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ABSTRACT

Music learners can greatly benefit from tools that accurately detect errors in their
practice. Existing approaches typically compare audio recordings to music scores
using heuristics or learnable models. This paper introduces LadderSym, a novel
Transformer-based method for music error detection. LadderSym is guided by
two key observations about the state-of-the-art approaches: (1) late fusion limits
inter-stream alignment and cross-modality comparison capability; and (2) reliance
on score audio introduces ambiguity in the frequency spectrum, degrading per-
formance in music with concurrent notes. To address these limitations, Ladder-
Sym introduces (1) a two-stream encoder with inter-stream alignment modules to
improve audio comparison capabilities and error detection F1 scores, and (2) a
multimodal strategy that leverages both audio and symbolic scores by incorporating
symbolic representations as decoder prompts, reducing ambiguity and improving
F1 scores. We evaluate our method on the MAESTRO-E and CocoChorales-E
datasets by measuring the F1 score for each note category. Compared to the
previous state of the art, LadderSym more than doubles F1 for missed notes on
MAESTRO-E (26.8%→ 56.3%) and improves extra note detection by 14.4 points
(72.0%→ 86.4%). Similar gains are observed on CocoChorales-E. Furthermore,
we also evaluate our models on real data we curated. This work introduces in-
sights about comparison models that could inform sequence evaluation tasks for
reinforcement learning, human skill assessment, and model evaluation.

1 INTRODUCTION

Figure 1: The error detection task for music practice. Given a reference score and a performance,
solutions must detect three types of errors: extra notes; missed notes; and wrong notes. Wrong notes
are represented as both a missed note and an extra note.

Effective skill assessment accelerates human skill acquisition by providing targeted feedback (Sigrist
et al., 2013). Music learners, in particular, benefit from tools that surface practice mistakes (Apaydınlı,
2019). Yet over 4 million U.S. K–12 students lack access to music education (Morrison et al., 2022),
highlighting the need for accessible feedback tools. Music practice error detection addresses this
need by comparing a practice recording to a reference music score, as illustrated in Figure 1, where
the score may be provided in symbolic or audio form.

Commercial apps for music education, such as Yousician (YousicianLtd., 2024) and Simply Pi-
ano (JoyTunes, 2024), are widely used with over 10 million downloads each. However, these systems
offer only coarse correctness judgments (e.g., whether a note is correct) and do not classify error types
such as missed, extra, or wrong notes. This limits the quality of feedback. In contrast, recent research
attempts to provide finer-grained feedback by aligning student practice audio with symbolic reference
scores (Benetos et al., 2012; Wang et al., 2017). Chou et al. (2025) found that such alignment-based
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methods break down when performance deviates substantially from the reference, limiting their
reliability for error detection. To address this, Chou et al. (2025) adapted transformers (Vaswani et al.,
2017), achieving superior F1 scores. Their model compares practice and reference recordings in the
latent space, eliminating the need for explicit alignment. Despite these advances, we observe two key
limitations in this state-of-the-art approach. (1) The model uses late fusion by combining the two
audio streams with a single joint encoder layer. Through ablations and attention map visualizations,
we show that this design limits alignment capacity. Stacking multiple joint layers improves align-
ment but restricts asymmetric feature extraction. (2) The score is represented only as audio. This
introduces ambiguity about which notes are present, especially when multiple notes are played at
once. Overlapping frequency content makes it difficult to distinguish individual notes.

We introduce LadderSym, a new architecture that addresses both limitations. To address limitation
(1), we design Ladder,1 a two-stream encoder that shifts alignment to inter-stream alignment modules
via inductive bias. This allows standard transformer encoder layers to focus on feature extraction
without being forced to share capacity for alignment. To address limitation (2), we incorporate both
audio and symbolic representations of the score. The symbolic score, denoted as Sym, refers to the
tokenized version of the music score. This symbolic score is provided to the decoder as a prompt,
while the audio score is processed through the encoder and serves as context. This design reduces
ambiguity of score inputs.

LadderSym achieves state-of-the-art performance on both the synthetic MAESTRO-E and
CocoChorales-E datasets. On MAESTRO-E, it more than doubles F1 for Missed Notes
(26.8% → 56.3%) and improves Extra Note detection by 14.4 points (72.0% → 86.4%). On
CocoChorales-E, it improves Missed Note F1 from 51.3% to 61.7%, and Extra Note F1 from 46.8%
to 61.4%. We also validate our model’s generalization on a new, largest to date dataset we curated of
real-world beginner performances. Demo examples of model outputs are available at: our demo page.
Our contributions are:

1. We develop a novel encoder architecture that improves comparison by aligning audio
representations frequently across input streams (§3.1).

2. We improve model performance with a multimodal strategy, by prompting the decoder with
symbolic music inputs and reducing the ambiguity of its inputs (§3.2).

3. We analyze transformer attention patterns to extract design principles for cross-modal
comparison and apply them to improve model performance (§4.3.1, Appendix A.10).

Significance: The high accuracy of LadderSym takes a step toward solving the field’s “chicken-and-
egg” data problem (Kirillov et al., 2023; Monarch, 2021): its potential as an assistive annotation
tool can help create real-world datasets needed to train the next generation of models. Annotating
just 20 pieces required approximately 52 person hours, and scaling further would demand hundreds
more. More broadly, our work focuses on music practice error detection, which is fundamentally
an evaluation task that involves aligning and comparing two inputs. The architectural insights from
this paper could inform the design of more effective evaluation methods in other domains, such as
reinforcement learning, other human-skill assessment, and model evaluation. We elaborate on these
implications in §5.

2 BACKGROUND AND RELATED WORK

We review music practice error detection (§2.1) and common multimodal design strategies (§2.2).

2.1 ERROR DETECTION FOR MUSIC PRACTICE

Music error detection (See Figure 1) is an instance of the sequence-to-sequence learning prob-
lem (Sutskever et al., 2014; Luong et al., 2016; Hawthorne et al., 2021). Specifically, it is a
many-to-one sequence translation task, as it relies on two sequences (practice and reference, audio or
symbolic) that are compared to produce an error sequence. There are two main approaches to music
practice error detection: explicit alignment (older works) and latent alignment (modern approach)
(See Appendix A.1 for a visualization). Explicit alignment methods compare transcribed notes from

1The name reflects our goal to help students “climb the ladder” of music skill development.
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the score and practice audio (Figure 5a). Techniques such as Dynamic Time Warping (DTW) (Sakoe
& Chiba, 1978) align the score and practice audio to facilitate this comparison. These methods
identify differences by comparing the symbolic score to reference audio (Benetos et al., 2012; Wang
et al., 2017). However, DTW is sensitive to deviations from the reference sequence, commonly
present in practice recordings with errors, leading to inadequate error detection (Chou et al., 2025).

