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Abstract
The recent surge in options for diffusion model-based synthetic data sharing offers significant
benefits for medical research, provided privacy and fairness concerns are addressed. Gener-
ative models risk memorizing sensitive training samples, potentially exposing identifiable
information. Simultaneously, underrepresented features – such as rare diseases, uncommon
medical devices, or infrequent patient ethnicities – are often not learned well, creating
unfair biases in downstream applications. Our work unifies these challenges by leveraging
artificially generated fingerprints (SAFs) in the training data as a controllable test for
memorization and fairness. Specifically, we measure whether a diffusion model reproduces
these fingerprints verbatim (a privacy breach) or ignores them entirely (a fairness violation)
and introduce an indicator t’ to quantify trained models for the likelihood of reproducing
training samples. Extensive experiments on real and synthetic medical imaging datasets
reveal that naïve diffusion model training can lead to privacy leaks or unfair coverage. By
systematically incorporating SAFs and monitoring t’, we demonstrate how to balance privacy
and fairness objectives. Our evaluation framework provides actionable guidance for designing
generative models that preserve patient anonymity without excluding underrepresented
patient subgroups. Code is available at https://github.com/MischaD/Privacy.
Keywords: Image Generation, Privacy, Fairness, Chest X-ray

1. Introduction

Since the development of statistical models capable of representing and synthesizing new
samples from existing dataset distributions (Kingma and Welling, 2014; Goodfellow et al.,
2020; Rombach et al., 2022; Ho et al., 2020; Hamamci et al., 2025; Guo et al., 2024), the idea
of training generative models on private data and sharing only the model or synthetic datasets
has gained traction. Such methods could address issues like data scarcity for rare diseases,
racial bias (Larrazabal et al., 2020), and challenges such as robust domain adaptation and
generalisation (Wang et al., 2022). However, maintaining privacy and anonymity is crucial
when working with personally identifiable information (Jin et al., 2019).

Recent advances in generative modeling, including diffusion models (Song et al., 2020a;
Dhariwal and Nichol, 2021; Rombach et al., 2022; Ruiz et al., 2022), have expanded the
feasibility of sharing models directly (Pinaya et al., 2022). Despite these efforts (Bai et al.,
2021; Dar et al., 2024; Stein et al., 2024), it remains unclear to what extent shared models
reproduce training samples, which would raise potential data privacy concerns. Guarantees
against such privacy breaches would allow models to be trained on proprietary data and
shared instead of the underlying datasets, enabeling fully anonymous data sharing.
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However, recent works have shown that publicly released models can inadvertently
regenerate training data during sampling, which prevents us from freely sharing such models.
For instance, Somepalli et al. (2023) and Dar et al. (2024) demonstrate that diffusion models
can reproduce training samples, while Carlini et al. (2023) illustrate how re-identifyable faces
can be extracted from these datasets. This raises serious privacy concerns requiring robust
mitigation strategies (Ren et al., 2024). Moreover, some generative models are explicitly
designed to memorize training samples (Cong et al., 2020). Differential privacy-based
strategies (Dockhorn et al., 2022) offer a promising avenue for mitigating these concerns.
However, their adoption in high-resolution data synthesis remains limited due to a notable
drop in distribution fidelity, restricted applicability to diffusion models, and low efficacy
for multi-modal, high-resolution datasets (Xie et al., 2018). Consequently, in this work, we
propose a direct approach to evaluate models – circumventing the need to obfuscate the
model distribution – and thereby preserving compatibility with high-resolution, high-fidelity
generative tasks.

Additionally, not reproducing unique features has important implications for the fairness
of generated data, which have not yet been discussed in literature. Training diffusion models
on private datasets while ensuring unique features are not reproduced results in models
ignore these unique characteristics. This contradicts the objective of generating a fair dataset,
where such unique features should be reproduced. To resolve the trade-off between privacy
and fairness, models must learn to generalize. To approach this problem, we can conceptually
divide the set of all images into two distinct categories: training set members and non-
members. After generating a dataset using a diffusion model, the generated samples fall into
four categories: (1) Lost images: not in the training set, unavailable, potentially affecting
downstream tasks but posing no privacy or fairness concerns. (2) Memorized images:
reproduced from the private training set, raising privacy issues that require safeguards. (3)
Forgotten images: training images not generated, potentially causing fairness issues if
certain subgroups are omitted. (4) Generalized samples: the ideal case, where the model
generates data reflecting the underlying distribution.

To investigate what the model learns, we propose to use synthetic anatomical fingerprints.
These fingerprints can be directly controlled through synthetic manipulations of the training
dataset and reliably detected in synthetic datasets. We measure the probability of generating
these fingerprints using a novel indicator metric t′. Thus, our main contributions are:

• We formulate a realistic scenario where unconditional generative models face privacy
and fairness problems due to the potential reproduction of training samples.

• We provide a formal approach to determine the maximum probability of producing
sensitive data, from which we derive a computable indicator metric.

• We define a framework that quantifies and investigates privacy and fairness issues,
enabling architectural decisions to create truly generalizing and fair generative models.

2. Background

Diffusion Models, such as (Rombach et al., 2022), model different levels of perturbation
pσ(x̃) :=

∫
pdata(x)pσ(x̃ | x)dx of the real data distribution using a noising function defined by

pσ(x̃ | x) := N (x̃;x, σ2I). Here, σ defines the strength of the perturbation, split into N steps
σ1, . . . , σN . The assumption is that pσ1(x̃ | x) ∼ pdata(x) and pσN (x̃ | x) ∼ N (x;0, σ2

