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Abstract

In-context learning (ICL) has emerged as a powerful ability for large language1

models (LLMs) to adapt to new tasks by leveraging a few (demonstration) examples.2

Despite its effectiveness, the mechanism behind ICL remains underexplored. This3

paper uses a Bayesian framework to investigate how ICL integrates pre-training4

knowledge and examples for binary classification. In particular, we introduce a5

probabilistic model extending from the Gaussian mixture model to exactly quantify6

the impact of pre-training knowledge, label frequency, and label noise on the7

prediction accuracy. Based on our analysis, when the pre-training knowledge8

contradicts the knowledge in the examples, whether ICL prediction relies more on9

the pre-training knowledge or the examples depends on the number of examples.10

In addition, the label frequency and label noise of the examples both affect the11

accuracy of the ICL prediction, where the minor class has a lower accuracy and12

how the label error impacts the accuracy is determined by the specific error rate13

of the two classes. Extensive simulations are conducted to verify the correctness14

of the theoretical results, and real-data experiments also align with the theoretical15

insights. Our work reveals the dual role of pre-training knowledge and examples in16

ICL, offering a deeper understanding of LLMs’ behaviors in classification tasks.17

1 Introduction18

Large language models (LLMs) have revolutionized various fields, such as GitHub Copilot for19

software development, Microsoft 365 Copilot to embrace productivity, and medical applications such20

as Med-Palm [1]. A particularly intriguing ability of LLMs is in-context learning, where LLMs can21

adapt to new tasks only using a few examples at the inference stage without changing the model22

parameters. As ICL enhances the predictive performance of LLMs, various existing literature attempts23

to understand and quantify such a superiority [2, 3, 4].24

During the ICL process, LLMs typically demonstrate two key abilities [5]: retrieving knowledge from25

the pre-training data and learning from the examples in the prompt. Understanding how pre-training26

knowledge and specific examples interact during the inference stage is crucial, especially given the27

complex dynamics observed in practical applications. For instance, existing literature [6] conducts28

various empirical evaluations to study ICL regarding the example size, demonstration order, prompt29

templates, etc. Meanwhile, theoretical studies [7, 8, 9, 10, 11, 5] have explored the underlying30

mechanisms of ICL from various perspectives, including Bayesian approaches and gradient descent,31

primarily focusing on linear regression models.32

However, the existing literature 1 is insufficient to understand the behavior of ICL, especially for33

classification tasks. First, previous works cannot draw a consensus on certain behaviors of ICL.34

For example, in [6], it is empirically observed that injecting random noise to the example labels35

1Related works are discussed in section G.
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does not hurt the ICL performance. They conjecture that the robustness of ICL against the noise is36

because the pre-training knowledge dominates ICL. On the other hand, based on [5], when taking a37

large number of examples (i.e., a large example size), the ICL will favor the knowledge provided38

by the examples. However, there is no systematic understanding of the role of label quality, the39

difference between pre-training and example knowledge, as well as the example size. Second, existing40

theoretical frameworks may fail to explain the observed behaviors in classification tasks. For instance,41

the balance of the example size in different classes matters in classification, while there is no such42

concept in regression.43

The above gaps drive the need for a theoretical exploration of how LLMs utilize pre-training knowl-44

edge and specific examples in ICL in classification scenarios. In particular, we aim to answer:45

How do LLMs make predictions in classification tasks using their pre-training knowledge and46

examples?47

This work aims to explore the above question by conducting an exact theoretical analysis in a binary48

classification task. Our contributions are summarized as follows:49

• We leverage Bayesian analysis to exactly quantify the ICL performance (measured by prediction50

accuracy). When the example size is small, the pre-training knowledge will dominate ICL, and51

when the example size is large, the ICL prediction mainly relies on the examples. Built upon this52

finding, we further study the ICL performance under different scenarios such as label noise and53

imbalanced examples mentioned above, and contradiction in pre-training and example knowledge.54

Extensive simulations and real-data analysis are conducted to support our theoretical insights.55

Technically, to perform the analysis, we assume all examples in the pre-training are selected56

independently, and examine the posterior distribution of the parameters of the data generation57

model with two distinct types of priors: one from the pre-training data and the other from the58

examples. A central challenge in the analysis lies in the formulation and integration of these two59

priors into a single coherent posterior for ICL prediction. Our result successfully accounts for60

both the label distributions and the conditional output distribution within each class.61

• When conducting simulations to verify the above theoretical insights, we surprisingly reveal62

another counter-intuitive behavior when the examples are not selected independently: We fix63

exactly 50% positive labels in each prompt in pre-training and provide only positive examples in64

the test prompt, then the ICL prediction is a firm negative. We provide an intuitive explanation65

and theoretical justification to explain this behavior. This finding can help understand how LLMs66

consider dependency among tokens/sequences.67

2 Classification Analysis via Bayesian68

To analyze the ICL performance, we first introduce the model and data assumptions in Section69

2.1, then derive the ICL accuracy under general situations in Section 2.2. We finally examine how70

examples influence ICL under specific demonstration scenarios (Section 2.3).71

2.1 Setups72

To perform the exact analysis of the ICL prediction, in this subsection, we introduce the pre-training-73

inference paradigm and impose some assumptions on the data generation distribution.74

Pre-training. For the pre-training data, inspired by [2, 4, 5, 12], we form the prompts in the form75

of ((x1, y1), (x2, y2), . . . , (xk, yk), (xquery, yquery)) and the target is to predict the label yquery , i.e.,76

performing ICL using the examples {(xi, yi)}i∈[k], where xi ∈ Rm and yi ∈ {−1,+1}. To simplify77

the notation, we use (x, y) and {(xi, yi)} to refer to (xquery, yquery) and {(xi, yi)}i∈[k] respectively78

when no confusion arises. All (xi, yi)s and x in the same prompt are in general sampled from the79

same distribution, and an exception considering label noise will be described in detail later in Section80

2.3. In different prompts, the sampling distribution may vary. We assume that all examples in the81

demonstration are independent, typically selected randomly from a prompt set [6]. A discussion82

on the case where the examples are not independent is provided in Section E for a comprehensive83

analysis.84

Denote the pre-trained LLM as M . Without loss of generality, we assume that M learns the exact85

distribution of the pre-training data and makes predictions based on the pre-training knowledge,86

i.e., model output M(x) follows the pre-training distribution. This assumption is supported by the87

capabilities of LLMs and is commonly used in existing research [7, 13].88
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Inference. At the inference stage, we perform ICL of a test input x given the examples to predict89

its corresponding test label y, i.e. ŷICL = M(({(xi, yi)}, x)). Our goal is to study the effect of the90

pre-training data and the examples on the distribution of ŷICL. To simplify the notation, we denote91

P (ŷICL = s) as P (y = s|x, {(xi, yi)},M) for s ∈ {−1,+1}. Unless otherwise stated, P (·|...,M)92

represents the meaning of “conditional on the pre-training knowledge”.93

Data generation process. We mainly follow the idea of Bayesian inference to form the assumptions.94

Bayesian inference is a well-established theoretical method that has demonstrated its effectiveness in95

explaining the behavior of LLMs as shown in existing research [7, 8]. To perform Bayesian inference,96

we impose a prior distribution on the parameters in the data generation process and then use data and97

the prior distribution together to derive a posterior distribution of the parameters. The idea of prior98

distribution is widely used in uncertainty quantification in real applications such as various medical99

studies [14], and is justified by axioms of decision theory [15].100

The following two assumptions are imposed in our main study. We consider the pre-training data,101

example, and test data to be in the same distribution family but with different parameters. Assumption102

1 describes how to generate a pair of (x, y) given a specific set of parameters, and Assumption 2103

explains how the parameters differ among datasets.104

Assumption 1 (Generate (x, y)). Assume x ∈ Rm and y ∈ {−1,+1}. Given parameters105

(θ+, θ−, π, p+, p−), to generate (x, y), y is first generated from a Bernoulli distribution with π,106

i.e. P (y = +1) = π and P (y = −1) = 1− π, then x is generated from a class-wise input distribu-107

tion accordingly. Given y = +1, x follows a Gaussian distribution N(θ+, σ
2
+I) with probability p+108

and sample from N(θ−, σ
2
−I) with probability 1− p+; given y = −1, x is sampled from a Gaussian109

distribution N(θ−, σ
2
−I) with probability p− and sample from N(θ+, σ

2
+I) with probability 1− p−.110

In addition, the examples are independent with each other.111

Assumption 1 follows the standard Gaussian mixture design for theoretical analysis in classification,112

e.g., [16, 17, 18]. We further consider “label noise”: When y = +1, the corresponding x can be from113

either of the two clusters. When p+ = p− = 1, it means that there is no label noise.114

