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Abstract

Few-shot font generation (FFG) aims to learn the target style from a limited number
of reference glyphs and generate the remaining glyphs in the target font. Previous
works focus on disentangling the content and style features of glyphs, combining
the content features of the source glyph with the style features of the reference
glyph to generate new glyphs. However, the disentanglement is challenging due to
the complexity of glyphs, often resulting in glyphs that are influenced by the style
of the source glyph and prone to artifacts. We propose IF-Font, a novel paradigm
which incorporates Ideographic Description Sequence (IDS) instead of the source
glyph to control the semantics of generated glyphs. To achieve this, we quantize
the reference glyphs into tokens, and model the token distribution of target glyphs
using corresponding IDS and reference tokens. The proposed method excels in
synthesizing glyphs with neat and correct strokes, and enables the creation of new
glyphs based on provided IDS. Extensive experiments demonstrate that our method
greatly outperforms state-of-the-art methods in both one-shot and few-shot settings,
particularly when the target styles differ significantly from the training font styles.
The code is available at https://github.com/Stareven233/IF-Font.
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Figure 1: Comparison of two font generation paradigms. Left: The style-content disentangling
paradigm. It assumes that a glyph can be decomposed into two distinct attributes: content and style.
Right: The proposed paradigm. We first autoregressively predict the target tokens and decode them
with a VQ decoder. Orange boxes show the main difference between the two paradigms.
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1 Introduction

At the heart of font generation lies the extraction of styles from some reference glyphs of a certain
font, and generate the remaining glyphs of this font. Some languages, such as Chinese, Japanese,
and Korean, have a large number of characters and intricate glyph structures. Font generation can
significantly reduce the labor intensity of font designers and support tasks like handwriting imitation,
ancient book restoration, and internationalization of film and television productions.

EMD [58] and SA-VAE [44] are based on the belief that the target glyph can be generated by
integrating the content features of the source glyph with the style features of the reference glyph,
as illustrated in Fig. 1 (left). The majority of subsequent works [53, 38, 47, 25, 50] continues this
paradigm, but this makes font generation a sub-task of image-to-image translation, where the source
glyph is morphed to match the style of the reference glyphs, rather than being truly “generated”.
Due to the complex structure of glyphs, achieving a distinct boundary between style and content
features requires considerable effort. Consequently, glyphs produced through the disentangling
strategy typically maintain similar stroke thickness to the reference glyph but align more closely with
the content font regarding spatial structure, size, and inclination.

To this end, DG-Font [54] incorporates deformable convolution. Diff-Font [15] integrate diffusion
process to improve the network’s learning capabilities. CF-Font [50] proposes content fusion.
Additionally, several approaches [38, 47, 25, 30] combine fine-grained prior information such as
strokes and components, to further enhance generation quality. These methods essentially follow
the content-style disentanglement paradigm, in scenarios where the content font differs substantially
from the target font, the resulting glyphs are susceptible to artifacts such as missing strokes, blur, and
smudge.

We abandon the source glyphs in favor of Ideographic Description Sequence (IDS) to convey content
information. It is based on a simple fact: without disentangling features, there is no risk of incomplete
disentanglement. Consequently, font generation is reframed as sequence prediction task, where
the objective is to generate the tokens of the target glyph based on the given IDS and reference
glyphs. This approach mitigates the impact of source glyphs on the outputs and diminishes artifacts
by leveraging the prior knowledge embedded in the quantized codebook. The users are allowed to
formulate IDSs to create non-existing Chinese characters, such as kokuji2 (Japanese-invented Chinese
characters), provided that the corresponding structures and components have been learned during
training. This endows the model with certain cross-linguistic capabilities. We refer to this method
as Ideographic Description Sequence-Following Font Generation, or IF-Font. In summary, the key
contributions of this paper are as follows:

• We propose IF-Font, which abandons the previous content-style disentanglement paradigm
and generates glyphs through next-token prediction.

• We devise a novel IDS Hierarchical Analysis (IHA) module that analyzes the spatial struc-
tures and components of Chinese characters. It allows our decoder flexibly control the
generated content with the encoded semantic features.

• Leveraging corresponding IDSs, we design the Structure-Style Aggregation (SSA) block to
extract and efficiently aggregate the style features of reference glyphs.

2 Related Works

Image-to-image translation Image-to-image translation (I2I) aims to learn a mapping from a
source domain to a target domain, requiring the transformation of images in the source domain into
those in the reference style’s target domain while preserving their content. Pix2Pix [21] is the first
I2I method that trains GANs [13] using paired data. CycleGAN [60] achieves unsupervised training
through cycle consistency loss, although it is limited to transformations between two domains. UNIT
[29] enforces the latent codes of images from two distinct domains to be identical, while employing
separate generators for images in each domain. This process embodies the concept of disentanglement.
MUNIT [19] further refines UNIT’s latent code into content and style codes. Multimodal image
translation can be achieved by combining the content code with different style codes.

2https://www.sljfaq.org/afaq/kokuji-list.html
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While applying an image-to-image translation framework for font generation is currently the main-
stream approach, we believe this to be inappropriate. Unlike ordinary images, the boundaries between
content and style in glyphs are ambiguous. For example, although handwriting will certainly differ
when the same characters are written by different writers, their semantic meanings remain unchanged.
Given that glyph features are challenging to disentangle, we utilize style-neutral IDSs to determine
characters, thus avoiding any influence on the styles of results due to insufficient disentanglement of
content glyphs.