NI). We
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define the optimization as a score matching objective by training a model sθ(x, σ) to predict
the score function ∇x log pσ(x) for the noise level σ ∈ {σi}Ni=1. For sampling, this process
can be reversed, for example, using Markov chain Monte Carlo methods following Song and
Ermon (2019). Song et al. (2020b) extended this to a continuous formulation by redefining
the diffusion process as a process governed by an SDE and training a dense model to predict
the score function. The continuous formulation of the noising process, denoted by pt(x) and
pst(x(t) | x(s)), characterizes the transition kernel from x(s) to x(t), where 0 ≤ s < t ≤ T .
Anderson (1982) showed that the reverse of this diffusion process is also a diffusion process.
Finally, Song et al. (2020b) show that the reverse diffusion process of the SDE can be modeled
as a deterministic process, as the marginal probabilities can be expressed deterministically in
terms of the score function. As a result, the problem simplifies to an ODE, which can be
solved using any black-box numerical solver, such as the explicit Runge-Kutta method. This
enables exact likelihood computation, commonly used to estimate the likelihood of generating
a sample, e.g., images (Song et al., 2020b). However, we propose t′, a more general indicator
that extends this idea to approximate the likelihood of generating all samples that lead to
privacy problems.
Privacy: To formalize and contextualize our approach, we borrow the definitions of ex-
tractable memorization and discoverable memorization from the natural language processing
domain (Nasr et al., 2023; Carlini et al., 2021) and apply them to generative image models.
Given a model s with a generation routine Gen, an example xp from the training set D is
extractably memorized if an adversary (without access to D) can construct a conditioning c
that makes the model produce xp (i.e., Gen(c) = xp).

We also adopt and extend the definition of discoverable memorization from Nasr et al.
(2023) and Carlini et al. (2021) to image models: For a model s with generation routine
Gen, an example xp ∈ D, and a perturbation function from the generative model’s training
pσ(x̃ | x), xp is discoverably memorized if Gen(x̃p, σ) = xp. The strength of the perturbation
function directly influences how discoverable the training images are. Our proposed indicator
t′ measures the susceptibility of models to discoverable memorization. It can be compared to
the privacy budget in differential privacy (Dockhorn et al., 2022); however, unlike differential
privacy methods – which only work on low-resolution images – our approach’ post-hoc nature
preserves image quality.
Fairness: Fairness in AI is a well-explored yet unsolved problem. Current directions in
the literature for discriminative tasks suggest frameworks for benchmarking (Jin et al.,
2024) or reveal important design choices for training fair models. Generative models are
used to improve fairness (Ktena et al., 2024), but their own biases and unfairness remain
underexplored. It is often assumed that generative models learn the entire data distribution
without further evaluation.

3. Method

To ensure clarity, we first define the key terms used throughout our paper. In Fig. 1 we
visualize the key terms introduced Sec. 1.
Privacy: Sharing synthetic data poses a problem if an adversary, without access to any
images from the training dataset but with prior knowledge, can extract an image from the
synthetic dataset and recognize that it is memorized. An example of this is shown in Sec. 4.
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Figure 1: Type of learning for generative models. Memorization raises privacy issues, and
forgetting raises fairness issues.

Memorization: Memorization refers to the pixel-wise reproduction of training images. We
distinguish between the memorization of full images and parts of images. To check for partial
memorization, we define fingerprints a priori. Instead of computing a pixel-wise error, we
use a classifier Cf that is trained to be robust against perturbations. The second type is
full-image memorization, where the model reproduces the entire image.

Identity: This refers to case-dependent sensitive information that may be leaked if the model
is shared. Examples include full images in the case of ChestX-ray14 (Wang et al., 2017) or
CelebA-HQ (Karras et al., 2018). In other cases, such as the Stable Diffusion experiment in
Sec. I, identity refers to the actual identity of a person, independent of image context or
background.

Fingerprint: An image feature unique to a specific person or image in the dataset. Examples
include distinctive diseases, objects, entire faces, bone structures, or any feature linked to
an individual’s identity. Similar to real fingerprints, their mere presence is not inherently
problematic unless there is additional information that enables identification.

Violation: This occurs when revealing the identity is implied by the reproduction of a
fingerprint. Formally, this means that the presence of a fingerprint implies the presence of
the identity.

Using artificially generated fingerprints (SAFs), we investigate privacy and fairness issues
simultaneously. Privacy issues arise if we detect cases of memorization. Fairness issues arise if
SAFs are absent in synthetic datasets. Our goal is to achieve generalization, where SAFs are
reproduced in images with different identities. To investigate when models start to generalize,
we artificially inject detectable objects into the training data, i.e., SAFs. We then train one
classifier to detect these objects and another to identify the image’s identity used as the
target for injection. A non-privacy-violating and fair model would reproduce the SAF on a
synthetic image with a different identity than the training image containing the fingerprint.
To establish SAFs, we synthetically augment a single sample xp from the dataset D. We do
this too simplify the training of classifiers used to detect SAFs. In practice, this can be any
feature that appears only once in the entire training dataset, such as a ring, a deformation,
or a specific medical device. To investigate generalizability, we experiment with using either
a constant gray circle, realistic fingerprints generated through image interpolation, or real
features extracted based on labels as shown in Appx. E.
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To assess whether the trained model raises privacy concerns, we define an adversarial
attacker aware of the SAF who can train a model to detect it. We refer to this classifier as Cf .
A second classifier, Cid, is trained independently of the fingerprint on the unaugmented
dataset using a one-versus-all approach to classify the image’s identity. The attacker does
not have access to this classifier. Its purpose is to determine if the presence of the fingerprint
implies the identity of the image.

This setup allows us to disentangle the memorization of the SAF from the memorization
of xp, distinguishing generalization from memorization. To track the number of memorized
samples, we define |q| as the number of synthetic samples where both classifiers have a
positive outcome.
Memorization Indicator t′: It is possible to compute the likelihood of the exact sample
(e.g., using numerical NLL estimation), but this does not ensure that images in the immediate
neighborhood are free from privacy issues. To address this, we propose estimating the upper
bound of the likelihood of reproducing samples from the entire subspace belonging to the
class of private samples.

Let ps(xp) define the likelihood of the unconditional model s reproducing the private
sample xp at test time. This is insufficient because it does not account for slightly noisy
versions of xp, which can also pose privacy concerns. We aim to compute q(p), defined as
the likelihood of reproducing any sample within Ωp. Here, Ωp represents the region in image
space that is similar enough to xp to raise privacy concerns according to q.

