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I. MOTIVATION

The need to train new workers effectively and upskill the
existing workforce is a challenge faced by almost every indus-
try across the globe. The healthcare industry, in particular, is
confronting a crisis. The World Health Organization (WHO)
projects a shortage of 10 million healthcare workers by 2030
[1]. Although no country is exempt from this growing problem,
the greatest gaps are found in countries in Africa, Southeast
Asia, the Mediterranean Region, and parts of Latin America
[2]. This problem is further compounded by workers leaving
their home countries to pursue opportunities elsewhere. A
shortage of experienced healthcare workers and faculty to
teach is a limiting factor that leads to enrollment limitations
[3]. To protect the health of the world’s population, we
must investigate transformative solutions to achieve efficient,
resilient, and sustainable local and global healthcare systems.

Recognizing this pressing need, I create robotic teachers
that assist human learners in the acquisition of new skills,
with applications primarily in healthcare.

II. CURRENT AND PAST WORK

My work has demonstrated the richness of interesting re-
search questions that arise from the area of skill acquisition as
well as the intellectual, technical, and societal contributions.

A. Cognitive Modeling for Personalized Explanations

Research Gap: Work in explainable AI (XAI) [4, 5, 6, 7]
primarily uses machine learning measures such as the Q-value
or Shapley value to generate explanations, which overlook
human factors such as mental modeling. However, creating
a computational model of humans that accurately captures
their cognitive processes is extremely challenging [8]. Methods
like Inverse Reinforcement Learning (IRL) require a large
number of user inputs, which is not feasible in real-world
applications [9, 10, 11, 12].

Contribution: My work, AI TEACHER [13] focused on
generating explanations for human users of autonomous
robots. It was the first to incorporate interactivity in XAI
and to address individual users’ confusion. AI TEACHER
creates a Bayesian-Theory-of-Mind probabilistic model of the
human user then algorithmically generates explanations for
the user by estimating their learning curve. AI TEACHER
uses an interactive user interface that enables users to ask
specific questions regarding a robot’s behavior. To further
capture individual user’s experience and prior knowledge,

PERSONALIZED POLICY SUMMARIZATION (PPS) [14] pro-
posed a Dirichlet-based model that can quickly learn the user’s
mental model through a few questions. PPS provided the first
solution to algorithmically evaluate a user’s knowledge of a
robot policy online and computationally generate personalized
explanations. This is achieved through rigorous mathematical
modeling, entropy-based question selection, and robust online
explanation generation. Human experiments showed that learn-
ers performed 32% better with my methods and found my
approach more engaging (p<0.05) than competing algorithms.

B. Virtual + Physical Robot Demonstration

Research Gap: XAI work relies on virtual methods to
demonstrate explanations,e.g., figures or animations. Virtual
systems provide demonstrations quickly but are limited by the
fidelity of the simulation systems. Work in robotics uses phys-
ical systems but they are resource- and time-intensive [15, 16].

Contribution: I developed a hybrid system that consisted of
virtual and physical robots [17]. Users used the virtual robot to
gain a quick understanding of the robot’s behavior in perfect
settings, then switched to the physical robot to learn the robot’s
behavior in more general, real-world settings. While this work
demonstrated the benefits of both virtual and physical systems,
the physical robot demonstration still posed challenges in cost
and time. Thus, my team created STOREE [18], a virtual
system that includes real-world scenarios. Experiment results
indicated statistically significant improvement in learner per-
formance (p<0.001) using our approach.

C. Intelligent Robot Tutor for Nursing Education

Research Gap: Automated skill evaluation is a long-
standing research question in Intelligent Tutoring Systems
(ITS) and related fields such as medical robots. The biggest
challenge lies in extending methods such as Knowledge Trac-
ing from discrete observation (e.g., math questions) to long-
horizon and continuous observations (e.g., surgery) [19, 20].

