU function is defined as ReLU(X)2. Following the
LLaMA architecture, we use the gated linear unit (GLU) for the feed-forward layers. The squared
ReLU function is applied with the GLU function into a ReLU2GLU function. It is defined as:

ReLU2GLU(X) = XWT
up ⊙ ReLU2(XWT

gate) (8)

Block Q-Sparse

While the top-K sparsification can be used in the single-sample mode, it is not friendly with the batch
mode for the current GPU devices. Recent work (Zhou et al., 2021; Lin et al., 2023) shows that N:M
sparsity, where N out of M consecutive elements to be zero, is more hardware friendly and can be
used in the batch mode with an optimized GPU kernel. To leverage this feature of the modern GPU
devices, we introduce Block Q-Sparse. The key idea of Block Q-Sparse is to apply the top-K sparsity
function on the activations in the block level, and the block size is set to M so that there are always
M −K zeros out of M consecutive values. The top-K sparsity function is applied to the activations
in each block independently. The block level sparsity can be used to reduce the memory footprint
and computational cost of the LLMs in the batch mode.

2.2 TRAINING

Most of the existing works (Mirzadeh et al., 2023) on training sparsely-activated models use the
vanilla back-propagation algorithm to compute the gradient through the sparsity function:

∂Y

∂X
=

∂Y

∂(X⊙M)
⊙M (9)
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Figure 2: The average magnitude of each projection’s gradient of dense baseline, Q-Sparse with and
without STE across different layers. The visualization is conducted with 300M model size on a subset
of the valid set of C4 (Raffel et al., 2019). It shows that the gradient vanishes without STE.

where M is the mask tensor that indicates the top-K activations in the input tensor X, and ⊙ is the
element-wise multiplication operation.

The vanilla back-propagation algorithm has a limitation. It zero-outs the gradients of the non-activated
elements, which can lead to the vanishing gradient problem, especially when the sparsity ratio is high.
In this work, we propose to use the straight-through estimator (Bengio et al., 2013) to back-propagate
the gradients through the sparsity function. In this way, the gradients are passed through the sparsity
function without being zeroed-out. The straight-through estimator is defined as:

∂Y

∂X
=

∂Y

∂(X⊙M)
(10)

We visualize the average l2 norm of each projection’s gradient across different layers for dense model,
Q-Sparse with and without STE. We adopt top-K as 50% for Q-Sparse. Without STE, the gradient is
much smaller at the bottom layers, while STE can preserve the magnitude of the gradients. As shown
in Figure 2, STE estimator significantly eases the issue of gradient vanishing, especially at the bottom
of the layers. We present more visualizations for each components in the Figure 8 of Appendix A.

2.3 Q-SPARSE FOR CONTINUE-TRAIN AND FINETUNING SETTINGS

Q-Sparse can be used in different settings, including training-from-scratch, continue-training, and
finetuning. In the continue-train and finetuning settings, we use the same architecture and training
procedure as in the training-from-scratch setting. The only difference is that we initialize the model
with the pre-trained weights and continue training with the sparsity function enabled.

For the pre-trained models that do not have the squared ReLU function in the feed-forward layers, we
apply the top-K sparsity function after the activated function (e.g., SiLU) in the feed-forward layers.
It can improve the sparsity of the activations without changing the model architecture.

3 SCALING LAWS

Recent work on large language models has shown that the performance of LLMs scales with the
model size and the amount of training data. Hoffmann et al. (2022) argues that the converged
performance of a dense Transformer model with N parameters follows a power-law scaling law,
which can be written as:

L(N) ≜ E +
A

Nα
(11)

where L(N) is the performance of the model with N parameters, E is the performance of the model
with infinite parameters, A is a constant, and α is the scaling exponent. Note that the number of
training tokens are fixed in this setting, which is part of the constant E.
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Figure 3: The scaling curves of the sparsely-activated models regrading to the model size given a
fixed sparsity ratio S (Left), and regrading to the sparsity ratio given a fixed model size N (Right).

In this work, we investigate the scaling law of sparsely-activated LLMs. We find that the performance
of sparsely-activated LLMs also follows a power-law scaling law, which can be written as:

L(N,S) ≜ E +
A(S)

Nα
(12)

A(S) = B + C exp (
β

1− S
) (13)

where L(N,S) is the performance of the sparsely-activated model with N parameters and a sparsity
ratio of S, and α and β are the scaling exponents.

In the following part, we will introduce how we derive the scaling law and the corresponding findings.