In the supplementary material, we show this is equivalent to:

q(p) =

∫
Ωp

ps(x)dx ≈
∫ t′

0
ps(xt,p)dt ≤

t′∑
i=0

sup
t∈[ti,ti+1]

(σti+1 − σti)Ep(xt,p)

[
p(x′

t,p)
]
, (1)

To estimate q(p), we observe that it depends only on the likelihood p(x′
p) and t′, which

captures the entire region of Ωp. x′
p is the predicted sample of the diffusion model after

applying t forward diffusion steps to the private sample xp . This synthetic x′
p then serves

as input to the classifiers. Ωp is defined as the region where Cid and Cf both give positive
predictions. Since this region depends only on its size, t′ serves as an indicator of how unlikely
it is to generate critical samples from the model, without the necessity to compute the exact
value for p(x′

p) .
We provide a pseudo-algorithm for the computation in Appx. G. Given xp, we define

qM (p|xt,p) as the estimate of a sample belonging to Ωp for a given diffusion step t. We then
define t′ := max(T), where T := {∀t : qM (p|xt,p) > 0}. The parameter M allows us to trade
off accuracy for computation time by choosing the number of generated samples.
Intuition: We model the image space using the learned distribution of the score function
∇x̃ log pσi(x̃ | x) by reversing the diffusion process and checking when the model starts to
“break out” by generating images classified as different samples. For large t, the learned
marginals p(x, t) span the entire image space. Importantly, by definition of the diffusion
process, the distribution approaches the same distribution as the sampling distribution of
the diffusion process if σt gets large enough pσN (x̃ | xp) ∼ N (x;0, σ2

NI). However, for lower
t the model has learned that the distribution collapses towards a single training image xp.
Essentially, it has modeled part of the subspace as a delta distribution around xp. We want
to estimate how far back in the diffusion process we have to go for the model to start to
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produce different images. The boundary Ωp is defined as all images that would collapse
towards this training image, estimated using the classifiers. Fig. 6 illustrates this process in
one dimension. The indicator t’ is then the strength of the perturbation function according
to the definition of discoverable memorization introduced in Sec. 2. Note that this is different
from simply defining a variance that is large enough for the classifiers to fail, as sθ(xp, σt)
was trained to revert this noise. Fig. 7 illustrates how this looks in image space.
Computational Overhead: Our proposed method computes t′ through forward passes of
the diffusion model, making its computational cost equivalent to that of image sampling. The
hyperparameter M determines the trade-off between the accuracy of t′ and computational
overhead, scaling linearly with M . For instance, with M = 16, ensuring privacy for an image
requires 16 times the computational cost of generating a single sample.

4. Experiments

We consider the size of the training dataset, the time for training, and model size as the
three most impactful factors determining a model’s fairness and memorization capabilities.
Dataset: For our initial experiments we use an a-priori selected selection of modalities
from MedMNISTv2 (Yang et al., 2021). For our main experiments, we use ChestX-
ray14 (Wang et al., 2017), a dataset of 112,120 frontal chest X-rays widely studied in
privacy research (Packhäuser et al., 2022). Additional experiments on training length
and number of fingerprints per dataset, we use three datasets with diverse modalities and
sizes. Specifically, we report results on BCI (Liu et al., 2022) and ODIR-2019 (https:
//odir2019.grand-challenge.org/dataset/). Data is split (60/20/20), with diffusion
models sharing training data with classifiers.
Metrics: To evaluate generative quality, we report the Fréchet inception distance (FID).
To gauge memorization, we compute the peak signal-to-noise ratio (PSNR) between 1000
synthetic samples and all images of the training sets, reporting the maximum value. To
quantify privacy, we compute t′. To quantify fairness, we compute the number |Cf+| of
positive predictions.
Toy Dataset: We start by training Cid, Cf and diffusion models on MedMNIST. Training
details and comprehensive quantitative results can be found in Appx. H. Next, we compute
t’ by evaluating qM (p|xt,p). Examples of model input and output as well as a visualization
of the evaluation process are shown in Fig. 7 and Fig. 3. In general we observe that t’ is
higher if the number of reproduced memorized samples is high. The cut-off value when the
model stops to reproduce the SAF seems to be around t′ = 0.7.
Training Length: To establish the generalizability of our approach, we extend our exper-
iments to real datasets (ChestX-ray14, BCI,ODIR-2019). First, we experiment with the
training length. We compute FID at different training lengths and select the best model
based on the lowest value. For this we use PII (Tan et al., 2021) as our SAFs. The results
are shown in Fig. 2. For ChestX-ray14, overtraining results in higher PSNR and FID values.
The SAF itself is never reproduced. BCI has a few positive predictions during earlier epochs,
which turn out to be false positives, likely caused by lower sample quality during early
training. The best epoch, based on FID, does not reproduce the fingerprint at all. The high
PSNR is caused by samples with large empty regions. ODIR-2019 shows a high number of
reproduced SAF and a high PSNR, indicating memorization. Positive predictions confirm
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Memorized
Forgotten

Figure 2: Impact of training length. To assess model memorization, we investigate PSNR
and Cf+. The dashed line in the bottom row indicates the results of a fair model
(SAFs appear equally often in training and synthetic datasets).
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Figure 3: Likelihood of producing xp at sampling time as a function of t for M = 16.

that all are copies of the training sample. Overall, models either memorize the SAF, leading
to privacy issues, or show limited sample diversity, resulting in unfair outcomes.