Few-shot font generation Few-shot learning [12] represents the prevailing research focus in font
generation, aiming to simulate the target style with just a handful of reference glyphs. Font generation
methods fall into two categories based on their utilization of implicit structural information within
glyphs. Methods treating glyphs as general images possess broader applicability, enabling generation
across various languages. Conversely, methods leveraging structural information typically yield
higher quality outputs but are confined to specific language.

Among the methods that do not incorporate structural information, EMD [58] stands out as the earliest
attempt to disentangle glyphs into content and style features. DG-Font [54] employs deformable
convolution [7] to capture the glyph deformations. FontRL [31] uses reinforcement learning [45] to
draw the skeleton of Chinese characters. FontDiffuser [55] models the font generation task as a noise-
to-denoise paradigm. Shamir et al. [42] explores a parametric representation of oriental alphabets,
which can elegantly balance glyph quality and compression. In vector font generation, Deepvecfont
[51] exhaustively exploit the dual-modality information (raster images and draw-command sequences)
of fonts to synthesize vector glyphs. CLIPFont [43] controls the desired font style through text
description rather than relying on style reference images.

In terms of methods that incorporate structural information, SA-VAE [44] utilizes the radicals and
spatial structures of Chinese characters. CalliGAN [53] adopts the Zi2Zi framework [48] and fully
decompose Chinese characters into sequences of components. SC-Font [23] further decomposes
Chinese characters into stroke granularity. DM-Font [4] proposes dual memory to update component
features continuously. LF-Font [38] represents component-wise style through low-rank matrix
factorization [3]. MX-Font [37] automatically extracts the features through multiple localized experts.
FS-Font [47] demands that reference glyphs include all components of the target glyph, otherwise
may result in a degradation of generation quality. CG-GAN [25] employs GRU [6] and attention
mechanism to predict component sequences. XMP-Font [30] performs multimodal pre-training
on Chinese character strokes and glyphs data. Most of the above methods are constrained by the
content-style disentanglement paradigm. They often neglect the presence of Ideographic Description
Character (IDC) which refers to the spatial structure of Chinese characters, suffering from artifacts
and inconsistent styles.

Vector quantized generative models Vector Quantization (VQ) typically follows a two-stage
training scheme. Initially, it employs a codebook to record and update vectors, converting them from
a continuous feature space to a discrete latent space. Subsequently, it models the distribution of these
quantized vectors with a decoder to predict tokens, which are the codebook indices, and then restores
the tokens to a image.

VQ-VAE [35] is the first to incorporate quantization into the variational autoencoder (VAE) [24]
framework. VQ-VAE2 [41] performs multi-scale quantization and adopts rejection sampling [1]
VQGAN [9] acquires the codebook with the help of GAN [13] and employs Transformer [49] to
replace the PixelCNN [34] used by VQ-VAE [35]. RQ-VAE [26] proposes a residual quantizer. BEiT
[2] performs masked image modeling (MIM) on the patch view with the supervision of visual tokens.
MaskGIT [5] directly models visual tokens and proposes parallel decoding. MAGE [27] is similar to
MaskGIT [5], but introduces ViT [8] and contrastive learning [14]. DQ-VAE [18] further encodes
images with variable-length codes.

Since quantization is equivalent to tokenizing images, many methods attempt to enable multimodal
generation. The dVAE proposed by DALL-E [40] relaxes the discrete sampling problem utilizing
Gumbel-Softmax [33, 22], outputing the probability distribution of codebook codes. SEED [11]
designed a Causal Q-Former to extract image embeddings and quantize them. LQAE [28] trains
VQ-VAE [35] to quantize the image into the frozen LLM codebook space directly. SPAE [56]
introduces multi-layer and coarse-to-fine pyramid quantization and semantic guidance with CLIP

3



[39]. V2L [61] further proposes global and local quantizers. Given the absence of a pre-trained model
tailored for IDS, we directly concatenate visual tokens with IDS tokens to performed autoregression.

3 Method
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Figure 2: Overview of our proposed method. The overall framework mainly consists of three parts:
IDS Hierarchical Analysis module Eι, Structure-Style Aggregation block Er, and a decoder D.

As shown in Fig. 2, given a target character cy, reference characters Cr = {cir}ki=1 and reference
glyphs Gr = {gir}ki=1, the goal of our framework is to generate a glyph ĝy that conforms to the
semantics of cy and has a style consistent with Gr. To achieve this objective, we analyze cy with
IHA to derive its associated IDS ιy, which is then encoded as a semantic feature fι. Likewise, we
can obtain the IDS Ir = {ιir}ki=1 corresponding to Cr. Following this, we employ the similarity
module Esim to assess the relationship between ιy and Ir. Combined with fι and the output of Esim,
the features F̄r corresponding to Gr are fused into the final style feature fr in the SSA block. ιy
is reshaped as initial tokens t<0, which is fed into the decoder D along with fr for autoregressive
modeling. Finally, the predicted glyph tokens t̂y are decoded with the pre-trained VQGAN to obtain
the generated glyph ĝy .