In contrast, latent alignment methods forgo explicit sequence alignment and instead learn to directly
output mistake by comparing the score and practice streams (Figure 5b). Polytune (Chou et al., 2025)
pioneered this direction, coupling an Audio Spectrogram Transformer encoder with a T5 decoder to
align synthesized score audio with the practice recording. Latent alignment delivered clear gains:
compared to an explicit-alignment baseline, Polytune raised Missed-note F1 on MAESTRO-E from
6.6% to 26.8% and Extra-note F1 from 39.9% to 72.0% (Table 2). Although Polytune is the state of
the art, its performance is still low on missing notes. Additionally, its alignment behavior is not yet
well understood and remains an open area for further study. We follow the latent alignment paradigm,
mitigating shortcomings of prior approaches.

2.2 DESIGN OF MULTIMODAL ENCODERS

Our work addresses these limitations by drawing on principles from multimodal encoder design.
Multimodal models handle multiple input modalities or different representations of the same modality
(e.g., RGB and depth maps). They use either a single-stream encoder (early fusion) or separate,
parallel encoders with fusion layers that enable cross-modal interaction. Baltrusaitis et al. (2019)
identify three dominant paradigms for such fusion: early, late, and hybrid. Early and late fusion
appear more often when training from scratch (early fusion (Girdhar et al., 2022; Li et al., 2019); late
fusion (Ao et al., 2022; Gong et al., 2023; Akbari et al., 2021; Girdhar et al., 2023; Radford et al.,
2021; Chen et al., 2023), hybrid fusion (Alayrac et al., 2022; Li et al., 2022)).

Hybrid fusion occupies the middle ground between early and late fusion. One approach is to use
cross-attention to condition an encoder on the output of another encoder. Recently, hybrid designs
most commonly arise when adapting language models (LMs) for vision tasks. The prevailing strategy
is to pair a pre-trained Vision Transformer (ViT) with a (usually frozen) language model and condition
each LM layer on external modality information (Alayrac et al., 2022; Li et al., 2022), with an adapter
inserted between the final vision encoder layer and every LM layer.

In this paper, we introduce a novel hybrid fusion approach that encourages alignment to be handled
by inter-stream alignment modules while decoupling feature extraction across modalities. Our
design still uses cross-attention, but it diverges from two common hybrid strategies. First, unlike
conditioning approaches such as CLIP (Radford et al., 2021), where interaction often occurs just once
on a compressed, static vector, our model performs iterative, layer-wise cross-attention on the full
sequence of features. Second, this allows our architecture to implicitly learn a fine-grained temporal
alignment. This contrasts with hybrid temporal models that assume alignment a priori, for instance
by interleaving multimodal tokens at the input layer (Xu et al., 2025). The resulting learned alignment
mechanism is key for complex comparison tasks like music error detection and may generalize to
other fine-grained comparison problems, as we discuss in §5.

3 METHOD

This section details LadderSym, our multimodal transformer for music error detection. Our design re-
volves around two questions raised by the analysis in §2.1: (1) where should alignment occur between
score and practice streams, and (2) how can we reduce the ambiguity introduced by representing the
score solely as audio?

To answer these questions we study the behavior of existing architectures. We probe the representa-
tions learned by late- and early-fusion encoders, quantify how fusion depth affects performance, and
analyze how decoder inputs influence missed-note detection (Tables 1 and 3). These measurements
clarify how much cross-stream interaction is necessary and highlight the information lost when the
decoder lacks symbolic context.

Guided by these findings, we construct LadderSym, shown in Figure 2. The Ladder encoder is a
two-stream transformer whose cross-attention modules precede each layer, aligning score and practice
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audio representations while decoupling feature extraction from alignment (§3.1). The Sym prompt
supplies symbolic score tokens to the decoder (§3.2), reducing reliance on ambiguous audio-only
cues and improving detection of subtle errors such as missed notes. We summarize model I/O,
architectural configurations, and other implementation details in §3.3.

Figure 2: Architecture of LadderSym. We feed both score audio and practice audio into Ladder, our
novel encoder with inter-stream alignment modules. Their latent features are concatenated and used
as context for the autoregressive decoder. To create LadderSym, we prepend a symbolic prompt that is
generated from a MIDI version of the score before the start-of-sequence token to provide a different
representation of the reference score. The T5 decoder then produces MIDI-like tokens, labeling notes
as correct, missed, or extra.

3.1 STAGE 1: THE LADDER ENCODER

Motivation: Ladder aims to overcome a key limitation of the state-of-the-art Polytune architecture:
its late fusion design lacks interaction between the practice and score inputs. Our ablations show that
fusing earlier enhances interaction between reference and practice inputs, improving performance
(Table 3). Thus, we conclude that inter-stream information flow is beneficial to our model’s ability
to compare the inputs. However, fusing too early harms performance, as shown when using more
than three joint encoders (Table 3). Attention maps (Appendix A.10) reveal that late fusion limits
alignment and comparison between inputs. Early fusion enables alignment in initial layers but
sacrifices cross-stream feature extraction due to parameter sharing (Table 1). To guide our encoder
design, we first probe (Raghu et al., 2021) the latent representations of two baseline architectures:
Polytune and an early fusion encoder. Each encoder is frozen, and we train probes to evaluate
locality and globality of the learned representations. Locality is measured by whether each stream
retains token-level temporal position information and globality is measured by coarse clip-level
energy information. In Polytune, the practice stream maintains strong locality (0.86), while the score
stream shows reduced local accuracy (0.45) but improved global awareness (0.179 → 0.186). This
pattern suggests a division of labor: one stream specializes in local detail, while the other encodes
global features. In contrast, the early fusion encoder yields high locality in both streams (0.91 and
0.93), along with balanced global information. This is because both streams share parameters. We
hypothesize that this limits the streams’ ability specialize, which intuitively can harm comparison
performance, as comparing A to B should be redundant with comparing B to A.

This motivates a design that combines the strengths of early and late fusion. Our model is similar
to late fusion in that its design uses separate encoders for each input stream. One encoder extracts
local features, while the other captures global features. Unlike late fusion, our architecture supports
interaction at each layer for fine-grained alignment, similar to early fusion. This novel design enables
effective cross-modal comparison without being constrained by cross-modal parameter sharing.

Architecture: Our design for LadderSym consists of a novel interleaved encoder architecture, which
we designed based on intuitions about comparison tasks. Before each transformer block, one input
stream is aligned and additively fused into the other. The cross-attention alignment module (1) enables
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alignment at each layer and (2) allows the transformer blocks to focus on feature extraction. As shown
in Figure 3, the learned attention maps recover the same off-diagonal structure as DTW alignments,
demonstrating that corresponding tokens across time learn to attend to each other. Attention maps for
deeper layers are shown in Figure 8.

(a) DTW path between a normal and
a time-compressed sine wave: The
off-diagonal line shows how DTW
stretches time to align the two se-
quences.