We repeat this experiment with the ideal training lengths and train diffusion models
with different types of fingerprints to assess generalizability to real fingerprints. Results
are provided in Appx. E. None of the ChestX-ray14 and BCI models reproduce the SAFs,
indicating that none of the models are fair. The results for the three different SAFs differ
slightly when examining Cf+ and t′. Generative models struggle with synthetic features like
the circle, while PII shows intermediate retention due to its inpainting method.
Dataset Size To analyze the impact of dataset size, we use a latent diffusion model for
its higher efficiency and sample quality, leveraging the VQ-VAE from Stable Diffusion
2.0 (Rombach et al., 2022). Details on training parameters are in Appx. B. The results
are shown in Tab. 1. Interestingly, FID values are negatively correlated with dataset size,
likely due to the model’s ability to memorize training data, which produces realistic images.
Inspecting these images reveals that all are memorized. For smaller datasets, the training
image can often be retrieved from the sampled images, as indicated by the high t′ values.
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Table 1: Quantitative results on CXR data using two
backbones: OD (out-of-domain) Inception
and ID (in-domain) models for CXR (Cohen
et al., 2022). Larger datasets reduce memo-
rization risk, quantified by t′.

Classification OD (Inception) ID (CXR) Privacy

|ND| SAF (%) ID (%) FIDtrain FIDtest FIDtrain FIDtest E(|q|) |q| t′

C
he

st
xr

ay
14

875

10
0.

00

10
0.

00

15.1 30.3 1.0 2.3 34.3 47 0.75
1750 12.3 29.3 1.0 2.4 17.1 5 0.86
3500 13.6 32.0 1.2 2.6 8.6 1 0.67
7001 18.8 38.4 1.6 3.0 4.3 0 0.72

14003 22.1 41.4 1.9 3.3 2.1 0 0.66
28007 19.9 39.4 2.1 3.4 1.1 0 0.60

Table 2: Privacy metrics for different
model sizes. See Appx. D
for the different hyperpa-
rameters we use for the dif-
fusion model.

# Trainable parameters |q| FID t′

Default 113 675 524 5 32.7 0.77
Model 1 77 364 740 9 33.0 0.74
Model 2 71 439 108 0 33.9 0.69
Model 3 49 558 020 1 34.8 0.69
Model 4 28 484 612 0 78.7 0.66
Model 5 28 448 388 0 43.6 0.64

Train diffusion 
model on private 

data 

Data sharing

Prior information
“Patient swallowed ring”

Support device 
classifier

Attacker

Diffusion model

Synthetic data

Extracted train image

Shares 
model

Samples Filter

Support device?
!𝑌𝑒𝑠
𝑁𝑜

Figure 4: Extracting memorized samples from a trained diffusion model. The attacker learns
that a ring is in the patient’s image, uses this information, and filters generated
samples until reproducing the training image.

Notably, while sampling with |ND| = 7001 does not generate SAFs, the high t′ = 0.72
suggests privacy risks. For larger datasets, t′ is lower, indicating better privacy. In all cases,
the value of |q| deviates from the expected one, highlighting fairness issues.
Model size: Ideally, we want a model that avoids memorizing the fingerprint without
requiring more training images. To address this, we investigate how model architecture size
influences memorization by training models with fewer parameters on |ND| = 1770 images.
Details about the architecture are in Appx. D. The results are shown in Tab. 2. Smaller
models stop reproducing the image, as indicated by the decreasing t′, but this reduces quality,
as shown by the worse FID values. Manual inspection reveals that fingerprints are either
memorized or forgotten across all models.
Real-world example: Next we want to highlight the severity of this problem by presenting
a realistic scenario where an attacker leverages prior knowledge to extract private data from
diffusion models. We assume the attacker knows that a patient has swallowed, e.g., a ring, a
scenario observed in our dataset. The attacker, without access to xp, could train a classifier
to detect objects other than soft tissue and use it to filter sampled images, as shown in Fig. 4.
To test this, we manually label the presence of support devices (e.g., pacemakers, tubes) in
5000 images from (Wang et al., 2017) and train Cf to detect them. We generate a synthetic
dataset using a diffusion model trained on a set without support devices except for one image
containing a ring to simulate accidental inclusion. The resulting model has a high t′ = 0.82.
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Figure 5: Number of fingerprints in the synthetic dataset and t’ relative to Nf . The grey
line marks when models begin reproducing fingerprints.

Using Cf , we filter 342 sampled images, most of which are false positives due to the difficulty
of detecting unspecific support devices in medical images. Manual inspection confirms that
only memorized training samples contain rings. This demonstrates how an attacker could
use knowledge of a ring’s presence in the training dataset to reconstruct the CXR image.
Achieving Fairness: To address the observation that all models raise fairness or privacy
issues, we investigate the number of images Nf containing the fingerprint as a key factor
for generalization. The results are shown in Fig. 5. For ChestX-ray14, even with three
fingerprinted samples, the model has a slight chance of reproducing the fingerprint, with one
successful run out of three. At nine samples, the model begins reproducing the fingerprint
more often, but the proportion remains low. Only one in 50,000 synthetic samples contains
the fingerprint, even though 0.1% of the training data does. Generalization begins after
roughly three samples. BCI generalizes after about four fingerprinted images, despite having
a smaller training size. For ODIR-2019, the small dataset size causes memorization, showing
that training diffusion models on small datasets does not enable generalization.
Limitations: Because the indicator t′ depends on the inherent stochasticity of sampling
qM (p | xt,p), it may exhibit notable variance for larger values. As a result, outcomes with
t′ close to 1 can be more challenging to compare and interpret. Moreover, although our
framework provides robust privacy and fairness assurances at the sample level, extending
these protections to entire datasets remains an open avenue for future work.