3.1 IDS Hierarchical Analysis

A simple alternative to using a source glyph as input is to directly employ the character itself to
control the semantics of the output. However, considering the vast number of characters in Chinese,
this approach proves to be impractical due to its expensive cost. Moreover, it overlooks the structural
intricacies of characters.

Ideograph Description Sequence is a structural description grammar for Chinese characters defined by
the Unicode Standard, which consists of description characters and basic components (mainly Chinese
characters) through a prefix notation. Decomposing Chinese characters into their corresponding IDSs
can notably streamline the vocabulary, allowing characters with similar structures or components to
share common features.

However, a Chinese character may have multiple equivalent IDSs. Many Chinese characters have a
top-bottom or left-right structure, the IDCs follows a long-tail distribution, presenting challenges for
model training. Fortunately, the left-middle-right structure of Chinese characters can be equivalently
represented by two left-right structures. Similarly, the top-middle-bottom structure equals two
top-bottom structures. The examples can be found in Fig. 3.

Based on the above observation, we employ a IDS Hierarchical Analysis (IHA) module. Instead
of rigidly querying the decomposition table when determining the IDS of a character, we examine
whether the character follows a left-middle-right or top-middle-bottom structure. Subsequently, we
construct multiple equivalent IDSs for the same character through random selection. To summarize,
cy and Cr are initially decomposed into ιy and Ir respectively. In the IDS encoder, ιy is padded to
the maximum sequence length lI and encoded into the associated semantic feature fι ∈ Rl×c.
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3.2 Structure-Style Aggregation

Many previous methods [55, 10, 59, 25, 30, 54] overlook interactions between reference and target
characters during the extraction of reference styles, resulting in a lack of relevance in the extracted
features. The more closely the reference character resembles the target character, the more effortlessly
the generation process can preserve the style. Ideally, employing the target glyph itself as the
reference, known as self-reconstruction, should yield the most effective output. Although FS-Font
[47] endeavors to ensure that the reference characters cover all components of the target character, its
implementation hinges on predefined content-reference mapping, which may limit its adaptability. To
address this issue, we propose a Structure-Style Aggregation (SSA) block, as shown in Fig. 2. We
convert the reference glyph Gr into the latent space of VQGAN and encode it one by one into the
corresponding intermediate features F̄r = {f̄ i

r ∈ Rh·w×c}ki=1. The similarity module Esim evaluates
the resemblance between each reference IDS Ir and the target IDS ιy , considering whether they share
identical structures or components. It produces a set of similarity weights Sim = {simi ∈ R1}ki=1,
which can guide the subsequent feature fusion process. The fusion module Efuse consists of two
branches: global and local style feature aggregation, as shown in Fig. 4. The global features mainly
focus on the glyph layout, stroke thickness, and inclination, which can be obtained by merging the
coarse style features F̄r with the similarity weight Sim obtained in the previous step:

frg = softmax(Sim) F̄r ∈ Rh·w×c. (1)

While local features are more concerned with the strokes, such as stroke length, stroke edge, and
other nuances, we adopt cross-attention to gather the required style feature according to the needs of
the target character:

F ′
s = flatten2(F̄r) ∈ Rk·h·w×c, Q = LayerNorm(Lq(fι)) ∈ Rl×c,

K = LayerNorm(Lk(F
′
s)) ∈ Rk·h·w×c, V = Lv(F

′
s) ∈ Rk·h·w×c,

A = dropout(
QKT

√
c

) ∈ Rl×k·h·w, frl = softmax(A)V ∈ Rl×c,

(2)

where flatten2(·) denotes flattening the first two dimensions of the feature, and Lq,Lk,Lv are linear
projections, and LayerNorm(·) denotes layer normalization. In Eq. 3, we obtain the aggregated style
feature based on Eq. 1 and Eq. 2, where ◦ denotes concatenation operator:

fr = LayerNorm (frg ◦ frl) . (3)

3.3 Style Contrast Enhancement

There are some strategies to maintain style consistency: integrating consistency loss [59, 25], in-
troducing a discriminator to determine the generated style [25, 47, 36], or treating the extracted
style feature as a variable for further optimization [50]. These approaches are indeed beneficial for
improving the generation quality, but they may be inflexible or introduce additional parameters.

In this paper, we propose a streamlined approach named the Style Contrast Enhancement (SCE)
module, which promotes the proximity of representations for the same style and the distance between
representations for different styles. We apply a linear projection to the style feature fr, resulting in a
contrastive feature e = MLP (fr).

In one batch, we denote the indices of contrastive features corresponding to all samples as E∗ =
{i ∈ N | 0 ≤ i < 2N}, where N represents the batch size. The dimensionality of E∗ is double the

5



batch size N due to our utilization of a momentum encoder [16]. Each sample xa within the batch
undergoes processing by both the encoder and the momentum encoder, yielding two outputs that
serve as positive pairs. The negative sample set is defined as E− = {i ∈ E∗ | s(xi) ̸= s(xa)}, while
the positive sample set is E+ = {i ∈ E∗ | i ̸= a, s(xi) = s(xa)}, where s(·) denotes the operator
used to retrieve the corresponding style. The contrastive loss can be calculated as follows:

Lcl = − 1

2N

∑
a∈E∗

log

∑
p∈E+

exp(eTa ep/τ)∑
p∈E+

exp(eTa ep/τ) +
∑

n∈E−
exp(eTa en/τ)

. (4)

3.4 Generation

The decoder D is provided with both semantic feature fι and style feature fr. It treats fι as the initial
tokens t<0 = fι, and then predicts the distribution of the next token autoregressively as p(ti | t<i, fr).
Each newly predicted token is appended to the previous tokens for the subsequent iteration, it
continues until all tokens are predicted. The likelihood of the entire sequence can be calculated as∏lT−1

i=0 p(ti | t<i, fr). There are two ways for incorporating fr. The most straightforward approach
involves using fr as initial tokens, represented by t<0 = fι ◦ fr, akin to fι. These tokens participate
in each forward pass, relying on the self-attention mechanism to extract and integrate features.

