
Published as a conference paper at ICLR 2025

REMOD: LEARNING STRUCTURED SPARSITY WITH
RELU MODULATION

Wenbo Zhang & Xiang Ren
Department of Computer Science
University of Southern California
Los Angeles, CA 90007, USA
{wenboz,xiangren}@usc.edu

ABSTRACT

Large language models demand substantial computational resources for training
and inference. Leveraging contextual sparsity to convert dense modules into
sparsely computed Mixture of Experts (MoE) offers a promising solution, but
existing methods face challenges in effectively partitioning modules and han-
dling abrupt, non-differentiable changes during conversion. We introduce ReMod
(ReLU Modulation), which creates sparsity smoothly and differentiably while
integrating clustering directly into training. Our method trains a small ReLU-
gated modulator that scales hidden states to sparsify computation, then clusters
modulator weights to create structured sparsity with optimized hardware utiliza-
tion. When applied to MLPs and Attention projections in Bert-base, ReMod
reduces inference FLOPs by up to 93% while maintaining comparable accu-
racy—significantly outperforming previous approaches.

1 INTRODUCTION

Deep learning models, particularly transformers (Vaswani et al., 2017), have grown increasingly
powerful in natural language processing and computer vision at the cost of substantial computa-
tional demands. As these models continue to scale, reducing their computational and memory re-
quirements during both training and inference has become crucial. This paper specifically addresses
inference computation costs, measured in FLOPs (or MACs) and wall-time latency.

One promising approach leverages contextual sparsity—the observation that only a subset of model
components actively contribute to processing any given input (Liu et al., 2023). For practical im-
plementation, this contextual sparsity must manifest as numeric sparsity, allowing computations to
be skipped without affecting results, typically through zero values. A notable instance is activa-
tion sparsity in transformer architectures, where ReLU activations produce numerous zeros in MLP
intermediate layers. Recent work (Zhang et al., 2022; Szatkowski et al., 2024; Lee et al., 2024)
has demonstrated initial success converting standard MLP modules into sparsely computed Mixture
of Experts (MoE) modules—a process termed MoEfication—by training routers to predict activa-
tion patterns across neuron clusters and skipping low-activation clusters. Building on this approach,
(Zheng et al., 2024) proposed replacing prediction-based routing with a sparsity loss that encourages
minimal routing scores.

For efficient GPU computation in MoEfication, neurons must be grouped into clusters (experts) that
are processed or skipped as complete units. Previous methods typically accomplish this through
balanced KMeans clustering on weights from the first linear layer in MLPs. Although Zhang et al.
(2022) demonstrated superior performance using coactivation graph-based clustering, subsequent
works avoided this approach due to its computational overhead. Developing more effective and
efficient clustering techniques remains an important challenge. Additionally, the softmax or sigmoid
routing mechanisms employed in previous works create abrupt, non-differentiable state changes
when experts are skipped, complicating model adaptation to the modified architecture.

We introduce ReLU Modulation (ReMod), which creates sparsity through smooth, differentiable
transformations while integrating clustering directly into the training process. ReMod trains a small
modulator that produces ReLU-gated outputs to scale the main module’s activations. To achieve

1



Published as a conference paper at ICLR 2025

Router

FC1

hidden states

Step 2:
KMeans

Step 3:
Train to PredictStep 1: 

ReLUfication

Modulator

FC1

D2DMoE & MoEfication ReMod

QKVO
Linear

QKVO
MLP

QKVO
MoE MLP

Attention
(D2DMoE Only)

QKVO
Liner

QKVO
MoE Linear

Attention

Router

KMeans

Permute

Merge

Step 1:
Train (Joint loss)

? ?