5. Conclusion

We described scenarios where training generative models on personally identifiable image data
can lead to training data leaks. Using our framework, we successfully investigated common
diffusion model design parameters. Our work reveals that, regardless of design choices,
models are either not privacy-preserving or raise fairness issues by forgetting important
long-tail information. Rare diseases will either be forgotten or memorized by the diffusion
model. This must be considered and can be quantified by using t′ when designing models for
data sharing and we observe that increasing the range of unique features in a dataset fosters
improved generalization. The only alternative to avoiding memorization is to increase the
size of the training dataset. However, in such cases, fairness should be carefully assessed,
particularly concerning long-tail data.
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Appendix A. Derivation of Estimation Indicator t’

Song et al. (2020b) show that the reverse diffusion process of the SDE can be modeled as a
deterministic process as the marginal probabilities can be modeled deterministically in terms
of the score function. As a result, the problem of learning transition kernels simplifies to an
ODE:

dx =
[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt, (2)

Solving Eqn. 2 enables exact likelihood computation. However, this does not account for
the fact that images in the immediate neighborhood, like slightly noisy versions of xp, are
not anonymous. Consequently, we are interested in computing q(p), which is defined as the
likelihood of reproducing any sample within Ωp, which is the region of the image space that
is similar enough to xp that it raises privacy concerns:

q(p) =

∫
Ωp

ps(x)dx. (3)

We determine this region by training a classifier tasked with detecting whether the image
belongs to the image class Cf . To search through the image manifold, we make use of
the reverse diffusion process centered around the SAF image xp defined as pt,b := p(xt |
xp) = N (x̃;xp, σ

2
t I) for x(s) to x(t), where 0 ≤ t ≤ T . We can employ the diffusion process

centered around this image to sample from the neighborhood and then use the learned reverse
diffusion process to generate noisy samples xt,p. Then we can use this as starting image for
the reverse diffusion process to sample x′

t,p:

q(p) =

∫
Ωp

ps(x)dx ≈
∫ t′

0
ps(xt,p)dt =

∫ t′

0
Ep(xt,p)

[
p(x′

t,p)
]
dt. (4)

Technically, we could employ exact likelihood computation to estimate q(p) but this would
require integrating over the continuous image-conditioned diffusion process, which would
be intractable in practice. Therefore, we propose to approach and estimate this integral by
computing the Riemann sum of this integral and give an upper bound estimate for it using
the upper Darboux sum: ∫ t′

0
Ep(xt,p)

[
p(x′

t,p)
]
dt =

∑
t

(σt − σt−1)Ep(xt,p)

[
p(x′

t,p)
]
≤

t′∑
i=0

sup
t∈[ti,ti+1]

(σti+1 − σti)Ep(xt,p)

[
p(x′

t,p)
]
,

(5)

which approaches the real value for steps that are small enough. We can compute this
value by using xp as a query image and estimating the expectation by performing Monte-
Carlo sampling but this would be computationally infeasible due to the complexity of exact
likelihood estimation.
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Figure 6: Illustration of our estimation method in 1D. The grey line denotes the query image
xp. The estimation method iteratively increases the search space in the latent space
of the generative model. The green area corresponds to image regions resulting in
non-privacy concerning generated samples, while the red area is considered critical.

Figure 7: Illustration of the reverse diffusion process. Left shows query images xt,p for
t ∈ [0, 0.7]. Right shows the resulting sample.
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Figure 8: Training image samples for Cf and Cid

Appendix B. Training Details

The classifiers are randomly initialized ResNet50 (He et al., 2016) architectures. To maximize
robustness, we employ AugMix (Hendrycks et al., 2020), and in the case of Cid, we inject
random Gaussian noise into the training images to increase the robustness towards possible
artifacts from the diffusion process. Furthermore, we randomly mask out patches of the same
shape as the SAF to reduce the effect of SAF on the prediction. Robustness is crucial for
these classifiers. Even if models have a 99.9% accuracy on the test set, they produce a not
negligible amount of false predictions on a dataset with 50000 synthetic images. Therefore,
we carefully run several training sessions over different hyperparameter settings. Due to
the simplicity of this detection and the self-supervised learning scheme, all of the classifiers
trained to detect synthetic fingerprints reach an accuracy of 100% on the test set. To further
elaborate on the training details of Cfand Cid, we show training samples for both classifiers
in Fig. 8. Since both tasks are fairly easy binary classification tasks, we employed strong
augmentation techniques to ensure that positively predicted samples from the classifiers are
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Figure 9: Relationship between model size, FID, and t’. The size of the marker shows the
size of the model.

SAFs. We balanced the classification task for Cidby adding SAFs to 50% of the training
images. For validation, we reduce this to 10% to remain closer to the expected distribution.
For Cidwe chose circular masking as training augmentation because we expected it might
be necessary to mask out the SAF from the positive predictions of Cf . However, closer
inspection of the predictions showed this was unnecessary (compare Fig. 15). Another reason
is, that we do not want to confuse the model at inference time by showing it SAFs which are
not part of the training data of Cid. The probability of xp appearing in the training dataset
of Cidis set to 10% during training and 50% during validation.
Diffusion Model Training: The custom diffusion model architecture for experiments on
MedMNIST is based on the open-source implementation of a 2D U-Net1. Due to the 28× 28
input images, we are forced only to use the three outermost downsampling and upsampling
layers. Training the diffusion model on the toy datasets is done on a single A100 GPU and
takes roughly eleven hours. For the real datasets, we either employ diffusion models in image
or in latent space, both on 64× 64 pixel images. A key difference between score-based models
and diffusion models is that diffusion models use a discrete noise schedule instead. Switching
to this discrete schedule is not a problem due to the reasonably small discretization error (Su
et al., 2023). The classifiers are trained until convergence with a validation error patience
of 20 epochs, which takes less than one hour. Exhaustive search for t’, which is done by
computing qM=16(p|xt,p) for all t ∈ 0, . . . , 1, takes four hours.

Appendix C. Details on Dataset Size

For this experiment, the diffusion models are trained for 150000 step at which time the FID
seems to saturate. For sampling we use 100 steps. Training takes roughly 9 hours on a node
with 8 Nvidia A100 GPUs. For every model we sample 30000 images which takes roughly 5
hours on a single GPU.

Appendix D. Model Size

In Tab. 3 we summarize the different hyperparameters used to define the backbone architec-
ture of the diffusion model.

1. https://github.com/huggingface/diffusers
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Table 3: Model architecture for the unconditional U-Net used as backbone for the diffusion
model. The standard value for the number of channels is c = 128.