(b) Cross-attention map from the alignment module: The x- and
y-axes denote time in the score and practice spectrograms, respec-
tively. Attention map values are averaged over the pitch dimension
(P) to highlight temporal alignment (T). For the attention map on
the right, we shift the score forward by 0.5 seconds. We can see
that the model’s attention shifts to the upper left.

Figure 3: Similarity between (a) Dynamic Time Warping and (b) learned alignment patterns in the
alignment module. This visual similarity suggests that the alignment module is successfully learning
a meaningful temporal correspondence between the two audio streams, analogous to the explicit
alignment path found by classical algorithms like DTW.

The process for one encoder block is described by:

P
(i+1)
ref = ViTref

(
P

(i)
ref +CA

(
P(i)

prac,P
(i)
ref

))
, (1)

P(i+1)
prac = ViTprac

(
P(i)

prac +CA
(
P

(i+1)
ref ,P(i)

prac

))
. (2)

Here, Pref represents the score audio embeddings, Pprac the practice audio embeddings, CA the
cross-attention operation, and i the current layer index. The final fused representation is obtained as:

Hfused = Concat(P(final)
ref ,P(final)

prac ). (3)

The alignment module combines cross-attention and additive fusion to to first align then pass
information between streams at each layer. Additive fusion means directly adding cross-attention
output to the stream embedding, preserving both self and aligned information from the other stream.
This fused representation is then processed by a standard ViT block. We then reverse the alignment
and fusion direction and pass the result through the next ViT block. Finally, we concatenate both
final states into a fused latent Hfused.

We illustrate the encoder block in Figure 4. The alignment module is summarized by the expression:

P(i)
prac +CA(P

(i+1)
ref ,P(i)

prac),

where the cross-attention output is directly added to the current representation before being passed to
the next encoder block.

Probing Ladder: Having introduced the interleaved encoder, we return to the probing framework to
assess how this design shapes latent representations. Using the same probing setup, we now evaluate
LadderSym in terms of locality, globality, and cross-stream correspondence. Results are shown in
Table 1. We find that the practice stream retains strong local information (0.681), and the score stream
has reduced locality (0.197). However, the score stream encodes cross-stream features from the
practice stream more accurately than any prior model (0.30). These results confirm that LadderSym
supports an asymmetric division of labor between streams, enabling specialization.
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Figure 4: Topology of the encoder block: Alignment modules alternate between streams, allowing
iterative alignment and fusion of information from the score and practice audio. The encoder blocks
process the intermediate representations.

Table 1: Probing frozen encoders. To analyze the representations learned by each encoder, the
model is frozen and evaluated using lightweight linear probes. Locality predicts a token’s temporal
position, globality predicts a clip-level energy label, and cross-stream correspondence uses one stream
to predict the other’s energy. For Polytune, we extract features before the joint encoder layer, so
cross-stream probes are not applicable. All values are accuracies (see Appendix A.2 for setup details).

Model Local
score

Local
practice

Global
score

Global
practice

Cross-Stream
practice to score

Cross-Stream
score to practice

Polytune 0.452 0.862 0.186 0.179 – –
Early fusion 0.909 0.931 0.292 0.273 0.280 0.269
LadderSym 0.197 0.681 0.162 0.252 0.158 0.300

3.2 STAGE 2: HARNESSING SYMBOLIC SCORES BY PROMPTING THE DECODER

We give the decoder direct access to symbolic score information via prompting to leverage the
complementary strengths of symbolic and audio representations. Symbolic-only tokenizers can
introduce alignment errors, especially in complex time signatures (Fradet et al., 2021), while audio
representations often suffer from overlapping frequency bins that obscure concurrent notes. Providing
both views helps mitigate these respective weaknesses. Table 4 shows that using our prompting
strategy on Polytune (Prompt + Audio) can significantly improve performance over just using audio
inputs (Audio Only). We also test a variation of Polytune and find that Audio Only outperforms
using only the prompt (Prompt Only). Table 4 also shows that combining our prompted decoder
strategy with the encoder that includes inter-stream alignment modules yields the highest scores
for all categories in MAESTRO-E and for missed notes in CocoChorales-E. We use a T5 decoder
following Chou et al. (2025).

3.3 IMPLEMENTATION DETAILS

Input/Output Format: To tokenize the input audio spectrogram, we follow the procedure in
MT3 (Gardner et al., 2022) and Polytune. The output format also follows (Chou et al., 2025),
which is a modified version of (Gardner et al., 2022), omitting instrument tokens (assuming a single-
instrument setting) and adding explicit error labels (extra, missed, correct). Further details
for both are presented in Appendix A.3 and Appendix A.4. A detailed breakdown of our prompt
tokenization scheme is provided in Appendix A.3.2 for interested readers.

Model Implementation: LadderSym has a configuration of 12 transformer encoder layers and 8
decoder layers to match the layer count of the AST (Audio Spectrogram Transformer) (Gong et al.,
2021) encoder and T5 decoders used in (Chou et al., 2025). The transformer encoder output, with
a dimensionality of 768, is projected down to 512 to match the T5 decoder’s dimensionality. Our
training regime follows that of (Chou et al., 2025) and is detailed in Appendix A.5. We use the same
hyperparameters as Polytune. We adapted model component code from EfficientTTMs (Jajal
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Table 2: Comparison of LadderSym and Polytune across error types in two datasets, MAESTRO-E and
CocoChorales-E. Error types are abbreviated (C = Correct, M = Missed, E = Extra); CocoChorales
metrics are macro-averaged across instruments. Blue highlights mark LadderSym, pink highlights
mark Polytune, and bold indicates the best value per column; colors are for visual emphasis only. The
explicit-alignment baseline appears in the rightmost block for context.

LadderSym Polytune Explicit Align.

Dataset C M E C M E C M E

MAESTRO-E 94.4% 54.7% 86.4% 90.1% 26.8% 72.0% 43.5% 6.6% 39.9%
CocoChorales-E 97.7% 61.7% 61.4% 95.4% 51.3% 46.8% 36.7% 7.7% 23.5%

et al., 2024)(MIT License), though our approach differs in design. We also build on Polytune
(BSD 3-Clause, non-commercial).

4 RESULTS

We present results comparing LadderSym against Polytune (Chou et al., 2025) and an explicit-
alignment baseline derived from Benetos et al. (2012) and Wang et al. (2017). Evaluations cover
CocoChorales-E, MAESTRO-E (Table 2), and a small real-world dataset. Full experimental details
are in §4.1. Our evaluation includes: (1) A quantitative comparison showing improved F1 scores on
all datasets (§4.2); (2) an ablation study analyzing different variants of the encoder (§4.3.1); and (3)
an ablation study examining the effect of prompting with the symbolic music score (§4.3.2).

4.1 EXPERIMENTAL DESIGN

Software and Hardware: We train and evaluate our models using PyTorch 2.3.0 and Transformers
4.40.1 on an NVIDIA A100-80GB GPU.