Assumption 2 (Parameters). The parameter distributions for pre-training and the inference stage as115

as follows:116

• Pre-train: θ+ ∼ N(θM , σ2
MIm), θ− ∼ N(−θM , σ2

MIm); p+ = p− = 1; π ∼ Beta(1, 1).117

• Examples: θ+ ∼ N(θe+, σ
2
e+Im), θ− ∼ N(θe−, σ

2
e−Im); pe+, p

e
− ∈ [0, 1], π ∈ [0, 1].118

• Test data (x, y): pt+ = pt− = 1. Examples and the test data in the same prompt share the same119

realization of (θ+, θ−).120

In pre-training, all (xi, yi)s and (x, y) in the same prompt are conditionally independent and share121

the same parameters. At the inference stage, the examples are conditionally independently sampled122

given the parameters and may incur label noise. For the test data (x, y), while it shares the same123

(θ+, θ−) with the examples in the prompt, we do not further consider label noise in the test data.124

The proportion P (y = +1) is not considered in the test data because the later accuracy analysis is125

performed on y = +1 and y = −1 separately.126

Assumption 2 aligns with the common scenarios of ICL, i.e., the pre-training distribution and the127

example distribution at the inference stage can differ. In pre-training, we take p+ = p− = 1 to128

simplify the derivation. In this case, there is no label noise, and the misclassification of the Bayes129

classifier is only caused by the overlap of the two Gaussian clusters in the distribution. At the130

inference stage, the examples may have a distribution shift compared to the pre-training data, and we131

also consider potential label noise in the examples.132

2.2 ICL Decision and Prediction Accuracy133

To compute the ICL prediction accuracy, we first derive the posterior distribution of the parameters134

(θ+, θ−, π) given the examples {(xi, yi)} and the pre-training knowledge of θM , and then use135

(θ+, θ−, π) to figure out the ICL accuracy.136

Posterior of parameters. Our goal is to compute the posterior distribution of θ+, θ−, π given137

examples (x1, y1), ..., (xk, yk). Recall that in Assumption 2, p+ = p− = 1 in the pre-training stage,138
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and the pe+ and pe− in the inference stage can be some values in [0, 1] if label noise occurs. Denote139

#(yi = +1) and #(yi = −1) as the number of examples with positive/negative labels respectively140

(after possible flips if pe+ or pe− is less than 1). The following lemma presents the posterior distribution141

of π, θ+, θ−.142

Lemma 1. Under Assumption 1 and Assumption 2, the posterior distribution of π, θ+, θ− satisfies

P (π|{(xi, yi)}i∈[k],M) ∝ π#(yi=+1)(1− π)#(yi=−1),

θ+ ∼ N

(
σ2
+θM + σ2

M

∑
yi=+1 xi

σ2
+ +#(yi = +1)σ2

M

,
σ2
+σ

2
M

σ2
+ +#(yi = +1)σ2

M

I

)
≜ N(θ̂+, σ

2
θ+I),

and

θ− ∼ N

(
σ2
M

∑
yi=−1 xi − σ2

−θM

σ2
− +#(yi = −1)σ2

M

,
σ2
Mσ2

−
σ2
− +#(yi = −1)σ2

M

I

)
≜ N(θ̂−, σ

2
θ−I).

The proof of Lemma 1 can be found in Section B.1. In short, since the examples {(xi, yi)} are given,143

we can directly write the likelihood for (π, θ+, θ−) to derive the corresponding posterior distributions.144

ICL decision. Given Lemma 1, denoting zk = (#(yi = −1) + 1)/(#(yi = +1) + 1), the following145

lemma shows the ICL decision boundary for the test data:146

Lemma 2. Under Assumption 1 and Assumption 2, the probability of y = +1/− 1 is as follows147

P (y = +1|x, {(xi, yi)},M) =
P (x, y = +1|{(xi, yi)},M)

P (x, y+ = 1|{(xi, yi)},M) + P (x, y = −1|{(xi, yi)},M)

=

#(yi=+1)+1
k+2 N(x)

#(yi=+1)+1
k+2 N(x) + #(yi=−1)+1

k+2

,

P (y = −1|x, {(xi, yi)},M) =
P (x, y = −1|{(xi, yi)},M)

P (x, y+ = 1|{(xi, yi)},M) + P (x, y = −1|{(xi, yi)},M)

=

#(yi=−1)+1
k+2

#(yi=+1)+1
k+2 N(x) + #(yi=−1)+1

k+2

,

where

N(x) =


√√√√σ2

− + σ2
θ−

σ2
+ + σ2

θ+

m

exp

[
− (x− θ̂+)

T (x− θ̂+)

2(σ2
+ + σ2

θ+
)

+
(x− θ̂−)

T (x− θ̂−)

2(σ2
− + σ2

θ−
)

]
.

The decision boundary is ŷICL = 1(fICL(x) > 0), where fICL(x) = N(x)− zk.148

The proof of Lemma 2 can be found in Section B.2. When (π, θ+, θ−) are fixed, given y, x follows a149

Gaussian distribution. When integrating over all possible (π, θ+, θ−), the marginal distribution of x150

given y still follows a Gaussian distribution. Hence, (x, y) marginally follows a Gaussian mixture151

distribution, and the decision boundary can be further obtained.152

From Lemma 2, we can see how the pre-training distribution (θM , σ2
M ) and examples {(xi, yi)}153

impact P (y = +1|x, {(xi, yi)},M) and P (y = −1|x, {(xi, yi)},M), and further change the154

decision boundary correspondingly. The pre-training knowledge (θM , σ2
M ) and examples {(xi, yi)}155

first determines (θ̂+, θ̂−, σ
2
θ+
, σ2

θ−
), the latter of which further determines the decision boundary.156

More details about the interplay of pre-training and examples under different scenarios will be157

provided in Section 2.3. Besides, a larger π will result in higher weights of positive component in the158

conditional probability as shown in Lemma 2, and may lead to a higher probability of classifying test159

input as +1, as formally stated in Proposition 2 in Section 2.3.160

ICL Accuracy. After obtaining the decision boundary from Lemma 2, we finally provide the general161

formula of the ICL prediction accuracy. In the following, we consider a simplified scenario and derive162

the exact accuracy of ICL in Theorem 1.163
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Theorem 1. Under Assumption 1 and Assumption 2, and further assume σ2
+ = σ2

− = σ2 and164

k → ∞, we have the following probability of correct prediction for each class.165

P (correct|y = +1, {(xi, yi)},M) = 1− Φ

(
(θe

+− 1
2 (θ̂++θ̂−))T√
σ2+σ2

e+

θ̂−−θ̂+
∥θ̂−−θ̂+∥2

+ σ2 log zk√
σ2+σ2

e+∥θ̂−−θ̂+∥2

)
,

P (correct|y = −1, {(xi, yi)},M) = Φ

(
(θe

−− 1
2 (θ̂++θ̂−))T√
σ2+σ2

e−

θ̂−−θ̂+
∥θ̂−−θ̂+∥2

+ σ2 log zk√
σ2+σ2

e+∥θ̂−−θ̂+∥2

)
,

where Φ(·) is the cumulative distribution function of a standard Gaussian distribution.166

To prove Theorem 1, we first obtain the marginal distribution of x|y given the example distribu-167

tion in Assumption 2 to remove internal parameters, denoted as P (x|y = +1). Then the ICL168

performance, i.e., prediction accuracy, can be computed via P (correct|y = +1, {(xi, yi)},M) =169 ∫
fICL(x)≥0

P (x|y = +1)dx. Similar steps apply for y = −1. The detailed proof of Theorem 1 can170

be found in Section B.3.171

Theorem 1 describes how the ICL performance is affected by the interplay between the pre-training172

knowledge and the examples. For example, in addition to the model parameters (θe+, σ
2, σ2

e+),173

P (correct|y = +, {(xi, yi)},M) is further determined by θ̂− − θ̂+ and θ̂− + θ̂+. One key insight174

is that these two terms are mixtures of examples and pre-training knowledge. The example size k, the175

variance of data σ2, as well as pre-training distribution σ2
M will also affect their exact formulas.176