However, it is only practical for low-resolution scenarios. Viewing fr as tokens may lead to exces-
sively long sequences, requiring a balance between computational efficiency and generation quality.
To address this challenge, we incorporate fr into each block of the decoder D via cross-attention.
The tokens act as queries to align with the corresponding style features. t<lT denotes all the predicted
tokens, from which t<0 is removed to get the glyph tokens t̂y . The objective in Eq. 5 is to maximize
the log-likelihood of the token sequence.

Lsq = − log(

lT−1∏
i=0

p(ti | t<i, fr)), (5)

Finally, the model can be trained according to the objective in Eq. 6.
Ltotal = Lsq + λclLcl, (6)

where λcl controls the weight of contrastive loss, cf. Eq. 4, we set λcl = 0.5 in our experiments.

4 Experiments

4.1 Dataset and Evaluation Metrics Table 1: 12 IDCs used in this paper.

IDC Structure Example (Char:IDS)
⿰ left-right 鸿:⿰江鸟, 厶:⿰𠃋丶
⿱ top-bottom 惹:⿱若心, 主:⿱丶王
⿲ left-middle-right 鸿:⿲氵工鸟, 小:⿲㇒亅丶
⿳ top-middle-bottom 惹:⿳艹右心, 叁:⿳厶大三
⿴ enclosed-surrounding 回:⿴囗口, 叉:⿴又丶
⿵ left-top-right-surrounding 闪:⿵门人, 太:⿵大丶
⿶ left-bottom-right-surrounding 山:⿶凵丨, 义:⿶乂丶
⿷ top-left-bottom-surrounding 匠:⿷匚斤, 兔:^⿷免丶
⿸ top-left-surrounding 友:⿸𠂇又, 厌:⿸厂犬
⿹ top-right-surrounding 乃:⿹𠄎丿, 勺:⿹勹丶
⿺ left-bottom-surrounding 边:⿺辶力, 犬:⿺大丶
⿻ overlaying 平:⿻干丷, 丸:⿻九丶

Datasets We gathered 464 fonts from the In-
ternet, covering diverse categories like printed,
handwritten, and artistic styles. Next, we se-
lected 3,500 commonly encountered Chinese
characters and rendered them into 128x128 res-
olution images using the collected fonts.

The training set comprises 3,300 randomly se-
lected Chinese characters and 424 fonts, referred
to as Seen Fonts and Seen Characters (SFSC).
There are two test sets: the first includes the
same 3,300 characters but with different 40
fonts, called Unseen Fonts and Seen Charac-
ters (UFSC). The second test set consists of the
remaining 200 characters and the same 40 fonts,
known as Unseen Fonts and Unseen Characters
(UFUC). We found a publicly accessible IDS
decomposition table3. However, it exhibits several redundant entries and circular references, as
well as an absence of some characters. Therefore, we performed simplifications and enhancements,
reducing the number of IDCs to the 12 depicted in Table 1, which is sufficient for most frequently
used Chinese characters. For convenience, we set the basic component’s IDS as itself.

3https://babelstone.co.uk/CJK/IDS.TXT
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Evaluation metrics We compare all methods in the following metrics, i.e., FID [17], L1, LPIPS
[57], RMSE, and SSIM [52]. Since aesthetics is inherently subjective, we conduct a user study for all
methods to evaluate model performance based on user satisfaction. We observe that the existing font
generation methods have differences in data preprocessing and metric selection. Factors such as glyph
resolution, the padding around glyphs, the range of pixel values, the number of reference glyphs,
and the evaluation function implementation all influence metric values. For example, NTF [10] and
CF-Font [50] center the glyph within the canvas, leaving white space around it. However, this leads
to inflated metric calculations. To ensure a fair comparison, we adopt consistent test data and metric
implementation across all methods under evaluation. Specifically, we eliminate padding around the
glyphs, fix the canvas resolution to 128 pixels, scale the data range to [0, 1], utilize SqueezeNet [20]
as the network type to calculate LPIPS [57], and select the inceptionv3 [46] feature layer with 2048
dimensions for FID [17] calculation.

Table 2: Quantitative evaluation on UFSC and UFUC dataset. “User” indicates user study, the
samples are generated under 3-shot setting. Bold and underlined numbers denote the best and the
second best respectively. Please refer to Fig. 10 in Appendix for the corresponding radar plots.