# Trainable params Down blocks Channels / layer Layers / block

Default 113 675 524 6 c,c,2c,2c,4c,4c 2

Model 1 77 364 740 6 c,c,2c,2c,4c,4c 1
Model 2 71 439 108 5 c,c,2c,2c,4c,4c 2
Model 3 49 558 020 5 c,c,2c,2c,4c,4c 1
Model 4 28 484 612 4 c,c,2c,2c,4c,4c 2
Model 5 28 448 388 6 c/2,c/2,c,c,2c,2c 2

Figure 10: Overview of our experimental setup. The figure shows the three datasets we
are evaluating on (ChestX-ray14, ODIR-2019, and BCI). To model different
deviations from the rest of the training dataset we distinguish between three
different kinds of fingerprints: grey circles, PII inpainting (Tan et al., 2021),
and unique image-level features. From top to bottom we show three samples of:
The input dataset, the circle experiment, the PII experiment, and the feature
experiment. The feature experiment works by leveraging image-level labels such
as female, left eye or ihc staining

Appendix E. Method Overview

The main idea of our method is to artificially inject fingerprints into the diffusion model’s
training set. This means that we augment Nf = 1 training images with one of the fingerprint
types described below. Then, given a robust classifiernCf trained to detect this fingerprint,
we can check if this fingerprint is reproduced in the synthesized dataset. Synthetic anatomic
fingerprints track the memorization capabilities of unconditional diffusion models. They use
visually dominant grey circles, which are easily detectable by the human eye or classifiers. The
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Table 4: Memorization results for all three datasets. Results are averaged over three different
runs. All ChestX-ray14 and BCI runs result in fairness issues due to the complete
lack of reproducing the SAFs.

PSNR Cf+ t’
Circle PII Feature Cirle PII Feature Cirle PII Feature

ChestX-ray14 24.76 25.06 24.54 0.00 0.00 0.00 0.14 0.25 0.43
BCI 46.41 46.48 46.01 0.00 0.00 0.00 0.10 0.26 0.25
ODIR-2019 46.93 46.18 47.14 51.33 61.67 39.33 0.76 0.77 0.78

problem with this is that it remains unclear whether this high visual discrepancy influences
generation abilities. Firstly, Circular fingerprints are used. They have a fixed radius of 9 (in
a 64 by 64 pixel image) and are situated at a specific spot within the area typically occupied
by content. They are trivial to spot, which makes their automated detection easy and reliable.
To analyze visually more realistic fingerprints, we create PII fingerprints using Poisson image
interpolation (PII) which is known to create features realistic enough to be used for anomaly
detection (Tan et al., 2021). In the case of ChestX-ray14 we picked a source image for the
interpolation such that the area contains a medical support device and inpaint at a location
that does not contain this kind of device to make sure that no real samples contain similar
features. Finally, we experiment with using image-level labels as feature fingerprints. For
ChestX-ray14 we use sex, for BCI the staining type, and for ODIR-2019 the physical side of
the eye. Since we rely on a robust boundary for the detection of the features, we additionally
apply PII to all images that have a different image label. Therefore, we can use the same
classifier we use for PII detection to detect these features. Essentially, this means that we
add a synthetic fingerprint for a real feature.
Generalizability to Other Fingerprints: To check whether the results presented in Tab.
2 is reproducible, we use the ideal training lengths and train the diffusion models with the
different types of SAFs. Results are given in Tab. 4. None of the ChestX-ray14 and BCI
models reproduce the SAFs which means that none of the models are fair. Moreover, we can
see that we can measure this by computing t’. The results for the three different inpainters
seem to differ slightly when looking at Cf+and t’. The circle, which is purely synthetic, seems
to be easily forgotten by the models that do not memorize as indicated by the low value for
t’. For PII the value is close to that of the feature fingerprint.. The value for t’ of PII is
much lower than that of the feature fingerprint. To recap, the difference is that PII inpaints
the PII feature on an inilier (male), whereas the feature fingerprint works by inpainting the
PII fingerprint on an image with a different image label (female). The variance in stature,
leading to low-frequency features being more readily identifiable by diffusion models at a
higher noise level, may explain the significantly higher value of t’ observed in this context.
From now on, we restrict our experiments to feature fingerprints.
Filtering: In order to determine whether or not an unconditional diffusion model reproduces
samples at sampling time, we perform the filtering process as illustrated in Fig. 11. The first
step is training an unconditional diffusion model on a dataset, where one image contains
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Train generative model
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SAF search Identification Probabillity estimation

Figure 11: Illustration of the filtering process to come up with the number of memorized
images |q|. The lock symbol stands for keeping the model frozen and performing
inference or, in the case of the diffusion models, sampling. The lightning indicates
privacy issues. Green borders indicate that it is safe to share the images due
to the lack of any identifiable information about it. Red borders indicate that
sharing these images would pose a privacy risk.

a known fingerprint (prior information). Cf is trained to find the fingerprint while Cidis
trained to determine the identity of the image without the fingerprint and, hence, if the
image contains personal information. Finally, we sample the unconditional model and filter
all generated images to only consist of images that contain the fingerprint and have the same
identity as the training images. If any images fulfill these criteria, then we have a privacy
issue, and the model should not be shared

Appendix F. Estimation of Tightness of Bound

Figure 12: The accuracy of our estimate on a synthetic two-dimensional example. The red
dot is the query image xp and the circle is the boundary Ωp Left: Monte carlo
estimation method. Middle: Idealised visualization of our proposed estimation
method. Right: Accuracy of both estimation methods.
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We show how Monte-Carlo sampling compares to our approach in a two-dimensional
synthetic scenario with a bimodal Gaussian distribution shown in Fig. 12. The sampling
procedure of our method is shown in the middle. We use an idealized scenario for sampling
by choosing values on the exact circle around the query image. Importantly, we see that
our proposed method successfully works as an upper bound for the real probability, whereas
Monte-Carlo sampling underestimates the real probability at first. Additionally, we see that
the estimate is close to the real value and would give a reasonably good estimate from only
32 samples.