FC2

hidden states

?
Original 
Activation

ReLU

Elementwise 
Multiplication

FC2

Step 2: MoEfy

Figure 1: Comparison of ReMod with D2DMoE and MoEfication. Only some parts in the fine-
tuning stage are shown. D2DMoE and MoEfication first replace the activation function and train
the model to adapt to it, then cluster the first linear layer’s weights to group them into experts, and
finally train a router to predict their activation levels. ReMod instead trains a modulator that scales
the hidden state to sparsify them and uses the modulator’s weight as the feature for clustering to
convert the modulator into a router. D2DMoE also replaces the QKVO projections in Attention with
MLPs through distillation to MoEfy them, whereas ReMod can be directly applied to linear layers.

structured sparsity for optimal parallelization, we cluster the modulator weights to form an MoE
router, using the resulting cluster labels to permute the main module’s weights into cohesive expert
groups. Our evaluation on Bert (Devlin et al., 2019) models shows that ReMod maintains classifica-
tion accuracy comparable to dense models while reducing inference FLOPs by 90%—significantly
improving upon D2DMoE’s (Szatkowski et al., 2024) 62.6% reduction—while requiring over 99%
less retraining.

2 RELU MODULATION

In this section, we introduce ReMod by demonstrating its application to linear layers as an exemplar
(bias terms are omitted for simplicity but handled similarly). We’ll discuss applications to other
modules in subsequent sections. Throughout, we denote input size, hidden size, output size, and
number of clusters as i, h, o, and k respectively. Figure 1 contrasts ReMod with prior approaches
(D2DMoE and MoEfication).

2.1 GOAL

We begin by defining the target architecture produced by ReMod, as illustrated in Figure 2b. This
represents the end goal of our training and MoEfication process, which we detail in subsequent
sections.

Consider a module where features (output, hidden state, or input) can be partitioned into k indepen-
dently computable blocks. We refer to individual scalar elements of these features as neurons. The
module is divided along the feature dimension into k sub-modules (experts), each corresponding
to one feature block. A compact, trained modulator (functioning as the router) produces k scalar
values, one per expert. These values, termed modulations, are predominantly zeros. Each feature
subset is multiplied by its assigned modulation, allowing computation to be skipped for sub-modules
with zero modulation.

For a concrete example, consider a linear module y = xW with weight matrix W ∈ Ri×o. We
permute and partition this matrix into k experts of output size o

k , denoted as W1 to Wk. For an
input x ∈ Ri, the modulator generates an expert-level modulation m ∈ Rk that assigns (mostly
zero) scores to each expert. Each expert’s output is scaled by its corresponding score, meaning
only experts with non-zero scores require computation. The scaled outputs are concatenated (with

2



Published as a conference paper at ICLR 2025

(a) (b)

x [i]

Main
Linear

Modulator

y [o] m [o]

LM Loss Cluster Loss Sparsity Loss

x [i]

Experts

Router

y [o]

Select
Broadcast

m [k]

Figure 2: The forward method of a linear layer with ReMod during training (a) and inference (b).

zero-padding for inactive experts) and unpermuted to maintain the original output ordering:

m = Modulator(x), yj =

{
mj · xWj if mj > 0

0o/k otherwise
, y = unpermute(concat(y0, . . . ,yk))

To ensure the modulator remains significantly smaller than the linear module, we implement it as a
two-layer MLP with a small hidden dimension h ≪ i, o. This results in only h(i+ k) parameters in
the modulator, compared to i×o parameters in the linear module. The MLP output passes through a
ReLU activation to generate sparse modulations. Formally, Modulator(x) = ReLU(Act(xW ′

d)C),
where Act is an activation function (we use SiLU (Elfwing et al., 2018)), with W ′

d ∈ Ri×h and
C ∈ Rh×k as the MLP weights.

2.2 NEURON CLUSTERING

To effectively leverage sparsity on modern GPUs, we must address the challenge of structure. While
individual neuron-level sparsity can be beneficial for small-scale inference (e.g., on-device decoding
(Song et al., 2024)), its overhead becomes prohibitive at scale. The primary computational benefit
emerges when we can skip entire groups of neurons—experts—rather than individual neurons.