Datasets: We follow Chou et al. (2025) and evaluate on their partially synthetic benchmarks,
MAESTRO-E (competition piano repertoire with dense chords) and CocoChorales-E (13 single-
instrument tracks without overlap). Dataset construction and summary statistics appear in Ap-
pendix A.7. All ablations use the combined synthetic test split (4401 tracks).

To test real-world robustness, we curated a 20-track beginner piano set: Three graduate students who
are novice pianists each played 6-7 pieces. To our knowledge, this is the first dataset of genuine
beginner mistakes. Each take pairs the reference MIDI score with practice audio and note-level
annotations verified by two musically trained students. Per-piece metrics and additional details are in
Appendix A.8. Every model is additionally evaluated on this real-data set without finetuning.

Explicit-alignment baseline: This baseline extends Benetos et al. (2012) and Wang et al. (2017) with
the more modern MT3 Gardner et al. (2022). Implementation details appear in Appendix A.9.

Metrics: We use the evaluation metric Error Detection F1, introduced by (Chou et al., 2025). Error
Detection F1 measures the F1 score for Missed, Extra, and Correct notes.

4.2 QUANTITATIVE RESULTS

Main results: F1 scores for CocoChorales-E and MAESTRO-E are presented in Table 2, with
per-instrument results available in Appendix A.11. We achieve across-the-board improvements. As
expected, on the highly concurrent MAESTRO-E dataset, the performance gain is most notable, with
the missed note F1 score improving from 26.3% to 54.7%.

Real-World Performance: To validate our model’s effectiveness beyond synthetic data, we also
tested it on a new, manually annotated dataset of real-world beginner performances. The model was
not finetuned. On this authentic data, LadderSym shows a marked improvement in detecting missed
notes (78.5% vs. 63.9% F1) and a small gain in extra note detection (81.6% vs. 80.6% F1) when
compared to Polytune. While the overall performance gap is smaller due to the pieces being simpler
than MAESTRO-E, LadderSymstill has better across the board performance. Most importantly, the
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results demonstrate that LadderSym’s architectural improvements successfully generalize to genuine
human errors. More details are in the Appendix (Appendix A.8).

Model size and speed: LadderSym (172M parameters) processes 8.1 tokens/s on an A100-80GB
GPU. By comparison, Polytune (192M parameters) processes 6.8 tokens/s under identical settings.

4.3 ABLATIONS

In this section, we ablate two core design choices in LadderSym. We conduct ablations to answer
the following questions: (1) How does fusion location affect performance (§4.3.1)? (2) Which input
combination yields the best results in LadderSym (§4.3.2)?

4.3.1 THE EFFECT OF FUSION LOCATION ON LadderSym

We first examine how frequently the score and practice streams should interact inside the encoder.
Starting from the Polytune architecture, we vary the number of joint encoder layers (Ljoint) while
holding either the total depth or the number of modality-specific layers constant.

Table 3: Effect of joint encoders on F1 score, measured on CocoChorales-E. Left: Fixed total layer
count to 12. Right: variant with fixed modality-specific encoders. Best results per half are in bold.
Performance peaks at two to three joint layers, motivating our design that interleaves cross-attention
while preserving modality-specific encoders.

Ljoint
Fixed Total Layers Fixed Modality Encoders

Correct Missed Extra Correct Missed Extra

1 95.39% 51.26% 46.80% – – –
2 96.95% 59.58% 57.38% 97.00% 59.30% 56.70%
3 97.34% 56.81% 59.61% 97.45% 56.14% 57.83%
4 96.80% 59.51% 58.11% 96.95% 58.05% 55.57%
12 (Early Fusion) 96.50% 54.60% 56.20% – – –

Table 4: Ablations on input configurations and encoder design. We compare prompt-only, audio-
only, and combined inputs for Polytune and LadderSym, along with encoder variants that change
how the two streams interact. MAESTRO-E is the more challenging dataset because of higher note
concurrency, making gains there harder to realize. LadderSym attains the best scores on MAESTRO-E,
while Ladder and LadderSym behave similarly on CocoChorales-E. Blue highlights mark LadderSym,
pink highlights mark Polytune, and arrows indicate score trends; the styling is for emphasis only.
These comparisons justify pairing the Ladder encoder with symbolic prompting in the final model.

Type Method MAESTRO-E CocoChorales-E
Missed Extra Correct Missed Extra Correct

Input
Config

Prompt Only 24.3% 62.5% 90.6% 44.6% 45.8% 89.4%
Audio Only 26.8% 72.0% 90.1% 46.8% 51.3% 95.4%
Prompt + Audio 46.7% ↑ 81.7% ↑ 93.7% ↑ 56.1% ↑ 58.1% ↑ 96.9% ↑

Encoder
Design

3 Joint Encoders 36.1% 75.3% 92.6% 56.8% 59.6% 97.3%
Self-Attention 33.8% 74.6% 93.0% 54.6% 56.2% 96.5%
Ladder 46.0% ↑ 82.0% ↑ 93.7% ↑ 61.0% ↑ 62.3% ↑ 97.8% ↑

Final Model LadderSym 54.7% ↑ 86.4% ↑ 94.4% ↑ 61.7% ↑ 61.4% ↓ 97.7% ↓

To study fusion depth, we vary the number of joint encoders (Ljoint) while keeping the total encoder
layers Ltotal fixed. The remaining layers are assigned to modality-specific encoders (score and
practice). The number of modality-specific layers is determined by (Lmod = Ltotal − Ljoint). As
shown in Table 3, increasing Ljoint improves F1 scores. However, gains diminish beyond 2–3 joint
layers (Table 3). To isolate the effect, we also fix Lmod and vary Ljoint. This also shows peak
performance at 2–3 joint encoders, followed by a decline. This confirms that fusing earlier improves
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performance when used moderately. However, too many joint encoder layers lead to diminishing
returns, suggesting that there is a tradeoff between alignment capability and the ability to separately
encode inputs.

4.3.2 ABLATION STUDY OF INPUT REPRESENTATIONS

In order to test the effectiveness of adding music scores as symbolic prompts, we evaluate three input
setups: Audio Only, Prompt Only, and Audio + Prompt for both Polytune and LadderSym. Table 4
shows that Audio + Prompt outperforms both individual inputs. Symbolic prompts offer additional
context for better detection. The upgraded Ladder encoder improves performance on its own, and
combining it with symbolic prompting further boosts F1 scores. LadderSym achieves top scores
overall but underperforms Ladder in CocoChorales-E by a small margin. We analyze this in §5.

5 DISCUSSION

Analysis: Combining the improved encoder with the prompting strategy provides limited F1 improve-
ments. As shown in Table 4 (LadderSym vs Ladder), this is likely because both components enhance
inter-input communication in overlapping ways. The encoder improves inter-stream interaction,
while the prompt adds audio-symbolic comparison capabilities. Although the prompted version
of LadderSym does not outperform the unprompted variant in all categories of CocoChorales-E,
it consistently achieves better results on MAESTRO-E, which contains more challenging musical
content (competition pieces). We therefore integrate prompts into the final version of LadderSym.