Methods 1shot 3shot 8shot User
(%)↑FID↓ L1↓ LPIPS↓ RMSE↓ SSIM↑ FID↓ L1↓ LPIPS↓ RMSE↓ SSIM↑ FID↓ L1↓ LPIPS↓ RMSE↓ SSIM↑

U
FS

C

CG-GAN [25] 11.3911 0.1784 0.1500 0.3997 0.4428 10.8713 0.1771 0.1464 0.3982 0.4441 11.1332 0.1764 0.1457 0.3974 0.4440 14.78
LF-Font [38] 32.9264 0.1764 0.1586 0.3967 0.4465 29.1840 0.1786 0.1576 0.3998 0.4432 26.9590 0.1694 0.1567 0.3875 0.4590 11.42
FS-Font [47] 112.0971 0.2836 0.3108 0.5145 0.2795 25.5231 0.2075 0.1916 0.4343 0.3865 93.7912 0.1900 0.2086 0.4124 0.4183 6.55
CF-Font [50] 20.4457 0.1839 0.1581 0.4066 0.4323 30.8426 0.1767 0.1650 0.3977 0.4468 30.9829 0.1784 0.1595 0.3990 0.4465 12.22
VQ-Font [36] 72.7064 0.1958 0.2215 0.4201 0.4077 32.9390 0.1789 0.1775 0.4016 0.4405 33.6378 0.1774 0.1732 0.3995 0.4413 7.50

NTF [10] 35.3797 0.2602 0.2027 0.4887 0.3244 26.1215 0.2275 0.1749 0.4542 0.3659 23.0519 0.2238 0.1739 0.4501 0.3720 6.43
FontDiffuser [55] 3.9969 0.1938 0.1371 0.4180 0.4076 3.6989 0.1774 0.1248 0.3980 0.4370 4.1017 0.1748 0.1234 0.3947 0.4420 18.32

IF-Font (Ours) 6.7695 0.1529 0.1307 0.3688 0.4915 6.8359 0.1478 0.1258 0.3620 0.5021 6.7383 0.1429 0.1216 0.3552 0.5140 22.78

U
FU

C

CG-GAN [25] 13.4734 0.1805 0.1508 0.4019 0.4362 13.0347 0.1790 0.1471 0.4001 0.4383 13.2049 0.1780 0.1462 0.3991 0.4391 15.73
LF-Font [38] 37.3840 0.1835 0.1620 0.4047 0.4283 28.8252 0.1850 0.1609 0.4071 0.4283 30.5147 0.1735 0.1582 0.3920 0.4473 11.65
FS-Font [47] 112.6636 0.2847 0.3112 0.5155 0.2764 31.2833 0.2106 0.1923 0.4373 0.3785 98.9486 0.1921 0.2095 0.4146 0.4131 6.17
CF-Font [50] 22.8601 0.1865 0.1584 0.4094 0.4259 34.0245 0.1796 0.1660 0.4009 0.4399 33.2477 0.1809 0.1601 0.4019 0.4399 12.03
VQ-Font [36] 75.1737 0.1980 0.2217 0.4223 0.4018 36.4831 0.1809 0.1776 0.4037 0.4345 36.5486 0.1796 0.1733 0.4017 0.4354 8.23

NTF [10] 39.3581 0.2678 0.2074 0.4958 0.3086 29.9205 0.2303 0.1753 0.4568 0.3593 27.9580 0.2290 0.1755 0.4553 0.3619 6.33
FontDiffuser [55] 8.2524 0.1914 0.1527 0.4157 0.4163 7.6444 0.1771 0.1413 0.3981 0.4418 8.9166 0.1702 0.1367 0.3890 0.4543 18.57

IF-Font (Ours) 8.4844 0.1651 0.1387 0.3845 0.4676 8.4922 0.1597 0.1338 0.3775 0.4782 8.3203 0.1561 0.1305 0.3728 0.4864 21.28

4.2 Comparison with state-of-the-art Methods

We compare the proposed IF-Font with seven SOTA methods on our UFSC and UFUC datasets re-
spectively, including CG-GAN [25](CVPR 2022), LF-Font [38](TPAMI 2022), FS-Font [47](CVPR
2022), CF-Font [50](CVPR 2023), VQ-Font [36](ICCV 2023), NTF [10](CVPR 2023) and FontD-
iffuser [55] (AAAI 2024). All methods are trained from scratch on our SFSC dataset according to
their respective official codes and default configurations. We slightly modify the codes of CG-GAN,
LF-Font, FS-Font, VQ-Font and FontDiffuser to support varied numbers of reference glyphs.

4.2.1 Quantitative comparison

Table 2 compares IF-Font and other SOTA methods. IF-Font significantly surpasses competitors in all
reference glyph number settings for both datasets. Notably, IF-Font’s performance on FID metric is
exceptionally low, reaching a single-digit score, thanks to the high quality and clarity of the samples
it generates. FS-Font [47] relies heavily on the predefined content-reference mapping, whereas the
reference glyphs in all our experiments are randomly selected. Especially, when only one reference
glyph is provided, covering all components of the target character becomes challenging, leading to
poor performance of FS-Font, as shown in Fig. 10a. NTF [10] also struggles to imitate the target
style, the layout of its generated samples often resembles that of the source font. In cases where
there’s a significant disparity between the source and target styles, NTF is prone to missing strokes.