The key insight of MoEfication techniques is to cluster neurons such that entire expert groups can
remain inactive. Previous approaches (Szatkowski et al., 2024; Zhang et al., 2022) applied Balanced-
KMeans clustering on the weights of first linear layers (or gate projections in GLU-activated models
(Dauphin et al., 2017)), assuming neurons with similar weights would exhibit similar activation
patterns. Our approach differs for two critical reasons: first, in ReMod, neuron activation depends
on the modulation value rather than the neuron’s intrinsic output; second, as we demonstrate in
section 5.2, the correlation between weight similarity and activation patterns can be surprisingly
weak.

Since neuron modulation patterns are not predetermined before training, we initialize the modulator
to operate at neuron-level granularity and integrate clustering directly into the training process (illus-
trated in Figure 3). The modulator initially takes the form Modulator(x) = ReLU(Act(xW ′

d)W
′
u)

where W ′
u ∈ Rh×o is the output layer weight matrix with neuron-level granularity (o outputs).

During each training step, we perform Balanced-KMeans clustering on W ′
u to derive cluster centers

C ∈ Rh×k and corresponding labels l ∈ No (where lj indicates which cluster the jth neuron
belongs to). We then compute a cluster loss as the L1 distance between each neuron’s weight vector
and its assigned cluster center:

∑o
j=1 ||W:,j − C:,lj ||1.

After training, we convert the neuron-level modulator into an expert-level router by replacing W ′
u

with the cluster centers C and using the cluster labels to reorganize the main module’s weights
into coherent expert groups. To ensure a seamless transition, we implement cluster mixing in the
final training phase—gradually replacing each neuron’s modulation with its cluster’s mean modula-
tion. This guarantees that the neuron-level and expert-level modulations produce identical outputs
at inference time.

3



Published as a conference paper at ICLR 2025

h

2 21 31 3

k

h

o

KMeans
Labels

Centers

Modulator
(second layer)

i

o

Permute

Main Linear Module k Experts

Modulator (i→o) Router (i→k)

(c)(a) (b)

=
m[o] (Before)

m[k] (After)

Average
By Cluster

Gradual
Interpolation

Figure 3: Illustration of the MoEfication process in ReMod: (a) in each training step, the weight
matrix of the modulator’s output layer W ∈ Rh×o is used as features for balanced-KMeans cluster-
ing to obtain the cluster centers C ∈ Rh×k and labels; (b) after training, the modulator is converted
into a router by replacing W with C, and the experts are constructed by permuting the weights of
the main module using the labels; (c) near the end of the training, the neuron-level modulation is
gradually replaced by the cluster average, so the router’s output is identical to the modulator’s.

2.3 SPARSIFICATION

To ensure a smooth transition, we initialize the modulator to function as an identity operation. We
then progressively introduce sparsity through a dedicated loss term.

While L1 regularization is traditionally used for sparsification, it applies equal gradient magnitude
to all values. Since our objective is to generate true zeros rather than merely small values, we
employ a more targeted approach that applies stronger pressure to near-zero values while having
less impact on larger values. Specifically, we implement an Lp regularization loss normalized by
output dimensionality: for a modulator output m,

Lsparsity =
1

N

N∑
i=1

|mi|p,
∂Lsparsity

∂mi
=

{
1
N p ·mp−1

i if mi > 0

0 otherwise

where p ∈ (0, 1] is a hyperparameter (we use 0.5), and N represents the neuron count. We imple-
ment gradient clipping and zero out gradients when mi = 0.

2.4 JOINT FINE-TUNING

Sparsification, clustering, and router training are achieved in a single training cycle: we train the
modulator to minimize the joint loss L = Ltask + λsparsityLsparsity + λclusterLcluster , where Ltask
is the loss for the target task (e.g., classification or language modeling), and λsparsity and λcluster are
hyperparameters that control the importance of each objective. We implement a staged training
schedule: initially training with only the task loss, then gradually introducing the sparsity loss, and
finally incorporating the cluster loss.