Appendix G. Estimation Algorithm

Algorithm 1: Upper bound likelihood estimation algorithm
Input: M , sθ(x, t), cf (x), cID(x), xp

Output: t′

for t← 1 to 0 do
for m← 1 to M do

xt,p ← p(xt | xp);
for t̃← t to 0 do

x′
t,p ← sθ(x

′
t,p, t̃);

end
x′
p ← x′

t,p;
if cf (x) is True and cID(x) is True then

return t;
end

end
end

In Alg. 1 we describe our proposed algorithm to compute the indicator t′. To do an
exhaustive search we set the step size to be the same as the sampling step size, start from
the maximum value, and go to the minimum value. Since this computation takes too long to
be feasible, we experiment with increased step sizes. To improve the computation time even
further it is straightforward to change the algorithm to a binary search version or to increase
the sampling step size.

Appendix H. Experiments on Toy Datasets

We report detailed results for several MedMNIST datasets in Tab. 5. We compute the
Fréchet inception distance (FID) on the train and the test data to see if we can identify
memorization issues. Most datasets show a large gap between these two values, which could
partially be explained by memorization. But the size of this gap gives no information about
the memorization capabilites and can be explained by other factors. PneumoniaMNIST has
a larger drop in performance than RetinaMNIST but exhibits barely any memorized samples.
For the smaller datasets we observe that the model only learned to reproduce samples. In the
context of data-sharing this would mean that the model is essentially a way of compressing
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Table 5: Training results for different MedMNIST datasets. We report test accuracy for the
SAF classifier, but only training accuracy for the ID classifier, as identification only
makes sense if the sample was part of the training set.

Description SAF classification Data synthesis

Dataset |ND| SAF (%) ID (%) FIDtrain FIDtest E(|q|) |q| t′

BreastMNIST 546 100 98.7 9.2 62.6 91.6 57 0.886
RetinaMNIST 1080 100 99.6 5.9 19.7 46.3 52 0.998
PneumoniaMNIST 4708 100 99.8 9.5 28.4 10.6 2 0.718
BloodMNIST 11959 100 99.5 9.3 11.0 4.2 0 0.241
OrganSMNIST 13940 99.47 99.8 19.6 19.7 3.6 0 0.582
ChestMNIST 78468 99.93 99.8 3.3 3.9 0.6 0 0.206

training data and sharing it would raise major privacy issues. This results in a high value for
t′ and several reproduced private image xp.

Next, we compute t′. Detailed results for the computation of t′ are shown in Fig. 3. The
trained generative models exhibit a behavior of starting a slow decline in the probability of
reproducing training samples for an increasing t. The end of the decline can be estimated by
computing t′. For the three larger datasets we observe that the images are not reproduced.
The values for t′ are low, indicating that the probability of reproducing samples is negligble.
We demonstrate this by sampling the models without retrieving any training samples (|q| = 0).
Overall, we conclude that t’ nicely captions the memorization capabilities of the models.

We confirm our observations by artificially reducing |ND| on PathMNIST in Sec. H,
similar to the experiment performed in Tab. 1. Our evaluations show that the turning point
seems to be |ND| = 5000 images, where smaller dataset sizes mean that models only learn to
memorize, but larger datasets learn to generalize. The combined prediction q :=Cid

+∩Cf
+

is only positive for the smallest dataset which means that we did not observe a single image,
where the SAF was reproduced but the identity not preserved. In other words, this means
that every image containing the fingerprint is a direct copy of the training image, which
implicates exposure of the identity. We keep the number of training steps fixed at 30000
steps because we observed that this is the length it takes the model to learn to reproduce
samples for the smallest subset. After training we sample 150000 images for every model
and measure the probability of reproducing our sample at test time. We do this by defining
the null-hypothesis H0 that the probability of sampling xp is equal to 1/ND. Hypothesis H1

claims that the probability is lower. Therefore, we sample 150000 images for every trained
model with dataset size |ND| ∈ {1000, 5000, 10000, 20000, 50000}. The results are shown in
Tab. 6 It can be seen that the model only learned to reproduce samples with the SAF when
the dataset size was comparably low. For |ND| = 1000 the model was surprisingly close to
the expected value, indicating that the size of the data is too small relative to the available
parameter space and the model memorizes them as discrete distribution of 1000 unrelated
images. Every other model produces very few positive predictions from the classifier all of
which turn out to be false positives.
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Figure 13: The figure shows a grid-wise comparison of absolute pixel error between the
training image xp and two sampled image x′

p that raise privacy concerns (left)
and the mean squared error (MSE) for an increasing amount of different training
steps (right). |ND| is set to 1000. The samples on the left are from the model
trained for 17000 steps.

The combined prediction q is only positive for the smallest dataset. All the larger models
do not have any positive samples in their dataset. The p-value for this is smaller than 5% in
all cases, meaning that we can reject the null-hypothesis and assume that the probability
of xp is smaller. Next we look at the samples of different sizes. Initial observation suggest
that image quality drops for medium-sized datasets. However, upon closer inspection we see
that the smallest model simply learns to reproduce training data, which can be seen by the
fact that some images appear multiple times. This confirms our observation that the model
learned the training distribution in the form a discrete set of 1000 images but never learned
to generalize. In the context of data-sharing this would mean that the model is essentially a
way of saving and retrieving training data but sharing it would raise major privacy issues.
The model trained on 5000 images seems to lie in between generalizing and memorizing
the learned distribution but the size of dataset was not large enough to learn a meaningful
representation. The result indicate that the model learned low frequency information such
as color or larger structure, but the images are lacking detail (compare Fig. 16).

H.1. MAE of Memorized Training Samples

Our pipeline unveiled that training the score-based generative model for a long time on
a small dataset leads to reproducing images at sampling time. We show this by applying
our classification pipeline and filtering out all negative samples to get q. Fig. 13 shows
how much these samples are memorized. As can be seen, the sampled images x′

p are barely
distinguishable from the training image xp. Interestingly, the mean squared error (MSE)
between these images goes down rapidly but seems to stagnate after 19000 steps, at which
point the reconstruction does not improve much, despite the observed higher memorization
probability q. This suggests that overfitting occurs not only in the last reverse diffusion steps
but also for higher t.
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H.2. Dataset Size

Figure 14: Likelihood of producing xp at sampling time as a function of t for t ∈ {0, . . . , 0.5}
and M = 16. We stop plotting probabilities after t′. Due to the high observed
probabilities of the ND = 1000 model, we also compute and plot the probabilities
for higher t.