Contribution: To observe a learner’s movements, I used
deep-learning-based computer vision methods. I collaborated
with Houston Methodist Hospital to develop ASTRID [21], a
robotic tutoring system for nursing students. ASTRID tracks
a nursing student’s body and hand positions (Fig.1-left) and
alerts the student if a mistake has been detected in real-time
(Fig.1-middle). After the practice session, ASTRID provides
the student with a summary of their performance, as well
as screenshots of their mistakes to help the nursing student



Fig. 1. Nurses practicing with the robotic tutor in a training environment. The tutor offers real-time guidance, interventions, and post-practice feedback.

quickly review the practice (Fig.1-right). My system also
creates realistic scenarios through physical robot intervention
to help nursing students prepare for real-life practices.

ASTRID is the first robotic tutor for nursing educa-
tion. To understand the nursing discipline, I attended nurs-
ing classes, observed on hospital floors, and worked closely
with diverse stakeholders – nursing faculty, students, nurses,
nursing scientists, and hospital executives. My effort was com-
mended by both computer science and nursing communities,
and led to successful cross-disciplinary and cross-institution
collaboration.

III. FUTURE DIRECTIONS

I am interested in developing human-centered robotic sys-
tems that assist workers in acquiring new skills. I plan to
achieve this goal by investigating the three research threads
outlined in this section, ranging from algorithmic advances to
real-world deployment.

A. Extend XAI to Diverse Task Models

Research Gap: In existing XAI literature, tasks are most
commonly represented using Markovian models or neural net-
works. However, many human tasks, like those in healthcare,
may not be best represented using these models. How to extend
existing XAI methods to explain diverse task models is an
open and interesting research question.

Proposal: First, we need to understand how humans repre-
sent tasks. In healthcare, step-by-step checklists are frequently
used. However, converting checklists into computational mod-
els is not trivial because steps in checklists include complex
environment observations, states of medical tools, and human-
object interaction. Some steps are composed of multiple ac-
tions (e.g., use sterile techniques to open the dressing kit) –
sterile techniques are not specified and may vary based on the
tasks and environment. To explain tasks that involve compli-
cated environmental observations and human-object interac-
tions, I will first extend existing task models in robotics, such
as Planning Domain Definition Language (PDDL) [22, 23, 24]
and Hierarchical Task Networks (HTN) [25], as useful starting
points. In the long run, I will investigate novel techniques that
capture the diversity in healthcare tasks and hospital-specific
practices. I will explore the use of Large Language Models
(LLM) to enable healthcare experts to translate their domain
knowledge into robot-interpretable computational models, and

then generate high-quality explanations. Leveraging the bene-
fits of personalized learning, these explanations will be tailored
to individual learners.

B. Automate Skill Evaluation

Research Gap: Existing Knowledge Tracing methods, tra-
ditionally used for discrete observations such as multiple
choices, struggle with continuous observations. Unlike discrete
domains where the observation-to-skill mapping is relatively
straightforward, evidence of skill mastery in continuous, real-
world domains is implicit and largely depends on the context.

Proposal: To tackle this fundamental question, it is im-
portant to look at how human experts evaluate skills in such
domains. For rule-based skills, such as sterile techniques, we
can track the number of times a student breaks each rule
using multimodal data – vision, language, and interaction.
For knowledge-based skills that depend on context, such as
treatment for dropping blood sugar levels, I propose to use
physical robot intervention to create realistic scenarios for
students to practice. Simulating realistic scenarios is a common
practice that experienced nurses use to train new nurses but
it varies from nurse to nurse and from hospital to hospital. A
standardized simulation can be realized through robot teachers.
I also propose to extend existing methods to create new
Knowledge Tracing methods for broad real-world domains.

C. Real-world Implementation and Societal Impact

Challenges: Implementing robots in hospitals poses signif-
icant challenges. On the technical side, hospital environments
are extremely complex. On the non-technical side, patient
privacy, data security, and legal concerns are important con-
siderations.

Proposal: To start, I will look for local collaborators who
oversee education programs in health-related fields, such as
nursing schools. I will build robot teachers to be used in
simulation labs and classrooms for training purposes. Over
time I will expand my systems to be used for orientation,
internship, quarterly skill checkoffs, and retraining. At large
hospitals, thousands of nurses go through training and evalua-
tion each year. This process requires a large amount of human
effort and financial resources. I will collaborate with hospitals
to automate the training and evaluation processes. As the
leader in this research area, I will work with international
collaborators and lead a global movement to produce a
sustainable healthcare workforce.
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