3 APPLICATIONS

This section demonstrates the application of ReMod to different neural network modules, with ad-
ditional design variants detailed in the appendix.

3.1 MLP

For a standard two-layer MLP, ReMod is applied to the hidden states—specifically the output of the
first linear layer (or the product of down and gate projections in GLU-activated models (Dauphin
et al., 2017)). This approach enables sparse computation in the second linear layer along its input
dimension.

While it is theoretically possible to apply ReMod to the output of the second layer, enabling sparsity
along both input and output dimensions, this approach introduces additional overhead from indexing

4



Published as a conference paper at ICLR 2025

operations and CUDA kernel launches. Without optimized implementation and sufficiently large
models, these overheads may outweigh the computational benefits of increased sparsity.

3.2 ATTENTION

We develop two ReMod variants for attention modules: projection modulation and attention score
modulation. Although we consider the latter more promising, it lacks direct comparability with our
current baselines. We therefore detail this approach in Appendix B and focus here on projection
modulation.

Projection modulation converts the Query, Key, Value, and Output (QKVO) projections in attention
modules into MoEs. Unlike D2DMoE, which requires replacing each projection with an MLP fol-
lowed by distillation, ReMod can be directly applied to these linear layers. We also leverage an
optional simplification: since Q, K, and V projections are naturally grouped by attention heads, we
can designate each head as a cluster, initialize the modulators’ output size to match the number of
heads, and train without requiring the cluster loss.

4 EXPERIMENTS

4.1 SETUP

Generally, we followed the setup for evaluating Bert (Devlin et al., 2019) in D2DMoE.

Datasets We used the Carer emotion classification dataset (Saravia et al., 2018). Following Sza-
tkowski et al. (2024), we padded all sequences to 128 tokens (we note that this sequence length is
longer than all sequences in the dataset), and used the training split as both the training set and the
validation split as the test set.1

Model and Training Setup We used the Adam optimizer to fine-tune Bert-base-uncased for 10
epochs with a batch size of 48. Figure 4 shows a comparison of training cost with D2DMoE (Sza-
tkowski et al., 2024). We experimented with two granularity: expert size=24 and 128.

Evaluation We report the MACs and accuracy of our fine-tuned model. We compared our method
with D2DMoE and MoEfication, the results of which are taken from Szatkowski et al. (2024). We
used the same profiler as Szatkowski et al. (2024), namely the fvcore Flop Counter2 3

4.2 RESULTS

As shown in Figure 4, ReMod achieved similar accuracy with significantly lower FLOPs compared
to the baselines, and can further reduce the FLOPs at the cost of a slight decrease in accuracy (left).
In addition, ReMod requires minimal retraining cost compared to D2DMoE and MoEfication (right).

4.3 WALL TIME SPEEDUP

Table 1: Wall time speedup
Model GMACs Samples/s
Dense 11.20 735
ReMod 0.75 1809
ReMod (N) 1.184 140

We evaluated how well the theoretical FLOP reduction
translates to wall time speedup. We used the same data
as in the main experiments and measured the latency of
the models on an A6000 GPU. To evaluate the impor-
tance of clustering neurons into experts, we included a
setting where MLP and O projection modulators are not
clustered. As shown in Table 1, ReMod achieved a 2.46× wall time speedup compared to the dense
model. The model without clustering (named as ReMod (N) in the table) suffered from immense

1https://github.com/bartwojcik/D2DMoE/blob/0d80c763e5/data_utils/data.
py#L788-L827

2https://github.com/facebookresearch/fvcore
3This profiler shows FLOPs but actually reports MACs, where 1MAC ≈ 2FLOPs.