3.1 SCALING EXPERIMENTS AND FINDINGS

To determine the form of the scaling law of sparse-activated LLMs, we begin with a series of scaling
experiments. In the experiments, we train a series of language models with Q-Sparse of various
scales, ranging from 300M to 7B. The models are trained on the Redpajama dataset (TogetherAI,
2023). We use the Sentencepiece tokenizer from LLaMA to preprocess data. Besides Q-Sparse, we
also train the dense baselines with the same datasets and settings. More details can be found in the
Appendix B.

The observed losses of the sparsely-activated models and the dense baselines are shown in Figure 3.
We summarize the findings as below:

• The performance of the sparsely-activated models scales with the model size and the sparsity
ratio.

• Given a fixed sparsity ratio S, the performance of the sparsely-activated models follows a
power-law scaling law with regards to the model size N .

• Given a fixed parameters N , the performance of the sparsely-activated models follows an
exponential-law scaling law with regards to the sparsity ratio S.

• As the parameters N scales, the performance gap between the sparsely-activated models
and the dense baselines decreases.

According to these findings, our main hypothesis is that the performance of the sparsely-activated
models follows a combination of a power-law scaling law with regards to the model size N and an
exponential-law scaling law with regards to the sparsity ratio S.

3.2 POWER LAW IN THE MODEL SIZE N

With a fixed sparsity ratio S, the scaling law should follows Kaplan et al. (2020)’s scaling law, which
can be written as:

L(N,S) ≜ E +
A(S)

Nα(S)
(14)
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Figure 4: The inference-optimal scaling curves of the sparsely-activated models with full-precision
(Top) and 1.58-bit (Bottom) weight. It shows that a sparisty of 45.58% for full-precision models
and 61.25% for 1.58-bit models can achieve the best performance with the same inference compute
budget (i.e., activated parameters or FLOPs).

where α(S) is the scaling exponent, and the scaling factor A(S) is a function of the sparsity ratio S.
Given any model size N , the function L(N,S) should follow the Lipschitz continuity with regards
to the sparsity ratio S. Therefore, the scaling exponent α(S) should be a non-decreasing function.
Given any model size N , the function L(N,S) is increasing with the sparsity ratio S, so α(S) should
be a non-increasing function. Above all, the scaling exponent α(S) should be a constant, and the
scaling function can be written as:

L(N,S) ≜ E +
A(S)

Nα
(15)

3.3 EXPONENTIAL LAW IN THE SPARSITY RATIO S

According to the above finding, the performance of the sparsely-activated models follows an
exponential-law scaling law with regards to the sparsity ratio S. Therefore, the scaling factor
A(S) should also follow an exponential law. Besides, given any model size N , the scaling function
is increasing with the sparsity ratio S. Therefore, the scaling factor A(S) should be a non-decreasing
function. The scaling factor A(S) can be written as:

A(S) = B + C exp (
β

1− S
) (16)

where B is the scaling factor for extremely sparse LLMs, C is the scaling factor for dense LLMs,
and β is the scaling exponent of the scaling factor A(S) with regards to the sparsity ratio S.

3.4 FITTING THE PARAMETERS

We fit the parameters of the scaling law to the observed losses of the sparsely-activated models. We
use the L-BFGS algorithm (Nocedal, 1980) to minimize the Huber loss (Huber, 1992) between the
predicted and observed log loss.

min
E,B,C,β,α

∑
Runs i

Huberδ
(
log L̂(Ni, Si)− logLi

)
(17)

Following Hoffmann et al. (2022), δ is set as 10−3. We select the best fit from a grid of initialisations
around possible local optimas. E, B, C, α and β are estimated as 1.86, 0.01, 1.89, 0.10 and 0.05,
respectively.
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Figure 5: The training loss curve of Q-Sparse and the baseline with full-precision (a) and 1.58-bit (b)
weight, Block Q-Sparse. We adopt top-K as 70% for the experiments of BF16 and 1.58-bit weight,
resulting in 40% overall sparsity. For the comparison with Block Q-Sparse, the sparsity ratio is 50%
and the block size is set as 32.