We attribute CF-Font’s performance to its reliance on fusing contents of 10 basic fonts. However,
there happen to be a gap between the train dataset and our evaluation dataset. We conduct a user
study through Fuxi Youling Crowdsourcing Platform 4 to quantify the subjective quality. For each
test dataset, 5 characters are randomly selected, and each model is required to generate glyphs
corresponding to 40 unseen fonts. A total of 30 participants are asked to select the option that most
closely matches the ground truth from the generated results. The outcomes of the user study are
presented in the last column of Table 2.

4https://fuxi.163.com/solution/data
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FontDiffuser
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Figure 5: Qualitative comparison with state-of-the-art methods, in which red boxes outline the artifacts.
“Source” denotes the content glyph of other methods, IF-Font only employs the corresponding IDS.

4.2.2 Qualitative comparison

We present the corresponding samples from Table 2 in Fig. 5. IF-Font stands out by producing the
clearest and most style-consistent samples. In contrast, FS-Font [47], LF-Font [38], CF-Font [50], and
other models exhibit issues such as stroke errors or blur. VQ-Font [36] and NTF [10] are constrained
by the source font and struggle with flat or narrow layouts, resulting in incorrect structures. VQ-Font
even tends to crop marginal parts of glyphs to fit the target style. While CF-Font generally perserves
the correct glyph layout, its outputs exhibit noticeable artifacts, indicating some remaining style
inconsistencies. The performance of FontDiffuser [55] is also outstanding, but there is still a slight
deficiency in the imitation of font styles. On the other hand, IF-Font maintains the correct character
structures and excels in aspects such as the aspect ratio, glyph layouts, and stroke details.

Table 3: Ablation studies on different modules.
The first row is the results of baseline. I, S and
C represent IHA, SSA, and SCE respectively.

Module FID↓ L1↓ LPIPS↓ RMSE↓ SSIM↑I S C

% % % 8.2656 0.1632 0.1383 0.3820 0.4728
! % % 8.3750 0.1638 0.1381 0.3828 0.4764
! ! % 7.5391 0.1614 0.1348 0.3797 0.4780
! ! ! 8.4922 0.1597 0.1338 0.3775 0.4782

Reference Baseline +I +IS +ISC TargetIDS

⿲木木彡

⿳厶大三

⿲氵⿱丅一鸟

⿰⿱覀示⿵𠘨㐅

Figure 6: Visualization of different modules in
Table 3. Red, blue and green boxes represent
the missing components, style inconsistency and
corresponding improvements respectively.
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4.3 Ablation Studies

Main modules Removing the IHA, SSA, and SCE modules of IF-Font, a baseline model can be
obtained. For a input character, it directly looks up the decomposition table to derive the corresponding
IDS, and then encode the semantic feature fι through a embedding layer. The intermediate style
features F̄r are directly averaged as style features fr, excluding any interactions with the similarity
weight Sim and semantic feature fι. The whole model relies solely on cross-entropy loss for
supervision. Building upon the baseline, we incrementally reintegrate three modules to assess
their individual contribution. Quantitative results are presented in Table 3, while Fig. 6 provides
visualizations of these results. For further ablation study of the SSA block, please refer to Table 6
in Appendix B.1. Upon integrating our modules, a consistent improvement is observed across most
metrics. Fig. 6 illustrates how IHA alleviates the issue of missing components present in the baseline.
SSA enhances style consistency, while SCE improves the capability to imitate styles.

Table 4: The impact of IDS granularity on performance.
Granularity FID↓ L1↓ LPIPS↓ RMSE↓ SSIM↑
Component 8.4922 0.1597 0.1338 0.3775 0.4782

Stroke 8.4297 0.1616 0.1347 0.3799 0.4888
Mixed 8.5234 0.1598 0.1337 0.3775 0.4782

IDS granularity We further analyze the impact of three different IDS granularities: components,
strokes and mixed. Please see Table 5 in the Appendix for the examples of these granularities. Table 4
shows the quantitative results. Stroke granularity results in performance degradation across three
metrics. We attribute this decline to the conflict between IDSs, hindering the model’s ability to identify
the target character. An attempt to concatenate IDSs from both granularities yields performance akin
to that of component granularity. While this approach extends the sequence considerably, hence we
opt for component granularity.

4.4 Visualization of SSA

草
胖
乙

萌 ⿱ ⿰艹 日

胖

月

乙

草 草
胖
乙

草
胖
乙 乙

草
胖

乙

草
胖

Figure 7: Visualization of attention maps between IDS and reference glyphs. The symbols above are
the target character (black) and the corresponding IDS (orange).

To demonstrate the effectiveness of Structure-Style Aggregation block, we visualize the attention
maps corresponding to each IDC and component within the IDSs relative to the reference glyphs, as
depicted in Fig. 7. Specifically, we choose the matrix A ∈ Rl×k·h·w in local feature calculation. For
each position i of the target IDSιy, there exists a corresponding attention map Ai ∈ Rk·h·w, which
indicates the attention that ιiy pays to the k reference features. We present the attention map Ai to
visualize the distribution of attention weights directly. Additionally, we apply opacity to this map and
overlay it onto the original reference glyph.