A final note is that, under Theorem 1, the decision boundary is a hyperplane, and one can integrate177

the above two probabilities. We also provide technical discussions when the decision boundary is not178

a hyperplane. In such a case, the boundary is a sphere, and the details can be found in Section A.179

2.3 Different Demonstration Scenarios180

In the following, we extend the above results to investigate how ICL is affected in specific situations.181

We consider contradicting knowledge, imbalanced examples, and label noise.182

To simplify the analysis, we assume that in the inference stage, #(yi = +1) = π. Since #(yi =183

+1)/k − π → 0 in k, the additional fluctuation in #(yi = +1) does not affect the result.184

Contradicting knowledge. In practical applications, it is possible that the examples exhibit different185

or even contradicting knowledge of the pre-training. To study this case, we compare θe+ = −θM =186

−θe− and θe+ = θM = −θe−, i.e., the input distribution in examples is the opposite/same to that of187

pre-training distribution. The following result is obtained based on Theorem 1 in these scenarios:188

Proposition 1 (Contradicting knowledge). Assume the conditions of Theorem 1 hold, and also189

assume σ2
e+ , σ

2
e− → 0, and π = 0.5 at the inference stage. Then when kσ2

M ≪ σ2, i.e., insufficient190

example size,191

P (correct|y = +1, θe+ = θM = −θe−)− P (correct|y = +1, θe+ = −θM = −θe−)

→ Φ

(
∥θM∥√

σ2

)
− Φ

(
−∥θM∥√

σ2

)
> 0.

When kσ2
M ≫ σ2, i.e., sufficient example size, both P (correct|y = +1, θe+ = −θM = −θe−) and192

P (correct|y = +1, θe+ = θM = −θe−) converges to 1− Φ
(
−∥θM∥/

√
σ2
)

.193

The accuracy of y = −1 exhibits a similar behavior.194

The proof of Proposition 1 can be found in Section B.4. We mainly follow the result in Theorem 1195

and calculate the probabilities under the specific scenario.196

There are two observations in Proposition 1. First, when there are no enough examples and the197

pre-training knowledge contradicts to the knowledge in the examples and the test data, there is an198

obvious drop in ICL performance compared to the case when the knowledge matches. Second, when199

there are enough examples, the knowledge from the examples will dominate, and ICL performance200

of contradicting knowledge converges to that of matching knowledge.201

Imbalanced examples. In the following, we consider the case where the two classes are imbalanced202

at the inference stage, i.e. π ̸= 0.5. In this case, the value of π will impact the ICL prediction.203
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Proposition 2 (Imbalanced examples). Under Assumption 1 and Assumption 2, assume σ2 and σ2
M

are constants, πk → ∞ and (1− π)k → ∞, then

fICL(x) → exp

[
− (x− θ̂+)

T (x− θ̂+)

2σ2
+

(x− θ̂−)
T (x− θ̂−)

2σ2

]
− 1− π

π
.

When π → 0, P (correct|y = +1, {(xi, yi)},M) → 0.204

The proof of Proposition 2 is in Section B.5. In short, we follow Lemma 2 to obtain the decision205

boundary. Then, we repeat the steps of Theorem 1 to obtain the conclusion.206

Based on Proposition 2, when the examples for one class are much fewer than the other class, ICL207

performance for the minor class will significantly drop. In addition, the parameter π learned from208

pre-training will be overlooked.209

Label noise. It is common that there exist label noises in the examples for ICL. For example, an210

example xi sampled from N(θe−, σ
2
e−) may be labeled as +1. Therefore, we change the value of pe+211

and pe− in the examples to see how these changes affect the ICL performance, the result of which is212

summarized as follows:213

Proposition 3 (Label noise). Under the conditions of Theorem 1, assume σ2 and σ2
M are constants,214

θM = θe+ and θM = −θe−, and σ2
e+, σ

2
e− → 0. Also assume π = 0.5 at the inference stage. When215

1 − pe+ − pe− < 0, and k → ∞, P (correct|y = +1, pe+, p
e
−) increases in pe+, and P (correct|y =216

−1, pe+, p
e
−) increases in pe−.217

The proof of Proposition 3 can be found in Section B.6 and is a direct extension from Theorem 1.218

In Proposition 3, recall that pe+ = pe− = 1 implies no random flip on the example labels. Intuitively,219

when keeping pe− = 1 and decreasing pe+, the positive class becomes a mixture of two Gaussian220

distributions. In this case, θ̂+ is closer to zero, and the decision boundary will shift towards −θM .221

Therefore, it is more likely that ICL predicts a negative label for x, which aligns with the change in222

P (correct|y = +1, pe+, p
e
−) and P (correct|y = −1, pe+, p

e
−) in Proposition 3. When 1−pe+−pe− =223

0, the decision boundary set {fICL(x) > 0} will degenerate to either ∅ or full space. Therefore, in224

these special cases, the positive accuracy and negative accuracy will be either (0,1), (1,0), or (0.5,0.5).225

Due to the page limit, we postpone all the simulations and real-data experiments to Appendix D. The226

simulation results for the next section can also be found in Appendix E227

2.4 Mean Reversion228

When the fraction of positive and negative is fixed in the pre-training, we notice an interesting229

phenomenon “Mean Reversion".230

Theorem 2 (Mean Reversion, informal version of Theorem 3). Let frac denote the fraction of +1231

among the set of labels in the pre-training set. Under some mild conditions, assume in each prompt232

in pre-training, frac is always a fixed π, then in the testing prompt: (1) If #(yi = +1)/k < π, then233

the prediction of x is +1. (2) If #(yi = +1)/k > π, then the prediction of x is −1.234

We direct the reader into Appendix B.7 for the formal statement and detailed proof. Theorem 4235

indicates that the conditional probability of y is determined by the fraction of labels within the236

pre-training set and the examples during inference, in addition to the inputs. A direct corollary is237

that when the fraction of yi = +1 is fixed as 0.5 during the pre-training, and all yi are negative in the238

inference stage, the prediction for y is always positive.239

3 Conclusion240

In this paper, we analyze the behavior of ICL in a binary classification model. We study the ICL241

performance under different scenarios, including contradicting knowledge, imbalanced examples, and242

label noise. In addition to the above analysis in which we assume examples are independently chosen243

in pre-training, we also find out a counter-intuitive phenomenon when the examples are selected in244

a dependent way. When fixing the number of positive labels and negative labels in the prompt, the245

ICL prediction behaves in a mean-reversion manner. We believe that our observations and theoretical246

results can provide deep insights into understanding ICL. A future direction could be to relax the247

conditions in this paper and consider more general data distributions.248
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The structure of the appendix is as follows. In Section A, we provide the discussion when the358

decision boundary in Lemma 2 is not a hyperplane. Section B collects the proof for all lemmas and359

theorems in the main content. Section C describes the simulation setups, and Section F includes360

additional experiment results corresponding to Section D and Section E for both independent and361

dependent scenarios. Section D provides detailed experiments and results, including simulations and362

real-data experiments. SectionE provides a detailed discussion on the mean reversion phenomenon363

both theoretically and empirically. Section G discusses the related works.364

A Technical Discussion when σ2
+ + σ2

θ+
̸= σ2

− + σ2
θ−

365

General scenario In Theorem 1 and the propositions in Section 2.3, our assumptions aim to simplify
the analysis so that the decision boundary is a hyperplane. When the examples are provided such that
σ2
θ+

̸= σ2
θ−

, the general intuition holds, but the decision boundary changes from a hyperplane into a
sphere. To be specific, based on Lemma 2, we have

N(x) =


√√√√σ2

− + σ2
θ−

σ2
+ + σ2

θ+

m

exp

[
− (x− θ̂+)

T (x− θ̂+)

2(σ2
+ + σ2

θ+
)

+
(x− θ̂−)

T (x− θ̂−)

2(σ2
− + σ2

θ−
)

]
.