Table 6: Number of positive predictions of the classifiers for models trained on different
dataset sizes on 150000 images. All models use the same classifiers.

|ND| 1000 5000 10000 20000 50000

E [|q|] 150 30 15 7.5 3

|Cf
+| 151 0 0 1 1

|Cid
+| 151 0 3 3 4

|q| 151 0 0 0 0

The trained classifiers only produce up to five false positives for 150000 generated images.
The false positives for all |ND| are shown in Fig. 15. Both misclassified samples from Cidshow
great resemblance to the SAF by consisting of a circular monochrome patch. The misclassified
identification samples are really similar in terms of texture, color, and structure, although
the differences to xp are distinct. None of the Cid

+ would lead to clear privacy issues in
practice, which we successfully capture by computing |q| = 0 for these three models.

Fig. 16 shows visual results for the same diffusion model on different dataset sizes. As
shown in Fig. 14, the first model memorizes the samples, while the last model learns the
underlying distribution and generalizes. This is nicely captured by t′.

H.3. Training Length

We experiment with the influence of the training length on |p| by sampling 10000 images
from a model trained on |ND| = 1000 and show the results in Fig. 17. For the first 14000
steps, the model only learns low-frequency attributes of the data. The visual quality is
low and, therefore, also the probability of reproducing xp. Around 20000 steps the quality
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Figure 15: All false positive predictions on MedMNISTv2 from the 750000 generated images.
All misclassified images by one classifier were filtered and correctly classified by
the other classifier.

Figure 16: Representative samples from trained models on different dataset sizes |ND|.

Figure 17: Influence of training length on generative and memorization properties. A posi-
tively classified sample can be seen in the top-left corner of the rightmost image.
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of the generated samples improves visually, but also the number of memorized training
samples. At this point, the model already starts to accurately reproduce xp at sampling
time. Every detected sample is visually indistinguishable from the training image. The MAE
even goes down to 1× 10−4. Based on these observations, we continue our investigations for
MedMNISTv2 with a fixed training length of 30000 steps.

Appendix I. Results on Stable Diffusion

Figure 18: The problem of memorization: Conditional diffusion models memorize training
data. Left: shows training and generation examples for both models. SDv1
(Rombach et al., 2022) reproduces training samples (reproduced from (Carlini
et al., 2023)). Version 2 of the same model no longer exhibits this problem. Right:
We show that using our proposed method we can measure this.

This section reproduces the privacy problems of Stable Diffusion v1.4 (Rombach et al.,
2022) which were first discovered by (Carlini et al., 2023). We prompt a text conditional
model on a name and see that it reproduces the training image at sampling time in one out
of sixteen cases. Interestingly, we did not observe this for Stable Diffusion v2.0, which is
a fine-tuned version of the same model. Using our proposed method, we can measure this.
Therefore, we train a single classifier on re-identification of the image by using 500 randomly
selected images of the same person generated by Stable diffusion v2.0. The results are shown
in Fig. 18 and show that we can quantify this difference in memorization which underlines
that our method is useful in practice and even can be applied to pre-trained models. In
general we still observe that t’ correlates nicely with memorization, however the values for t’
are much higher. Apparently, the strong textual conditioning in combination with the way we
generate the input noise xt,p has important implications that need further experimentation.

Appendix J. Extractable Memorization

Next, we employ improved denoising diffusion probabilistic models (Nichol and Dhariwal,
2021) on CelebA-HQ images (Karras et al., 2018). Fig. 19 shows the computation of t′ for
three models trained for 40000, 60000, and 280000 steps. The results show that t′ is generally
lower for the 40000 steps model than after 60000 steps. To do a naive search, we generate
5000 images and use an SAF classifier and a sunglasses classifier to search for fingerprints
in generated samples. The 40000 model did not reproduce the sample; however, the 60000
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model reproduced the SAF once. Interestingly, the results match with the non-synthetic
fingerprint, where a single image was reproduced at training time. However, all three models
have high t′ values, indicating that sharing them could be privacy-concerning. Notably, the
model trained for 280000 steps did not reveal that it had memorized the training sample.
Out of the 5000 samples, none were the sunglass image. Interestingly, we observe something
similar to mode-collapse as all of the images share similar visual properties (e.g., dark hair).

Figure 19: Computation of t′ for three differ-
ent epochs on Celeba-HQ (Karras
et al., 2018). We use the SAF as
synthetic and sunglasses as non-
synthetic fingerprint

Figure 20: Example showing a case of ex-
tractable memorization.

The results confirm the observation that diffusion models reproduce training images at
sampling time and that we can measure this by measuring t′ for all three models. We make
similar observations on experiments conducted on Stable Diffusion v1.4 (Rombach et al.,
2022) following the descriptions by (Carlini et al., 2023). However, since this model is a
text-conditional model, it requires more experimentation.

Our work is related to backdoor learning attacks where adversaries use the trained model
to inject images into the diffusion process to generate inappropriate images for extractable
memorization according to the definition introduced in Sec. 2. In our case, an inappropriate
image would be a privacy breach. The attack works by exchanging the query image xp with
a trigger image xq that was not part of the training set and that shares visual similarities. In
Figure 20, we show that this attack can be used to increase qM (p|xt,q) of xp being generated
to 18.75%. Since t′ is related to the variance of the change of the image performed through
the diffusion model, we can measure the model’s susceptibility to this attack. Sharing the
model would be safe if t′ is small enough so that the change of the variance is too small to
change the images from the trigger to the target image. Additionally, we test if we can use
t′ to infer information about the membership of an image in the training dataset. Fig. 20
demonstrates notably lower t′ values for training set images than test set images. Designing
a backdoor attack also confirms our observations from Fig. 19 as all three models were
susceptible to it and reproduced the training image, even the one where we observed mode
collapse. This underlines the efficacy of our method, as this case might have been overlooked
when using a naive search.
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