As we can see, when the target IDC or component exists in the reference glyph, more attention
will be paid to the corresponding place. For instance, in the first row, the first, second, and fourth
columns, and in the second row, the third and fifth columns are distinctly highlighted. Conversely, if
the reference glyph lacks the target component, the local branch tends not to engage, as evidenced by
the nearly blank third row. This approach stems from a preference to avoid forced attention allocation
which might lead to interference. Instead, leveraging the average style captured by the global branch
helps maintain a baseline quality of the output.
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4.5 New Glyph Creation

IDS Output IDSTarget IDSTargetOutput Output IDS Output

⿺是夏⿰米千 ⿱白田 ⿳雨木心

⿵𠘨巾 ⿺辶入 ⿹气杀 ⿲阝示习

⿱𥫗世⿰火田 ⿸厂祭 ⿶凵木

⿱雨下 ⿴井丶 ⿷匚色 ⿵乃马

⿰山⿱厶廾 ⿰亻⿱口天 ⿴口云 ⿴廿人

Figure 8: The ability of the IF-Font to create glyphs. The
first two columns are kokuji, and the last two columns are
completely non-existent Chinese characters.

We validate the flexibility of IF-Font
by generating the glyphs using IDSs of
non-standard Chinese characters. Fig. 8
shows our experimental results. IF-
Font demonstrates robust generaliza-
tion by following given IDSs to pro-
duce new glyphs with accurate structure
and consistent style. We fixed the font
to “Sarasa Gothic” in the experiment,
which is a CJK programming font. The
last two columns lack ground truths due
to their entirely non-existent characters.

5 Discussion

Target

Output

GT 堤 鸿慧靠粪 窟 魔 簸染茫 雾琉磁 辰虏舍

Figure 9: Failed cases on complex fonts of UFUC. Orange boxes highlight reconstruction errors of
VQGAN, red outlines the structural errors. GT: the glyphs rendered by fonts; Target: the glyphs
reconstructed by VQGAN; Output: the glyphs generated by IF-Font.

Failure cases Although our method enables high-quality generation under most circumstances,
it still struggles on some hard cases, as illustrated in Fig. 9. IF-Font encounters difficulties with
fancy and irregular font styles, including those with decorations, extremely flat or narrow layouts,
excessively curved strokes, and calligraphic writings. Despite these challenges, it continues to
preserve the correct character structure. Further discussion on the reasons for the difficulties in
generating these fonts can be found in Appendix C.3.

Usability We focus on CJK characters due to their unique spatial structures, which better reflect
the characteristics of our method. By expanding the vocabulary and incorporating relevant data for
training, IF-Font can also be adapted to handle other character sets.

Advantages Conforms to writing habits. We believe that the process of autoregressive modeling
with IDS implicitly contains the order of writing. Scalability. Good scalability can be achieved
by leveraging the mature experience of LLMs. Robustness. Due to vector quantization, glyphs are
represented by a limited number of tokens (only 256 types), which reduces the learning difficulty for
the decoder and decreases the likelihood of artifacts and other issues in the generated results.

6 Conclusion

We have presented IF-Font, a novel font generation paradigm. IF-Font redefines font generation
as a sequence prediction task by quantizing glyphs as token sequences and leveraging Ideographic
Description Sequence (IDS) to control the semantics of the generated glyphs. This method demon-
strates exceptional capability in managing complex styles while preserving the correct structures.
Benefiting from the flexibility of IDS, our method enables the creation of glyphs. This is achieved by
formulating legal IDSs, which is a salient advantage over other methods that typically require the
character to be present in at least one font as a precondition for generation. Refining and improving
the IDS decomposition rules is considered future works. Furthermore, exploring the integration of
IDS into handwritten font generation may yield interesting insights.
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A Experiment Details

A.1 Implementation Details

IF-Font was trained in a server equipped with an Intel Xeon Silver 4110 CPU, 128 GB of RAM, and
an NVIDIA Tesla V100 PCIe 16GB GPU. The training takes about 42 hours for 15 epochs with batch
size of 128.

The VQGAN model in IF-Font loads pre-trained weights. It has a codebook size of 256, and the
encoder downsamples the image with a factor of 8. Consequently, the length of the codebook indices
corresponding to a single glyph is lT = 256, whereas the IDS have a fixed length of lI = 35. Our
decoder consists of 10 Transformer blocks, each integrating a self-attention layer, a cross-attention
layer, and a multi-layer perceptron (MLP). We have configured the model with 8 attention heads and
a feature dimension of 384. In IF-Font, parameters are optimized using the AdamW optimizer [32],
which employs a learning rate schedule that includes warmup and cosine annealing.

A.2 Training Data

We primarily obtain fonts from the Foundertype platform under a personal non-commercial academic
research license. We present the examples of three IDS granularities in Table 5.

Table 5: Different IDS granularities. Mixed means that the IDSs of both granularities are used.

Granularity  IDS Length

⿰⿹⿻㇒㇁㇒⿱⿻一⿰丨丨⿴⿱⿰丨𠃍一⿻一丨Stroke 21

27⿰犭⿱艹田[sep]⿰⿹⿻㇒㇁㇒⿱⿻一⿰丨丨⿴⿱⿰丨𠃍一⿻一丨Mixed

⿰犭⿱艹田Componet 5

B Additional Results

B.1 Further ablation of SSA

Table 6: Ablation studies on both branches of SSA.
SSA FID↓ L1↓ LPIPS↓ RMSE↓ SSIM↑

w/o global 7.9766 0.1607 0.1347 0.3789 0.4775
w/o local 8.2578 0.1620 0.1364 0.3805 0.4756

full 8.4922 0.1597 0.1338 0.3775 0.4782

B.2 Radar plots

Fig. 10a depicts the one-shot setting, where style extraction poses a considerable challenge, leading
to comparable performance across most models. Nevertheless, as the number of reference glyphs
increases, the advantage of IF-Font becomes progressively apparent in Fig. 10b and 10c.