Then for some constant a,366

N(x) > a

⇔ − (x− θ̂+)
T (x− θ̂+)

2(σ2
+ + σ2

θ+
)

+
(x− θ̂−)

T (x− θ̂−)

2(σ2
− + σ2

θ−
)

> log(a)−m log


√√√√σ2

− + σ2
θ−

σ2
+ + σ2

θ+

 ,

where the decision boundary

− (x− θ̂+)
T (x− θ̂+)

2(σ2
+ + σ2

θ+
)

+
(x− θ̂−)

T (x− θ̂−)

2(σ2
− + σ2

θ−
)

= log(a)−m log


√√√√σ2

− + σ2
θ−

σ2
+ + σ2

θ+


is a sphere.367

In such a case, in Theorem 1, for368

P (correct|y = +1) =

∫
fICL(x)≥0

P (x|y = +1)dx,

instead of directly using Φ to represent the probability, we use the noncentral Chi-square distribution369

to write the probability. The following is the definition of noncentral Chi-square distribution.370

Definition 1 (Noncentral Chi-square distribution2). Let (X1, X2, . . . , Xk) be k independent and
normally distributed random variables with means µi and unit variances. Then the random variable

k∑
i=1

X2
i

is distributed according to the noncentral chi-square distribution. It has two parameters: k which
specifies the number of degrees of freedom and λ which is related to the mean of Xis by

λ =

k∑
i=1

µ2
i .

Case when σ2
+ = σ2

− When σ2
+ = σ2

−, asymptotically, when k → ∞, the difference between σ2
θ−

371

and σ2
θ+

does not hurt the decision boundary. To explain this, based on the formula of σ2
θ−

and σ2
θ+

,372

both of them are in O(1/k), which quickly diminishes to zero in k. On the other hand, for the other373

terms in the decision boundary, e.g., θ̂+ and θ̂− in N(x), they converge to their expectation in a rate374

of O(1/
√
k). As a result, the effect of σ2

θ−
and σ2

θ+
are negligible compared to the other quantities in375

the decision boundary formula.376

2https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
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B Proofs377

B.1 Proof of Lemma 1378

Proof of Lemma 1. Given the prior distribution of θ−, θ+, π and the data {(xi, yi)}, the likelihood379

becomes380

P (θ+, θ−, π|(x1, y1), ..., (xk, yk),M)

∝ P ((x1, y1), ..., (xk, yk)|θ+, θ−, π,M)P (θ+, θ−, π|M)

= P (θ+, θ−, π)

k∏
i=1

P ((xi, yi)|θ+, θ−, π) (Omit M for simplicity)

= P (θ+, θ−, π)

·
∏

yi=+1

π
1(√

2πσ2
+

)m exp

[
− 1

2σ2
+

(xi − θ+)
T (xi − θ+)

]

·
∏

yi=−1

(1− π)
1(√

2πσ2
+

)m exp

[
− 1

2σ2
+

(xi − θ+)
T (xi − θ+)

]

= [π#(yi=+1)(1− π)#(yi=−1)]P (θ+, θ−)
∏

yi=+1

π
1(√

2πσ2
+

)m exp

[
− 1

2σ2
+

(xi − θ+)
T (xi − θ+)

]

·
∏

yi=−1

(1− π)
1(√

2πσ2
+

)m exp

[
− 1

2σ2
+

(xi − θ+)
T (xi − θ+)

]

.

(1)

Posterior of π. Since all parameters are independent, we can obtain the posterior distribution of π as

P (π|{(xi, yi)},M) ∝ P (π|M)π#(yi=+1)(1− π)#(yi=−1) ∝ π#(yi=+1)(1− π)#(yi=−1).

Therefore, the posterior of π is Beta(#(yi = +1) + 1,#(yi = −1)k + 1).381

Posterior of θ+, θ−. The likelihood of θ+ satisfies

P (θ+|{(xi, yi)}|M) ∝ P (θ+|M)
∏

yi=+1

π
1(√

2πσ2
+

)m exp

[
− 1

2σ2
+

(xi − θ+)
T (xi − θ+)

]

∝ exp

[
− 1

2σ2
M

(θ+ − θM )T (θ+ − θM )− 1

2σ2
+

∑
yi=+1

(xi − θ+)
T (xi − θ+)

]
,

which means that the posterior of θ+ follows a Gaussian distribution, i.e.

θ+ ∼ N

(
σ2
+θM + σ2

M

∑
yi=+1 xi

σ2
+ +#(yi = +1)σ2

M

,
σ2
+σ

2
M

σ2
+ +#(yi = +1)σ2

M

I

)
= N(θ̂+, σ

2
θ+I).

Similarly, the posterior of θ− follows

θ− ∼ N

(
σ2
M

∑
yi=−1 xi − σ2

−θM

σ2
− +#(yi = −1)σ2

M

,
σ2
Mσ2

−
σ2
− +#(yi = −1)σ2

M

I

)
= N(θ̂−, σ

2
θ−I).

382

B.2 Proof of Lemma 2383

Proof of Lemma 2. Given p+ = p− = 1 and the posterior of θ+, θ−, π, we obtain that384

P (x, y = +1|{(xi, yi)},M)
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=

∫
π

∫
θ+,θ−

π
1(√

2πσ2
+

)m exp

[
− 1

2σ2
+

(x− θ+)
T (x− θ+)

]
·P (π|{(xi, yi)},M)P (θ+|{(xi, yi)},M)P (θ−|{(xi, yi)},M)dπdθ+dθ−

=

∫
π

∫
θ+

π
1(√

2πσ2
+

)m exp

[
− 1

2σ2
+

(x− θ+)
T (x− θ+)

]
·P (π|{(xi, yi)},M)P (θ+|{(xi, yi)},M)dπdθ+

=

∫
π

∫
θ+

π
1(√

2πσ2
+

)m (√
2πσ2

θ+

)m exp

[
− 1

2σ2
+

(x− θ+)
T (x− θ+)

]

·P (π|{(xi, yi)},M) exp

[
− 1

2σ2
θ+

(θ+ − θ̂+)
T (θ+ − θ̂+)

]
dπdθ+

=
#(yi = +1) + 1

k + 2

∫
θ+

1(√
2πσ2

+

)m (√
2πσ2

θ+

)m exp

[
− 1

2σ2
+

(x− θ+)
T (x− θ+)

]

· exp

[
− 1

2σ2
θ+

(θ+ − θ̂+)
T (θ+ − θ̂+)

]
dθ+

=
#(yi = +1) + 1

k + 2

1(√
2π(σ2

+ + σ2
θ+
)
)m exp

[
− 1

2(σ2
+ + σ2

θ+
)
(x− θ̂+)

T (x− θ̂+)

]
.

Similarly, we have

P (x, y = −1|{(xi, yi)},M) =
#(yi = −1) + 1

k + 2

1(√
2π(σ2

− + σ2
θ−

)
)m exp

[
− (x− θ̂−)

T (x− θ̂−)

2(σ2
− + σ2

θ−
)

]
.

Then we can obtain the predicted probability and decision boundary.385

P (y = +1|x, {(xi, yi)},M) =
P (x, y = +1|{(xi, yi)},M)

P (x, y+ = 1|{(xi, yi)},M) + P (x, y = −1|{(xi, yi)},M)

=

#(yi=+1)+1
k+2 N(x)

#(yi=+1)+1
k+2 N(x) + #(yi=−1)+1

k+2

,

P (y = −1|x, {(xi, yi)},M) =
P (x, y = −1|{(xi, yi)},M)

P (x, y+ = 1|{(xi, yi)},M) + P (x, y = −1|{(xi, yi)},M)

=

#(yi=−1)+1
k+2

#(yi=+1)+1
k+2 N(x) + #(yi=−1)+1

k+2

,

where

N(x) =


√√√√σ2

− + σ2
θ−

σ2
+ + σ2

θ+

m

exp

[
− (x− θ̂+)

T (x− θ̂+)

2(σ2
+ + σ2

θ+
)

+
(x− θ̂−)

T (x− θ̂−)

2(σ2
− + σ2

θ−
)

]
.

Finally, the decision boundary is ŷICL = 1(fICL(x) > 0), where fICL(x) = N(x)− #(yi=−1)+1
#(yi=+1)+1 .386

387

B.3 Proof of Theorem 1388

In the following, we first provide the posterior of the parameters in a simplified scenario in Lemma 3,389

and then use this result in Theorem 1 to derive the exact accuracy of ICL.390
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Lemma 3. Under the conditions of Theorem 1, when taking k → ∞, we can simplify θ̂+, θ̂−, σ2
θ+

,391

σ2
θ−

, N(x), fICL(x) as follows:392

θ̂+ =
σ2θM + σ2

M

∑
yi=+1 xi

σ2 +#(yi = +1)σ2
M

, θ̂− =
σ2
M

∑
yi=−1 xi − σ2θM

σ2 +#(yi = −1)σ2
M

,

σ2
θ+ =

σ2σ2
M

σ2 +#(yi = +1)σ2
M

→ 0, σ2
θ− =

σ2σ2
M

σ2 +#(yi = −1)σ2
M

→ 0,

N(x) = exp

[
1

σ2
(θ̂+ − θ̂−)

Tx− 1

2σ2
(θ̂T+θ̂+ − θ̂T−θ̂−)

]
, fICL(x) = N(x)− zk.