5

https://github.com/bartwojcik/D2DMoE/blob/0d80c763e5/data_utils/data.py#L788-L827
https://github.com/bartwojcik/D2DMoE/blob/0d80c763e5/data_utils/data.py#L788-L827
https://github.com/facebookresearch/fvcore


Published as a conference paper at ICLR 2025

0.5 1 2 4 8 16
GMACs ( GFLOPs/2)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Bert Accuracy on Emotion vs GMACs

Baseline
MoEfication (Size=32)
D2DMoE (Size=6)
Ours (Size=24)
Ours (Size=128)
Ours (Size=32, MLP Only)

D2DMoE Ours
0

500

1000

1500

2000

2183

20.48

Continue Training Tokens (M)

ReLUfication
MHA Replacement
Fine-tuning

Figure 4: Comparison of ReMod with D2DMoE and MoEfication. ReMod achieved comparable
accuracy with significantly lower FLOPs even with larger expert size (left), while also requiring
minimal continue training cost (right). We also report the result of our method without modifying
the attention projections (MLP Only).

overheads, which caused an 80% slowdown compared to the dense model despite having only 10.6%
of the FLOPs, which is also larger than with clustering due to the larger modulator size.

Although the speedup was evident, it did not fully align with the theoretical gains implied by the
MAC reduction. Profiling with the PyTorch Profiler revealed that, after applying ReMod, matrix
multiplications in MLP and QKVO projections, combined with the modulators’ computation, oc-
cupied only about 23.6% of each layer’s runtime. In contrast, indexing operations accounted for
18.9%, the remaining attention components comprised 14.8%, and the remaining 42.6% falls into
Layer Norm and miscellaneous overheads beyond the scope of this work (details in Appendix A).
We anticipate these overheads to become a smaller fraction of the total runtime in larger models,
thus delivering more pronounced speedups in practice.

5 ANALYSIS

5.1 EFFECT OF LOSS TERMS

We evaluated the effect of the sparsity and cluster loss through ablation studies. The same dataset
was used, except that the trivial sparsity caused by the pad tokens was excluded from the results. To
better match realistic application scenarios where it is important to parallelize computation, the large
expert size setting (24 experts of size 128 in MLP, 12 experts of size 64 in each attention projection)
was used.

For our full method, we included two settings: mild (λsparsity = 1) and aggressive (λsparsity = 8).
The results were compared to a model trained without the sparsity loss (λsparsity = 0), and models
trained without the cluster loss in the aggressive setting. In the latter, we still used the same clus-
tering algorithm and gradual replacement of neuron-level modulation by cluster-level modulation,
but set λcluster to 0. For the aggressive setting and the no-cluster-loss setting, we repeated the ex-
periment 4 times with batch sizes 46, 48, 49, and 50, and report the mean and standard deviation
of the accuracy. As shown in Table 2, the sparsity loss significantly increased the sparsity while

Model Accuracy MLP% QKVO%
No Sparsity 94.00 79.73 93.91
ReMod (Mild) 94.05 62.65 48.42
ReMod (Aggressive) 92.20±0.13 22.36 11.98
No Cluster (Aggressive) 90.57±1.07 16.64 9.79

Table 2: Results of the ablation study. MLP% and QKVO% indicate the percentage of the MLP and
QKVO projections being activated (i.e., requires computation).

maintaining the performance in the mild setting. Removing the cluster loss made the training less

6



Published as a conference paper at ICLR 2025

60 40 20 0 20 40 60
40

30

20

10

0

10

20

30

t-SNE Visualization of Coactivation-based Clusters

3 2 1 0 1 2 3

3

2

1

0

1

2

3

t-SNE Visualization of Weight-based Clusters

32 64 96 128 192
Number of Clusters (k)

0.30

0.35

0.40

0.45

0.50

0.55

Sp
ar

sit
y

Average Sparsity by Clustering Method and k

Clustering Method
Coactivation-based
Weight-based

Figure 5: Left and middle: visual comparison of clustering with coactivation vs. weight (k=8).
Right: comparison of resulting sparsity of two methods with various k; a cluster is considered
inactive when < 4% of its neurons are activated.

stable, as depicted by the lower mean and larger standard deviation in accuracy. Intuitively, while
the model can learn to adapt to the gradual merger of the clusters, without the clustering loss the
weights in each cluster do not become similar to each other, and thus are more likely to be abruptly
assigned to different clusters in the next iteration, making the training less stable.