3.5 DIMINISHING GAP BETWEEN SPARSELY-ACTIVATED MODELS AND DENSE BASELINES

Given the above scaling law, we can derive the performance of the sparsely-activated models and the
dense baselines with the same model size N and the same sparsity ratio S. The performance gap
between the sparsely-activated models and the dense baselines decreases as the model size N scales.
The performance gap can be written as:

L(N,S)− L(N, 0) =
A(S)

Nα(S)
− A(0)

Nα(0)
=

A(0)

Nα
(
A(S)

A(0)
− 1) (18)

Since α is a constant that satisfies α > 0, the performance gap decreases as the model size N scales.
It means that given a large enough model size N , the performance of the sparsely-activated models
can eventually match the performance of the dense baselines with the same model size.

3.6 INFERENCE-OPTIMAL SCALING LAW

The scaling law can also be transformed into a form that is dependent on the activated parameters Na,
which reflects the effective compute (i.e., FLOPs) of the model during inference:

L(Na, S) ≜ E +A(S)(
1− S

Na
)α (19)

where Na is the number of activated parameters in the model, which is equal to N × (1− S). Since
A(S) is an increasing function and (1 − S)α is a decreasing function, there exists a sparsity ratio
S∗ > 0 that minimizes the loss of the sparsely-activated models. This leads to the inference-optimal
scaling law of the sparsely-activated models:

L(Na) ≜ E +A(S∗)(
1− S∗

Na
)α (20)

It shows that the performance of the sparsely-activated models is better than the dense baselines
with the same inference compute budget. We further solve the optimal sparsity ratio S∗, finding that
S∗ ≈ 45.58%. It means that a sparsely-activated model with a sparsity ratio of 45.58% (or 1.84Na

parameters) can achieve the best performance with the same inference budget Na. We follow the
same process to estimate the inference-optimal scaling law for 1.58-bit Q-Sparse models. We find that
the optimal sparsity ratio is 61.25% (or 2.58Na parameters). Figure 4 shows the inference-optimal
scaling curves of the sparsely-activated models with full-precision and 1.58-bit weight. It shows that
with the same performance, the sparsely-activated models can achieve a significant reduction in the
number of activated parameters or FLOPs during inference.

The inference-optimal scaling law shows that the performance of the sparsely-activated models
can be optimized by adjusting the sparsity ratio S. It can be used to guide the training of the
sparsely-activated models and to optimize the performance of the models during inference.
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4 EXPERIMENTS

We conduct experiments to evaluate the effectiveness of Q-Sparse in different settings, including
training-from-scratch, continue-training of off-the-shelf LLMs, and finetuning.

4.1 TRAINING-FROM-SCRATCH

Setting We train a series of language models with Q-Sparse in both full-precision and 1.58 bits.
The models are trained with 50B tokens on the Redpajama dataset (TogetherAI, 2023). We compare
Q-Sparse with the dense baselines with the same datasets and settings.

Results The observed losses of the sparsely-activated models and the dense baselines are shown in
Figure 5a. It shows that Q-Sparse with 40% sparsity ratio can match the performance of the dense
baselines with the same model size and training tokens. The loss curves of 700M models are shown
in Figure 7a of Appendix A.

BitNet b1.58 + Q-Sparse We further evaluate the effectiveness of Q-Sparse on 1-bit LLMs. We
train a series of BitNet b1.58 models with Q-Sparse of various scales. We plot the training loss
curves of both Q-Sparse and the BitNet b1.58 baseline. Figure 5b shows that the performance of the
sparsely-activated BitNet b1.58 models is better than the dense baselines with the same inference
compute budget. It demonstrates that Q-Sparse is compatible to 1-bit LLMs and their synergy can
be used to optimize the performance of the models during inference. We present the loss curves of
700M models in Figure 7b of Appendix A.

Block Q-Sparse We evaluate the effectiveness of Block Q-Sparse. We compare it with Q-Sparse
of the same sparsity ratio. The sparsity ratio is 50%, and the block size is set to 32 (i.e., N:M=16:32).
The experiments are performed with the model sizes of 300M and 700M. The training loss curves of
Q-Sparse and Block Q-Sparse are shown in Figure 5c. We present the loss curves of 300M models in
Figure 7c of Appendix A. It shows that Block Q-Sparse has a similar convergence to Q-Sparse with
the same sparsity. It demonstrates that Block Q-Sparse can match the performance of Q-Sparse when
training from scratch.