As mentioned in Section A, since σ2
θ+

and σ2
θ−

are negligible compared to other terms in N(x), we393

remove them from fICL.394

Proof of Theorem 1. We can compute the average ICL accuracy when test samples are sampled from395

the example distribution. We first derive the marginal distribution for test input x. For any fixed θ+396

and θ−, following the data generation assumption in Section 2.1, we have397

P (x|y = +1) =
1

(
√
2πσ2)m

exp

[
− (x− θ+)

T (x− θ+)

2σ2

]
P (x|y = −1) =

1

(
√
2πσ2)m

exp

[
− (x− θ−)

T (x− θ−)

2σ2

]
.

As a result, when integrating over all possible θ+ and θ−, it becomes398

P (x|y = +1)

=

∫
θ+,θ−

P (x|y = +1, θ+, θ−)PM (θ+)PM (θ−)dθ+dθ−

=

∫
θ+,θ−

1

(
√
2πσ2)m

exp

[
− 1

2σ2
(x− θ+)

T (x− θ+)

]
· 1(√

2πσ2
e+

)m exp

[
− 1

2σ2
e+

(θ+ − θe+)
T (θ+ − θe+)

]

· 1(√
2πσ2

e−

)m exp

[
− 1

2σ2
e−

(θ− − θe−)
T (θ− − θe−)

]
dθ+dθ−

=

∫
θ+

1

(
√
2πσ2)m

exp

[
− 1

2σ2
(x− θ+)

T (x− θ+)

]
· 1(√

2πσ2
e+

)m exp

[
− 1

2σ2
e+

(θ+ − θe+)
T (θ+ − θe+)

]
dθ+

=
1(√

2π(σ2 + σ2
e+)
)m exp

[
− 1

2(σ2 + σ2
e+)

(x− θe+)
T (x− θe+)

]
.

Similarly,399

P (x|y = −1) =
1(√

2π(σ2 + σ2
e−)
)m exp

[
− 1

2(σ2 + σ2
e−)

(x− θe−)
T (x− θe−)

]
.

Then, we compute the probability of correct prediction for each class respectively.400

P (correct|y = +1, {(xi, yi)},M) =

∫
fICL(x)≥0

P (x|y = +1)dx

13



Based on Lemma 2, we know that

{x : fICL(x) ≥ 0} =

{
x : (θ̂+ − θ̂−)

Tx−
θ̂T+θ̂+ − θ̂T−θ̂−

2
≥ σ2 log zk

}
.

Let z = (θ̂− − θ̂+)
Tx− θ̂T

+ θ̂+−θ̂T
−θ̂−

2 − σ2 log zk, then we have401

z|y = +1, {(xi, yi)},M ∼ N

(
(θ̂+ − θ̂−)

T θe+ −
θ̂T+θ̂+ − θ̂T−θ̂−

2
− σ2 log zk, ∥θ̂− − θ̂+∥22(σ2 + σ2

e+)

)
,

which is still a Gaussian distribution. Therefore, we have402

P (correct|y = +1, {(xi, yi)},M) =

∫
z≥0

P (z|y = +1)dz

=

1− Φ

−
(θ̂+ − θ̂−)

T θe+ − θ̂T
+ θ̂+−θ̂T

−θ̂−
2 − σ2 log zk

∥θ̂− − θ̂+∥2
√

σ2 + σ2
e+


=

1− Φ

θe+ − (θ̂+ + θ̂−)/2√
σ2 + σ2

e+

θ̂− − θ̂+

∥θ̂− − θ̂+∥
+

σ2 log zk√
σ2 + σ2

e+∥θ̂− − θ̂+∥

 ,

and403

P (correct|y = −1, {(xi, yi)},M) =

∫
z<0

P (z|y = −1)dz

= Φ

−
(θ̂+ − θ̂−)

T θe− − θ̂T
+ θ̂+−θ̂T

−θ̂−
2 − σ2 log zk

∥θ̂− − θ̂+∥2
√

(σ2 + σ2
e−)


= Φ

 (θe− − (θ̂+ + θ̂−)/2)
T√

σ2 + σ2
e−

θ̂− − θ̂+

∥θ̂− − θ̂+∥2
+

σ2 log zk√
σ2 + σ2

e−∥θ̂− − θ̂+∥

 .

404

B.4 Proof of Proposition 1405

Proof of Proposition 1. Denote406

x̄+ =
1

#(yi = +1)

∑
yi=+1

xi, x̄− =
1

#(yi = −1)

∑
yi=−1

xi, x̄ =
1

k

k∑
i=1

xi.

From Assumption 1 and Assumption 2, we know that

x̄− ∼ N

(
θe−,

σ2
e+ + σ2

#(yi = +1)
I

)
, x̄+ ∼ N

(
θe+,

σ2
e− + σ2

#(yi = −1)
I

)
,

which implies that

x̄ ∼ N

(
#(yi = −1)

k
θe− +

#(yi = +1)

k
θe+,

(
#(yi = +1)

k
σ2
e+ +

#(yi = −1)

k
σ2
e−

)
I

)
.

We rewrite x̄+ and x̄− via introducing zero-mean variables:407

z̄+ = x̄+ − θe+, z̄− = x̄− − θe−.

When σ2
e+, σ

2
e− → 0, the mean of z̄+, z̄−, and x̄ are always zero.408
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Then, when θe+ + θe− = 0, we have Ex̄ = 0, and409

P (correct|y = +1, {(xi, yi)},M)

= 1− Φ

θe+ − (θ̂+ + θ̂−)/2√
σ2 + σ2

e+

θ̂− − θ̂+

∥θ̂− − θ̂+∥
+

σ2 log zk√
σ2 + σ2

e+∥θ̂− − θ̂+∥



= 1− Φ


θe+ − kσ2

M x̄

2σ2+kσ2
M√

σ2 + σ2
e+

T

0.5kσ2
M [θe− − θe+ + (z̄− − z̄+)]− 2σ2θM

∥0.5kσ2
M [θe− − θe+ + (z̄− − z̄+)]− 2σ2θM∥2

 .

Now we compare the case of contradicted knowledge and matched knowledge.410

Contradict knowledge. When θe− = θM = −θe+, we have411

P (correct|y = +1, {(xi, yi)},M)

= 1− Φ


−θM − kσ2

M x̄

2σ2+kσ2
M√

σ2 + σ2
e+

T

0.5kσ2
M (z̄− − z̄+) + (kσ2

M − 2σ2)θM
∥0.5kσ2

M (z̄− − z̄+) + (kσ2
M − 2σ2)θM∥2

 .

When kσ2
M ≪ σ2, we have412

P (correct|y = +1, {(xi, yi)},M) →

1− Φ

 ∥θM∥2√
σ2 + σ2

e+

 .

When kσ2
M ≫ σ2, we have413

P (correct|y = +1, {(xi, yi)},M) →

1− Φ

 −∥θM∥2√
σ2 + σ2

e+

 .

Matched knowledge. When θe− = −θM = −θe+, we have414

P (correct|y = +1, {(xi, yi)},M)

= 1− Φ


θM − kσ2

M x̄

2σ2+kσ2
M√

σ2 + σ2
e+

T

0.5kσ2
M (z̄− − z̄+)− (kσ2

M + 2σ2)θM
∥0.5kσ2

M (z̄− − z̄+)− (kσ2
M + 2σ2)θM∥2

 .

When kσ2
M ≪ σ2, we have415

P (correct|y = +1, {(xi, yi)},M) =

1− Φ

 −∥θM∥2√
σ2 + σ2

e+

 .

When kσ2
M ≫ σ2, we have416

P (correct|y = +1, {(xi, yi)},M) →

1− Φ

 −∥θM∥2√
σ2 + σ2

e+

 .

417

B.5 Proof of Proposition 2418

Proof of Proposition 2. When k → ∞, we have θ̂+ → θM and θ̂− → −θM , as well as σ2
θ+

→
0, σ2

θ−
→ 0. In this case, the ICL decision boundary is still a hyperplane, and we can use the result in

Lemma 2 and simplify the decision function into

fICL(x) = exp

[
− (x− θ̂+)

T (x− θ̂+)

2σ2
+

(x− θ̂−)
T (x− θ̂−)

2σ2

]
− 1− π

π
.
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Then, following the same definition of z as Theorem 1, we can compute the ICL accuracy:419

P (correct|y = +1, {(xi, yi)},M) =

∫
z≥log( 1−π

π )
P (z|y = +1)dz.