5.2 CLUSTERING METHODS

Zhang et al. (2022) compared the result of clustering using the first linear module’s weight as the
feature versus using the coactivation graph, and found the latter to have better overall performance.
However, collecting and processing coactivation graphs requires extra resources, so the former was
adopted in subsequent works.

The use of weights as the clustering feature is based on the assumption that similar weights will have
similar activation patterns. In contrast, the coactivation graph directly captures the true activation
pattern. To test whether the assumption is true, we compare the clustering results of the two methods.
We define the coactivation matrix K where each element Ki,j represents the frequency with which
neurons i and j are simultaneously activated given the same input. To compare clustering methods,
we collected activation statistics from the wikitext dataset (Merity et al., 2016) using the ReLUfied
Bert model provided by Szatkowski et al. (2024). We then performed clustering using both the
coactivation matrix and weight matrix as features, and visualized the results using t-SNE with K as
the feature space for both methods. As illustrated in Figure 5 (left and middle), weight-based clus-
tering demonstrates significantly inferior clustering quality compared to coactivation-based cluster-
ing. This quality difference directly translates to practical performance: Figure 5 (right) shows that
coactivation-based clustering achieves nearly twice the sparsity of weight-based clustering across
various cluster counts.

Our analysis revealed two fundamental limitations of weight-based clustering. First, without ap-
propriate regularization, neuron weights exhibit minimal natural similarity in high-dimensional
spaces—in ReLUfied Bert, the average distance between a neuron and its nearest neighbor (1.21,
measured by L2 norm) exceeds the average weight norm itself (1.09). Second, the binary nature of
activation (where neurons abruptly switch at the threshold) means that even neurons with similar out-
put values may have completely different activation states, further weakening the weight-activation
pattern correlation. ReMod effectively addresses both issues: the cluster loss explicitly encourages
weight similarity within clusters, while the continuous modulation values ensure that similar mod-
ulator weights directly translate to similar activation patterns, creating a more reliable clustering
foundation.

6 DISCUSSION

In this work, we introduced ReMod, a novel approach for efficient sparsification and MoEfication
of dense neural networks. Our experiments with Bert demonstrate that ReMod maintains compara-
ble accuracy while substantially reducing computational requirements—achieving both theoretical
FLOP reductions and practical wall time speedups. Notably, ReMod eliminates the dependency
on pre-existing sparsity patterns in original modules, thereby significantly reducing retraining costs
compared to previous methods like D2DMoE and MoEfication.

7



Published as a conference paper at ICLR 2025

While our current evaluation has focused primarily on Bert models with limited comparative base-
lines, we intend to expand our experimental scope substantially. Future work will investigate Re-
Mod’s effectiveness across a broader spectrum of architectures, including decoder-only models and
non-transformer networks. Additionally, we plan to explore potential applications in KV-Cache
sparsification and sequence compression, as outlined in the appendix.

It is worth noting that recent work by Wang et al. (2025) demonstrated that pretraining MoE models
with ReLU routing (termed ReMoE) yields performance improvements. The architecture resulting
from applying our method to a MLP is structurally identical to a ReMoE MLP.

REFERENCES

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pp. 933–941. PMLR,
2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423/.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Jaeseong Lee, Seung-won Hwang, Wonpyo Park, and Mingi Ji. Breaking ReLU barrier: Gen-
eralized MoEfication for dense pretrained models. In Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 10097–10107, Miami, Florida, USA, November 2024. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.563. URL https:
//aclanthology.org/2024.emnlp-main.563/.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li,
Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtz-
man, and Srinivasan Iyer. Byte latent transformer: Patches scale better than tokens, 2024. URL
https://arxiv.org/abs/2412.09871.

Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, and Yi-Shin Chen. CARER: Con-
textualized affect representations for emotion recognition. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 3687–3697, Brussels, Bel-
gium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/
D18-1404. URL https://www.aclweb.org/anthology/D18-1404.

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen. Powerinfer: Fast large language model
serving with a consumer-grade gpu. In Proceedings of the ACM SIGOPS 30th Symposium on
Operating Systems Principles, SOSP ’24, pp. 590–606, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400712517. doi: 10.1145/3694715.3695964. URL
https://doi.org/10.1145/3694715.3695964.

Filip Szatkowski, Bartosz Wójcik, Mikołaj Piórczyński, and Simone Scardapane. Exploiting activa-
tion sparsity with dense to dynamic-k mixture-of-experts conversion. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

8

https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://aclanthology.org/2024.emnlp-main.563/
https://aclanthology.org/2024.emnlp-main.563/
https://arxiv.org/abs/2412.09871
https://www.aclweb.org/anthology/D18-1404
https://doi.org/10.1145/3694715.3695964


Published as a conference paper at ICLR 2025

LCM team, Loı̈c Barrault, Paul-Ambroise Duquenne, Maha Elbayad, Artyom Kozhevnikov, Be-
len Alastruey, Pierre Andrews, Mariano Coria, Guillaume Couairon, Marta R. Costa-jussà,
David Dale, Hady Elsahar, Kevin Heffernan, João Maria Janeiro, Tuan Tran, Christophe Rop-
ers, Eduardo Sánchez, Robin San Roman, Alexandre Mourachko, Safiyyah Saleem, and Holger
Schwenk. Large concept models: Language modeling in a sentence representation space, 2024.
URL https://arxiv.org/abs/2412.08821.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M. Rush. Mambabyte:
Token-free selective state space model, 2024. URL https://arxiv.org/abs/2401.
13660.

Ziteng Wang, Jun Zhu, and Jianfei Chen. Remoe: Fully differentiable mixture-of-experts with reLU
routing. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=4D0f16Vwc3.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. MoEfica-
tion: Transformer feed-forward layers are mixtures of experts. In Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio (eds.), Findings of the Association for Computational Linguistics:
ACL 2022, pp. 877–890, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.findings-acl.71. URL https://aclanthology.org/2022.
findings-acl.71/.

Haizhong Zheng, Xiaoyan Bai, Xueshen Liu, Zhuoqing Mao, Beidi Chen, Fan Lai, and Atul
Prakash. Learn to be efficient: Build structured sparsity in large language models. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=iSfCWhvEGA.

A INFERENCE LATENCY BREAKDOWN

See figure 6.

MLP+QKVO7.0%

SDPA

14.8%

Gates

8.5%Indexing

18.9%

Gate Mul 8.1%

LayerNorm
5.0%

Other

37.6%

Figure 6: Latency breakdown

B ANOTHER VARIANT OF ATTENTION MODULATION

In this section, we introduce another variant of ReMod for the Attention module, which applies
modulation on the attention scores. This variant aligns with the intuition that each attention head

9

https://arxiv.org/abs/2412.08821
https://arxiv.org/abs/2401.13660
https://arxiv.org/abs/2401.13660
https://openreview.net/forum?id=4D0f16Vwc3
https://aclanthology.org/2022.findings-acl.71/
https://aclanthology.org/2022.findings-acl.71/
https://openreview.net/forum?id=iSfCWhvEGA
https://openreview.net/forum?id=iSfCWhvEGA


Published as a conference paper at ICLR 2025

only assign meaningful attention scores to a subset of tokens, and the remaining, small attention
values can be sparsified. It also has the potential to reduce VRAM consumption by compressing the
KV-Cache.