Ablation Study of top-K Sparisty and STE To evaluate the effect of the top-K sparsity function,
we compare the performance of the sparsely-activated models with the top-K sparsity function and
the ReLU sparsity function. Moreover, we study the effect of the STE by comparing the models with
and without STE. Figure 6 illustrates the results. It shows that either removing STE or replacing
with ReLU function significantly hurt the performance. Besides, the sparsity ratio of the models
with the ReLU function decreases as the training processes. In constrast, the sparisty ratio remains
unchanged with the top-K sparisty function. As shown in Figure 9 of Appendix A, we break down
the contribution of the sparsity ratio from different components, finding that the decreasing sparisty
is mainly from the QKV projection, the gating projection and the up projection of the feed-forward
layers. This proves the superior of top-K over ReLU function.

4.2 CONTINUE-TRAINING

Setting We continue-train the Mistral 7B model (Jiang et al., 2023) for 40B tokens on the FineWeb-
Edu dataset (Lozhkov et al., 2024). We use the Sentencepiece tokenizer from Mistral to preprocess
data. We use the batch size of 4M tokens and the learning rate of 5e-5. We use the Adam optimizer
with the weight decay of 0.01. More training details can be found in Appendix B.

Results For a fair comparison, we continue-train the Mistral 7B model with the same recipe
as the dense baseline. We compare Q-Sparse with the ReLUfication (Mirzadeh et al., 2023) and
dReLU Sparsification (Song et al., 2024b) methods, which sparsify the model by changing the
activation function. Following the origin paper (Mirzadeh et al., 2023), we adopt a two-stage
training strategy that first replaces the non-ReLU activation and then adds the ReLU functions.
For the dReLU Sparsification method, we implement the dReLU sparsification method following
the origin paper (Song et al., 2024b). We evaluate these models on a range of language tasks
using EleutherAI LM Harness (Gao et al., 2024), including 25-shot ARC-Challenge (Yadav et al.,
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Figure 6: The training loss curves (Left) and the overall sparsity ratio (Right) of different sparsity
functions. All models are trained with 300M size and 50B tokens.

Table 1: The results of the continue-training for Q-Sparse and the baselines on the end tasks.

Models Activated ARC HS MMLU WG TQA Avg.

Dense Baseline 7.0B 61.8 81.4 59.8 77.5 42.7 64.6

ReLUfication (Mirzadeh et al., 2023) 5.0B 57.2 78.8 54.7 74.7 38.8 60.8
dReLU Sparsification (Song et al., 2024b) 5.4B 59.2 78.0 54.0 75.8 38.3 61.0

Q-Sparse (this work) 2.9B 59.0 79.0 55.6 74.0 41.0 61.7
3.8B 60.5 80.7 58.0 75.9 43.5 63.7

2019), 10-shot HellaSwag (Zellers et al., 2019), 5-shot Winogrande (Sakaguchi et al., 2020), 5-shot
MMLU (Hendrycks et al., 2021) and zero-shot TruthfulQA (Lin et al., 2022). Results are shown
in Table 1. It shows that Q-Sparse achieves comparable performance to the dense baseline while
being much more efficient at inference time. Moreover, Q-Sparse outperforms the ReLUfication and
dReLU Sparsification methods in terms of the performance and the sparsity ratio.

To break down the sparsity of each component in the model, we present the sparsity ratio of the query,
key, value, output, up, down, and gate tensors in Table 3 of Appendix A. It shows that Q-Sparse
achieves a higher sparsity ratio than the ReLUfication and dReLU Sparsification methods. The
sparsity ratio of the query, key, value, output, up, and down tensors is higher than 40%, and the
sparsity ratio of the gate tensor is higher than 60%. It demonstrates that Q-Sparse can achieve full
sparsity of activations in LLMs.

4.3 SUPERVISED FINETUNING

Setting We finetune the base model of Mistral 7B (Jiang et al., 2023) and Qwen1.5 7B (Bai et al.,
2023) on Open-Orca dataset (Lian et al., 2023) for both the dense baselines and Q-Sparse. The batch
size is set as 128. The learning rates are selected from {3e-6, 5e-6, 7e-6}. All models are trained with
1 epoch for a fair comparison. The hyper-parameters are detailed in Appendix B. The evaluation is
consistent with the experiments shown in Section 4.2.

Results The results are shown in Table 2. It shows that Q-Sparse with 3.6B activated parameters
achieves significant better performance than the Qwen1.5 4B dense model. Moreover, Q-Sparse with
around 4B activated parameters achieves comparable performance to the Mistral 7B model and the
Qwen1.5 7B model. It demonstrates that Q-Sparse can be used to finetune a dense pretrained model
to a much more efficient sparse model with almost no loss at accuracy.