C Further discussion

C.1 Quantization accuracy

Since the target glyph is reconstructed from a quantized sequence, the accuracy of this reconstruction
imposes a ceiling on IF-Font’s potential performance. As shown in Figure 9, there are slight
differences between the target and the ground truth. Given that the glyphs are grayscale images and
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Figure 10: Compared with the methods based on the content-style disentanglement paradigm, IF-Font
achieves state-of-the-art performance on all metrics under three few-shot settings. The metrics are
annotated with brackets in the figure to specify the dataset used for evaluation: (S) represents UFSC,
and (U) refers to UFUC. (a) 1-shot setting. (b) 3-shot setting. (c) 8-shot setting.

relatively simple, fine-tuning the VQ-GAN or switching to a superior quantized method is expected
to minimize the loss of accuracy. We use original VQ-GAN checkpoints in order to highlight our
main contributions.

C.2 The shortcomings of IDS

In fact, IDS is still not sufficiently perfect to identify Chinese characters. On the one hand, there
are rule conflicts: a few Chinese characters are too similar, and their IDSs of stroke granularity are
exactly the same. On the other hand, the spatial descriptions are insufficiently clear. For example, the
left-right structure indicates that two components are placed on the left and right, but the distance
between them is not specified, which requires the model to distinguish them through sufficient
learning.

C.3 Complete results on novel fonts

FS-Font

LF-Font

CG-GAN

CF-Font

VQ-Font

NTF

Ours

Target 染茫琉空磁雾辰虏严舍堤匪慧靠粪 鸿 巧 窟 魔 簸

FontDiffuser

Figure 11: Complete results generated by methods with novel fonts of Fig. 9.

We believe that generating novel fonts presents significant challenges for several reasons. First, they
substantially deviate from standard character structures, involving a trade-off between the number
of references and the quality of generation. Furthermore, font design involves subjectivity and
randomness. For instance, in the first font depicted in Fig. 9, the position, size, and shape of the
auspicious cloud patterns are the result of manual design. It is important to note that this issue is
common across all font generation methods. Similar discussions can be found in LF-Font [38] and
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CF-Font [50]. Unfortunately, this limitation has not been well addressed yet. We demonstrate the
results of other methods on novel fonts in Fig. 11 to support the above conclusion.

C.4 Restrictions

To achieve high-quality generation, IF-Font requires training data to cover as many character com-
ponents and font styles as possible. Due to the utilization of attention mechanisms, IF-Font entails
quadratic computational complexity related to sequence length, while inference relies on autoregres-
sive processes, resulting in a slow sampling speed.

D Details of the user study

To be accurate, we pay the Fuxi Youling Crowdsourcing Platform (a third-party platform) to conduct
the user study. The participants in the user study are users of that platform, who will be informed of
the full details in advance. We limit the number of participants to 30, and they are allowed to choose
whether or not to participate and can complete the evaluation at any time and in any location using
their own devices (usually a phone or computer).

All model names in the evaluation are replaced with numbers, and participants only need to select the
option that best matches the ground truth from the model results displayed on the page. After the
evaluation, the platform pays participants and provides us with de-identified model effectiveness data.
We have no direct contact with participants and are unable to obtain their specific identities.

E Broader Impact

IF-Font could help to improve the productivity and creativity of font designers, and there is also
hope for preserving ancient calligraphic works. In addition, IF-Font is capable of imitating the font
style from as little as one reference glyph. That makes it easy to reproduce commercial font designs,
raising concerns regarding potential copyright infringement. To safeguard the rights of font creators,
we urge users to adhere to license requirements and call for the responsible use of our method.

F Licenses

We present a complete list of references and licenses in Table 7 for all the existing assets we used in
this work.

Table 7: License information for the existing assets used.

Software Code URL License

VQGAN Link MIT license
nanoGPT Link MIT license
CG-GAN Link N/A
LF-Font Link MIT license
FS-Font Link MIT license
CF-Font Link N/A
VQ-Font Link N/A
NTF Link MIT license
torchmetrics Link Apache v2.0
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Section 3 for detailed information on the model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code is available at https://github.com/Stareven233/IF-Font. We
provide detailed instructions on how to obtain and process the data in Section 4.1 and
Appendix A.2.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in Section 4.1 and Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

20

https://github.com/Stareven233/IF-Font
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the information on the computer resources in Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conform with the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the societal impacts in Section 1 and Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

21

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We describe safeguards in Appendix E.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please refer to Appendix F for the references and licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: This paper fully describes the details of assets in Section 3, 5 and Appendix A,
F. The assets and documentation can be found in https://github.com/Stareven233/
IF-Font.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We include the details of the crowdsourcing experiment in Appendix D.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We include the details of the crowdsourcing experiment in Appendix D.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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