Limitations: We identify three main limitations. First, dense concurrency present in MAESTRO-E
acoustically masks missed notes; although LadderSym more than doubles missed-note F1 relative to
Polytune, that class remains the most challenging. Second, errors accumulate near segment boundaries
when sustaining notes cross the context window; those tails can be mis-labelled as extra notes, which
could be mitigated with a sliding window or memory mechanism. Third, the model is designed for
fine-grained alignment and is robust to local tempo deviations like rushed or dragged notes, but it is
not intended to align performances that diverge dramatically in tempo (e.g., playing at half speed). In
practical tutoring settings we expect users to practice near a chosen tempo; if coarser tempo changes
must be handled, a lightweight pre-alignment step can be inserted ahead of LadderSym.

Future Work: A key direction for future work is to address the “chicken-and-egg” problem. As
demonstrated in the creation of our real-world validation set (Appendix A.8), LadderSym can serve
as a human-in-the-loop annotation tool. A larger-scale effort could use this approach to build a
larger dataset of authentic performance errors, enabling the training of models that are even more
robust. Beyond this, LadderSym introduces two key insights: cross-modal alignment should happen
frequently, and asymmetric feature extraction supports better comparison. These ideas can inform
reward model design or improve benchmarks for evaluating generative models. They can also guide
skill assessment in other domains, such as evaluating speech or assessing physical movements.

6 CONCLUSION

The existing methods of music practice error detection can help more effective skill improvement,
yet there remain challenges. Prior work suffers from two core drawbacks: (1) a late fusion design
that restricts comparisons between practice and score streams, limiting detection F1 scores, and (2)
relying on audio to represent music scores causes ambiguity. In this work, we introduced LadderSym
to address these challenges through two key innovations: (1) a new encoder architecture featuring
alignment modules for improved inter-stream interaction, and (2) a symbolic score prompt that
reduces the ambiguity in the reference music score. This approach achieves state-of-the-art F1
scores on both MAESTRO-E and CocoChorales-E. On MAESTRO-E, it improves Missed note F1 from
26.8% to 56.3% and Extra note F1 from 72.0% to 86.4%. On CocoChorales-E, it improves Missed
note F1 from 51.3% to 61.7% and Extra note F1 from 46.8% to 61.4%. The model’s performance
on our real-world beginner dataset confirms its practical utility for music learners. More broadly, this
work introduces general architectural principles for sequence comparison. The insights could inform
more effective models for other evaluation tasks, such as reward modeling in reinforcement learning,
human skill assessment, and the benchmarking of generative models.
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Reproducibility Statement: (not part of the paper body page limit) The code will be made publicly
available upon acceptance. We use the publicly available MAESTRO-E and CocoChorales-E datasets,
with the creation process described in §A.7. Our newly curated real-world evaluation dataset is
detailed in §A.8. Experimental Setup: Our training procedure, including all hyperparameters, is
specified in §A.5 and Table 6. The evaluation metrics and statistical analysis methods are described
in §4.1 and §A.12, respectively. We used a fixed seed for all experiments as documented in §A.13.
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A APPENDIX

This appendix supplements the main text with additional background and experimental details. §A.1
revisits error-detection paradigms, §A.2 describes our probing protocol, and §A.3–A.4 detail model
inputs and outputs. §A.5 outlines training settings, §A.6 defines evaluation metrics, and §A.7 covers
dataset generation. §A.8 describes the real-world collection and per-piece results. §A.9 reviews
the explicit-alignment baseline, §A.10 visualizes attention behaviors, §A.11 reports per-instrument
results, §A.12 presents statistical tests, and §A.13 documents reproducibility practices. §A.14 lists
LLM usage.

A.1 EXTENDED RELATED WORK: COMPARISON OF ERROR DETECTION PARADIGMS

Music practice error detection models generally follow one of two paradigms: explicit alignment or
latent alignment. Figure 5 illustrates these approaches and contrasts them with our proposed method,
LadderSym.

As shown in Figure 5a, explicit alignment methods work by directly comparing transcribed notes
from the reference score and the practice audio. Techniques like Dynamic Time Warping (DTW) are
used to align the two sequences before comparison. While intuitive, these methods can be brittle and
struggle when a student’s performance contains significant errors (e.g., extra or missed notes) that
disrupt the alignment process.
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(a) Explicit alignment.

(b) Latent alignment (state-of-the-art). (c) LadderSym.

Figure 5: Comparison of error detection architectures. (a) Explicit alignment methods align the
score with audio and compare it to the transcribed practice (Benetos et al., 2012; Wang et al., 2017).
(b) Latent alignment methods synthesize the score to audio and pass it to the encoder (enc) directly,
without explicit alignment (Chou et al., 2025). (c) Our method, LadderSym, is a latent alignment
approach that incorporates symbolic score prompting to address score ambiguity and introduces
cross-attention modules to enhance cross-stream information flow.

In contrast, latent alignment methods, illustrated in Figure 5b, operate in a learned latent space to
implicitly capture differences. The state-of-the-art model, Polytune (Chou et al., 2025), adopts this
strategy by synthesizing the reference score into audio and feeding both the score audio and practice
audio into a transformer model. This avoids the need for explicit, fragile alignment.

Our method, LadderSym (Figure 5c), builds upon the latent alignment paradigm but introduces two
key innovations. First, it uses a symbolic representation of the score as a prompt to the decoder,
reducing the ambiguity inherent in audio-only representations. Second, it features a novel encoder
with inter-stream alignment modules that allow for more frequent and effective comparison between
the score and practice streams.

A.2 PROBING SETUP

Probes are trained for 25 epochs on the MAESTRO-E test set. Locality is defined as predicting each
token’s position in a 16 × 32 pitch–time patch grid. Globality is measured by predicting a 12-bin
energy label based on the token with the highest norm in each clip. Cross-stream correspondence is
evaluated by predicting the energy bin of the opposite stream.

A.3 MODEL INPUTS

A.3.1 AUDIO

Our tokenization of audio inputs follows MT3 (Gardner et al., 2022) and Polytune. We segment
each audio recording into 2.145-second non-overlapping segments and compute spectrograms using
the short-time Fourier transform (STFT) with a 2048-point FFT, a 128-sample hop, and 512 mel-
bins. Each spectrogram frame is split into 16×16 patches using the Vision Transformer (ViT) patch
embedding method (Dosovitskiy et al., 2021), yielding 512 tokens per segment for each stream.

A.3.2 SYMBOLIC SCORE PROMPT

As our T5 decoder is autoregressive, the symbolic score provided as an input prompt uses the same
vocabulary as the model’s output. The token types are described in Table 5.