Since log 1−π
π goes to ∞ when π → 0, P (correct|y = +1) → 0.420

B.6 Proof of Proposition 3421

Proof of Proposition 3. Following the definition of θ̂+ and θ̂−, when taking k → ∞ and θe+ = θM =422

−θe−, we obtain423

θ̂− + θ̂+ → (1 + pe+ − pe−)θ
e
+ + (1− pe+ + pe−)θ

e
− = 2(pe+ − pe−)θM ,

θ̂− − θ̂+ → (1− pe+ − pe−)(θ
e
+ − θe−) = 2(1− pe+ − pe−)θM .

Taking the above into the formula of P (correct|y = +1) in Theorem 1, we obtain424

P (correct|y = +1, {(xi, yi)},M) = 1− Φ

θe+ − (θ̂+ + θ̂−)/2√
(σ2 + σ2

e+)

θ̂− − θ̂+

∥θ̂− − θ̂+∥
+

(σ2 + σ2
θ) log zk

∥θ̂− − θ̂+∥
√
(σ2 + σ2

e+)


= 1− Φ

(
C1(1− pe+ + pe−)∥θM∥sign(1− pe+ − pe−) + C2

log zk
|1− pe+ − pe−|

)
,

and425

P (correct|y = −1, {(xi, yi)},M) = Φ

 (θe− − (θ̂+ + θ̂−)/2)
T√

σ2 + σ2
e−

θ̂− − θ̂+

∥θ̂− − θ̂+∥2
+

(σ2 + σ2
θ) log zk

∥θ̂− − θ̂+∥
√

(σ2 + σ2
e+)


= Φ

(
−C1(1 + pe+ − pe−)sign(1− pe+ − pe−) + C2

log zk
|1− pe+ − pe−|

)
.

where C1 = 2 ∥θM∥√
(σ2+σ2

e+)
> 0, C2 = σ2√

(σ2+σ2
e+)∥θM∥

> 0.426

B.7 Formal statement and proof of Theorem 3427

Theorem 3 (Dependent examples). Assume {(xi, yi)} are not independent and are considered as a428

sequence of inputs. Let frac denote the fraction of 1 among the set of labels in the pre-training set.429

Assume frac approximately3 follows Beta(α, β) with α, β → ∞ and α/β → π/(1− π) for some430

constant π ∈ (0, 1), i.e., frac is around π with probability tending to 1. Further, assume that all yis431

and y have an equal chance of being positive in pre-training. Then when P (x|y = +1, {(xi, yi)},M)432

and P (x|y = −1, {(xi, yi)},M) are both bounded and bounded away from zero, the following holds:433

P (y = +1|x, {(xi, yi)},M) →

{
1 if #(yi=1)

k+1 < ⌊π(k+1)⌋−1
k+1

0 if #(yi=1)
k+1 > ⌈π(k+1)⌉+1

k+1

.

Proof of Theorem 3. During pre-training, since there are k examples and one test sample in the434

prompt, the fraction of positive labels can only take values in the form of i/(k + 1) for i = 0, . . . , k,435

rather than a continuous variable in [0, 1]. As a result, to connect the distribution of frac with the436

Beta distribution, we assume k + 1 is odd and denote B as a random variable following Beta(α, β).437

Then we set the following:438

P (frac = i/(k + 1)|M) =


P
(
B < 1

2(k+1)

)
i = 0

P
(

2i−1
2(k+1) ≤ B < 2i+1

(2k+1)

)
0 < i < k + 1

P
(
B ≥ 2k+1

2(k+1)

)
i = k + 1

.

3The fraction number given a finite number of examples follows a discrete distribution. Here we approximate
it to the Beta distribution and focus on the intuition. Details can be found in the proof.
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In addition, we assume that all yis and y have equal chance of being positive.439

Based on our assumption, when LLM learns from the pre-training data, it can exactly learn the440

distribution of frac, and use the likelihood to make a decision when receiving the testing data.441

In the testing stage, when receiving {(xi, yi)}i∈[k] and x. From the definition of conditional probabil-442

ity, we know that443

P (y = +1|x, {(xi, yi)},M) =
P ((x, y = +1)|{(xi, yi)},M)

P ((x, y = +1)|{(xi, yi)},M) + P ((x, y = −1)|{(xi, yi)},M)
,

where444

P ((x, y = +1)|{(xi, yi)},M) = P (x|y = +1, {(xi, yi)},M)P (y = +1|{(xi, yi)},M).

From the above, we need to figure out the following quantity:445

P ((x, y = +1)|{(xi, yi)},M)

= P (x|y = +1, (xi, yi),M)P (y = +1|{(xi, yi)},M)

= P (x|y = +1, {(xi, yi)},M)P

(
frac =

1 +#(yi = +1)

k + 1

∣∣∣∣{(xi, yi)},M
)
,

where446

P

(
frac =

1 +#(yi = +1)

k + 1

∣∣∣∣{(xi, yi)},M
)

=

P

(
frac = 1+#(yi=+1)

k+1 , {(xi, yi)}
∣∣∣∣M)

P

(
frac = 1+#(yi=+1)

k+1 , {(xi, yi)}
∣∣∣∣M)+ P

(
frac = #(yi=+1)

k+1 , {(xi, yi)}
∣∣∣∣M) . (2)

To calculate P (frac = (1 + #(yi = +1))/(k + 1), {(xi, yi)}|M), when frac = (1 + #(yi =
+1))/(k + 1), it means that there are 1+#(yi = +1) examples (and the query) which have a positive
label. Given a total of k + 1 data, there are C

1+#(yi=+1)
k+1 different combinations. As a result, for a

fixed {(xi, yi)}, we have

P

(
frac =

1 +#(yi = +1)

k + 1
, {(xi, yi)}

∣∣∣∣M) =
1

C
1+#(yi=+1)
k+1

P

(
frac =

1 +#(yi = +1)

k + 1

∣∣∣∣M) .

Similarly, we obtain that

P

(
frac =

#(yi = +1)

k + 1
, {(xi, yi)}

∣∣∣∣M) =
1

C
#(yi=+1)
k+1

P

(
frac =

#(yi = +1)

k + 1

∣∣∣∣M) .

Taking the above into (2), it becomes447

P

(
frac =

1 +#(yi = +1)

k + 1

∣∣∣∣{(xi, yi)},M
)

=

P

(
frac = 1+#(yi=+1)

k+1

∣∣∣∣M)C
#(yi=+1)
k+1

P

(
frac = 1+#(yi=+1)

k+1

∣∣∣∣M)C
#(yi=+1)
k+1 + P

(
frac = #(yi=+1)

k+1

∣∣∣∣M)C
1+#(yi=+1)
k+1

=
1

1 +
P
(
frac=

#(yi=+1)

k+1 |M
)

P
(
frac=

1+#(yi=+1)

k+1 |M
) k−#(yi=+1)+1

1+#(yi=+1)

.

To further look at the exact value of P
(
frac = 1+#(yi=+1)

k+1

∣∣∣∣{(xi, yi)},M
)

, we need to figure out448

P (frac = i/(k + 1)|M) using the Beta distribution. Recall that the probability density function f449

of Beta(α, β) satisfies450

f(u) =
uα−1(1− u)β−1

B(α, β)
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for Beta function B(α, β). Recall that we assume that α/β = π/(1−π) for some π ∈ (0, 1), and both451

α, β → ∞. When u < (α−1)/(α+β−2) ≈ π, we have f is an increasing function in u, otherwise452

f is decreasing. This implies that the largest probability of frac may be taken from P (frac =453

(⌊π(k+1)⌋+1)/(k+1)), P (frac = ⌊π(k+1)⌋/(k+1)) or P (frac = (⌊π(k+1)⌋−1)/(k+1)).454

When frac < (⌊π(k + 1)⌋ − 1)/(k + 1), when α and β are large enough, one can obtain that455

P
(
frac = #(yi=+1)

k+1 |M
)

P
(
frac = 1+#(yi=+1)

k+1 |M
) k −#(yi = +1) + 1

1 +#(yi = +1)
→ 0,

which implies that456

P

(
frac =

1 +#(yi = +1)

k + 1

∣∣∣∣{(xi, yi)},M
)

=
1

1 +
P
(
frac=

#(yi=+1)

k+1 |M
)

P
(
frac=

1+#(yi=+1)

k+1 |M
) k−#(yi=+1)+1

1+#(yi=+1)

→ 1.