4.4 EVALUATION OF BLOCK Q-SPARSE

Setting We finetune the base model of Mistral 7B (Jiang et al., 2023) and Qwen1.5 7B (Bai et al.,
2023) on Open-Orca dataset (Lian et al., 2023) for Block Q-Sparse. The block size is set as 32,

9
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Table 2: The results of the supervised fine-tuning for Q-Sparse, Block Q-Sparse and the dense
baselines on the end tasks.

Models Activated ARC HS MMLU WG TQA Avg.

Qwen1.5-4B 3.2B 42.8 68.2 53.6 67.1 47.9 55.9
Qwen1.5-7B 6.5B 47.7 74.6 61.5 71.4 50.7 61.2

Block Q-Sparse 3.6B 47.0 71.1 56.7 67.6 50.5 58.6
4.1B 47.2 73.1 59.7 69.0 49.7 59.7

Q-Sparse 3.6B 46.3 72.6 59.1 67.5 50.3 59.2
4.1B 47.9 73.2 59.2 69.4 51.1 60.1

Mistral-7B 7.0B 62.5 82.6 61.2 77.6 50.3 66.8

Block Q-Sparse 3.8B 59.7 80.6 58.7 75.5 50.3 65.0
4.3B 60.0 81.4 59.9 76.8 51.3 65.9

Q-Sparse 3.8B 60.5 81.5 60.0 77.1 50.5 65.9
4.3B 61.4 81.6 60.6 77.6 50.7 66.4

which is recommended by the previous work (Lin et al., 2023) on N:M sparse kernels. The other
hyper-parameters are consistent with the experiments shown in Section 4.3.

Results Table 2 summarizes the results for Block Q-Sparse. Similar to the results of Q-Sparse,
Block Q-Sparse achieves comparable performance to the dense baselines with much fewer activated
parameters. It demonstrates that Block Q-Sparse can be used for a much more efficient sparse model
while supporting the batch mode.

5 RELATED WORK

The magnitude of the inputs to the linear projections in LLMs often follow a long-tailed distribution,
thus activation sparsity is a natural approach to reduce the inference cost while maintaining com-
petitive performance. Liu et al. (2023) showed that the activation sparsity exists, can be predicted
with low-cost algorithms. Mirzadeh et al. (2023) demonstrated that compared with widely-adopted
SiLU function, using ReLU function has a negligible impact on convergence and performance while
reducing computation and weight transfer. They further inserted the ReLU function before each linear
projection to boost the overall sparsity of LLMs. PowerInfer (Song et al., 2023) uses the sparsity of
down projection in feed-forward layers to design a GPU-CPU hybrid inference engine: hot-activated
neurons are preloaded onto the GPU, while cold neurons are computed on the CPU. It reduces GPU
memory demands and CPU-GPU data transfers. TurboSparse (Song et al., 2024b) proposed dReLU
activation function to further improve the performance and activation sparsity. ProSparse (Song et al.,
2024a) adopted progressive sparsity regularization to smoothly increase the sparsity, which mitigates
performance degradation from radical shifts in activation distributions.

6 CONCLUSION AND FUTURE WORK

We introduce Q-Sparse, a simple yet effective approach to enable full activation sparsity in LLMs.
Q-Sparse can achieve comparable performance to dense LLMs while being much more efficient at
inference time. We present an inference-optimal scaling law for sparsely-activated LLMs. Q-Sparse
is effective in different settings, including pre-training, continue-training and fine-tuning. More
importantly, Q-Sparse is orthogonal and can be seamlessly integrated with MoE, and works for 1-bit
LLMs (e.g., BitNet b1.58 (Wang et al., 2023)).

Recent works (Song et al., 2023; Liu et al., 2024) have shown promising end-to-end speedup with
activation sparsity. The custom kernel for Q-Sparse can be easily implemented since Q-Sparse adopts
the token-level sparsity. We leave this as a part of future work. In addition, we would like to scale up
the training of 1-bit LLMs (i.e., BitNet b1.58) with fully sparse activations (i.e., Q-Sparse) in terms
of both model size and training tokens. Furthermore, we will incorporate YOCO (Sun et al., 2024) to
address the issue of KV cache for LLM inference.
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7 ETHICS STATEMENT

In this work, we explore to use activation sparsity to improve the efficiency of large language models.
Like most of the existing pre-trained models, our method may have some potential bias originating
from the pre-training data.