The prompt is the tokenized symbolic score. For example, a single middle C (MIDI pitch 60) played
correctly at the start of a segment would be represented as follows:

[SOS, Time=0, Label=Correct, On, Note=60, ...]
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Table 5: Token types used in the symbolic score prompt and model output.

Token Type Description
SOS / EOS Start/End of Sequence.
Time Specifies note timing within a segment.
On / Off Indicates whether a note is played or released.
Label Mistake type. In the input prompt, all notes are ‘Label=Correct‘.
Note The MIDI pitch of the note.

A.4 MODEL OUTPUT

Our model produces a stream of MIDI-like tokens describing each musical event’s time, pitch, play-
back state, and error category. For example, a sequence with two errors—“extra” and “missed”—looks
like:

[SOS, Time=0, Label=Extra, On, Note=60, Time=3, Note=60,
Off, Time=7, Label=Missed, On, Note=64, Time=9, Note=64,
Off, EOS]

Here, Time=0, Label=Extra starts the first erroneous note, and Time=3, Note=60, Off
indicates its deactivation. Subsequent tokens (Time=7, Label=Missed, On, Note=64)
mark the onset of a missed note four time steps later, followed by Off to end it. Finally, EOS
concludes the event sequence. Repetition errors follow the same schema. For example: if the score
specifies A → B → C but the performer plays A → A → B → C, the second A is emitted as
Label=Extra; if they skip B entirely, the timeline contains both Label=Extra for the duplicate
A and Label=Missed for B.

A.5 TRAINING

The model is trained end-to-end using score audio, practice audio, and a symbolic score prompt.
Our training recipe largely follows that of Polytune (Chou et al., 2025), with key adaptations to
improve performance and efficiency. We apply a weighted cross-entropy loss to mitigate the class
imbalance between correct and missed/extra notes. To further improve generalization, we adopt token
shuffling (Tan et al., 2024), which permutes output tokens without altering underlying semantics.
Learning rates are adjusted using cosine annealing (Loshchilov & Hutter, 2017), starting at 2× 10−4

and decaying to 1× 10−4. Optimization is performed with AdamW (Loshchilov & Hutter, 2017).
All models are trained for 300 epochs using the largest batch size that fits on a single NVIDIA A100-
80GB GPU: 48 spectrograms per batch for MAESTRO-E and 96 for CocoChorales-E. The smaller
batch size for MAESTRO-E reflects its higher note density and memory footprint. Training uses
mixed-precision (bf16-mixed) to balance efficiency and numerical stability. Full hyperparameters are
listed in Table 6.

Table 6: Training hyperparameters for each dataset. Batch size refers to the number of spectrogram
segments per update.

Hyperparameter MAESTRO-E CocoChorales-E

Number of Epochs 300 300
Learning Rate 2e-4→ 1e-4 (Cosine)
Batch Size (spectrograms) 48 96
Error Loss Weight 10
Scheduler Cosine Annealing
Optimizer AdamW
Data Augmentation Token Shuffling
Precision bf16-mixed
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A.6 METRICS AND EVALUATION

Error detection metrics have varied across studies. Benetos et al. (2012); Wang et al. (2017) consider
a note prediction correct if its onset falls within a specific timing tolerance relative to the ground
truth. However, in this paper, we also require the pitch of the note to match, as specified by the
mir eval package (Raffel et al., 2014). Furthermore, the mir eval package uses a 50 ms tolerance
to calculate F1 overlap scores. In contrast, older metrics like MIREX onset accuracy employed
different timing tolerances, such as 100 ms (Benetos et al., 2012) and 200 ms (Wang et al., 2017).
These varying tolerances complicate direct comparisons, as higher tolerances tend to inflate accuracy
scores. We use Error Detection F1 introduced by (Chou et al., 2025) because of the more stringent
50 ms tolerance from mir eval and the ability to evaluate each error category separately. This
provides a more precise evaluation of model performance.

A.7 TRAINING DATASETS

Training an end-to-end model for music error detection requires a large volume of labeled performance
mistakes. Yet, no large-scale datasets are available for this task. The only prior dataset, introduced by
Benetos et al. (Benetos et al., 2012), contains just 7 tracks. To address this limitation, Chou et al.
(2025) developed two new datasets: MAESTRO-E and CocoChorales-E, each containing over 1,000
samples per instrument. MAESTRO-E provides more than 200 hours of piano audio across 1,000+
tracks, annotated with over 200k pitch and timing errors. CocoChorales-E spans 300+ hours of
audio with over 40,000 tracks and 13 instruments, capturing more than 25,000 annotated errors. In
contrast, the dataset from Benetos et al. includes only 15 minutes of audio, 7 tracks, and 40 labeled
errors. To generate these datasets, MIDI samples from the MAESTRO and CocoChorales corpora
were augmented with typical practice mistakes such as missed, incorrect, and additional notes. The
corresponding audio was synthesized using MIDI-DDSP (Wu et al., 2022).

Training labels were defined by segmenting each augmented MIDI file into three separate MIDI
tracks labeled as Correct, Missed, and Extra, following the definitions introduced in §1.

Algorithm 1 MIDI error generation algorithm. This procedure introduces missed notes, pitch
changes, timing shifts, and extra notes into a clean MIDI file. Reproduced from Chou et al. (2025).
Require: All notes in MIDI track A, error rate λ, offset distributions P , Q.

1: Select notes from A to augment with probability λ
2: for each note selected do
3: err type← rand( {missed note, pitch change, timing shift, extra note} )
4: if err type = missed note then
5: Remove note;
6: else if err type = pitch change then
7: ϵp ← sample(P )
8: Offset pitch by ϵp;
9: else if err type = timing shift then

10: ϵt ← sample(Q)
11: Offset time by ϵt;
12: else if err type = extra note then
13: ϵp ← sample(P )
14: ϵt← sample(Q)
15: Insert note with time offset ϵt and pitch offset ϵp;
16: end if
17: end for

The error injection process is outlined in Algorithm 1. Notes from a MIDI track are randomly selected
with a probability determined by λ, which is sampled from a uniform distribution U(0.1, 0.4). Each
selected note is then assigned an error type. Depending on the error, the note is removed, modified
in pitch or timing, or a new note is inserted with sampled pitch and timing offsets. The offsets are
drawn from two truncated normal distributions P and Q, centered at zero with standard deviations
of 1 and 0.02, respectively. These distributions are chosen to reflect realistic variations observed
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in human performance(Trommershäuser et al., 2005; Tibshirani et al., 2011). An overview of the
resulting datasets is presented in Table 7.

Table 7: Key properties of music practice error-detection datasets. Each track contains multiple
missed or extra note errors and randomly timed timing perturbations.