Similarly, when frac > (⌈π(k + 1)⌉+ 1)/(k + 1),457

P

(
frac =

1 +#(yi = +1)

k + 1

∣∣∣∣{(xi, yi)},M
)

=
1

1 +
P
(
frac=

#(yi=+1)

k+1 |M
)

P
(
frac=

1+#(yi=+1)

k+1 |M
) k−#(yi=+1)+1

1+#(yi=+1)

→ 0.

Finally, we put P
(
frac = 1+#(yi=+1)

k+1

∣∣∣∣{(xi, yi)},M
)

into P (y = +1|x, {(xi, yi),M}):458

P (y = +1|x, {(xi, yi)},M)

=
P ((x, y = +1)|{(xi, yi)},M)

P ((x, y = +1)|{(xi, yi)},M) + P ((x, y = −1)|{(xi, yi)},M)

=
P (x|y = +1, {(xi, yi)}|M)P (frac =

1+#(yi=+1)
k+1

|{(xi, yi)},M)

P (x|y = +1, {(xi, yi),M})P (frac =
1+#(yi=+1)

k+1
|{(xi, yi)},M) + P (x|y = −1, {(xi, yi)},M)P (frac =

#(yi=+1)
k+1

|{(xi, yi)},M)
.

When P (x|y = +1, {(xi, yi),M}) and P (x|y = −1, {(xi, yi),M}) are both bounded and bounded459

away from zero, we have460

P (y = +1|x, {(xi, yi)},M) →

{
1 if #(yi=+1)

k+1 < ⌊π(k+1)⌋−1
k+1

0 if #(yi=+1)
k+1 > ⌈π(k+1)⌉+1

k+1

,

which completes the proof.461
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C Simulation setups462

In this section, we provide details of experimental setups for simulation.463

Model structure. We pre-train a decoder-only Transformer [19] from the GPT-2 [20] family. This464

model has 12 layers, 8 attention heads, and a 256-dimensional embedding space. The model input465

takes the form of (x1, y1, x2, y2, . . .). In our training, xi ∈ R5 and yi ∈ {1,−1}. We map yi to the466

same dimension of xi by appending zeros. Then the whole prompt will be projected into the latent467

embedding space of the Transformer through a (learnable) MLP layer. Another (learnable) MLP468

layer is used to project embeddings back to scalars in the output.469

Pre-training. We train the model using a cross-entropy loss function for binary classification. We470

sample a batch of random prompts at each training step and update the model through a gradient471

update. We train with a batch size of 64 and for 50k steps. This training is done from scratch, that is,472

we do not fine-tune a pre-trained language model, nor do we train on actual text. Following previous473

work [9], we also use curriculum learning [21, 22]. In particular, we start with a shorter length of474

prompts (10 input-output pairs) and increase the length by 2 every 2000 training steps. For the other475

hyperparameters, e.g., learning rate, we use the default values as in [9].476

Pre-training data. We follow the data generation model in Section 2.1. We first select label477

y ∈ {+1,−1} with probability π (positive probability). Then for inputs with positive labels, we478

first sample a mean value θ+ from a Gaussian distribution N(θM , σ2
MI), and then sample data x479

from Gaussian distribution N(θ+, σ
2I); similar for the inputs with label −1, we sample θ− from480

N(−θM , σ2
MI), and sample x from N(θ−, σ

2I). Specifically, we let θM = 0.51, σ2
M = σ2 = 1.481

During the pre-training, to ensure the transformer can learn the population information rather than482

overfitting a particular set of data, we sample a new pair of (θ+, θ−) for each iteration and generate483

corresponding sample pair (xi, yi).484

Computation resources. Both simulations and real-world experiments are running on a server with485

8 Nvidia RTX A6000 GPU (48G GPU memory each) and 32 AMD EPYC 7302 16-Core Processors.486

D Experiments487

In this section, we empirically verify the analysis in Section 2. In summary, both simulation and488

real-data experiments are consistent Section 24.489

D.1 Simulation490

To set up the experiment, we pre-train a decoder-only Transformer [19] from the GPT-2 [20] family.491

We follow Section 2.1 to construct the pre-training data and follow [9] to perform next-token492

prediction to estimate all yis and yquery. During the pre-training, we sample a new pair of (θ+, θ−)493

for each iteration and generate corresponding demonstration examples. A detailed setting for494

simulation can be found in Appendix C.495

We implement the scenarios as in Section 2.3:496

Contradicting knowledge We pre-train the model with θM = 0.515, σ2
M = 1, σ2 = 1. During497

the inference stage, we generate examples and test data with θe+ = −0.515, θe− = 0.515 which498

contradicts the pre-training distribution. We let σ2
e+ = σ2

e− = 1, and test on various σ2 ∈ {1, 2, 4}.499

The results for σ2 = 2, 4 are postponed to Section F.1. We compute the ICL accuracy for each500

class when k increases. For comparison, we also generate examples with matched knowledge501

(θe+ = 0.515 = −θe−) and examine the ICL accuracy.502

The results can be found in Figures 1, where the X-axis represents the number of examples k, and the503

Y-axis is the ICL accuracy. The red dash denotes σ2/σ2
M based on Proposition 1 and σ2/σ2

M = 1504

in our simulation. There are two observations. First, when k ≤ σ2/σ2
M , the ICL performance of505

contradicting knowledge is worse than that of matching knowledge, verifying that the transformer506

heavily relies on the pre-training knowledge when there are limited examples. Second, when k507

4Code is available in https://anonymous.4open.science/r/ICL-understanding-classification-DC1C
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Figure 1: Contradicting knowledge when σ2 = 1 Figure 2: Imbalanced examples

increases, the ICL performance for contradicting knowledge increases to around 87% when k = 20,508

indicating that the knowledge from the examples will dominate when k is large.509

Imbalanced examples We pre-train the model with θM = 0.515, σ2
M = 1, σ2 = 1. During510

the inference stage, we generate examples and the test data with θe+ = 0.515, θ
e
− = −0.515 and511

σ2
e+ = σ2

e− = 1, σ2 = 1. We test with various fraction π ∈ {0, 0.1, 0.2, ..., 0.9, 1.0}. In Figure 2,512

the X-axis represents the fraction of positive examples among all examples in the demonstration, i.e.,513

π. We can observe that when the fraction of positive is increasing, ICL accuracy for positive inputs is514

increasing and finally reaches 100%, while ICL accuracy for negative inputs is decreasing, which is515

the same as described in Proposition 2.516

Label noise We pre-train the model with θM = 0.515, σ2
M = 1, σ2 = 1. During the inference517

stage, we generate examples and the test data with θe+ = 0.515, θe− = −0.515, and fix σ2
e+ = σ2

e− =518

1, σ2 = 0.01. The example size k is 100, and π is 0.5. For the examples in each class, we randomly519

flip their label with probability 1− pe+, 1− pe− respectively, and test ICL accuracy for each class for520

1 − pe+, 1 − pe− ∈ {1, 0.9, 0.8, ..., 0.1, 0}. The ICL accuracies for each class and the overall result521

are summarized in Figures 3.522

The phenomenon in these heatmaps is consistent with our conclusion in Proposition 3. Take the523

ICL accuracy of the positive class as an example (the first figure in Figure 3); we observe that when524

the flipping probability in the negative class is fixed, smaller flipping probability (higher pe+) in the525

positive class usually leads to higher accuracy in the positive class. Moreover, the diagonal from the526

bottom left to the upper right represents cases when pe+ + pe− = 1 and it is obvious that the positive527

accuracy is either approximately 0, 0.5, or 1. Similar observations can be found for the negative class528

as well (the middle panel of Figure3). In terms of the overall accuracy, only when both pe+ and pe−529

are close to 1, the overall accuracy is greater than 80%.530

Figure 3: Simulation results on positive and negative accuracy facing label noises.