8 REPRODUCIBILITY STATEMENT

Q-Sparse is simple and can be easily implemented for the existing architecture of large language
models. We present details about Q-Sparse in Section 2, including top-K sparsification to the
activations and the straight-through-estimator to the training. Besides, we provide the detailed
hyper-parameters in Appendix B. The code will be released for reproducibility.
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A MORE EXPERIMENTS

In this section, we present more details about the experiments shown in Section 4. Table 3 shows the
sparsity of each component of Q-Sparse and the baselines. Figure 7a and Figure 7b demonstrates that
Q-Sparse achieve the similar convergence compared with the dense baseline, and can be used for the
training of BitNet b1.58. Figure 7c presents the training loss curves of Q-Sparse and Block Q-Sparse.

We present the gradient’s magnitude of each component for the dense baseline, Q-Sparse with and
without STE estimator. As shown in Figure 8, STE estimator significantly eases the issue of gradient
vanishing, especially at the bottom of the layers.
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Figure 7: The training loss curve of Q-Sparse and the baseline with full-precision (a) and 1.58-bit (b)
weight, Block Q-Sparse. We adopt top-K as 70% for the experiments of BF16 and 1.58-bit weight,
resulting in 40% overall sparsity. For the comparison with Block Q-Sparse, the sparsity ratio is 50%
and the block size is set as 32.
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Figure 8: The gradient magnitude of each linear projection of dense baseline, Q-Sparse with and
without STE estimator across different layers.
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Figure 9: The sparsity ratio of each model’s component of different sparsity functions.

Models Activated QKV Out Up Gate Down Overall

Dense Baseline 7.0B 0.0 0.0 0.0 0.0 0.0 0.0

ReLUfication (Mirzadeh et al., 2023) 5.0B 12.3 0.0 10.3 10.3 79.3 28.3
dReLU Sparsification (Song et al., 2024b) 5.4B 0.1 0.0 0.1 0.1 85.5 23.0

Q-Sparse (this work) 2.9B 51.4 50.0 50.0 50.0 80.0 58.2
3.8B 42.0 40.0 40.0 40.0 60.4 45.7

Table 3: The activated parameters and the sparsity ratio of the continue-training for Q-Sparse and the
baselines on the test set of Wikitext2.

Size Hidden Size GLU Size #Heads #Layers Seq Length
300M 1024 2730 16 24 2048
700M 1536 4096 24 24 2048
1.3B 2048 5460 32 24 2048
7B 4096 11008 32 32 2048

Table 4: Model configurations for the scaling experiments of both BitNet b1.58 and LLaMA LLM
with Q-Sparse.

Model Size Learning Rate Weight Decay Batch Size Adam β

BitNet b1.58

300M 1.8× 10−3 → 1.5× 10−3 0.1 → 0 0.5M (0.9, 0.95)
700M 1.5× 10−3 → 1× 10−3 0.1 → 0 0.5M (0.9, 0.95)
1.3B 1.2× 10−3 → 8× 10−4 0.1 → 0 0.5M (0.9, 0.95)
7B 1× 10−3 → 6× 10−4 0.1 → 0 0.5M (0.9, 0.95)

LLaMA LLM

300M 6.0× 10−4 0.1 0.5M (0.9, 0.95)
700M 2.5× 10−4 0.1 0.5M (0.9, 0.95)
1.3B 2.0× 10−4 0.1 0.5M (0.9, 0.95)
7B 1.5× 10−4 0.1 0.5M (0.9, 0.95)

Table 5: Hyper-parameters for the scaling experiments of both BitNet b1.58 and LLaMA LLM with
Q-Sparse.
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Hyperparameters Value
Training updates 10K
Tokens per sample 4M
Adam β (0.9, 0.95)
Learning rate 5e-5
End learning rate 1e-6
Learning rate schedule Polynomial decay
Warmup updates 375

Gradient clipping 2.0
Dropout ✗
Attention dropout ✗
Weight decay 0.01

Table 6: Hyper-parameters for the continue-training of Mistral 7B with Q-Sparse on Findweb Edu
dataset.

Hyperparameters Value
Training epoch 1
Batch Size 128
Adam β (0.9, 0.95)
Learning rate {3e-6, 5e-6, 7e-6}
Learning rate schedule Cosine decay
Warmup ratio 0.03

Dropout ✗
Attention dropout ✗
Weight decay ✗

Table 7: Hyper-parameters for the supervised fine-tuning of Mistral 7B and Qwen-1.5 7B with
Q-Sparse and Block Q-Sparse on OpenOrca dataset.
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