Dataset Tracks Instruments Errors Source
MAESTRO-E 1k+ Piano 200k+ Partially-Synthetic
CocoChorales-E 40k+ 13 25k+ Partially-Synthetic
Benetos et al. 7 Piano 40 Professional
Our real-world dataset 10 Piano 161 Beginners

A.8 REAL-WORLD EVALUATION DATASET

This section documents the out-of-distribution benchmark we curated to complement the partially
synthetic corpora. Table 8 summarizes per-piece F1 scores, and Appendices A.8.1 to A.8.3 describe
how we recorded the performances, annotated them, and assessed model behavior on this set.

Table 8: Per-piece F1 comparison on the real-data evaluation set. All models are trained solely
on the synthetic datasets. Values are percentages; “–” indicates the metric is undefined because the
practice recording contains no events of that type.

Piece LadderSym Polytune

Extra Missed Extra Missed

Amazing Grace 92.3 76.9 100.0 76.9
Für Elise 80.0 88.9 62.5 53.3
Greensleeves 83.3 72.7 90.9 60.0
Morning (Grieg) 100.0 75.0 100.0 44.4
Happy Birthday 100.0 66.7 100.0 66.7
Jupiter (Holst) 80.0 66.7 80.0 0.0
Jingle Bells 71.4 60.9 76.9 47.6
London Bridge 66.7 – 10.5 –
Mary Had a Little Lamb 100.0 66.7 100.0 53.3
Merry Christmas 100.0 100.0 88.9 88.9
Can-Can (Offenbach) 80.0 100.0 100.0 66.7
Row, Row, Row Your Boat 92.3 76.9 83.3 66.7
Scale Exercise 100.0 100.0 100.0 100.0
Silent Night 45.5 30.0 66.7 8.0
Surprise (Haydn) 83.7 88.2 77.3 85.7
Twinkle Twinkle Little Star 85.7 100.0 100.0 100.0
When the Saints Go Marching In 80.0 76.2 88.9 82.4
Hot Cross Buns 66.7 – 40.0 –
Itsy Bitsy Spider 66.7 100.0 66.7 50.0
Old McDonald Had a Farm 57.1 66.7 80.0 100.0

Average 81.6 78.5 80.6 63.9

A.8.1 DESCRIPTION OF REAL-WORLD DATASET

While large-scale synthetic data is crucial for training, a key limitation of prior work is the reliance
on synthetic or scripted mistakes for evaluation, which may not capture the full complexity and
nuance of real human performance. Collecting a dataset of authentic errors is a time-consuming
and challenging task. Unlike generating synthetic data or pretending to make a mistake, it requires
capturing genuine mistakes made by musicians during the learning process. This involves finding
beginner musicians and allowing them to practice on the spot, a process necessary to record the
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natural, unscripted errors. Furthermore, annotating these errors is even more difficult, as it requires a
fairly well-trained ear to discern subtle inaccuracies. This need for domain expertise makes the task
ill-suited for general crowdsourcing platforms.

To complement the partially-synthetic benchmarks, we captured a held-out corpus of beginner
performances recorded on the piano by beginners (statistics shown in Table 7). Each take includes
the reference MIDI score, practice audio, and manual note-level labels. Because some pianos offers
symbolic MIDI ground truth with well-defined onsets, annotators could compare MIDI labels rather
than transcribe every event purely by ear before comparing, keeping dataset labeling efforts feasible
at a small scale. The ground truth annotations contain 75 wrong-note pairs (a substitution of one
note for another), 51 extra notes, and 35 missed notes, making isolated missed notes the rarest error
category. To our knowledge, this is the largest publicly available dataset of real-world, annotated
beginner performances curated specifically for music error detection, representing an almost threefold
increase over previously existing real-data benchmarks. This expansion provides the community with
a much-needed resource to validate models against real-world data.

Recording sessions featured three beginner pianists: one outside the author list who studied piano for
only a year in childhood, one coauthor with no formal training, and one who plays guitar but has
minimal keyboard experience. We curated twenty popular beginner–easy pieces and asked performers
to play on the spot with minimal rehearsal so that mistakes arose naturally. Labels were produced by
a author together with another student classically trained in sight-reading.

Assembling this dataset was far from trivial. Each participant recorded six to seven pieces under
supervision, yielding a total of 12 hours of recording and practicing time, and annotation required
multiple passes by musically trained reviewers to verify every note-level label, taking up to approxi-
mately 52 person hours to annotate. Scaling beyond 20 pieces would require hundreds of hours of
additional expert time, so the dataset remains modest in absolute size. Crowdsourcing a comparable
resource remains an open problem: most potential contributors lack access to recording setups and
sufficient musicianship to label fine-grained mistakes. Yet, to our knowledge, this corpus is the largest
publicly available set of authentic beginner errors, and it provides a valuable resource to assessing
whether models trained on synthetic data generalize to real practice.

A.8.2 LADDERSYM AS AN ANNOTATOR

To accelerate the laborious process of manual annotation, we use LadderSym as an assistive labeling
tool. The model generates a first pass of annotations which, while not perfect, provides a strong
starting point. These preliminary labels, including any errors made by the model, are then meticulously
reviewed, corrected, and verified by two human annotators to establish the final ground truth. This
“human-in-the-loop” approach is significantly faster than labeling from scratch. By shifting the task
from pure annotation to verification and correction, we estimate that this process cut the required
labeling time in half, speeding up throughput by 3×.

A.8.3 EVALUATION RESULTS

We evaluate all models on this dataset without additional finetuning. On this real-data set, extra notes
are generally easier to detect as they stand out more in these simpler beginner pieces compared to the
dense, complex arrangements in a competition dataset like MAESTRO-E. Despite the challenges of
real-world data, the relative performance ordering observed on synthetic data persists. LadderSym
shows a significant improvement in detecting the more challenging missed notes and also demonstrates
a modest improvement in extra note detection over Polytune, highlighting its robustness. Per-piece
metrics are shown in Table 8.

A.9 EXPLICIT-ALIGNMENT BASELINE

We adopt the same baseline introduced by Chou et al. (2025). Their work provides an updated,
open-source implementation of the methods by Benetos et al. and Wang et al., which remain the
most directly relevant to score-informed error detection (Benetos et al., 2012; Wang et al., 2017).
While preserving the core principles of the original approaches, the re-implementation modify each
stage of the transcription pipeline to align with recent progress in automatic music transcription
(AMT). In particular, they replace the non-negative matrix factorization (NMF)-based transcription
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with the MT3(Gardner et al., 2022) model, a state-of-the-art system. They also substitute Windowed
Time Warping (WTW) with the more accurate Dynamic Time Warping (DTW). These updates yield
comparable performance while extending support to multi-instrument settings.

A.10 ATTENTION PATTERN VISUALIZATION

We compare attention behaviors of three encoder designs: early fusion, late fusion (Polytune), and
our proposed cross-attention alignment module (LadderSym).

A.10.1 POLYTUNE SELF-ATTENTION

Figure 6: Per-layer attention maps in POLYTUNE. Maps are averaged over pitch. Layers 1–11 use
independent encoders; layer 12 uses a joint encoder.