D.2 Real-Data Experiment531

In this subsection, we conduct experiments on real datasets to show that the theoretical insights in532

Section 2 also align with the practical scenarios.533
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We consider two popular pre-trained LLMs, Pythia-6.9B [23] and Llama2-7B [24]. We test on a534

sentiment analysis dataset, SST2 dataset [25], which is also a binary classification task (labeled as535

“positive” and “negative”). During the inference, we randomly select k samples from the training set536

as examples and compute the ICL accuracy for each class. We repeat the process 10 times and record537

the average accuracy. If not specified, k = 50.538

Label noise Similar to the simulation, we also randomly flip the label of examples from pos-539

itive and negative classes and the correct probability is pe+, p
e
− respectively. We let pe+, p

e
− ∈540

{0.0, 0.1, ..., 0.9, 1.0} and record ICL accuracy in each class. Results are shown in Figure 4, 5, 6,541

7. It can be consistently observed that when pe− is fixed, larger pe+ leads to higher accuracy in the542

positive class (Figure 4 and 6); when pe+ is fixed, larger pe− leads to higher accuracy in the negative543

class (Figure 5 and 7). This observation is consistent with our analysis in Proposition 3.

Figure 4: Pythia-6.9B:
ICL acc, positive class.

Figure 5: Pythia-6.9B:
ICL acc, negative class.

Figure 6: Llama2-7B:
ICL acc, positive class.

Figure 7: Llama2-7B:
ICL acc, negative class.

544

Imbalanced examples We also conduct experiments when the fraction π of examples from the pos-545

itive class is not 0.5. Specifically, we test with π ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.546

As depicted in Figure 8 and 9, when the number of positive examples increases, the accuracy of the547

positive class increases as that of the negative class decreases, which also supports our analysis in548

Proposition 2.

Figure 8: Imbalance examples, Pythia-6.9B. Figure 9: Imbalance examples, Llama2-7B.
549

E Mean Reversion in ICL with Dependent Examples550

The previous analysis and experiments provide a comprehensive understanding of the effect of551

pre-training and examples under the independent-example scenario. However, it is also common552

when examples are sampled dependently, especially when examples are strategically selected to553

serve a specific objective, such as ensuring a balanced representation of 50% positive and 50%554

negative examples to prevent dataset imbalance [26, 27]. Surprisingly, we discover a counter-intuitive555

phenomenon, named as “mean reversion”, under this scenario. We first empirically illustrate this556

phenomenon and then provide a theoretical analysis.557

Empirical illustration of Mean Reversion We follow a similar procedure as introduced in Section558

D, while the difference is that during the pre-training stage, we fix the fraction of positive labels559

(examples + test data) to be exactly 0.5. This differs from the independent case since the fraction π560
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may fluctuate around 0.5 instead of strictly equal to 0.5. During the inference, in-context examples are561

sampled from both classes but are all labeled as positive or negative. We test with various fractions of562

positive examples in the prompt to see how the prediction for the test input x is affected. Results are563

shown in Figure 10 11.564

In Figure 10, all examples are labeled as positive and the X-axis reflects the fraction of examples565

truly from the positive class; while in 11, all examples are labeled as negative and the X-axis reflects566

the fraction of examples truly from the negative class. There are four lines in the two figures. The567

“Positive”/“Negative” refers to the probability of the prediction being positive/negative when the568

correct label is positive/negative. The “Total pos”/“Total neg” represents the marginal probability of569

the prediction being positive/negative.570

Figure 10: All yis are positive. Figure 11: All yis are negative.
As shown in Figure 10, we can see that regardless of the change in the fraction of examples’ true571

classes (X-axis), we always obtain a low positive rate for the true positive test data, and the overall572

positive rate is low. This contradicts the independent case in Figure 2. Intuitively, since LLM learns573

that the fraction of positive labels is exactly 0.5 in the pre-training, at the inference stage, the joint574

label distribution of examples and test input appears to converge to 0.5-0.5 5.575

In the following, we provide a rigorous theoretical analysis to explain this phenomenon:576

Theorem 4 (Mean Reversion, informal version of Theorem 3). Let frac denote the fraction of +1577

among the set of labels in the pre-training set. Under some mild conditions, assume in each prompt578

in pre-training, frac is always a fixed π, then in the testing prompt: (1) If #(yi = +1)/k < π, then579

the prediction of x is +1. (2) If #(yi = +1)/k > π, then the prediction of x is −1.580

We direct the reader into Appendix B.7 for the formal statement and detailed proof. In short, when cal-581

culating P ((x, y = +1)|{(xi, yi)},M) = P (x|y = +1, {(xi, yi)},M)P (y = +1|{(xi, yi)},M),582

since the examples are not independent, we need to follow the dependency among yis and583

y to determine P (y = +1|{(xi, yi)},M), which is determined by the relationship between584

#(yi = +1)/(k + 1) in the testing data and frac in pre-training.585

Theorem 4 indicates that the conditional probability of y is determined by the fraction of labels within586

the pre-training set and the examples during inference, in addition to the inputs. A direct corollary is587

that when the fraction of yi = +1 is fixed as 0.5 during the pre-training, and all yi are negative in588

the inference stage, the prediction for y is always positive. This is consistent with the observation in589

Figure 10, 11.590

F Additional Experiment Results591

F.1 Simulation for Independent Exampels592

Figure 12, 13, 14 represents additional results corresponding to the contradict knowledge setting in593

Figure 1. The observations are similar to Figure 1.594

F.2 Mean Reversion595

We further pre-train GPT models with different fractions (frac = 0.2, 0.5, 0.8) and test the posterior596

distribution of labels when the fraction of positive labels within examples varies. We do not add noise597

5This is similar to the “mean reversion” in certain stochastic differential equations (SDEs) where the variable
tends to move toward a long-term average over time, thus we also name our observation as “mean reversion”.
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Figure 12: σ2 = 1 Figure 13: σ2 = 2 Figure 14: σ2 = 4

and keep other settings unchanged. We observe a dramatic change around 0.2,0.5,0.8 respectively in598

Figure 15, and these figures directly verify our results: in Theorem 3, the cutting point are 0.2, 0.5, 0.8599

respectively in the three settings.600

Figure 15: Pre-training with a fraction of positive 0.2.

G Related Works601

Empirical findings of ICL. There are many empirical studies working on understanding ICL. [28]602

first reveals that LLMs can learn from examples, and refers to it as in-context learning (ICL). Later,603

to investigate the properties of ICL, [9] empirically shows that a transformer-based model can learn604

linear functions in context. [29, 30] find that transformer models can encode input-output relationships605

in the hidden space of attention layers. [6] observes that the key respects of the demonstration are606

label space, distribution of input, and format of the prompt. They also notice that randomly replacing607

labels barely hurts the performance when the example size is not large. [31, 32, 33] reveals the608

importance of examples, including orders and templates. More works are proposed to select examples609

[32, 26, 27] or design prompts [34, 35] to improve the ICL performance.610

Theoretical understanding of ICL. To theoretically understand ICL, one popular line of research is611

to treat the ICL process as an implicit gradient descent procedure on examples. [2] shows that a single612

linear self-attention layer trained by gradient flow results in a competitive prediction error with the613

best linear predictor during ICL. [10, 11, 36] shows that one attention layer can be exactly constructed614

to perform gradient descent. [37, 38] further prove that under some conditions, a transformer with615

one or more attention layers trained on noisy linear regression task minimizing the pre-training loss616

will implement gradient descent algorithm on examples. [12] show that ICL can asymptotically617

converge to kernel regression as the number of examples increases.618

Another line of research focuses on Bayesian inference. [7] first leverages a Hidden Markov Model619

to represent the pre-training data and prove that a transformer trained on such data exhibits the ICL620

ability. [39] introduces an information-theoretic tool to show how ICL error decays in the number621

and length of examples. [5] introduces a probabilistic model to understand two modes of ICL, i.e.,622

task learning and task retrieval [40], on the linear regression tasks.623

However, these analyses primarily focus on regression tasks with continuous outputs, and lack precise624

quantification for classification scenarios. Furthermore, they often overlook scenarios where the625

distribution of in-context examples diverges from pre-training data, such as cases of label noise,626

imbalanced examples, or contradictory information. Our work addresses these limitations by focusing627
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on classification problems, providing exact quantification of example effects on predictions, and628

offering insights into the impact of label noise, imbalanced examples, and contradictory knowledge629

on in-context predictions.630

24


	Introduction
	Classification Analysis via Bayesian
	Setups
	ICL Decision and Prediction Accuracy
	Different Demonstration Scenarios
	Mean Reversion

	Conclusion
	Technical Discussion when +2++2=-2+-2
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Formal statement and proof of Theorem 3

	Simulation setups
	Experiments
	Simulation
	Real-Data Experiment

	Mean Reversion in ICL with Dependent Examples
	Additional Experiment Results
	Simulation for Independent Exampels
	Mean Reversion

	Related Works