A single Attention head in a classical Multi-Head Attention module (Vaswani et al., 2017) process
an input X ∈ Rl,h by

Q = XWQ, K = XWK , V = XWV (1)

Z =
QKT

√
dk

(Z ∈ Rl,l) (2)

Attention(Q,K,V ) = softmax(L)V ,

where softmax(L)i =
exp(Zi)∑
exp(Zi)

(3)

We apply three modulations on Attention: Q, KV, and matrix modulation. For a token and attention
head, the Q and KV modulations adjust entire rows and columns of the attention matrix, respectively.
Essentially, when the Q modulation is 0 for a Query head, the token cannot attend to any token
through that head; when the KV modulation is 0 for a pair of Key-Value heads, the token cannot
be attended by any token on that head. Thus, the corresponding computation of QKV projections
(equation 1) and KV-cache can be discarded. Notice that the QKV projections are already grouped
by heads, so clustering is not needed and we directly initialize the modulators’ output dimension to
match the number of heads, then train with only the task loss and the sparsity loss. For a model with
nQ Query heads and nK Key-Value heads, the Q and KV modulations are computed as follows:

MQ ∈ Rl,nQ = XWQM
+ bQ

MK ∈ Rl,nK = XWKM
+ bK

The matrix modulation operates on a more granular level, adjusting the attention matrix element-
wise. For clarity, we discuss how it is applied to a single attention head (except for the Q and KV
modulators, which directly outputs a score for each head); the same process is repeated for all heads.
The modulator consists of an extra pair of (small) Q and K heads, whose outputs are multiplied to
produce attention logits of the same shape as Z by equation 2:

QM = XWQM
, KM = XWKM

Mmat = ReLU(
QMKT

M√
dk

)

This added granularity allows higher sparsity in the attention matrix, and therefore reduces the cost
of computing the logits (equation 2). The logits are then passed through a ReLU function instead of
softmax.

The outputs of the three modulators are merged by broadcasting the Q and KV modulations and then
multiplying with the attention matrix:

M = Mmat ⊙ (MQ):,newdim,m ⊙ (MK)newdim,:,m

Where m is the index of the current attention head, newdim denotes inserting a new dimension of
size 1 and broadcasting. Then, the modulation is applied during the softmax operation. Specifically,
we replace the original softmax function (equation 3) with the modulated softmax:

MSoftmax(Z,M)i =
M2

i ⊙ exp(Zi)∑
Mi ⊙ exp(Zi) + ϵ

where M is the output of the matrix modulation, ϵ is a small value for avoiding zero division. This
function is designed to satisfy the following properties:

• MSoftmax(Z, 1l×l) = softmax(Z);
• MSoftmax(Z, 0l×l) = 0l×l;
• MSoftmax(Z,M) is stable (no abrupt changes) as M → 0l×l

10



Published as a conference paper at ICLR 2025

C APPLICATION IN SEQUENCE COMPRESSION

Autoencoder is a common choice for unsupervised learning. Its goal is to compress the input features
into a lower-dimensional latent representation, by learning a pair of encoder and decoder that com-
press and reconstruct the input respectively so that the reconstruction loss is minimized. However,
this latent representation has a fixed shape, which is suboptimal when the amount of information in
the input has a large variance across samples.

For example, byte-level language modeling (Pagnoni et al., 2024; Wang et al., 2024) and latent
space language modeling (team et al., 2024) both involve converting a long, low-level sequence into
a shorter sequence of high-level latent patches to allow for efficient processing. However, deciding
the size and position of each patch is non-trivial. A potential solution is to use an autoencoder that
consists of two sequence models (e.g. transformers) and apply ReMod on the encoded sequence to
induce token level sparsity (i.e., mask out entire tokens). Then, the non-zero token embeddings in
the resulting sequence can be used as input embeddings to a large, latent-space language model.

11


	Introduction
	ReLU Modulation
	Goal
	Neuron Clustering
	Sparsification
	Joint Fine-tuning

	Applications
	MLP
	Attention

	Experiments
	Setup
	Results
	Wall Time Speedup

	Analysis
	Effect of Loss Terms
	Clustering Methods

	Discussion
	Inference Latency Breakdown
	Another Variant of Attention Modulation
	Application in Sequence Compression