Figure 6 visualizes per-layer attention maps from POLYTUNE. Diagonal patterns dominate the
practice stream, while the practice stream exhibits vertical banding, indicating reduced temporal
specificity. This asymmetry reflects that the practice stream encodes more global structure, while the
practice stream retains local detail. The final layer also exhibits vertical banding, showing lack of
locality in one of the streams.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.10.2 EARLY FUSION SELF-ATTENTION (FULLY JOINT)

Figure 7: Self-attention maps for the early fusion model. Each quadrant shows intra- or inter-stream
attention, averaged over the pitch axis. We observe strong alignment, but also strong locality in the
intra-stream attention.

Figure 7 shows quadrant attention maps from the FULLY JOINT early fusion encoder. Each quadrant
represents one attention pattern: top-left is practice-to-practice, bottom-right is practice-to-practice,
and the off-diagonal quadrants capture practice-to-practice and practice-to-practice attention. All
maps are averaged over the pitch axis to emphasize temporal alignment. This encoder exhibits strong
diagonal structures, indicating that tokens attend mostly to themselves or nearby frames, preserving
strong local correspondence in both streams.

A.10.3 LADDERSYM CROSS-ATTENTION

Figure 8: Cross-attention maps in LadderSym, averaged over pitch. Axes represent token positions
in practice and practice streams.

Figure 8 illustrates the cross-attention maps in LadderSym. These maps are averaged over pitch
to highlight temporal alignment. Unlike the previous models, LadderSym inserts cross-attention
modules at each layer, enabling continuous alignment between the practice and practice streams.
Earlier layers show more distinct diagonals, while later layers shift toward abstract correspondence.
Moreover, we show that asymmetry is preserved via probing in Table 1: one stream remains locally
detailed while the other emphasizes cross-stream integration.
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A.11 INSTRUMENT-LEVEL RESULTS

Table 9: Full results of error detection F1 scores for 14 instruments, split into Correct, Missed,
and Extra note categories. We compare three models (LadderSym, Polytune, and a baseline). The
row labeled “Average” summarizes all 14 instruments: piano from MAESTRO-E plus 13 additional
instruments from CocoChorales-E. LadderSym has better F1 scores across the board compared to
other methods.

Instrument Correct (F1) Missed (F1) Extra (F1)
Ours Polytune Baseline Ours Polytune Baseline Ours Polytune Baseline

Average 97.4% 95.0% 37.0% 61.2% 49.2% 7.6% 63.2% 48.0% 25.9%
Piano 94.4% 90.1% 43.5% 54.7% 26.8% 6.6% 86.4% 72.0% 39.9%
Flute 97.9% 96.0% 38.9% 68.7% 56.0% 7.2% 65.0% 52.0% 26.6%
Clarinet 97.8% 95.6% 38.3% 59.0% 49.7% 6.7% 61.0% 46.6% 24.1%
Oboe 98.0% 96.3% 33.4% 69.9% 58.4% 6.7% 62.6% 48.1% 25.9%
Bassoon 97.6% 94.4% 34.7% 62.2% 48.9% 6.4% 62.7% 41.7% 17.1%
Violin 97.6% 95.5% 36.1% 68.2% 57.1% 7.5% 62.9% 48.8% 27.3%
Viola 97.6% 95.1% 36.1% 57.2% 46.9% 5.9% 59.9% 47.7% 26.1%
Cello 97.7% 94.9% 37.5% 52.6% 42.7% 6.9% 61.4% 46.8% 21.7%
Trumpet 98.1% 96.3% 37.8% 65.6% 58.7% 8.8% 65.3% 53.6% 26.6%
French Horn 97.8% 96.1% 38.4% 61.8% 53.9% 5.9% 57.1% 43.2% 23.7%
Tuba 97.7% 95.2% 37.3% 55.9% 45.4% 8.1% 64.8% 45.6% 17.8%
Trombone 96.8% 94.8% 35.0% 59.8% 50.4% 7.1% 58.7% 44.8% 21.7%
Contrabass 97.5% 94.2% 35.7% 54.9% 42.0% 8.9% 56.6% 38.6% 19.9%
Tenor Sax 98.6% 95.7% 39.7% 66.9% 56.2% 14.2% 60.4% 45.7% 25.1%

To expose the variation across instruments, we report per-instrument Error Detection F1 scores for
LadderSym, Polytune, and the explicit-alignment baseline.

We present instrument-level results of LadderSym versus prior work for every instrument in Table 9.
We also provide qualitative examples in our demo of the violin, piano, flute, and tenor sax.

A.12 STATISTICAL ANALYSIS

To assess significance across the explicit-alignment baseline, Polytune, and LadderSym, we ran paired
t–tests and Wilcoxon signed-rank tests on CocoChorales-E and MAESTRO-E (Bonferroni-corrected
α = 0.017), and show the results in Table 10. Some of the computed p-values were smaller than the
smallest magnitude reliably distinguishable from zero in standard double precision (≈ 10−308), so we
report them as < 1× 10−300. Even at this threshold, all p-values remain far below our significance
level.

Table 10: Paired t–test and Wilcoxon signed-rank results.

Dataset Comparison t pt W pw

CocoChorales-E
Polytune vs. Explicit Align. 106.98 < 1× 10−300 1.38× 106 < 1× 10−300

Explicit Align. vs. LadderSym -127.10 < 1× 10−300 8.75× 105 < 1× 10−300

Polytune vs. LadderSym -21.85 4.98× 10−103 1.79× 106 1.47× 10−170

MAESTRO-E
Polytune vs. Explicit Align. 86.18 < 1× 10−300 2.28× 104 < 1× 10−300

Explicit Align. vs. LadderSym -110.31 < 1× 10−300 6.87× 103 < 1× 10−300

Polytune vs. LadderSym -20.53 1.43× 10−85 6.25× 105 1.03× 10−67

A.13 SEED MANAGEMENT FOR REPRODUCIBILITY

To ensure reproducibility, we implemented a consistent seed management strategy for model training.
We utilized specific seeds for each stage to ensure that results could be replicated exactly. Model
Training: For model training, we used PyTorch Lightning’s seed everything function with
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a seed value of 365. This seed was applied across all relevant components of the training process,
including data loading, model initialization, and training loops, to ensure that training is consistent
and reproducible across different runs. The following code snippet (Listing 1) demonstrates how the
seed was set for model training:

Listing 1: Setting a seed with PyTorch Lightning’s seed everything
from p y t o r c h l i g h t n i n g import s e e d e v e r y t h i n g

# S e t s eed f o r model t r a i n i n g
s eed = 365
s e e d e v e r y t h i n g ( seed )

A.14 LLM USE IN MANUSCRIPT PREPARATION

We used OpenAI’s GPT-5 (via ChatGPT) to help with wording clarity and grammar-only edits. All
scientific claims, experimental design, data analysis, and conclusions remain the responsibility of the
authors.
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